The Global Market for Advanced Carbon Materials 2025-2035

0

cover

cover

  • Published: March 2025
  • Pages: 1,074
  • Tables: 245
  • Figures: 185

 

Advanced carbon materials are transforming industries through applications in:

  • Lightweight, high-strength composites for aerospace and automotive
  • Next-generation batteries and supercapacitors
  • Thermal management in electronics
  • Medical implants and drug delivery systems
  • Water purification and environmental remediation
  • Sensors and electronic components

 

Their commercial importance continues to grow as manufacturing processes mature, reducing costs and enabling broader adoption across multiple sectors where conventional materials cannot meet increasingly demanding performance requirements. The Global Market for Advanced Carbon Materials 2025-2035 provides an in-depth analysis of the entire carbon materials ecosystem, from traditional carbon fibers to cutting-edge nanomaterials like graphene and carbon nanotubes. With the push for sustainable development and the transition to green energy, advanced carbon materials are playing an increasingly critical role in enabling next-generation technologies. Their exceptional properties—including high strength-to-weight ratios, thermal and electrical conductivity, and chemical stability—make them indispensable in addressing complex engineering challenges across multiple industries.

This report examines the technical, commercial, and market aspects of carbon materials, offering strategic insights into production technologies, supply chains, competitive landscapes, and growth opportunities. Report contents include: 

  • Market Analysis and Forecasts:
    • Comprehensive market sizing and growth projections through 2035 for all advanced carbon material categories
    • Detailed regional analysis covering North America, Europe, Asia-Pacific, and emerging markets
    • End-user industry breakdown with application-specific forecasts
    • Pricing trends and cost analyses across the entire carbon materials spectrum
    • Production capacities by material type and leading manufacturers
  • Material Coverage:
    • Carbon Fibers: PAN-based, pitch-based, bio-based, and recycled carbon fibers
    • Carbon Black: Conventional, specialty, and recovered carbon black
    • Graphite: Natural flake, synthetic, spherical, and expandable graphite
    • Graphene: Few-layer, multi-layer, graphene oxide, and graphene nanoplatelets
    • Carbon Nanotubes: Single-walled, multi-walled, and vertically aligned CNTs
    • Nanodiamonds: Detonation nanodiamonds and fluorescent nanodiamonds
    • Other Carbon Materials: Carbon aerogels, fullerenes, carbon nanofibers, and biochar
  • Application Analysis:
    • Thermal Management: Interface materials, heat spreaders, and thermal solutions
    • Energy Storage: Battery additives, supercapacitors, and fuel cell components
    • Composites: Aerospace, automotive, wind energy, and sporting goods
    • Electronics: Conductive inks, sensors, EMI shielding, and flexible electronics
    • Environmental Technologies: Carbon capture, water purification, and remediation
  • Technology Assessment:
    • Manufacturing processes and innovations for each carbon material type
    • Technology readiness levels (TRL) and commercialization timelines
    • Emerging synthesis methods and their potential impact on markets
    • Key technical challenges and R&D priorities
  • Competitive Landscape:
    • Detailed profiles of 1000+ companies across the carbon materials value chain. Companies profiled include Arkema, Birla Carbon, Black Bear Carbon, Black Semiconductor GmbH, C12, Carbon Conversions, Carbice, Cabot Corporation, Directa Plus, DowAksa, Eden Innovations, First Graphene, Fujitsu Laboratories, GrafTech International, Graphene Manufacturing Group, Graphenea, GraphEnergy Tech, Graphjet Technology, Hexcel Corporation, Huntsman Corporation, HydroGraph, Imerys, INBRAIN Neuroelectronics, Levidian Nanosystems, Lyten, Mersen, Nanocomp Technologies, Naieel Technology, NanoXplore, NDB Technology, OCSiAl Group,  Paragraf, Perpetuus Carbon Group, Premier Graphene, Resonac, Samsung, SGL Carbon, Skeleton Technologies, Syrah Resources, Talga Resources, Teijin Limited, Thomas Swan, Toray Industries, TrimTabs, Universal Matter, Vartega, Versarien, and Zeon Specialty Materials.
    • Strategic analysis of key market players including producers and product developers, including product portfolios and business models
    • Mergers, acquisitions, and strategic partnerships reshaping the industry
    • Emerging start-ups and innovators disrupting traditional markets
  • Sustainability and Regulatory Analysis:
    • Environmental impact assessments of production processes
    • Carbon footprint comparisons across material types
    • Regulatory frameworks affecting carbon materials globally
    • Recycling and circular economy initiatives

 

 

 1            THE ADVANCED CARBON MATERIALS MARKET    

  • 1.1        Market overview           Pg. 53
  • 1.2        Main Applications       54
    • 1.2.1    Thermal Management in Electronics              54
    • 1.2.2    Conductive Battery Additives and Electrodes          55
    • 1.2.3    Composites    57
  • 1.3        Role of advanced carbon materials in the green transition             59

 

2             CARBON FIBERS        

  • 2.1        Properties of carbon fibers   60
    • 2.1.1    Types by modulus       61
    • 2.1.2    Types by the secondary processing 62
  • 2.2        Precursor material types        63
    • 2.2.1    PAN: Polyacrylonitrile               63
      • 2.2.1.1 Spinning            64
      • 2.2.1.2 Stabilizing        64
      • 2.2.1.3 Carbonizing    65
      • 2.2.1.4 Surface treatment       65
      • 2.2.1.5 Sizing  65
      • 2.2.1.6 Pitch-based carbon fibers     65
      • 2.2.1.7 Isotropic pitch               65
      • 2.2.1.8 Mesophase pitch         66
      • 2.2.1.9 Viscose (Rayon)-based carbon fibers            67
    • 2.2.2    Bio-based and alternative precursors           67
      • 2.2.2.1 Lignin  67
      • 2.2.2.2 Polyethylene   70
      • 2.2.2.3 Vapor grown carbon fiber (VGCF)     71
      • 2.2.2.4 Textile PAN       71
    • 2.2.3    Recycled carbon fibers (r-CF)             71
      • 2.2.3.1 Recycling processes 72
      • 2.2.3.2 Companies     74
    • 2.2.4    Carbon Fiber 3D Printing        75
    • 2.2.5    Plasma oxidation        77
    • 2.2.6    Carbon fiber reinforced polymer (CFRP)      77
      • 2.2.6.1 Applications   78
  • 2.3        Markets and applications      79
    • 2.3.1    Aerospace        79
    • 2.3.2    Wind energy    79
    • 2.3.3    Sports & leisure            80
    • 2.3.4    Automotive      81
    • 2.3.5    Pressure vessels          82
    • 2.3.6    Oil and gas      83
  • 2.4        Market analysis            84
    • 2.4.1    Market Growth Drivers and Trends   84
    • 2.4.2    Regulations     85
    • 2.4.3    Price and Costs Analysis       85
    • 2.4.4    Supply Chain 86
    • 2.4.5    Competitive Landscape         86
      • 2.4.5.1 Annual capacity, by producer              86
      • 2.4.5.2 Market share, by capacity      87
    • 2.4.6    Future Outlook             88
    • 2.4.7    Addressable Market Size        88
    • 2.4.8    Risks and Opportunities         88
    • 2.4.9    Global market                89
    • 2.4.9.1 Global carbon fiber demand 2016-2035, by industry (MT)               90
    • 2.4.9.2 Global carbon fiber revenues 2016-2035, by industry (billions USD)        91
    • 2.4.9.3 Global carbon fiber demand 2016-2035, by region (MT)   91
  • 2.5        Company profiles       92
    • 2.5.1    Carbon fiber producers           92 (29 company profiles)
    • 2.5.2    Carbon Fiber composite producers                109 (62 company profiles)
    • 2.5.3    Carbon fiber recyclers              144 (16 company profiles)

