The Global Market for Advanced Carbon Materials 2024-2035

0

Carbon Fibers,  Carbon Black, Graphite, Biochar, Carbon Nanomaterials (Graphene, Carbon Nanotubes, Carbon Nanofibers, Fullerenes, Nanodiamonds, Graphene Quantum Dots), Carbon Foam, Activated Carbon, Diamond-Like Carbon (DLC) Coatings, Carbon Capture Utilization. 

  • Published: May 2024
  • Pages: 1,155
  • Tables: 245
  • Figures: 181

 

The Global Market for Advanced Carbon Materials 2024-2035 is a comprehensive market research report that provides an in-depth analysis of the rapidly growing advanced carbon materials industry. This report covers the current state and future potential of various types of advanced carbon materials, including carbon fibers, carbon black, graphite, biochar, graphene, carbon nanotubes, fullerenes, nanodiamonds, carbon aerogels, and xerogels, as well as their applications across diverse sectors such as aerospace, automotive, energy, electronics, and environmental remediation.

The report begins with an overview of the advanced carbon materials market, highlighting the role of these materials in the green transition and their potential to revolutionize various industries. The market analysis section provides valuable insights into the market drivers, challenges, pricing, supply chain, competitive landscape, and future outlook for each type of advanced carbon material. The report also includes detailed market segmentation by application, end-use industry, and region, along with addressable market sizes and risk assessments.

A significant portion of the report is dedicated to carbon fibers, covering various aspects such as precursor materials, production processes, recycling, and 3D printing. The report analyzes the applications and market potential of carbon fibers in industries such as aerospace, wind energy, sports and leisure, automotive, pressure vessels, and oil and gas. It also provides a comprehensive overview of the global carbon fiber market, including demand forecasts, revenue projections, and regional market insights.

The report also examines the markets for carbon black and graphite, providing detailed information on their properties, manufacturing processes, and applications. It includes an analysis of specialty carbon black and recovered carbon black, as well as an assessment of the global market for graphite electrodes and other graphite products. The report also covers emerging trends in green graphite and recycling of graphite materials.

Biochar is another key focus area of the report, with a detailed analysis of its properties, production methods, and applications in agriculture, construction, wastewater treatment, and carbon sequestration. The report also examines the potential of biochar in earning carbon credits and its competitive positioning against other carbon removal technologies.

The report provides an extensive coverage of graphene and its derivatives, including an analysis of their properties, synthesis methods, and applications in various industries. It also includes a detailed assessment of the global graphene market, including demand forecasts by material type, application, and region. 

Other advanced carbon materials covered in the report include carbon nanotubes, fullerenes, nanodiamonds, carbon aerogels, and xerogels. The report analyzes their properties, production methods, and applications in energy storage, composites, filtration, catalysis, and biomedical fields. It also includes a detailed assessment of the global markets for these materials, along with company profiles of key players in each segment.

In addition to the market analysis, the report also covers emerging technologies and trends in the advanced carbon materials industry, such as the use of carbon materials in carbon capture and utilization. It provides an overview of the main carbon capture processes, separation technologies, and the potential of advanced carbon materials in direct air capture and electrochemical conversion of CO2.

The report features profiles of over 1000 companies active in the advanced carbon materials market, providing valuable insights into their products, technologies, and growth strategies. Companies profiled include AquaGreen, BC Biocarbon, Black Swan Graphene, Cabot Corporation, Carba, Carbitex, CarbonX, Carbo Culture, Carbonauten,   Charm Industrial , CHASM Advanced Materials, Dark Black Carbon, GrafTech International, Gratomic,  Graphenea, Graphite One, Haydale Graphene Industries, Graphjet Technology, Hexcel Corporation, Huntsman Corporation, HUSK,  Ibiden Co. Ltd., Jacobi, JEIO, Kumho Petrochemical, LG Chem,  Leading Edge Materials, Li-S Energy, Lyten, Mattershift, Mitsubishi Chemical Carbon Fiber and Composites, Inc., Mersen, LLC, NanoXplore, NextSource Materials, Nippon Techno-Carbon Co., Ltd.,  Teijin, UMATEX,  Nanocyl SA, Novocarbo, OCSiAl, Perpetual Next, POSCO, Pyrum Innovations, RCB Nanotechnologies GmbH, Renergi, Scandanavian Enviro Systems, SEC Carbon, SGL Group, Showa Denko, SkyNano, Sunrise New Energy, Syrah Resources, Teijin, UP Catalyst, Vartega, Versarien and Zeon Corporation. 

 

1             THE ADVANCED CARBON MATERIALS MARKET             52

  • 1.1         Market overview             52
  • 1.2         Role of advanced carbon materials in the green transition       53

 

2             CARBON FIBERS            54

  • 2.1         Properties of carbon fibers        54
    • 2.1.1     Types by modulus          55
    • 2.1.2     Types by the secondary processing       56
  • 2.2         Precursor material types            57
    • 2.2.1     PAN: Polyacrylonitrile 57
      • 2.2.1.1 Spinning             58
      • 2.2.1.2 Stabilizing         58
      • 2.2.1.3 Carbonizing      59
      • 2.2.1.4 Surface treatment         59
      • 2.2.1.5 Sizing   59
      • 2.2.1.6 Pitch-based carbon fibers         59
      • 2.2.1.7 Isotropic pitch 59
      • 2.2.1.8 Mesophase pitch            60
      • 2.2.1.9 Viscose (Rayon)-based carbon fibers  61
    • 2.2.2     Bio-based and alternative precursors 61
      • 2.2.2.1 Lignin   61
      • 2.2.2.2 Polyethylene    65
      • 2.2.2.3 Vapor grown carbon fiber (VGCF)           65
      • 2.2.2.4 Textile PAN       66
    • 2.2.3     Recycled carbon fibers (r-CF)   66
      • 2.2.3.1 Recycling processes    67
      • 2.2.3.2 Companies       69
    • 2.2.4     Carbon Fiber 3D Printing            69
    • 2.2.5     Plasma oxidation           72
    • 2.2.6     Carbon fiber reinforced polymer (CFRP)             72
      • 2.2.6.1 Applications     72
  • 2.3         Markets and applications          74
    • 2.3.1     Aerospace         74
    • 2.3.2     Wind energy      74
    • 2.3.3     Sports & leisure              75
    • 2.3.4     Automotive       76
    • 2.3.5     Pressure vessels            78
    • 2.3.6     Oil and gas         79
  • 2.4         Market analysis               80
    • 2.4.1     Market Growth Drivers and Trends        80
    • 2.4.2     Regulations       81
    • 2.4.3     Price and Costs Analysis            82
    • 2.4.4     Supply Chain    83
    • 2.4.5     Competitive Landscape             84
      • 2.4.5.1 Annual capacity, by producer  85
      • 2.4.5.2 Market share, by capacity         86
    • 2.4.6     Future Outlook 86
    • 2.4.7     Customer Segmentation            87
    • 2.4.8     Geographical Markets 88
    • 2.4.9     Addressable Market Size           89
    • 2.4.10   Risks and Opportunities             90
    • 2.4.11   Global market  91
      • 2.4.11.1               Global carbon fiber demand 2016-2035, by industry (MT)          92
      • 2.4.11.2               Global carbon fiber revenues 2016-2035, by industry (billions USD)    93
      • 2.4.11.3               Global carbon fiber demand 2016-2035, by region (MT)              94
  • 2.5         Company profiles          96
  • 2.5.1     Carbon fiber producers               96 (29 company profiles)
  • 2.5.2     Carbon Fiber composite producers      114 (62 company profiles)
  • 2.5.3     Carbon fiber recyclers 150 (16 company profiles)

 

3             CARBON BLACK             162

  • 3.1         Commercially available carbon black 162
  • 3.2         Properties          163
    • 3.2.1     Particle size distribution            164
    • 3.2.2     Structure-Aggregate size           165
    • 3.2.3     Surface chemistry         165
    • 3.2.4     Agglomerates  166
    • 3.2.5     Colour properties           167
    • 3.2.6     Porosity              167
    • 3.2.7     Physical form   168
  • 3.3         Manufacturing processes          168
  • 3.4         Markets and applications          169
    • 3.4.1     Tires and automotive   169
    • 3.4.2     Non-Tire Rubber (Industrial rubber)       171
    • 3.4.3     Other markets 172
  • 3.5         Specialty carbon black                173
    • 3.5.1     Global market size for specialty CB      174
  • 3.6         Recovered carbon black (rCB) 175
    • 3.6.1     Pyrolysis of End-of-Life Tires (ELT)         177
    • 3.6.2     Discontinuous (“batch”) pyrolysis         178
    • 3.6.3     Semi-continuous pyrolysis       178
    • 3.6.4     Continuous pyrolysis   179
    • 3.6.5     Key players        179
    • 3.6.6     Global market size for Recovered Carbon Black             179
  • 3.7         Market analysis               180
    • 3.7.1     Market Growth Drivers and Trends        180
    • 3.7.2     Regulations       181
    • 3.7.3     Supply chain     182
    • 3.7.4     Price and Costs Analysis            184
      • 3.7.4.1 Feedstock          184
      • 3.7.4.2 Commercial carbon black         184
    • 3.7.5     Competitive Landscape             185
      • 3.7.5.1 Production capacities 185
    • 3.7.6     Future Outlook 186
    • 3.7.7     Customer Segmentation            186
    • 3.7.8     Geographical Markets 187
    • 3.7.9     Addressable Market Size           188
    • 3.7.10   Risks and Opportunities             189
    • 3.7.11   Global market  190
      • 3.7.11.1               By market (tons)              190
      • 3.7.11.2               By market (revenues)   191
      • 3.7.11.3               By region (Tons)               191
  • 3.8         Company profiles          192 (51company profiles)

 

4             GRAPHITE         215

  • 4.1         Types of graphite            215
    • 4.1.1     Natural vs synthetic graphite   216
  • 4.2         Natural graphite             218
    • 4.2.1     Classification  218
    • 4.2.2     Processing        219
    • 4.2.3     Flake    220
      • 4.2.3.1 Grades 220
      • 4.2.3.2 Applications     221
      • 4.2.3.3 Spherical graphite         222
      • 4.2.3.4 Expandable graphite     223
    • 4.2.4     Amorphous graphite     224
      • 4.2.4.1 Applications     224
    • 4.2.5     Crystalline vein graphite             225
      • 4.2.5.1 Applications     225
  • 4.3         Synthetic graphite         226
    • 4.3.1     Classification  226
      • 4.3.1.1 Primary synthetic graphite        227
      • 4.3.1.2 Secondary synthetic graphite  227
    • 4.3.2     Processing        227
      • 4.3.2.1 Processing for battery anodes 228
    • 4.3.3     Issues with synthetic graphite production         228
    • 4.3.4     Isostatic Graphite          229
      • 4.3.4.1 Description       229
      • 4.3.4.2 Markets               229
      • 4.3.4.3 Producers and production capacities 230
    • 4.3.5     Graphite electrodes     230
    • 4.3.6     Extruded Graphite         232
    • 4.3.7     Vibration Molded Graphite        232
    • 4.3.8     Die-molded graphite    233
  • 4.4         New technologies          234
  • 4.5         Recycling of graphite materials              234
  • 4.6         Green graphite 234
  • 4.7         Markets and applications for  graphite 235
  • 4.8         Market analysis               236
    • 4.8.1     Market Growth Drivers and Trends        236
    • 4.8.2     Regulations       237
    • 4.8.3     Price and Costs Analysis            238
    • 4.8.4     Supply Chain    242
    • 4.8.5     Competitive Landscape             243
    • 4.8.6     Future Outlook 244
    • 4.8.7     Customer Segmentation            245
    • 4.8.8     Geographical Markets 246
    • 4.8.9     Addressable Market Size           247
    • 4.8.10   Risks and Opportunities             248
  • 4.9         Global market  248
    • 4.9.1     Global mine production and reserves of natural graphite          249
    • 4.9.2     Global graphite production in tonnes, 2016-2022         249
    • 4.9.3     Estimated global graphite production in tonnes, 2023-2035    251
    • 4.9.4     Synthetic graphite supply          252
    • 4.9.5     Global market demand for graphite by end use market 2016-2035, tonnes      253
      • 4.9.5.1 Natural graphite             253
      • 4.9.5.2 Synthetic graphite         253
    • 4.9.6     Demand for graphite by end use markets, 2022              254
    • 4.9.7     Demand for graphite by end use markets, 2033              255
    • 4.9.8     Demand by region          256
    • 4.9.9     Main market players     257
      • 4.9.9.1 Natural graphite             257
      • 4.9.9.2 Synthetic graphite         258
    • 4.9.10   Market supply chain     259
  • 4.10       Company profiles          262 (96 company profiles)

 

5             BIOCHAR           328

  • 5.1         What is biochar?            329
  • 5.2         Carbon sequestration  330
  • 5.3         Properties of biochar    331
  • 5.4         Markets and applications          333
  • 5.5         Biochar production       338
  • 5.6         Feedstocks       338
  • 5.7         Production processes  339
    • 5.7.1     Sustainable production              340
    • 5.7.2     Pyrolysis             341
      • 5.7.2.1 Slow pyrolysis  341
      • 5.7.2.2 Fast pyrolysis   342
    • 5.7.3     Gasification     343
    • 5.7.4     Hydrothermal carbonization (HTC)       343
    • 5.7.5     Torrefaction      344
    • 5.7.6     Equipment manufacturers        345
  • 5.8         Carbon credits 345
    • 5.8.1     Overview            346
    • 5.8.2     Removal and reduction credits               346
    • 5.8.3     The advantage of biochar           346
    • 5.8.4     Price     346
    • 5.8.5     Buyers of biochar credits           347
    • 5.8.6     Competitive materials and technologies           347
      • 5.8.6.1 Geologic carbon sequestration               347
      • 5.8.6.2 Bioenergy with Carbon Capture and Storage (BECCS) 348
      • 5.8.6.3 Direct Air Carbon Capture and Storage (DACCS)           348
      • 5.8.6.4 Enhanced mineral weathering with mineral carbonation          349
      • 5.8.6.5 Ocean alkalinity enhancement               349
      • 5.8.6.6 Forest preservation and afforestation 350
  • 5.9         Markets for biochar       350
    • 5.9.1     Agriculture & livestock farming               350
        • 5.9.1.1 Market drivers and trends          350
        • 5.9.1.2 Applications     351
      • 5.9.2     Construction materials               355
        • 5.9.2.1 Market drivers and trends          355
        • 5.9.2.2 Applications     355
      • 5.9.3     Wastewater treatment 359
        • 5.9.3.1 Market drivers and trends          359
        • 5.9.3.2 Applications     359
      • 5.9.4     Filtration            360
        • 5.9.4.1 Market drivers and trends          360
        • 5.9.4.2 Applications     361
      • 5.9.5     Carbon capture               361
        • 5.9.5.1 Market drivers and trends          361
        • 5.9.5.2 Applications     362
      • 5.9.6     Cosmetics         362
        • 5.9.6.1 Market drivers and trends          362
        • 5.9.6.2 Applications     363
      • 5.9.7     Textiles               363
        • 5.9.7.1 Market drivers and trends          363
        • 5.9.7.2 Applications     364
      • 5.9.8     Additive manufacturing              364
        • 5.9.8.1 Market drivers and trends          364
        • 5.9.8.2 Applications     364
      • 5.9.9     Ink          365
        • 5.9.9.1 Market drivers and trends          365
        • 5.9.9.2 Applications     365
      • 5.9.10   Polymers            366
        • 5.9.10.1               Market drivers and trends          366
        • 5.9.10.2               Applications     366
      • 5.9.11   Packaging          367
        • 5.9.11.1               Market drivers and trends          367
        • 5.9.11.2               Applications     368
      • 5.9.12   Steel and metal               369
        • 5.9.12.1               Market drivers and trends          369
        • 5.9.12.2               Applications     369
      • 5.9.13   Energy  370
        • 5.9.13.1               Market drivers and trends          370
        • 5.9.13.2               Applications     370
  • 5.10       Market analysis               374
    • 5.10.1   Market Growth Drivers and Trends        374
    • 5.10.2   Regulations       375
    • 5.10.3   Price and Costs Analysis            376
    • 5.10.4   Supply Chain    378
    • 5.10.5   Competitive Landscape             379
    • 5.10.6   Future Outlook 380
    • 5.10.7   Customer Segmentation            381
    • 5.10.8   Geographical Markets 381
    • 5.10.9   Addressable Market Size           382
    • 5.10.10 Risks and Opportunities             383
    • 5.10.11 Global market  384
      • 5.10.11.1            By market          384
      • 5.10.11.2            By region            387
      • 5.10.11.3            By feedstocks  389
      • 5.10.11.4            China and Asia-Pacific 389
      • 5.10.11.5            North America 392
      • 5.10.11.6            Europe 394
      • 5.10.11.7            South America 396
      • 5.10.11.8            Africa   397
      • 5.10.11.9            Middle East       398
  • 5.11       Company profiles          400 (121 company profiles)