 

3             CARBON BLACK          

  • 3.1        Commercially available carbon black           156
  • 3.2        Properties         157
    • 3.2.1    Particle size distribution         158
    • 3.2.2    Structure-Aggregate size        158
    • 3.2.3    Surface chemistry      159
    • 3.2.4    Agglomerates 160
    • 3.2.5    Colour properties        160
    • 3.2.6    Porosity             161
    • 3.2.7    Physical form 161
  • 3.3        Manufacturing processes      162
  • 3.4        Markets and applications      162
    • 3.4.1    Tires and automotive 162
    • 3.4.2    Non-Tire Rubber (Industrial rubber) 165
    • 3.4.3    Other markets               166
  • 3.5        Specialty carbon black            166
    • 3.5.1    Global market size for specialty CB 168
  • 3.6        Recovered carbon black (rCB)           169
    • 3.6.1    Pyrolysis of End-of-Life Tires (ELT)   171
    • 3.6.2    Discontinuous (“batch”) pyrolysis   172
    • 3.6.3    Semi-continuous pyrolysis   172
    • 3.6.4    Continuous pyrolysis                172
    • 3.6.5    Key players      172
    • 3.6.6    Global market size for Recovered Carbon Black    173
  • 3.7        Market analysis            174
    • 3.7.1    Market Growth Drivers and Trends   174
    • 3.7.2    Regulations     174
    • 3.7.3    Supply chain  174
    • 3.7.4    Price and Costs Analysis       176
      • 3.7.4.1 Feedstock        176
      • 3.7.4.2 Commercial carbon black    176
    • 3.7.5    Competitive Landscape         177
      • 3.7.5.1 Production capacities              177
    • 3.7.6    Future Outlook             178
    • 3.7.7    Customer Segmentation        178
    • 3.7.8    Addressable Market Size        178
    • 3.7.9    Risks and Opportunities         179
    • 3.7.10 Global market                179
      • 3.7.10.1            By market (tons)          179
      • 3.7.10.2            By market (revenues)                180
      • 3.7.10.3            By region (Tons)            180
  • 3.8        Company profiles       181 (51 company profiles)

 

4             GRAPHITE        

  • 4.1        Types of graphite         206
    • 4.1.1    Natural vs synthetic graphite               207
  • 4.2        Natural graphite           209
    • 4.2.1    Classification 210
    • 4.2.2    Processing       211
    • 4.2.3    Flake    211
      • 4.2.3.1 Grades               212
      • 4.2.3.2 Applications   212
      • 4.2.3.3 Spherical graphite      214
      • 4.2.3.4 Expandable graphite 215
    • 4.2.4    Amorphous graphite 216
      • 4.2.4.1 Applications   216
    • 4.2.5    Crystalline vein graphite         217
      • 4.2.5.1 Applications   217
  • 4.3        Synthetic graphite      218
    • 4.3.1    Classification 218
      • 4.3.1.1 Primary synthetic graphite    219
      • 4.3.1.2 Secondary synthetic graphite             219
    • 4.3.2    Processing       220
      • 4.3.2.1 Processing for battery anodes            220
    • 4.3.3    Issues with synthetic graphite production  221
    • 4.3.4    Isostatic Graphite       221
      • 4.3.4.1 Description     221
      • 4.3.4.2 Markets              222
      • 4.3.4.3 Producers and production capacities           222
    • 4.3.5    Graphite electrodes   222
    • 4.3.6    Extruded Graphite      224
    • 4.3.7    Vibration Molded Graphite    225
    • 4.3.8    Die-molded graphite 226
  • 4.4        New technologies       227
  • 4.5        Recycling of graphite materials          227
  • 4.6        Markers and applications      228
  • 4.7        Graphite pricing (ton)               229
    • 4.7.1    Pricing in 2024              230
  • 4.8        Global production of graphite             232
    • 4.8.1    The graphite market in 2024 and beyond     232
    • 4.8.2    China dominance       233
    • 4.8.3    United States subsidies/loans and tariffs on Chinese imports     233
    • 4.8.4    Global mine production and reserves of natural graphite 233
    • 4.8.5    Global graphite production in tonnes, 2016-2023 234
    • 4.8.6    Estimated global graphite production in tonnes, 2024-2035         235
    • 4.8.7    Synthetic graphite supply      236
  • 4.9        Global market demand for graphite by end use market 2016-2035, tonnes        237
    • 4.9.1    Natural graphite           237
    • 4.9.2    Synthetic graphite      238
  • 4.10     Demand for graphite by end use markets, 2023     239
  • 4.11     Demand for graphite by end use markets, 2035     240
  • 4.12     Demand by region      241
    • 4.12.1 China  241
      • 4.12.1.1            Diversification of global supply and production     242
    • 4.12.2 Asia-Pacific    242
      • 4.12.2.1            Synthetic graphite      242
      • 4.12.2.2            Natural graphite           243
    • 4.12.3 North America              245
      • 4.12.3.1            Synthetic graphite      245
      • 4.12.3.2            Natural graphite           246
    • 4.12.4 Europe                247
      • 4.12.4.1            Natural graphite           249
    • 4.12.5 Brazil   250
  • 4.13     Factors that aid graphite market growth      250
  • 4.14     Factors that hinder graphite market growth              250
  • 4.15     Main market players  251
    • 4.15.1 Natural graphite           251
    • 4.15.2 Synthetic graphite      252
  • 4.16     Market supply chain  253
  • 4.17     Company profiles       255 (102 company profiles)

 

5             BIOCHAR         

  • 5.1        What is biochar?         324
  • 5.2        Carbon sequestration              325
  • 5.3        Properties of biochar 326
  • 5.4        Markets and applications      328
  • 5.5        Biochar production    333
  • 5.6        Feedstocks      333
  • 5.7        Production processes              334
    • 5.7.1    Sustainable production          335
    • 5.7.2    Pyrolysis            336
      • 5.7.2.1 Slow pyrolysis               336
      • 5.7.2.2 Fast pyrolysis 337
    • 5.7.3    Gasification    338
    • 5.7.4    Hydrothermal carbonization (HTC)  338
    • 5.7.5    Torrefaction     339
    • 5.7.6    Equipment manufacturers   339
  • 5.8        Carbon credits              340
    • 5.8.1    Overview           340
    • 5.8.2    Removal and reduction credits          340
    • 5.8.3    The advantage of biochar      341
    • 5.8.4    Price     341
    • 5.8.5    Buyers of biochar credits       341
    • 5.8.6    Competitive materials and technologies    341
      • 5.8.6.1 Geologic carbon sequestration         342
      • 5.8.6.2 Bioenergy with Carbon Capture and Storage (BECCS)       342
      • 5.8.6.3 Direct Air Carbon Capture and Storage (DACCS)   343
      • 5.8.6.4 Enhanced mineral weathering with mineral carbonation 343
      • 5.8.6.5 Ocean alkalinity enhancement          344
      • 5.8.6.6 Forest preservation and afforestation           344
  • 5.9        Markets for biochar   345
    • 5.9.1    Agriculture & livestock farming          345
      • 5.9.1.1 Market drivers and trends      345
      • 5.9.1.2 Applications   345
    • 5.9.2    Construction materials           349
      • 5.9.2.1 Market drivers and trends      349
      • 5.9.2.2 Applications   349
    • 5.9.3    Wastewater treatment             352
      • 5.9.3.1 Market drivers and trends      352
      • 5.9.3.2 Applications   353
    • 5.9.4    Filtration            354
      • 5.9.4.1 Market drivers and trends      354
      • 5.9.4.2 Applications   354
    • 5.9.5    Carbon capture            355
      • 5.9.5.1 Market drivers and trends      355
      • 5.9.5.2 Applications   355
    • 5.9.6    Cosmetics       356
      • 5.9.6.1 Market drivers and trends      356
      • 5.9.6.2 Applications   356
    • 5.9.7    Textiles               356
      • 5.9.7.1 Market drivers and trends      356
      • 5.9.7.2 Applications   357
    • 5.9.8    Additive manufacturing          357
      • 5.9.8.1 Market drivers and trends      357
      • 5.9.8.2 Applications   357
    • 5.9.9    Ink         358
      • 5.9.9.1 Market drivers and trends      358
      • 5.9.9.2 Applications   358
    • 5.9.10 Polymers           359
      • 5.9.10.1            Market drivers and trends      359
      • 5.9.10.2            Applications   359
    • 5.9.11 Packaging        360
      • 5.9.11.1            Market drivers and trends      360
      • 5.9.11.2            Applications   360
    • 5.9.12 Steel and metal            361
      • 5.9.12.1            Market drivers and trends      361
      • 5.9.12.2            Applications   361
    • 5.9.13 Energy 362
      • 5.9.13.1            Market drivers and trends      362
      • 5.9.13.2            Applications   362
  • 5.10     Market analysis            366
    • 5.10.1 Market Growth Drivers and Trends   366
    • 5.10.2 Regulations     366
    • 5.10.3 Price and Costs Analysis       366
    • 5.10.4 Supply Chain 367
    • 5.10.5 Competitive Landscape         368
    • 5.10.6 Future Outlook             368
    • 5.10.7 Customer Segmentation        368
    • 5.10.8 Addressable Market Size        369
    • 5.10.9 Risks and Opportunities         369
  • 5.11     Global market                370
    • 5.11.1 By market         370
    • 5.11.2 By region           372
    • 5.11.3 By feedstocks 374
      • 5.11.3.1            China and Asia-Pacific            374
      • 5.11.3.2            North America              378
      • 5.11.3.3            Europe                380
      • 5.11.3.4            South America              381
      • 5.11.3.5            Africa   382
      • 5.11.3.6            Middle East     383
  • 5.12     Company profiles       385 (130 company profiles)

 

6             GRAPHENE      

  • 6.1        Types of graphene      457
  • 6.2        Properties         458
  • 6.3        Market analysis            459
    • 6.3.1    Market Growth Drivers and Trends   459
    • 6.3.2    Regulations     460
    • 6.3.3    Price and Costs Analysis       461
      • 6.3.3.1 Pristine graphene flakes pricing/CVD graphene      464
      • 6.3.3.2 Few-Layer graphene pricing 464
      • 6.3.3.3 Graphene nanoplatelets pricing        465
      • 6.3.3.4 Graphene oxide (GO) and reduced Graphene Oxide (rGO) pricing             466
      • 6.3.3.5 Multi-Layer graphene (MLG) pricing 467
      • 6.3.3.6 Graphene ink 467
    • 6.3.4    Markets and applications      468
      • 6.3.4.1 Batteries            468
      • 6.3.4.2 Supercapacitors          469
      • 6.3.4.3 Polymer additives       470
      • 6.3.4.4 Sensors             471
      • 6.3.4.5 Conductive inks           473
      • 6.3.4.6 Transparent conductive films             474
      • 6.3.4.7 Transistors and integrated circuits   475
      • 6.3.4.8 Filtration            476
      • 6.3.4.9 Thermal management             477
      • 6.3.4.10            3D printing       478
      • 6.3.4.11            Adhesives         478
      • 6.3.4.12            Aerospace        479
      • 6.3.4.13            Automotive      481
      • 6.3.4.14            Fuel cells          482
      • 6.3.4.15            Biomedical and healthcare  482
      • 6.3.4.16            Paints and coatings   483
      • 6.3.4.17            Photovoltaics 483
    • 6.3.5    Supply Chain 484
    • 6.3.6    Future Outlook             486
    • 6.3.7    Addressable Market Size        487
    • 6.3.8    Risks and Opportunities         487
    • 6.3.9    Global demand 2018-2035, tons     488
    • 6.3.9.1 Global demand by graphene material (tons)             488
    • 6.3.9.2 Global demand by end user market                491
    • 6.3.9.3 Graphene market, by region 493
  • 6.4        Company profiles       495 (368 company profiles)

 

7             CARBON NANOTUBES            

  • 7.1        Properties         736
    • 7.1.1    Comparative properties of CNTs       737
  • 7.2        Multi-walled carbon nanotubes (MWCNTs)               738
    • 7.2.1    Properties         738
    • 7.2.2    Markets and applications      738
  • 7.3        Single-walled carbon nanotubes (SWCNTs)             742
    • 7.3.1    Properties         742
    • 7.3.2    Markets and applications      743
    • 7.3.3    Company profiles       744 (152 company profiles)
  • 7.4        Other types     853
    • 7.4.1    Double-walled carbon nanotubes (DWNTs)              853
      • 7.4.1.1 Properties         853
      • 7.4.1.2 Applications   854
    • 7.4.2    Vertically aligned CNTs (VACNTs)     855
      • 7.4.2.1 Properties         855
      • 7.4.2.2 Applications   855
    • 7.4.3    Few-walled carbon nanotubes (FWNTs)      856
      • 7.4.3.1 Properties         856
      • 7.4.3.2 Applications   857
    • 7.4.4    Carbon Nanohorns (CNHs)  857
      • 7.4.4.1 Properties         857
      • 7.4.4.2 Applications   858
    • 7.4.5    Carbon Onions             859
      • 7.4.5.1 Properties         859
      • 7.4.5.2 Applications   860
    • 7.4.6    Boron Nitride nanotubes (BNNTs)    860
      • 7.4.6.1 Properties         860
      • 7.4.6.2 Applications   861
      • 7.4.6.3 Production       862
    • 7.4.7    Companies     862 (6 company profiles)

 

8             CARBON NANOFIBERS           

  • 8.1        Properties         866
  • 8.2        Synthesis          866
    • 8.2.1    Chemical vapor deposition  866
    • 8.2.2    Electrospinning            866
    • 8.2.3    Template-based           867
    • 8.2.4    From biomass               867
  • 8.3        Markets              867
    • 8.3.1    Energy storage              867
      • 8.3.1.1 Batteries            867
      • 8.3.1.2 Supercapacitors          868
      • 8.3.1.3 Fuel cells          868
    • 8.3.2    CO2 capture   868
    • 8.3.3    Composites    869
    • 8.3.4    Filtration            869
    • 8.3.5    Catalysis           869
    • 8.3.6    Sensors             869
    • 8.3.7    Electromagnetic Interference (EMI) Shielding          870
    • 8.3.8    Biomedical      870
    • 8.3.9    Concrete           870
  • 8.4        Market analysis            871
    • 8.4.1    Market Growth Drivers and Trends   871
    • 8.4.2    Price and Costs Analysis       871
    • 8.4.3    Supply Chain 872
    • 8.4.4    Future Outlook             872
    • 8.4.5    Addressable Market Size        873
    • 8.4.6    Risks and Opportunities         874
  • 8.5        Global market revenues          874
  • 8.6        Companies     876 (12 company profiles)

 