 

6             GRAPHENE       471

  • 6.1         Types of graphene          472
  • 6.2         Properties          472
  • 6.3         Market analysis               473
    • 6.3.1     Market Growth Drivers and Trends        473
    • 6.3.2     Regulations       474
    • 6.3.3     Price and Costs Analysis            475
      • 6.3.3.1 Pristine graphene flakes pricing/CVD graphene              478
      • 6.3.3.2 Few-Layer graphene pricing     479
      • 6.3.3.3 Graphene nanoplatelets pricing             479
      • 6.3.3.4 Graphene oxide (GO) and reduced Graphene Oxide (rGO) pricing         480
      • 6.3.3.5 Multi-Layer graphene (MLG) pricing      481
      • 6.3.3.6 Graphene ink    482
    • 6.3.4     Supply Chain    483
    • 6.3.5     Competitive Landscape             484
    • 6.3.6     Future Outlook 487
    • 6.3.7     Customer Segmentation            488
    • 6.3.8     Geographical Markets 489
    • 6.3.9     Addressable Market Size           490
    • 6.3.10   Risks and Opportunities             491
    • 6.3.11   Gobal demand 2018-2035, tons             493
      • 6.3.11.1               Global demand by graphene material (tons)     493
      • 6.3.11.2               Global demand by end user market      495
      • 6.3.11.3               Graphene market, by region     497
  • 6.4         Company profiles          499 (360 company profiles)

 

 

7             CARBON NANOTUBES 749

  • 7.1         Properties          749
    • 7.1.1     Comparative properties of CNTs            750
  • 7.2         Multi-walled carbon nanotubes (MWCNTs)      751
    • 7.2.1     Properties          751
    • 7.2.2     Markets and applications          751
  • 7.3         Single-walled carbon nanotubes (SWCNTs)     755
    • 7.3.1     Properties          755
    • 7.3.2     Markets and applications          756
  • 7.4         Market analysis               758
    • 7.4.1     Market Growth Drivers and Trends        758
    • 7.4.2     Regulations       759
    • 7.4.3     Price and Costs Analysis            760
    • 7.4.4     Supply Chain    762
    • 7.4.5     Competitive Landscape             763
    • 7.4.6     Future Outlook 766
    • 7.4.7     Customer Segmentation            766
    • 7.4.8     Geographical Markets 767
    • 7.4.9     Addressable Market Size           768
    • 7.4.10   Risks and Opportunities             769
    • 7.4.11   Global market demand               770
      • 7.4.11.1               MWCNTs            770
      • 7.4.11.2               SWCNTs             772
  • 7.5  Company profiles          773 (154 company profiles)
  • 7.6         Other types       891
    • 7.6.1     Double-walled carbon nanotubes (DWNTs)      891
      • 7.6.1.1 Properties          891
      • 7.6.1.2 Applications     892
    • 7.6.2     Vertically aligned CNTs (VACNTs)          892
      • 7.6.2.1 Properties          893
      • 7.6.2.2 Applications     893
    • 7.6.3     Few-walled carbon nanotubes (FWNTs)             894
      • 7.6.3.1 Properties          894
      • 7.6.3.2 Applications     895
    • 7.6.4     Carbon Nanohorns (CNHs)       895
      • 7.6.4.1 Properties          895
      • 7.6.4.2 Applications     896
    • 7.5.5     Carbon Onions 897
      • 7.6.5.1 Properties          897
      • 7.6.5.2 Applications     898
    • 7.5.6     Boron Nitride nanotubes (BNNTs)          898
      • 7.6.6.1 Properties          898
      • 7.6.6.2 Applications     899
      • 7.6.6.3 Production        900
      • 7.6.7     Companies       900

 

8             CARBON NANOFIBERS              904

  • 8.1         Properties          904
  • 8.2         Synthesis           904
    • 8.2.1     Chemical vapor deposition       905
    • 8.2.2     Electrospinning               905
    • 8.2.3     Template-based             905
    • 8.2.4     From biomass  905
      • 8.2.4.1 Lignin   906
      • 8.2.4.2 Cellulose            909
      • 8.2.4.3 Polyacrylonitrile (PAN) derived from biomass 911
      • 8.2.4.4 Algae    914
      • 8.2.4.5 Chitosan             915
  • 8.3         Challenges        916
  • 8.4         Markets               917
    • 8.4.1     Energy storage 917
      • 8.4.1.1 Batteries            917
      • 8.4.1.2 Supercapacitors            918
      • 8.4.1.3 Fuel cells            919
    • 8.4.2     CO2 capture     920
    • 8.4.3     Composites      921
    • 8.4.4     Filtration            922
    • 8.4.5     Catalysis            924
    • 8.4.6     Sensors               926
    • 8.4.7     Electromagnetic Interference (EMI) Shielding 928
    • 8.4.8     Biomedical       930
    • 8.4.9     Concrete            931
  • 8.5         Market analysis               933
  • 8.5.1     Market Growth Drivers and Trends        933
    • 8.5.2     Regulations       934
    • 8.5.3     Price and Costs Analysis            935
    • 8.5.4     Supply Chain    936
    • 8.5.5     Competitive Landscape             937
    • 8.5.5.1 Key players, CNF supplied, manufacturing methods and target markets           937
    • 8.5.6     Future Outlook 938
    • 8.5.7     Customer Segmentation            938
    • 8.5.8     Geographical Markets 939
    • 8.5.9     Addressable Market Size           940
    • 8.5.10   Risks and Opportunities             942
  • 8.6         Global market revenues             942
  • 8.7         Companies       944 (12 company profiles)

 