9             FULLERENES 

  • 9.1        Properties         884
  • 9.2        Markets and applications      885
  • 9.3        Technology Readiness Level (TRL)   886
  • 9.4        Market analysis            887
    • 9.4.1    Market Growth Drivers and Trends   887
    • 9.4.2    Price and Costs Analysis       887
    • 9.4.3    Supply Chain 888
    • 9.4.4    Future Outlook             888
    • 9.4.5    Customer Segmentation        888
    • 9.4.6    Addressable Market Size        889
    • 9.4.7    Risks and Opportunities         889
    • 9.4.8    Global market demand           890
  • 9.5        Producers         891 (20 company profiles)

 

10          NANODIAMONDS       

  • 10.1     Introduction    901
  • 10.2     Types   901
    • 10.2.1 Detonation Nanodiamonds 902
    • 10.2.2 Fluorescent nanodiamonds (FNDs)               905
  • 10.3     Markets and applications      905
  • 10.4     Market analysis            908
    • 10.4.1 Market Growth Drivers and Trends   908
    • 10.4.2 Regulations     909
    • 10.4.3 Price and Costs Analysis       910
    • 10.4.4 Supply Chain 913
    • 10.4.5 Future Outlook             914
    • 10.4.6 Risks and Opportunities         914
    • 10.4.7 Global demand 2018-2035, tonnes 915
  • 10.5     Company profiles       916 (30 company profiles)

 

11          GRAPHENE QUANTUM DOTS              

  • 11.1     Comparison to quantum dots            942
  • 11.2     Properties         943
  • 11.3     Synthesis          943
    • 11.3.1 Top-down method      943
    • 11.3.2 Bottom-up method    944
  • 11.4     Applications   946
  • 11.5     Graphene quantum dots pricing       946
  • 11.6     Graphene quantum dot producers  947 (9 company profiles)

 

12          CARBON FOAM            

  • 12.1     Types   956
    • 12.1.1 Carbon aerogels          956
      • 12.1.1.1            Carbon-based aerogel composites 957
  • 12.2     Properties         957
  • 12.3     Applications   958
  • 12.4     Company profiles       959 (9 company profiles)

 

13          DIAMOND-LIKE CARBON (DLC) COATINGS               

  • 13.1     Properties         967
  • 13.2     Applications and markets      968
  • 13.3     Global market size     969
  • 13.4     Company profiles       970 (9 company profiles)

 

14          ACTIVATED CARBON 

  • 14.1     Overview           976
  • 14.2     Types   976
    • 14.2.1 Powdered Activated Carbon (PAC)  978
    • 14.2.2 Granular Activated Carbon (GAC)    978
    • 14.2.3 Extruded Activated Carbon (EAC)    978
    • 14.2.4 Impregnated Activated Carbon          978
    • 14.2.5 Bead Activated Carbon (BAC               978
    • 14.2.6 Polymer Coated Carbon         978
  • 14.3     Production       979
    • 14.3.1 Coal-based Activated Carbon            979
    • 14.3.2 Wood-based Activated Carbon         979
    • 14.3.3 Coconut Shell-based Activated Carbon      979
    • 14.3.4 Fruit Stone and Nutshell-based Activated Carbon                979
    • 14.3.5 Polymer-based Activated Carbon    979
    • 14.3.6 Activated Carbon Fibers (ACFs)         979
  • 14.4     Markets and applications      980
    • 14.4.1 Water Treatment          980
    • 14.4.2 Air Purification              981
    • 14.4.3 Food and Beverage Processing          981
    • 14.4.4 Pharmaceutical and Medical Applications 981
    • 14.4.5 Chemical and Petrochemical Industries     981
    • 14.4.6 Mining and Precious Metal Recovery              981
    • 14.4.7 Environmental Remediation 981
  • 14.5     Market analysis            982
    • 14.5.1 Market Growth Drivers and Trends   982
    • 14.5.2 Regulations     983
    • 14.5.3 Price and Costs Analysis       983
    • 14.5.4 Supply Chain 984
    • 14.5.5 Future Outlook             984
    • 14.5.6 Customer Segmentation        985
    • 14.5.7 Addressable Market Size        985
    • 14.5.8 Risks and Opportunities         988
  • 14.6     Global market revenues 2020-2035               988
  • 14.7     Companies     989 (22 company profiles)

 

15          CARBON AEROGELS AND XEROGELS          

  • 15.1     Overview           1002
  • 15.2     Types   1002
    • 15.2.1 Resorcinol-Formaldehyde (RF) Carbon Aerogels and Xerogels     1002
    • 15.2.2 Phenolic-Furfural (PF) Carbon Aerogels and Xerogels        1002
    • 15.2.3 Melamine-Formaldehyde (MF) Carbon Aerogels and Xerogels     1003
    • 15.2.4 Biomass-derived Carbon Aerogels and Xerogels   1003
    • 15.2.5 Doped Carbon Aerogels and Xerogels           1003
    • 15.2.6 Composite Carbon Aerogels and Xerogels 1003
  • 15.3     Markets and applications      1003
    • 15.3.1 Energy Storage              1004
    • 15.3.2 Thermal Insulation     1004
    • 15.3.3 Catalysis           1004
    • 15.3.4 Environmental Remediation 1005
    • 15.3.5 Other Applications     1005
  • 15.4     Market analysis            1005
    • 15.4.1 Market Growth Drivers and Trends   1005
    • 15.4.2 Regulations     1006
    • 15.4.3 Price and Costs Analysis       1007
    • 15.4.4 Supply Chain 1007
    • 15.4.5 Future Outlook             1008
    • 15.4.6 Customer Segmentation        1008
    • 15.4.7 Addressable Market Size        1009
    • 15.4.8 Risks and Opportunities         1009
  • 15.5     Global market                1010
  • 15.6     Companies     1011 (10 company profiles)

 

16          CARBON MATERIALS FROM CARBON CAPTURE AND UTILIZATION         

  • 16.1     CO2 capture from point sources      1024
    • 16.1.1 Transportation              1025
    • 16.1.2 Global point source CO2 capture capacities           1025
    • 16.1.3 By source          1027
    • 16.1.4 By endpoint     1028
  • 16.2     Main carbon capture processes        1028
    • 16.2.1 Materials           1028
    • 16.2.2 Post-combustion        1030
    • 16.2.3 Oxy-fuel combustion                1032
    • 16.2.4 Liquid or supercritical CO2: Allam-Fetvedt Cycle  1032
    • 16.2.5 Pre-combustion           1033
  • 16.3     Carbon separation technologies       1034
    • 16.3.1 Absorption capture    1035
    • 16.3.2 Adsorption capture    1039
    • 16.3.3 Membranes    1041
    • 16.3.4 Liquid or supercritical CO2 (Cryogenic) capture    1043
    • 16.3.5 Chemical Looping-Based Capture  1043
    • 16.3.6 Calix Advanced Calciner        1044
    • 16.3.7 Other technologies    1045
      • 16.3.7.1            Solid Oxide Fuel Cells (SOFCs)          1046
    • 16.3.8 Comparison of key separation technologies             1047
    • 16.3.9 Electrochemical conversion of CO2               1047
      • 16.3.9.1            Process overview        1048
  • 16.4     Direct air capture (DAC)         1050
    • 16.4.1 Description     1050
  • 16.5     Companies     1052 (4 company profiles)

 

17          RESEARCH METHODOLOGY              

 

18          REFERENCES 

 