9             FULLERENES   952

  • 9.1         Properties          953
  • 9.2         Markets and applications          954
  • 9.3         Technology Readiness Level (TRL)         955
  • 9.4         Market analysis               955
    • 9.4.1     Market Growth Drivers and Trends        955
    • 9.4.2     Regulations       956
    • 9.4.3     Price and Costs Analysis            957
    • 9.4.4     Supply Chain    959
    • 9.4.5     Competitive Landscape             960
    • 9.4.6     Future Outlook 961
    • 9.4.7     Customer Segmentation            961
    • 9.4.8     Geographical Markets 962
    • 9.4.9     Addressable Market Size           963
    • 9.4.10   Risks and Opportunities             964
    • 9.4.11   Global market demand               965
  • 9.5         Producers          967 (20 company profiles)

 

10           NANODIAMONDS         978

  • 10.1       Types    978
  • 10.1.1   Detonation Nanodiamonds      978
  • 10.1.2   Fluorescent nanodiamonds (FNDs)      981
  • 10.2       Markets and applications          982
  • 10.3       Market analysis               985
    • 10.3.1   Market Growth Drivers and Trends        985
    • 10.3.2   Regulations       986
    • 10.3.3   Price and Costs Analysis            987
    • 10.3.4   Supply Chain    989
    • 10.3.5   Competitive Landscape             990
    • 10.3.6   Future Outlook 991
    • 10.3.7   Customer Segmentation            992
    • 10.3.8   Geographical Markets 993
    • 10.3.9   Addressable Market Size           994
    • 10.3.10 Risks and Opportunities             995
    • 10.3.11 Global demand 2018-2035, tonnes       995
  • 10.4       Company profiles          997 (30 company profiles)

 

11           GRAPHENE QUANTUM DOTS  1023

  • 11.1       Comparison to quantum dots  1024
  • 11.2       Properties          1025
  • 11.3       Synthesis           1025
    • 11.3.1   Top-down method         1025
    • 11.3.2   Bottom-up method        1025
  • 11.4       Applications     1028
  • 11.5       Graphene quantum dots pricing             1028
  • 11.6       Graphene quantum dot producers        1029 (9 company profiles)

 

 

12           CARBON FOAM              1038

  • 12.1       Types    1038
    • 12.1.1   Carbon aerogels             1038
      • 12.1.1.1               Carbon-based aerogel composites       1039
  • 12.2       Properties          1039
  • 12.3       Applications     1040
  • 12.4       Company profiles          1041 (16 company profiles)

 

13           DIAMOND-LIKE CARBON (DLC) COATINGS     1049

  • 13.1       Properties          1050
  • 13.2       Applications and markets          1051
  • 13.3       Global market size        1052
  • 13.4       Company profiles          1053 (9 company profiles)

 

14           ACTIVATED CARBON   1060

  • 14.1       Overview            1060
  • 14.2       Types    1060
    • 14.2.1   Powdered Activated Carbon (PAC)        1060
    • 14.2.2   Granular Activated Carbon (GAC)          1061
    • 14.2.3   Extruded Activated Carbon (EAC)           1061
    • 14.2.4   Impregnated Activated Carbon               1061
  • 14.3       Production        1061
    • 14.3.1   Coal-based Activated Carbon 1061
    • 14.3.2   Wood-based Activated Carbon               1062
    • 14.3.3   Coconut Shell-based Activated Carbon             1062
    • 14.3.4   Fruit Stone and Nutshell-based Activated Carbon        1062
    • 14.3.5   Polymer-based Activated Carbon          1062
    • 14.3.6   Activated Carbon Fibers (ACFs)              1062
  • 14.4       Markets and applications          1063
    • 14.4.1   Water Treatment            1063
    • 14.4.2   Air Purification 1063
    • 14.4.3   Food and Beverage Processing               1064
    • 14.4.4   Pharmaceutical and Medical Applications       1064
    • 14.4.5   Chemical and Petrochemical Industries            1064
    • 14.4.6   Mining and Precious Metal Recovery   1065
    • 14.4.7   Environmental Remediation    1065
  • 14.5       Market analysis               1065
    • 14.5.1   Market Growth Drivers and Trends        1065
    • 14.5.2   Regulations       1066
    • 14.5.3   Price and Costs Analysis            1067
    • 14.5.4   Supply Chain    1068
    • 14.5.5   Competitive Landscape             1069
    • 14.5.6   Future Outlook 1070
    • 14.5.7   Customer Segmentation            1071
    • 14.5.8   Geographical Markets 1072
    • 14.5.9   Addressable Market Size           1073
    • 14.5.10 Risks and Opportunities             1074
  • 14.6       Global market  1074
  • 14.7       Companies       1076 (21 company profiles)

 

15           CARBON MATERIALS FROM CARBON CAPTURE AND UTILIZATION     1110

  • 15.1       CO2 capture from point sources            1111
    • 15.1.1   Transportation 1112
    • 15.1.2   Global point source CO2 capture capacities   1112
    • 15.1.3   By source           1113
    • 15.1.4   By endpoint       1115
  • 15.2       Main carbon capture processes             1115
    • 15.2.1   Materials            1115
    • 15.2.2   Post-combustion           1117
    • 15.2.3   Oxy-fuel combustion   1119
    • 15.2.4   Liquid or supercritical CO2: Allam-Fetvedt Cycle         1119
    • 15.2.5   Pre-combustion             1120
  • 15.3       Carbon separation technologies            1121
    • 15.3.1   Absorption capture       1123
    • 15.3.2   Adsorption capture       1126
    • 15.3.3   Membranes      1128
    • 15.3.4   Liquid or supercritical CO2 (Cryogenic) capture             1130
    • 16.3.5   Chemical Looping-Based Capture        1131
    • 15.3.6   Calix Advanced Calciner            1132
    • 15.3.7   Other technologies       1133
    • 15.3.7.1               Solid Oxide Fuel Cells (SOFCs)               1134
    • 15.3.8   Comparison of key separation technologies    1134
    • 15.3.9   Electrochemical conversion of CO2     1135
    • 15.3.9.1               Process overview           1136
  • 16.4       Direct air capture (DAC)              1138
    • 16.4.1   Description       1138
  • 16.5       Companies       1140 (4 company profiles)

 

17           RESEARCH METHODOLOGY   1144

 

18           REFERENCES   1145

 