List of Tables

  • Table 1. The advanced carbon materials market.  53
  • Table 2.Carbon-Based Thermal Management Materials   54
  • Table 3. Carbon-Based Battery Additives    55
  • Table 4. Classification and types of the carbon fibers.       60
  • Table 5. Summary of carbon fiber properties.          61
  • Table 6. Modulus classifications of carbon fiber.   61
  • Table 7. Comparison of main precursor fibers.       63
  • Table 8. Properties of lignins and their applications.           69
  • Table 9. Lignin-derived anodes in lithium batteries.             70
  • Table 10. Fiber properties of polyolefin-based CFs.             71
  • Table 11. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages.       72
  • Table 12. Retention rate of tensile properties of recovered carbon fibres by different recycling processes.       74
  • Table 13. Recycled carbon fiber producers, technology and capacity.    74
  • Table 14. Methods for direct fiber integration.         75
  • Table 15. Continuous fiber 3D printing producers.                75
  • Table 16. Summary of markets and applications for CFRPs.          78
  • Table 17. Comparison of CFRP to competing materials.   79
  • Table 18. The market for carbon fibers in wind energy-market drivers, applications, desirable properties, pricing and key players.           80
  • Table 19. The market for carbon fibers in sports & leisure-market drivers, applications, desirable properties, pricing and key players. 80
  • Table 20. The market for carbon fibers in automotive-market drivers, applications, desirable properties, pricing and key players.           81
  • Table 21. The market for carbon fibers in pressure vessels-market drivers, desirable properties of CF, applications, pricing, key players.    83
  • Table 22. The market for carbon fibers in oil and gas-market drivers, desirable properties, applications, pricing and key players.           83
  • Table 23. Market drivers and trends in carbon fibers.          84
  • Table 24. Regulations pertaining to carbon fibers  85
  • Table 25. Price and costs analysis for carbon fibers.           85
  • Table 26. Carbon fibers supply chain.           86
  • Table 27. Key players, carbon fiber supplied, manufacturing methods and target markets.     86
  • Table 28. Production capacities of carbon fiber producers, in metric tonnes, current and planned.  86
  • Table 29. Future Outlook by End-Use Market.          88
  • Table 30. Addressable market size for carbon fibers by market.  88
  • Table 31. Market challenges in the CF and CFRP market. 89
  • Table 32. Global market revenues for carbon fibers 2020-2025 (MILLIONS USD), by market.  89
  • Table 33. Global carbon fiber demand 2016-2035, by industry (MT).       90
  • Table 34. Global carbon fiber revenues 2016-2035, by industry (MT).      91
  • Table 35. Global carbon fiber revenues 2016-2035, by region (MT).          91
  • Table 36. Main Toray production sites and capacities.       107
  • Table 37. Commercially available carbon black grades.   156
  • Table 38. Properties of carbon black and influence on performance.      157
  • Table 39. Carbon black compounds.             161
  • Table 40. Carbon black manufacturing processes, advantages and disadvantages.    162
  • Table 41: Market drivers for carbon black in the tire industry.        164
  • Table 42.  Global market for carbon black in tires (Million metric tons), 2018 to 2033. 164
  • Table 43. Carbon black non-tire applications.         165
  • Table 44. Specialty carbon black demand, 2018-2035 (000s Tons), by market. 168
  • Table 45. Categories for recovered carbon black (rCB) based on key properties and intended applications.  169
  • Table 46. rCB post-treatment technologies.             170
  • Table 47. Recovered carbon black producers.         172
  • Table 48. Recovered carbon black demand, 2018-2035 (000s Tons), by market.              173
  • Table 49. Market Growth Drivers and Trends in Carbon Black.      174
  • Table 50. Regulations pertaining to carbon black. 174
  • Table 51. Market supply chain for carbon black.    175
  • Table 52 Pricing of carbon black.      176
  • Table 53. Carbon black capacities, by producer.    177
  • Table 54. Future outlook for carbon black by end use market.      178
  • Table 55. Customer Segmentation: Carbon Black.               178
  • Table 56. Addressable market size for carbon black by market.   178
  • Table 57. Risks and Opportunities in Carbon Black.            179
  • Table 58. Global market for carbon black 2018-2035, by end user market (100,000 tons).       179
  • Table 59. Global market for carbon black 2018-2035, by end user market (billion USD).            180
  • Table 60. Global market for carbon black 2018-2035, by region (100,000 tons).              180
  • Table 61. Selected physical properties of graphite.              204
  • Table 62. Characteristics of natural and synthetic graphite.          205
  • Table 63. Comparison between Natural and Synthetic Graphite.               207
  • Table 64. Natural graphite size categories, their advantages, average prices, and applications.            210
  • Table 65. Classification of natural graphite with its characteristics.         210
  • Table 66. Applications of flake graphite.      212
  • Table 67. Amorphous graphite applications.            216
  • Table 68. Crystalline vein graphite applications.    217
  • Table 69. Characteristics of synthetic graphite.      218
  • Table 70: Main markets and applications of isostatic graphite.    222
  • Table 71. Current or planned production capacities for isostatic graphite.          222
  • Table 72. Main graphite electrode producers and capacities (MT/year). 222
  • Table 73. Extruded graphite applications.   224
  • Table 74. Applications of Vibration Molded Graphite.         225
  • Table 75. Applicaitons of Die-molded graphite.      226
  • Table 76. Recycled refractory graphite applications.           227
  • Table 77. Markets and applications of graphite.     228
  • Table 78. Classification, application and price of graphite as a function of size.              229
  • Table 79. Pricing by graphite type, 2020-2024.        230
  • Table 80. Fine Flake Graphite Prices (-100 mesh, 90-97% C).        231
  • Table 81. Spherical Graphite Prices (99.95% C).    231
  • Table 82. +32 Mesh Natural Flake Graphite Prices (>500μm, 94-97% C).              231
  • Table 83. Estimated global mine Production of natural graphite 2020-2023, by country (tons).             233
  • Table 84. Global production of graphite 2016-2023, MT.  234
  • Table 85. Estimated global graphite production in tonnes, 2024-2035, by type.                235
  • Table 86. Demand for synthetic graphite in Asia-Pacific 2016-2035, tonnes.     242
  • Table 87. Demand for natural graphite in Asia-Pacific 2016-2035, tonnes.          243
  • Table 88. Demand for synthetic graphite in North America 2016-2035, tonnes.               245
  • Table 89. Demand for natural graphite in North America 2016-2035, tonnes.    246
  • Table 90. Demand for synthetic graphite in Europe 2018-2035, tonnes. 247
  • Table 91. Demand for natural graphite in Europe 2016-2035, tonnes.     249
  • Table 92. Main natural graphite producers.                251
  • Table 93. Main synthetic graphite producers.           252
  • Table 94. Graphite production capacities by producer.      255
  • Table 95. Next Resources graphite flake products.               297
  • Table 96. Summary of key properties of biochar.   326
  • Table 97. Biochar physicochemical and morphological properties            326
  • Table 98. Markets and applications for biochar.     328
  • Table 99. Biochar feedstocks-source, carbon content, and characteristics.       333
  • Table 100. Biochar production technologies, description, advantages and disadvantages.    335
  • Table 101. Comparison of slow and fast pyrolysis for biomass.  338
  • Table 102. Comparison of thermochemical processes for biochar production.                339
  • Table 103. Biochar production equipment manufacturers.            339
  • Table 104. Competitive materials and technologies that can also earn carbon credits.              341
  • Table 105.  Biochar applications in agriculture and livestock farming.    345
  • Table 106. Effect of biochar on different soil properties.   346
  • Table 107.  Fertilizer products and their associated N, P, and K content.               347
  • Table 108. Application of biochar in construction.                349
  • Table 109. Process and benefits of biochar as an amendment in cement .          350
  • Table 110. Application of biochar in asphalt.           351
  • Table 111. Biochar applications for wastewater treatment.            353
  • Table 112. Biochar in carbon capture overview.     355
  • Table 113. Biochar in cosmetic products.   356
  • Table 114. Biochar in textiles.             357
  • Table 115. Biochar in additive manufacturing.        357
  • Table 116. Biochar in ink.       358
  • Table 117. Biochar in packaging.      360
  • Table 118. Companies using biochar in packaging.             361
  • Table 119. Biochar in steel and metal.          362
  • Table 120. Summary of applications of biochar in energy.               362
  • Table 121. Market Growth Drivers and Trends in biochar. 366
  • Table 122. Regulations pertaining to biochar.          366
  • Table 123. Biochar supply chain.      367
  • Table 124. Key players, manufacturing methods and target markets.      368
  • Table 125. Future outlook for biochar by end use market.                368
  • Table 126. Customer Segmentation for Biochar.    368
  • Table 127. Addressable market size for biochar by market.            369
  • Table 128. Risk and opportunities in Biochar.          369
  • Table 129. Global demand for biochar 2018-2035 (1,000 tons), by market.         370
  • Table 130. Global demand for biochar 2018-2035 (1,000 tons), by region.           372
  • Table 131. Biochar production by feedstocks in China (1,000 tons), 2023-2035.             374
  • Table 132. Biochar production by feedstocks in Asia-Pacific (1,000 tons), 2023-2035.               376
  • Table 133. Biochar production by feedstocks in North America (1,000 tons), 2023-2035.         378
  • Table 134. Biochar production by feedstocks in Europe (1,000 tons), 2023-2035.          380
  • Table 135. Properties of graphene, properties of competing materials, applications thereof.  458
  • Table 136. Market Growth Drivers and Trends in graphene.            459
  • Table 137. Regulations pertaining to graphene.      460
  • Table 138. Types of graphene and typical prices.   462
  • Table 139. Pristine graphene flakes pricing by producer.   464
  • Table 140. Few-layer graphene pricing by producer.            465
  • Table 141. Graphene nanoplatelets pricing by producer.  465
  • Table 142. Graphene oxide and reduced graphene oxide pricing, by producer.  466
  • Table 143. Multi-layer graphene pricing by producer.          467
  • Table 144. Graphene ink pricing by producer.           467
  • Table 145. Market and applications for graphene in automotive. 482
  • Table 146. Graphene supply chain. 484
  • Table 147. Future outlook for graphene by end use market.            486
  • Table 148. Addressable market size for graphene by market.        487
  • Table 149. Risks and Opportunities in Graphene.  487
  • Table 150. Global graphene demand by type of graphene material, 2018-2035 (tons). 489
  • Table 151. Global graphene demand by market, 2018-2035 (tons).          491
  • Table 152. Global graphene demand, by region, 2018-2035 (tons).          493
  • Table 153. Performance criteria of energy storage devices.            731
  • Table 154. Typical properties of SWCNT and MWCNT.       736
  • Table 155. Properties of CNTs and comparable materials.              737
  • Table 156. Applications of MWCNTs.             738
  • Table 157. Comparative properties of MWCNT and SWCNT.          742
  • Table 158. Markets, benefits and applications of Single-Walled Carbon Nanotubes.   743
  • Table 159. Chasm SWCNT products.             766
  • Table 160. Thomas Swan SWCNT production.         839
  • Table 161. Properties of carbon nanotube paper.  842
  • Table 162. Applications of Double-walled carbon nanotubes.     854
  • Table 163. Markets and applications for Vertically aligned CNTs (VACNTs).        855
  • Table 164. Markets and applications for few-walled carbon nanotubes (FWNTs).           857
  • Table 165. Markets and applications for carbon nanohorns.         858
  • Table 166. Comparative properties of BNNTs and CNTs.  860
  • Table 167. Applications of BNNTs.   861
  • Table 168. Carbon Nanofibers from Biomass Analysis.    867
  • Table 169. Market Growth Drivers and Trends in Carbon Nanofibers.      871
  • Table 170. Price and Cost Analysis for Carbon Nanofibers.            871
  • Table 171. Carbon nanofibers supply chain.            872
  • Table 172. Future outlook for CNFs by end use market.    872
  • Table 173. Addressable market size for CNFs by market. 873
  • Table 174. Risks and Opportunities Analysis for Carbon Nanofibers.      874
  • Table 175. Global market revenues for carbon nanofibers 2020-2035 (MILLIONS USD), by market.    874
  • Table 176. Market overview for fullerenes-Selling grade particle diameter, usage, advantages, average price/ton, high volume applications, low volume applications and novel applications.              884
  • Table 177. Types of fullerenes and applications.    885
  • Table 178. Products incorporating fullerenes.          885
  • Table 179. Markets, benefits and applications of fullerenes.         885
  • Table 180. Market Growth Drivers and Trends in Fullerenes.          887
  • Table 181. Price and costs analysis for Fullerenes.               887
  • Table 182. Fullerenes supply chain.               888
  • Table 183. Future outlook for Fullerenes by end use market.         888
  • Table 184. Addressable market size for Fullerenes by market.      889
  • Table 185. Risks and Opportunities Analysis.          889
  • Table 186. Global market demand for  fullerenes, 2018-2035 (tons).      890
  • Table 187. Properties of nanodiamonds.    903
  • Table 188. Summary of types of NDS and production methods-advantages and disadvantages.        904
  • Table 189. Markets, benefits and applications of nanodiamonds.             905
  • Table 190. Market Growth Drivers and Trends in Nanodiamonds.              908
  • Table 191. Regulations pertaining to Nanodiamonds.       909
  • Table 192. Price and costs analysis for Nanodiamonds.  910
  • Table 193. Price of nanodiamonds by producer.     911
  • Table 194. Nanodiamonds supply chain.    913
  • Table 195. Future outlook for Nanodiamonds by end use market.              914
  • Table 196. Risks and Opportunities in Nanodiamonds.    914
  • Table 197. Demand for nanodiamonds (metric tonnes), 2018-2035.       915
  • Table 198. Production methods, by main ND producers. 916
  • Table 199. Adamas Nanotechnologies, Inc. nanodiamond product list. 917
  • Table 200. Carbodeon Ltd. Oy nanodiamond product list.              922
  • Table 201. Daicel nanodiamond product list.           924
  • Table 202. FND Biotech Nanodiamond product list.            926
  • Table 203. JSC Sinta nanodiamond product list.    930
  • Table 204. Plasmachem product list and applications.     937
  • Table 205. Ray-Techniques Ltd. nanodiamonds product list.         938
  • Table 206. Comparison of ND produced by detonation and laser synthesis.      938
  • Table 207. Comparison of graphene QDs and semiconductor QDs.         942
  • Table 208. Advantages and disadvantages of methods for preparing GQDs.      945
  • Table 209. Applications of graphene quantum dots.           946
  • Table 210. Prices for graphene quantum dots.        947
  • Table 211. Properties of carbon foam materials.    958
  • Table 212. Applications of carbon foams.  958
  • Table 213. Properties of Diamond-like carbon (DLC) coatings.     967
  • Table 214. Applications and markets for Diamond-like carbon (DLC) coatings. 968
  • Table 215. Global revenues for DLC coatings, 2018-2035 (Billion USD). 969
  • Table 216. Markets and Applications for Activated Carbon.           980
  • Table 217. Market Growth Drivers and Trends in Activated Carbon.          982
  • Table 218. Regulations pertaining to Activated Carbon.    983
  • Table 219. Price and costs analysis for Activated Carbon.              983
  • Table 220. Activated Carbon supply chain.                984
  • Table 221. Future outlook for Activated Carbon by end use market.         984
  • Table 222. Addressable market size for Activated Carbon by market.      985
  • Table 223. Risks and Opportunities in Activated Carbon. 988
  • Table 224. Global market revenues for Activated Carbon 2020-2035 (millions USD), by market.          988
  • Table 225. Markets and Applications for Carbon Aerogels and Xerogels.              1003
  • Table 226. Market Growth Drivers and Trends in Carbon Aerogels and Xerogels.             1005
  • Table 227. Regulations pertaining to Carbon Aerogels and Xerogels.       1006
  • Table 228. Price and costs analysis for Carbon Aerogels and Xerogels.  1007
  • Table 229. Carbon Aerogels and Xerogels supply chain.   1007
  • Table 230. Future outlook for Carbon Aerogels and Xerogels by end use market.            1008
  • Table 231. Addressable market size for Carbon Aerogels and Xerogels by market.         1009
  • Table 232. Risks and Opportunities in Carbon Aerogels.   1009
  • Table 233. Global market revenues for Carbon Aerogels and Xerogels 2020-2035 (millions USD), by market.              1010
  • Table 234. Point source examples.  1024
  • Table 235. Assessment of carbon capture materials           1029
  • Table 236. Chemical solvents used in post-combustion. 1031
  • Table 237. Commercially available physical solvents for pre-combustion carbon capture.      1034
  • Table 238. Main capture processes and their separation technologies. 1034
  • Table 239. Absorption methods for CO2 capture overview.            1035
  • Table 240. Commercially available physical solvents used in CO2 absorption. 1037
  • Table 241. Adsorption methods for CO2 capture overview.            1039
  • Table 242. Membrane-based methods for CO2 capture overview.             1041
  • Table 243. Comparison of main separation technologies.               1047
  • Table 244. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages.            1048
  • Table 245. Advantages and disadvantages of DAC.              1052