List of Tables

  • Table 1. The advanced carbon materials market.          51
  • Table 2. Classification and types of the carbon fibers. 53
  • Table 3. Summary of carbon fiber properties.  54
  • Table 4. Modulus classifications of carbon fiber.           55
  • Table 5. Comparison of main precursor fibers.               56
  • Table 6. Properties of lignins and their applications.    62
  • Table 7. Lignin-derived anodes in lithium batteries.     63
  • Table 8. Fiber properties of polyolefin-based CFs.         64
  • Table 9. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages.           66
  • Table 10. Retention rate of tensile properties of recovered carbon fibres by different recycling processes.     67
  • Table 11. Recycled carbon fiber producers, technology and capacity.               68
  • Table 12. Methods for direct fiber integration. 69
  • Table 13. Continuous fiber 3D printing producers.        69
  • Table 14. Summary of markets and applications for CFRPs.    71
  • Table 15. Comparison of CFRP to competing materials.            73
  • Table 16. The market for carbon fibers in wind energy-market drivers, applications, desirable properties, pricing and key players.              74
  • Table 17. The market for carbon fibers in sports & leisure-market drivers, applications, desirable properties, pricing and key players.              75
  • Table 18. The market for carbon fibers in automotive-market drivers, applications, desirable properties, pricing and key players.              76
  • Table 19. The market for carbon fibers in pressure vessels-market drivers, desirable properties of CF, applications, pricing, key players.         77
  • Table 20. The market for carbon fibers in oil and gas-market drivers, desirable properties, applications, pricing and key players.              78
  • Table 21. Market drivers and trends in carbon fibers.   79
  • Table 22. Regulations pertaining to carbon fibers          80
  • Table 23. Price and costs analysis for carbon fibers.    81
  • Table 24. Carbon fibers supply chain.  82
  • Table 25. Key players, carbon fiber supplied, manufacturing methods and target markets.     83
  • Table 26. Production capacities of carbon fiber producers, in metric tonnes, current and planned.    84
  • Table 27. Future outlook for carbon fibers by end use market. 86
  • Table 28. Addressable market size for carbon fibers by market.             88
  • Table 29. Market challenges in the CF and CFRP market.          89
  • Table 30. Global market revenues for carbon nanofibers 2020-2025 (MILLIONS USD), by market.       90
  • Table 31. Main Toray production sites and capacities. 111
  • Table 32. Commercially available carbon black grades.             161
  • Table 33. Properties of carbon black and influence on performance.  163
  • Table 34. Carbon black compounds.    167
  • Table 35. Carbon black manufacturing processes, advantages and disadvantages.   167
  • Table 36: Market drivers for carbon black in the tire industry.  169
  • Table 37.  Global market for carbon black in tires (Million metric tons), 2018 to 2033. 170
  • Table 38. Carbon black non-tire applications. 170
  • Table 39. Specialty carbon black demand, 2018-2035 (000s Tons), by market.              173
  • Table 40. Categories for recovered carbon black (rCB) based on key properties and intended applications.  175
  • Table 41. rCB post-treatment technologies.     175
  • Table 42. Recovered carbon black producers. 178
  • Table 43. Recovered carbon black demand, 2018-2035 (000s Tons), by market.           179
  • Table 44. Market Growth Drivers and Trends in Carbon Nanofibers.    179
  • Table 45. Regulations pertaining to carbon black.         180
  • Table 46. Market supply chain for carbon black.             181
  • Table 47 Pricing of carbon black.            183
  • Table 48: Carbon black capacities, by producer.            184
  • Table 49. Future outlook for carbon black by end use market. 185
  • Table 50. Addressable market size for carbon black by market.             187
  • Table 51. Global market for carbon black 2018-2035, by end user market (100,000 tons).        189
  • Table 52. Global market for carbon black 2018-2035, by end user market (billion USD).            190
  • Table 53. Global market for carbon black 2018-2035, by region (100,000 tons).             190
  • Table 54. Comparison between Natural and Synthetic Graphite.          215
  • Table 55. Classification of natural graphite with its characteristics.    217
  • Table 56. Characteristics of synthetic graphite.             225
  • Table 57: Main markets and applications of isostatic graphite.              228
  • Table 58. Current or planned production capacities for isostatic graphite.      229
  • Table 59. Main graphite electrode producers and capacities (MT/year).             229
  • Table 60. Markets and applications by types of graphite.           234
  • Table 61. Market Growth Drivers and Trends in Graphite.          235
  • Table 62. Regulations pertaining to Graphite.  236
  • Table 63. Price and costs analysis for Graphite.             237
  • Table 64. Classification, application and price of graphite as a function of size.            238
  • Table 65. Graphite supply chain.            241
  • Table 66. Key players, manufacturing methods and target markets.    242
  • Table 67. Future outlook for graphite by end use market.           243
  • Table 68. Addressable market size for graphite by market.       246
  • Table 69. Estimated global mine Production of natural graphite 2020-2022, by country (tons).              248
  • Table 70. Global production of graphite 2016-2022 MT.              249
  • Table 71. Estimated global graphite production in tonnes, 2023-2035.               250
  • Table 72. Main natural graphite producers.       256
  • Table 73. Main synthetic graphite producers.   257
  • Table 74. Next Resources graphite flake products.        302
  • Table 75. Summary of key properties of biochar.            330
  • Table 76. Biochar physicochemical and morphological properties       330
  • Table 77. Markets and applications for biochar.             332
  • Table 78. Biochar feedstocks-source, carbon content, and characteristics.   337
  • Table 79. Biochar production technologies, description, advantages and disadvantages.        339
  • Table 80. Comparison of slow and fast pyrolysis for biomass. 342
  • Table 81. Comparison of thermochemical processes for biochar production. 343
  • Table 82. Biochar production equipment manufacturers.         344
  • Table 83. Competitive materials and technologies that can also earn carbon credits.                346
  • Table 84.  Biochar applications in agriculture and livestock farming.   350
  • Table 85. Effect of biochar on different soil properties.               350
  • Table 86.  Fertilizer products and their associated N, P, and K content.              352
  • Table 87. Application of biochar in construction.           354
  • Table 88. Process and benefits of biochar as an amendment in cement .          355
  • Table 89. Application of biochar in asphalt.      357
  • Table 90. Biochar applications for wastewater treatment.        359
  • Table 91. Biochar in carbon capture overview. 361
  • Table 92. Biochar in cosmetic products.            362
  • Table 93. Biochar in textiles.    363
  • Table 94. Biochar in additive manufacturing.   364
  • Table 95. Biochar in ink.              364
  • Table 96. Biochar in packaging.               367
  • Table 97. Companies using biochar in packaging.         367
  • Table 98. Biochar in steel and metal.   368
  • Table 99. Summary of applications of biochar in energy.           369
  • Table 100. Market Growth Drivers and Trends in biochar.          373
  • Table 101. Regulations pertaining to biochar.  374
  • Table 102. Price and costs analysis for biochar.             375
  • Table 103. Biochar supply chain.           377
  • Table 104. Key players, manufacturing methods and target markets.  378
  • Table 105. Future outlook for biochar by end use market.         379
  • Table 106. Addressable market size for biochar by market.      381
  • Table 107. Global demand for biochar 2018-2035 (1,000 tons), by market.      384
  • Table 108. Global demand for biochar 2018-2035 (1,000 tons), by region.        386
  • Table 109. Biochar production by feedstocks in China (1,000 tons), 2023-2035.           388
  • Table 110. Biochar production by feedstocks in Asia-Pacific (1,000 tons), 2023-2035.               389
  • Table 111. Biochar production by feedstocks in North America (1,000 tons), 2023-2035.         392
  • Table 112. Biochar production by feedstocks in Europe (1,000 tons), 2023-2035.         394
  • Table 113. Properties of graphene, properties of competing materials, applications thereof. 472
  • Table 114. Market Growth Drivers and Trends in graphene.      472
  • Table 115. Regulations pertaining to graphene.              473
  • Table 116. Types of graphene and typical prices.           475
  • Table 117. Pristine graphene flakes pricing by producer.            477
  • Table 118. Few-layer graphene pricing by producer.     478
  • Table 119. Graphene nanoplatelets pricing by producer.           478
  • Table 120. Graphene oxide and reduced graphene oxide pricing, by producer.               480
  • Table 121. Multi-layer graphene pricing by producer.   480
  • Table 122. Graphene ink pricing by producer.  481
  • Table 123. Graphene supply chain.       482
  • Table 124. Key players, graphene supplied, manufacturing methods and target markets.        483
  • Table 125. Future outlook for graphene by end use market.     486
  • Table 126. Addressable market size for graphene by market.  489
  • Table 127. Graphene market challenges.           490