 

List of Figures

  • Figure 1.  Manufacturing process of PAN type carbon fibers.         64
  • Figure 2. Production processes for pitch-based carbon fibers.    66
  • Figure 3. Lignin/celluose precursor. 67
  • Figure 4. Process of preparing CF from lignin.          68
  • Figure 5. Carbon fiber manufacturing capacity in 2023, by company (metric tonnes)   87
  • Figure 6. Neustark modular plant.   101
  • Figure 7. CR-9 carbon fiber wheel.  119
  • Figure 8. The Continuous Kinetic Mixing system.   124
  • Figure 9. Chemical decomposition process of polyurethane foam.          151
  • Figure 10. Electron microscope image of carbon black.   157
  • Figure 11. Different shades of black, depending on the surface of Carbon Black.           158
  • Figure 12. Structure- Aggregate Size/Shape Distribution. 159
  • Figure 13. Surface Chemistry – Surface Functionality Distribution.          159
  • Figure 14. Sequence of structure development of Carbon Black.               160
  • Figure 15. Carbon Black pigment in Acrylonitrile butadiene styrene (ABS) polymer.      161
  • Figure 16 Break-down of raw materials (by weight) used in a tire.               163
  • Figure 17. Applications of specialty carbon black.               166
  • Figure 18.  Specialty carbon black market volume, 2018-2035 (000s Tons), by market.               169
  • Figure 19. Pyrolysis process: from ELT to rCB, oil, and syngas, and applications thereof.           171
  • Figure 20.  Recovered carbon black demand, 2018-2035 (000s Tons), by market.           173
  • Figure 21. Global market for carbon black 2018-2035, by region (100,000 tons).            181
  • Figure 22. Nike Algae Ink graphic tee.             193
  • Figure 23. Structure of graphite.        204
  • Figure 24. Comparison of SEM micrographs of sphere-shaped natural graphite (NG; after several processing steps) and synthetic graphite (SG).       207
  • Figure 25. Overview of graphite production, processing and applications.          209
  • Figure 26. Flake graphite.       212
  • Figure 27. Flake graphite production              214
  • Figure 28. Amorphous graphite.        216
  • Figure 29. Vein graphite.         218
  • Figure 30: Isostatic pressed graphite.            221
  • Figure 31. Global market for graphite EAFs, 2018-2035 (MT).        223
  • Figure 32. Extruded graphite rod.      224
  • Figure 33. Vibration Molded Graphite.           225
  • Figure 34. Die-molded graphite products.  226
  • Figure 35. Global production of graphite 2016-2023 MT.  235
  • Figure 36. Estimated global graphite production in tonnes, 2024-2035, by type.              236
  • Figure 37. Global market demand for natural graphite by end use market 2016-2035, tonnes.              237
  • Figure 38. Global market demand for synthetic graphite by end use market 2016-2035, tonnes.         238
  • Figure 39. Consumption of graphite by end use markets, 2024.  239
  • Figure 40. Demand for graphite by end use markets, 2035.            240
  • Figure 41. Global consumption of graphite by type and region, 2024.     241
  • Figure 42. Consumption of synthetic graphite in Asia-Pacific 2016-2035, tonnes.         243
  • Figure 43. Consumption of natural graphite in Asia-Pacific 2016-2035, tonnes.              244
  • Figure 44. Demand for synthetic graphite in North America 2016-2035, tonnes.             246
  • Figure 45. Demand for natural graphite in North America 2018-2035, tonnes.  247
  • Figure 46. Consumption of synthetic graphite in Europe 2015-2035, tonnes.    248
  • Figure 47. Consumption of natural graphite in Europe 2015-2035, tonnes.         249
  • Figure 48. Graphite market supply chain (battery market).              254
  • Figure 49. Biochars from different sources, and by pyrolyzation at different temperatures.      324
  • Figure 50. Compressed biochar.       328
  • Figure 51. Biochar production diagram.      335
  • Figure 52. Pyrolysis process and by-products in agriculture.         337
  • Figure 53. Perennial ryegrass plants grown in clay soil with (Right) and without (Left) biochar.               348
  • Figure 54. Biochar bricks.      351
  • Figure 55. Global demand for biochar 2018-2035 (tons), by market.        371
  • Figure 56. Global demand for biochar 2018-2035 (1,000 tons), by region.            373
  • Figure 57. Biochar production by feedstocks in China (1,000 tons), 2023-2035.             375
  • Figure 58. Biochar production by feedstocks in Asia-Pacific (1,000 tons), 2023-2035. 377
  • Figure 59. Biochar production by feedstocks in North America (1,000 tons), 2023-2035.          379
  • Figure 60. Biochar production by feedstocks in Europe (1,000 tons), 2023-2035.           381
  • Figure 61. Biochar production by feedstocks in South America (1,000 tons), 2023-2035.         382
  • Figure 62. Biochar production by feedstocks in Africa (1,000 tons), 2023-2035.              383
  • Figure 63. Biochar production by feedstocks in the Middle East (tons), 2023-2035.      384
  • Figure 64. Capchar prototype pyrolysis kiln.             400
  • Figure 65. Made of Air's HexChar panels.   432
  • Figure 66. Takavator.  451
  • Figure 67. Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene. 457
  • Figure 68. Applications roadmap to 2035 for graphene in batteries.          468
  • Figure 69. Applications of graphene in batteries.   469
  • Figure 70. Applications of graphene in supercapacitors.  470
  • Figure 71. Applications roadmap to 2035 for graphene in polymer additives.     471
  • Figure 72. Applications of graphene in polymer additives.              471
  • Figure 73. Applications of graphene in sensors.     472
  • Figure 74. Applications roadmap to 2035 for graphene in sensors.           473
  • Figure 75. Applications roadmap to 2035 for graphene in conductive inks.         473
  • Figure 76. Applications of graphene in conductive inks.   474
  • Figure 77. Graphene in transparent conductive films and displays.          475
  • Figure 78. Applications roadmap to 2035 for graphene in transparent conductive films and displays.                475
  • Figure 79. Applications of graphene transistors.    476
  • Figure 80. Applications roadmap to 2035 for graphene transistors.          476
  • Figure 81. Applications roadmap to 2035 for graphene filtration membranes.   477
  • Figure 82. Applications roadmap to 2035 for graphene in thermal management.           478
  • Figure 83. Applications roadmap to 2035 for graphene in additive manufacturing.        478
  • Figure 84. Applications roadmap to 2035 for graphene in adhesives.      479
  • Figure 85. Applications roadmap to 2035 for graphene in aerospace.     481
  • Figure 86. Applications roadmap to 2035 for graphene in fuel cells.         482
  • Figure 87. Applications roadmap to 2035 for graphene in biomedicine and healthcare.             483
  • Figure 88. Applications roadmap to 2035 for graphene in in photovoltaics.         484
  • Figure 89. Global graphene demand by type of graphene material, 2018-2035 (tons). 490
  • Figure 90. Global graphene demand by market, 2018-2035 (tons).           492
  • Figure 91. Global graphene demand, by region, 2018-2035 (tons).           494
  • Figure 92. Graphene heating films. 495
  • Figure 93. Graphene flake products.              500
  • Figure 94. AIKA Black-T.          504
  • Figure 95. Printed graphene biosensors.     511
  • Figure 96. Prototype of printed memory device.     515
  • Figure 97. Brain Scientific electrode schematic.    529
  • Figure 98. Graphene battery schematic.      552
  • Figure 99. Dotz Nano GQD products.            554
  • Figure 100. Graphene-based membrane dehumidification test cell.        560
  • Figure 101. Proprietary atmospheric CVD production.      570
  • Figure 102. Wearable sweat sensor.               602
  • Figure 103.  InP/ZnS, perovskite quantum dots and silicon resin composite under UV illumination.  608
  • Figure 104. Sensor surface.  622
  • Figure 105. BioStamp nPoint.             637
  • Figure 106. Nanotech Energy battery.            654
  • Figure 107. Hybrid battery powered electrical motorbike concept.           657
  • Figure 108. NAWAStitch integrated into carbon fiber composite.               658
  • Figure 109. Schematic illustration of three-chamber system for SWCNH production. 659
  • Figure 110. TEM images of carbon nanobrush.       660
  • Figure 111. Test performance after 6 weeks ACT II according to Scania STD4445.          676
  • Figure 112. Quantag GQDs and sensor.       678
  • Figure 113. The Sixth Element graphene products.               692
  • Figure 114. Thermal conductive graphene film.      693
  • Figure 115. Talcoat graphene mixed with paint.      705
  • Figure 116. T-FORCE CARDEA ZERO.             708
  • Figure 117. AWN Nanotech water harvesting prototype.   748
  • Figure 118. Large transparent heater for LiDAR.     759
  • Figure 119. Carbonics, Inc.’s carbon nanotube technology.           761
  • Figure 120. Schematic of a fluidized bed reactor which is able to scale up the generation of SWNTs using the CoMoCAT process.              767
  • Figure 121. Fuji carbon nanotube products.             774
  • Figure 122. Cup Stacked Type Carbon Nano Tubes schematic.   777
  • Figure 123. CSCNT composite dispersion. 777
  • Figure 124. Flexible CNT CMOS integrated circuits with sub-10 nanoseconds stage delays.    781
  • Figure 125. Koatsu Gas Kogyo Co. Ltd CNT product.           788
  • Figure 126. Carbon nanotube paint product.            791
  • Figure 127. MEIJO eDIPS product.    797
  • Figure 128. NAWACap.            808
  • Figure 129. NAWAStitch integrated into carbon fiber composite.               809
  • Figure 130. Schematic illustration of three-chamber system for SWCNH production. 810
  • Figure 131. TEM images of carbon nanobrush.       811
  • Figure 132. CNT film. 813
  • Figure 133. HiPCO® Reactor.               815
  • Figure 134. Shinko Carbon Nanotube TIM product.              829
  • Figure 135. Smell iX16 multi-channel gas detector chip.  832
  • Figure 136. The Smell Inspector.       833
  • Figure 137. Toray CNF printed RFID.               843
  • Figure 138. Double-walled carbon nanotube bundle cross-section micrograph and model.   854
  • Figure 139. Schematic of a vertically aligned carbon nanotube (VACNT) membrane used for water treatment.        856
  • Figure 140. TEM image of FWNTs.     856
  • Figure 141. Schematic representation of carbon nanohorns.       858
  • Figure 142. TEM image of carbon onion.      859
  • Figure 143. Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red.  860
  • Figure 144. Conceptual diagram of single-walled carbon nanotube (SWCNT) (A) and multi-walled carbon nanotubes (MWCNT) (B) showing typical dimensions of length, width, and separation distance between graphene layers in MWCNTs (Source: JNM).         861
  • Figure 145. Carbon nanotube adhesive sheet.        864
  • Figure 146. Solid Carbon produced by UP Catalyst.            882
  • Figure 147. Technology Readiness Level (TRL) for fullerenes.        886
  • Figure 148. Detonation Nanodiamond.        902
  • Figure 149. DND primary particles and properties.               902
  • Figure 150. Functional groups of Nanodiamonds. 903
  • Figure 151. NBD battery.         932
  • Figure 152. Neomond dispersions. 934
  • Figure 153. Visual representation of graphene oxide sheets (black layers) embedded with nanodiamonds (bright white points).             935
  • Figure 154. Green-fluorescing graphene quantum dots.   941
  • Figure 155. Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1–4).  942
  • Figure 156. Graphene quantum dots.            944
  • Figure 157. Top-down and bottom-up methods.    945
  • Figure 158. Dotz Nano GQD products.          948
  • Figure 159.  InP/ZnS, perovskite quantum dots and silicon resin composite under UV illumination.  951
  • Figure 160. Quantag GQDs and sensor.       953
  • Figure 161. Schematic of typical microstructure of carbon foam: (a) open-cell, (b) closed-cell.           956
  • Figure 162. Classification of DLC coatings.               966
  • Figure 163. SLENTEX® roll (piece).    1013
  • Figure 164. CNF gel.  1020
  • Figure 165. Block nanocellulose material. 1020
  • Figure 166. CO2 capture and separation technology.         1024
  • Figure 167. Global capacity of point-source carbon capture and storage facilities.       1026
  • Figure 168. Global carbon capture capacity by CO2 source, 2023.          1027
  • Figure 169. Global carbon capture capacity by CO2 source, 2035.          1028
  • Figure 170. Global carbon capture capacity by CO2 endpoint, 2022 and 2033.               1028
  • Figure 171. Post-combustion carbon capture process.     1030
  • Figure 172. Postcombustion CO2 Capture in a Coal-Fired Power Plant. 1031
  • Figure 173. Oxy-combustion carbon capture process.      1032
  • Figure 174. Liquid or supercritical CO2 carbon capture process.               1033
  • Figure 175. Pre-combustion carbon capture process.       1034
  • Figure 176. Amine-based absorption technology. 1037
  • Figure 177. Pressure swing absorption technology.              1041
  • Figure 178. Membrane separation technology.        1042
  • Figure 179. Liquid or supercritical CO2 (cryogenic) distillation.   1043
  • Figure 180. Process schematic of chemical looping.          1044
  • Figure 181. Calix advanced calcination reactor.     1045
  • Figure 182. Fuel Cell CO2 Capture diagram.            1046
  • Figure 183. Electrochemical CO₂ reduction products.       1048
  • Figure 184. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.     1051
  • Figure 185. Global CO2 capture from biomass and DAC in the Net Zero Scenario.         1052

 

 

 

 

The Global Market for Advanced Carbon Materials 2025-2035
The Global Market for Advanced Carbon Materials 2025-2035
PDF download.

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com