  • Table 128. Global graphene demand by type of graphene material, 2018-2035 (tons).               492
  • Table 129. Global graphene demand by market, 2018-2035 (tons).      495
  • Table 130. Global graphene demand, by region, 2018-2035 (tons).       497
  • Table 131. Performance criteria of energy storage devices.     743
  • Table 132. Typical properties of SWCNT and MWCNT. 749
  • Table 133. Properties of CNTs and comparable materials.       749
  • Table 134. Applications of MWCNTs.   750
  • Table 135. Comparative properties of MWCNT and SWCNT.    755
  • Table 136. Markets, benefits and applications of Single-Walled Carbon Nanotubes.  755
  • Table 137. Market Growth Drivers and Trends in Carbon Nanotubes.  757
  • Table 138. Regulations pertaining to Carbon Nanotubes.          758
  • Table 139. Price and costs analysis for carbon nanotubes.       759
  • Table 140. Carbon nanotubes pricing (MWCNTS, SWCNT etc.) by producer.   759
  • Table 141. SWCNTs pricing.      760
  • Table 142. Carbon Nanotubes supply chain.    761
  • Table 143. Key players, CNTs supplied, manufacturing methods and target markets. 763
  • Table 144. Annual production capacity of the key MWCNT producers in 2023 (MT).     763
  • Table 145. Annual production capacity of SWCNT producers in 2023 (KG).      764
  • Table 146. Future outlook for Carbon Nanotubes by end use market. 765
  • Table 147. Addressable market size for Carbon Nanotubes by market.              767
  • Table 148. SWCNT market demand forecast (metric tons), 2018-2035.             772
  • Table 149. Properties of carbon nanotube paper.          859
  • Table 150. Chasm SWCNT products.   872
  • Table 151. Thomas Swan SWCNT production. 887
  • Table 152. Applications of Double-walled carbon nanotubes. 891
  • Table 153. Markets and applications for Vertically aligned CNTs (VACNTs).     892
  • Table 154. Markets and applications for few-walled carbon nanotubes (FWNTs).         894
  • Table 155. Markets and applications for carbon nanohorns.    895
  • Table 156. Comparative properties of BNNTs and CNTs.           897
  • Table 157. Applications of BNNTs.        898
  • Table 158. Analysis of wood feedstock for carbon nanofiber production (Abundance, Composition, Pretreatment, Processing, Properties, Sustainability) 906
  • Table 159. Analysis of oil palm empty fruit bunch for carbon nanofiber production (Abundance, Composition, Pretreatment, Processing, Properties, Sustainability) 907
  • Table 160. Analysis of energy crops for carbon nanofiber production (Abundance, Composition, Pretreatment, Processing, Properties, Sustainability)               908
  • Table 161. Analysis of cellulose for carbon nanofiber production (Abundance, Composition, Pretreatment, Processing, Properties, Sustainability)               909
  • Table 162. Analysis of bacterial cellulose for carbon nanofiber production (Abundance, Composition, Pretreatment, Processing, Properties, Sustainability) 909
  • Table 163. Analysis of sugars for carbon nanofiber production (Abundance, Composition, Pretreatment, Processing, Properties, Sustainability)               910
  • Table 164. Analysis of starch for carbon nanofiber production (Abundance, Composition, Pretreatment, Processing, Properties, Sustainability)               911
  • Table 165. Analysis of vegetable oils feedstock for carbon nanofiber production (Abundance, Composition, Pretreatment, Processing, Properties, Sustainability) 912
  • Table 166. Analysis of algae feedstock for carbon nanofiber production (Abundance, Composition, Pretreatment, Processing, Properties, Sustainability) 913
  • Table 167. Analysis of chitosan feedstock for carbon nanofiber production (Abundance, Composition, Pretreatment, Processing, Properties, Sustainability) 914
  • Table 168. Challenges with biomass based CNFs.        915
  • Table 169. Market Growth Drivers and Trends in Carbon Nanofibers.  932
  • Table 170. Regulations pertaining to carbon nanofibers             933
  • Table 171. Price and costs analysis for carbon nanofibers.      934
  • Table 172. Carbon nanofibers supply chain.    935
  • Table 173. Key players, CNF supplied, manufacturing methods and target markets.  936
  • Table 174. Future outlook for CNFs by end use market.              937
  • Table 175. Addressable market size for CNFs by market.          939
  • Table 176. Global market revenues for carbon nanofibers 2020-2025 (MILLIONS USD), by market.    941
  • Table 177. Market overview for fullerenes-Selling grade particle diameter, usage, advantages, average price/ton, high volume applications, low volume applications and novel applications.   951
  • Table 178. Types of fullerenes and applications.            952
  • Table 179. Products incorporating fullerenes. 953
  • Table 180. Markets, benefits and applications of fullerenes.   953
  • Table 181. Market Growth Drivers and Trends in Fullerenes.    954
  • Table 182. Regulations pertaining to Fullerenes.            955
  • Table 183. Price and costs analysis for Fullerenes.       956
  • Table 184. Fullerenes supply chain.      958
  • Table 185. Key players, manufacturing methods and target markets.  959
  • Table 186. Future outlook for Fullerenes by end use market.   960
  • Table 187. Addressable market size for Fullerenes by market. 962
  • Table 188. Global market demand for  fullerenes, 2018-2035 (tons).   964
  • Table 189. Properties of nanodiamonds.            979
  • Table 190. Summary of types of NDS and production methods-advantages and disadvantages.          980
  • Table 191. Markets, benefits and applications of nanodiamonds.         981
  • Table 192. Market Growth Drivers and Trends in Nanodiamonds.         984
  • Table 193. Regulations pertaining to Nanodiamonds. 985
  • Table 194. Price and costs analysis for Nanodiamonds.            986
  • Table 195. Nanodiamonds supply chain.           988
  • Table 196. Key players, Nanodiamonds supplied, manufacturing methods and target markets.           989
  • Table 197. Future outlook for Nanodiamonds by end use market.         990
  • Table 198. Addressable market size for Nanodiamonds by market.     993
  • Table 199. Demand for nanodiamonds (metric tonnes), 2018-2035.    994
  • Table 200. Production methods, by main ND producers.           996
  • Table 201. Adamas Nanotechnologies, Inc. nanodiamond product list.             997
  • Table 202. Carbodeon Ltd. Oy nanodiamond product list.        1002
  • Table 203. Daicel nanodiamond product list.   1004
  • Table 204. FND Biotech Nanodiamond product list.     1006
  • Table 205. JSC Sinta nanodiamond product list.            1010
  • Table 206. Plasmachem product list and applications.              1017
  • Table 207. Ray-Techniques Ltd. nanodiamonds product list.   1019
  • Table 208. Comparison of ND produced by detonation and laser synthesis.    1019
  • Table 209. Comparison of graphene QDs and semiconductor QDs.     1023
  • Table 210. Advantages and disadvantages of methods for preparing GQDs.    1026
  • Table 211. Applications of graphene quantum dots.     1027
  • Table 212. Prices for graphene quantum dots. 1028
  • Table 213. Properties of carbon foam materials.           1039
  • Table 214. Applications of carbon foams.          1039
  • Table 215. Properties of Diamond-like carbon (DLC) coatings.               1049
  • Table 216. Applications and markets for Diamond-like carbon (DLC) coatings.             1050
  • Table 217. Global revenues for DLC coatings, 2018-2035 (Billion USD).             1051
  • Table 218. Market Growth Drivers and Trends in Activated Carbon.     1064
  • Table 219. Regulations pertaining to Activated Carbon.             1065
  • Table 220. Price and costs analysis for Activated Carbon.        1066
  • Table 221. Activated Carbon supply chain.       1067
  • Table 222. Key players, manufacturing methods and target markets.  1068
  • Table 223. Future outlook for Activated Carbon by end use market.     1069
  • Table 224. Addressable market size for Activated Carbon by market. 1072
  • Table 225. Global market revenues for Activated Carbon 2020-2035 (millions USD), by market.           1073
  • Table 226. Market Growth Drivers and Trends in Carbon Aerogels and Xerogels.           1091
  • Table 227. Regulations pertaining to Carbon Aerogels and Xerogels.   1092
  • Table 228. Price and costs analysis for Carbon Aerogels and Xerogels.              1093
  • Table 229. Carbon Aerogels and Xerogels supply chain.            1094
  • Table 230. Carbon Aerogels and Xerogels Key players, manufacturing methods and target markets. 1095
  • Table 231. Future outlook for Carbon Aerogels and Xerogels by end use market.          1096
  • Table 232. Addressable market size for Carbon Aerogels and Xerogels by market.       1099
  • Table 233. Global market revenues for Carbon Aerogels and Xerogels 2020-2035 (millions USD), by market. 1100
  • Table 234. Point source examples.       1110
  • Table 235. Assessment of carbon capture materials   1115
  • Table 236. Chemical solvents used in post-combustion.           1117
  • Table 237. Commercially available physical solvents for pre-combustion carbon capture.     1120
  • Table 238. Main capture processes and their separation technologies.             1120
  • Table 239. Absorption methods for CO2 capture overview.      1122
  • Table 240. Commercially available physical solvents used in CO2 absorption.              1124
  • Table 241. Adsorption methods for CO2 capture overview.      1125
  • Table 242. Membrane-based methods for CO2 capture overview.       1128
  • Table 243. Comparison of main separation technologies.         1134
  • Table 244. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages.                1135
  • Table 245. Advantages and disadvantages of DAC.       1139

 

List of Figures

  • Figure 1.  Manufacturing process of PAN type carbon fibers.   57
  • Figure 2. Production processes for pitch-based carbon fibers.               59
  • Figure 3. Lignin/celluose precursor.     61
  • Figure 4. Process of preparing CF from lignin.  62
  • Figure 5. Carbon fiber manufacturing capacity in 2022, by company (metric tonnes)  85
  • Figure 6. Global market revenues for carbon nanofibers 2020-2025 (MILLIONS USD), by market.        91
  • Figure 7. Global carbon fiber demand 2016-2035, by industry (MT).     92
  • Figure 8. Global carbon fiber revenues 2016-2035, by industry (MT).   93
  • Figure 9. Global carbon fiber revenues 2016-2035, by region (MT).       94
  • Figure 10. Neustark modular plant.       105
  • Figure 11. CR-9 carbon fiber wheel.      123
  • Figure 12. The Continuous Kinetic Mixing system.        128
  • Figure 13. Chemical decomposition process of polyurethane foam.   157
  • Figure 14. Electron microscope image of carbon black.             162
  • Figure 15. Different shades of black, depending on the surface of Carbon Black.          163
  • Figure 16. Structure- Aggregate Size/Shape Distribution.          164
  • Figure 17. Surface Chemistry – Surface Functionality Distribution.      165
  • Figure 18. Sequence of structure development of Carbon Black.          165
  • Figure 19. Carbon Black pigment in Acrylonitrile butadiene styrene (ABS) polymer.    166
  • Figure 20 Break-down of raw materials (by weight) used in a tire.          169
  • Figure 21. Applications of specialty carbon black.         172
  • Figure 22.  Specialty carbon black market volume, 2018-2035 (000s Tons), by market.             174
  • Figure 23. Pyrolysis process: from ELT to rCB, oil, and syngas, and applications thereof.         177
  • Figure 24.  Recovered carbon black demand, 2018-2035 (000s Tons), by market.        179
  • Figure 25. Global market for carbon black 2018-2035, by end user market (100,000 tons).      189
  • Figure 26. Global market for carbon black 2018-2035, by end user market (millions USD).      190
  • Figure 27. Global market for carbon black 2018-2035, by region (100,000 tons).           191
  • Figure 28. Nike Algae Ink graphic tee.   203
  • Figure 29. Comparison of SEM micrographs of sphere-shaped natural graphite (NG; after several processing steps) and synthetic graphite (SG).       215
  • Figure 30. Overview of graphite production, processing and applications.       217
  • Figure 31. Flake graphite.           219
  • Figure 32. Applications of flake graphite.           221
  • Figure 33. Amorphous graphite.              223
  • Figure 34. Vein graphite.             225
  • Figure 35: Isostatic pressed graphite.  228
  • Figure 36. Global market for graphite EAFs, 2018-2035 (MT).   230
  • Figure 37. Extruded graphite rod.            231
  • Figure 38. Vibration Molded Graphite. 232
  • Figure 39. Die-molded graphite products.          232
  • Figure 40. Price of fine flake graphite 2022-2023.          239
  • Figure 41. Price of spherical graphite, 2022-2023.         240
  • Figure 42. Global production of graphite 2016-2022 MT.            249
  • Figure 43. Estimated global graphite production in tonnes, 2023-2035.             251
  • Figure 44. Global market demand for natural graphite by end use market 2016-2035, tonnes.               252
  • Figure 45. Global market demand for synthetic graphite by end use market 2016-2035, tonnes.           253
  • Figure 46. Consumption of graphite by end use markets, 2022.             254
  • Figure 47. Demand for graphite by end use markets, 2033.       255
  • Figure 48. Global consumption of graphite by type and region, 2022   256
  • Figure 49. Graphite market supply chain (battery market).        260
  • Figure 50. Biochars from different sources, and by pyrolyzation at different temperatures.     328
  • Figure 51. Compressed biochar.            332
  • Figure 52. Biochar production diagram.              339
  • Figure 53. Pyrolysis process and by-products in agriculture.   341
  • Figure 54. Perennial ryegrass plants grown in clay soil with (Right) and without (Left) biochar.               353
  • Figure 55. Biochar bricks.           356
  • Figure 56. Global demand for biochar 2018-2035 (tons), by market.    385
  • Figure 57. Global demand for biochar 2018-2035 (1,000 tons), by region.         387
  • Figure 58. Biochar production by feedstocks in China (1,000 tons), 2023-2035.            389
  • Figure 59. Biochar production by feedstocks in Asia-Pacific (1,000 tons), 2023-2035.                391
  • Figure 60. Biochar production by feedstocks in North America (1,000 tons), 2023-2035.          393
  • Figure 61. Biochar production by feedstocks in Europe (1,000 tons), 2023-2035.          395
  • Figure 62. Biochar production by feedstocks in South America (1,000 tons), 2023-2035.          396
  • Figure 63. Biochar production by feedstocks in Africa (1,000 tons), 2023-2035.            397
  • Figure 64. Biochar production by feedstocks in the Middle East (tons), 2023-2035.     398
  • Figure 65. Capchar prototype pyrolysis kiln.     412
  • Figure 66. Made of Air's HexChar panels.           446
  • Figure 67. Takavator.    464
  • Figure 68. Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene. 471
  • Figure 69. Global graphene demand by type of graphene material, 2018-2035 (tons). 494
  • Figure 70. Global graphene demand by market, 2018-2035 (tons).        496
  • Figure 71. Global graphene demand, by region, 2018-2035 (tons).        498
  • Figure 72. Graphene heating films.       499
  • Figure 73. Graphene flake products.     504
  • Figure 74. AIKA Black-T.              508
  • Figure 75. Printed graphene biosensors.             515
  • Figure 76. Prototype of printed memory device.             519
  • Figure 77. Brain Scientific electrode schematic.            535
  • Figure 78. Graphene battery schematic.            560
  • Figure 79. Dotz Nano GQD products.   561
  • Figure 80. Graphene-based membrane dehumidification test cell.      568
  • Figure 81. Proprietary atmospheric CVD production.   578
  • Figure 82. Wearable sweat sensor.        611
  • Figure 83.  InP/ZnS, perovskite quantum dots and silicon resin composite under UV illumination.      617
  • Figure 84. BioStamp nPoint.     649
  • Figure 85. Nanotech Energy battery.     667
  • Figure 86. Hybrid battery powered electrical motorbike concept.         670
  • Figure 87. NAWAStitch integrated into carbon fiber composite.             671
  • Figure 88. Schematic illustration of three-chamber system for SWCNH production.  672
  • Figure 89. TEM images of carbon nanobrush.   673
  • Figure 90. Test performance after 6 weeks ACT II according to Scania STD4445.          689
  • Figure 91. Quantag GQDs and sensor. 692
  • Figure 92. Thermal conductive graphene film. 706
  • Figure 93. Talcoat graphene mixed with paint. 717
  • Figure 94. T-FORCE CARDEA ZERO.      720
  • Figure 95. Demand for MWCNT by application in 2023.              770
  • Figure 96. Market demand for carbon nanotubes by market, 2018-2035 (metric tons).              771
  • Figure 97. SWCNT market demand forecast (metric tons), 2018-2035.              772
  • Figure 98. AWN Nanotech water harvesting prototype.               776
  • Figure 99. Large transparent heater for LiDAR. 788
  • Figure 100. Carbonics, Inc.’s carbon nanotube technology.     790
  • Figure 101. Fuji carbon nanotube products.     801
  • Figure 102. Cup Stacked Type Carbon Nano Tubes schematic.             804
  • Figure 103. CSCNT composite dispersion.        804
  • Figure 104. Flexible CNT CMOS integrated circuits with sub-10 nanoseconds stage delays.   809
  • Figure 105. Koatsu Gas Kogyo Co. Ltd CNT product.    814
  • Figure 106. NAWACap.                831
  • Figure 107. NAWAStitch integrated into carbon fiber composite.          832
  • Figure 108. Schematic illustration of three-chamber system for SWCNH production. 833
  • Figure 109. TEM images of carbon nanobrush. 834
  • Figure 110. CNT film.    836
  • Figure 111. Shinko Carbon Nanotube TIM product.       849
  • Figure 112. Schematic of a fluidized bed reactor which is able to scale up the generation of SWNTs using the CoMoCAT process.       873
  • Figure 113. Carbon nanotube paint product.    877
  • Figure 114. MEIJO eDIPS product.          878
  • Figure 115. HiPCO® Reactor.   882
  • Figure 116. Smell iX16 multi-channel gas detector chip.            885
  • Figure 117. The Smell Inspector.            886
  • Figure 118. Toray CNF printed RFID.     888
  • Figure 119. Double-walled carbon nanotube bundle cross-section micrograph and model.   891
  • Figure 120. Schematic of a vertically aligned carbon nanotube (VACNT) membrane used for water treatment.                893
  • Figure 121. TEM image of FWNTs.          893
  • Figure 122. Schematic representation of carbon nanohorns.   895
  • Figure 123. TEM image of carbon onion.             896
  • Figure 124. Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red.        897
  • Figure 125. Conceptual diagram of single-walled carbon nanotube (SWCNT) (A) and multi-walled carbon nanotubes (MWCNT) (B) showing typical dimensions of length, width, and separation distance between graphene layers in MWCNTs (Source: JNM).     899
  • Figure 126. Carbon nanotube adhesive sheet. 902
  • Figure 127. SWOT analysis: carbon nanofibers in batteries.     916
  • Figure 128. SWOT analysis for carbon nanofibers in supercapacitors. 917
  • Figure 129. SWOT analysis for carbon nanofibers in fuel cells.               919
  • Figure 130. SWOT analysis for carbon nanofibers in CO2 capture.       920
  • Figure 131. SWOT analysis for carbon nanofibers in composites.         921
  • Figure 132. SWOT analysis for carbon nanofibers in filtration. 922
  • Figure 133. SWOT analysis for carbon nanofibers in catalysis.               925
  • Figure 134. SWOT analysis for carbon nanofibers in sensors.  927
  • Figure 135. SWOT analysis for carbon nanofibers in sensors.  929
  • Figure 136. SWOT analysis for carbon nanofibers in biomedical.          930
  • Figure 137. SWOT analysis for carbon nanofibers in concrete.               930
  • Figure 138. SWOT analysis for carbon nanofibers in catalysis.               931
  • Figure 139. Global market revenues for carbon nanofibers 2020-2025 (MILLIONS USD), by market.   942
  • Figure 140. Solid Carbon produced by UP Catalyst.     950
  • Figure 141. Technology Readiness Level (TRL) for fullerenes.  954
  • Figure 142. Global market demand for  fullerenes, 2018-2035 (tons).  965
  • Figure 143. Detonation Nanodiamond.               978
  • Figure 144. DND primary particles and properties.       978
  • Figure 145. Functional groups of Nanodiamonds.         979
  • Figure 146. Demand for nanodiamonds (metric tonnes), 2018-2035.  995
  • Figure 147. NBD battery.            1012
  • Figure 148. Neomond dispersions.        1014
  • Figure 149. Visual representation of graphene oxide sheets (black layers) embedded with nanodiamonds (bright white points).   1016
  • Figure 150. Green-fluorescing graphene quantum dots.             1022
  • Figure 151. Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1–4).               1023
  • Figure 152. Graphene quantum dots.   1025
  • Figure 153. Top-down and bottom-up methods.             1026
  • Figure 154. Dotz Nano GQD products. 1029
  • Figure 155.  InP/ZnS, perovskite quantum dots and silicon resin composite under UV illumination.   1032
  • Figure 156. Quantag GQDs and sensor.              1034
  • Figure 157. Schematic of typical microstructure of carbon foam: (a) open-cell, (b) closed-cell.            1037
  • Figure 158. Classification of DLC coatings.      1048
  • Figure 159. Global revenues for DLC coatings, 2018-2035 (Billion USD).           1052
  • Figure 160. Global market revenues for Activated Carbon 2020-2035 (millions USD), by market.         1074
  • Figure 161. Global market revenues for Carbon Aerogels and Xerogels 2020-2035 (millions USD), by market.                1101
  • Figure 162. CO2 capture and separation technology.  1110
  • Figure 163. Global capacity of point-source carbon capture and storage facilities.     1112
  • Figure 164. Global carbon capture capacity by CO2 source, 2021.       1113
  • Figure 165. Global carbon capture capacity by CO2 source, 2030.       1113
  • Figure 166. Global carbon capture capacity by CO2 endpoint, 2021 and 2030.              1114
  • Figure 167. Post-combustion carbon capture process.              1117
  • Figure 168. Postcombustion CO2 Capture in a Coal-Fired Power Plant.            1117
  • Figure 169. Oxy-combustion carbon capture process.                1118
  • Figure 170. Liquid or supercritical CO2 carbon capture process.          1119
  • Figure 171. Pre-combustion carbon capture process. 1120
  • Figure 172. Amine-based absorption technology.          1123
  • Figure 173. Pressure swing absorption technology.      1127
  • Figure 174. Membrane separation technology.               1129
  • Figure 175. Liquid or supercritical CO2 (cryogenic) distillation.             1130
  • Figure 176. Process schematic of chemical looping.   1131
  • Figure 177. Calix advanced calcination reactor.            1132
  • Figure 178. Fuel Cell CO2 Capture diagram.    1133
  • Figure 179. Electrochemical CO₂ reduction products. 1135
  • Figure 180. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.      1138
  • Figure 181. Global CO2 capture from biomass and DAC in the Net Zero Scenario.      1139

 

 

 

The Global Market for Advanced Carbon Materials 2024-2035
The Global Market for Advanced Carbon Materials 2024-2035
PDF download/by email.

The Global Market for Advanced Carbon Materials 2024-2035
The Global Market for Advanced Carbon Materials 2024-2035
PDF and Print Edition (3 volume, including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.