Batteries, Supercapacitors, Hydrogen Energy Storage, Long Duration Energy Storage (LDES), Thermal Energy Storage, Mechanical Energy Storage, Fuel Cells, Photovoltaics, and Other Energy Harvesting & Batteryless Devices.
- Published: January 2024
- Pages: 1,070
- Tables: 157
- Figures: 229
The global transition toward renewable electricity faces challenges around intermittency and grid stability. Solutions for advancing affordable storage with faster response times, longer duration capacity, greater energy density and location flexibility are essential.
This extensive report provides global market forecasts for advanced battery technologies, supercapacitors, alternative chemical energy storage, thermal and mechanical concepts from 2018 to 2034. It assesses lithium-ion, solid-state, metal-air, sodium-ion, printed and flexible batteries among other chemistries across transportation, grid infrastructure, consumer electronics and stationary storage.
Regional demand analysis covers North America, Europe, Asia Pacific and Rest of World markets. The report profiles over 700 companies involved in areas like battery materials, management systems, fuel cell development and thermal storage. Multiple alternative storage concepts like power-to-gas, pumped hydro, compressed air and cryogenic storage are examined as well. Technologies covered include:
- Batteries (Li-ion, Lithium-Metal, Lithium-Sulfur, Lithium Titanate & Niobate, Sodium-ion, Aluminium-ion, All-solid state batteries (ASSBs), Flexible, Transparent, Degradable, Printed, Redox Flow, and Zinc, Iron-air, High Temperature)
- Supercapacitors
- Hydrogen Energy Storage
- Long Duration Energy Storage (LDES)
- Thermal Energy Storage
- Mechanical Energy Storage
- Fuel Cells
- Photovoltaics
- Other Energy Harvesting & Batteryless Devices.
Latest developments in battery recycling processes, manufacturing equipment innovation, sharing economy business models, second-life utilization and environmental impact reduction are reviewed. Long duration storage requirements associated with stabilizing renewable energy penetration are evaluated. Report contents include:
- Global market analysis and forecasts for lithium-ion, sodium-ion, metal-air, solid-state, printed, flexible, transparent and other advanced battery technologies
- Assessment of supercapacitors, hydrogen storage, synthetic fuels, thermal and mechanical storage, fuel Cells, photovoltaics, and energy Harvesting & batteryless devices.
- Regional demand analysis - North America, Europe, Asia Pacific, Rest of World
- Renewable energy storage requirements and cost evolution projections
- Emerging storage techniques – redox flow batteries, cryogenic, gravity concepts etc
- Technology review of battery materials, manufacturing processes, recycling
- Strategic metal availability concerns affecting battery value chains
- Grid infrastructure technology analysis from decentralized to scaled centralized
- Behind-the-meter residential and commercial storage demands
- Transport electrification requirements for cars, buses, trucks, marine vessels
- Stationary storage needs across data centers, communications infrastructure
- Space utilization trade-offs: density vs power vs discharge duration vs cost
- Integration issues - smart grids, EV charging, hydrogen infrastructure
- Player ecosystem across established battery firms, startups, industrial groups
- Standards evolution for second life utilization, environmental reporting tools
- Start-up activity heat map across advanced storage technology categories
- 700+ company profiles across Li-ion value chain, capacitors, fuel cells etc. Companies profiled include AMSL Aero, Aquabattery, Atlas Materials, Ambri Inc, Battolyser Systems, Brilliant Matters, Cactos, CMBlu Energy AG, Energy Vault, Enerpoly, Enervenue, EnyGy, ESS Tech, e-Zinc, Factorial, Form Energy, Fourth Power, Flow Aluminum, Inc., Gelion, GKN Hydrogen, Gotion High Tech, Graphene Manufacturing Group, H2MOF, High Performace Battery Holding AG, Inobat, Inx, Jolt Electrodes, Kraftblock, LIND Limited, Lyten, MFA Thermal, Nanoramic Laboratories, Northvolt, Our Next Energy (ONE), Oxford Photovoltaics, RedoxBlox, Rondo Energy, Salient Energy, SaltX, Sicona Battery Technologies, Sila, Skeleton Technologies, Soleolico, Solid Power, Stabl Energy, TasmanIon, Tiamat, Verkor and VFlowTech.
1 RESEARCH METHODOLOGY 59
2 INTRODUCTION 60
- 2.1 Classification of energy storage technologies 60
- 2.2 Global Market for Advanced Energy Storage and Energy Harvesting Technologies 61
- 2.2.1 Lithium-ion Batteries 61
- 2.2.2 Emerging Advanced Batteries 62
- 2.2.3 Supercapacitors 62
- 2.2.4 Hydrogen for LDES 63
- 2.2.5 Thermal/Mechanical Storage 63
- 2.2.6 Energy Harvesting 64
- 2.3 Technologies 65
- 2.4 Global revenues 67
- 2.4.1 By technologies 67
- 2.4.2 By markets 69
- 2.4.3 By region 71
3 BATTERIES 73
- 3.1 The global market for advanced batteries 73
- 3.1.1 Electric vehicles 75
- 3.1.1.1 Market overview 75
- 3.1.1.2 Battery Electric Vehicles 76
- 3.1.1.3 Electric buses, vans and trucks 77
- 3.1.1.3.1 Electric medium and heavy duty trucks 77
- 3.1.1.3.2 Electric light commercial vehicles (LCVs) 78
- 3.1.1.3.3 Electric buses 78
- 3.1.1.3.4 Micro EVs 79
- 3.1.1.4 Electric off-road 80
- 3.1.1.4.1 Construction vehicles 80
- 3.1.1.4.2 Electric trains 82
- 3.1.1.4.3 Electric boats 82
- 3.1.1.5 Market demand and forecasts 84
- 3.1.2 Grid storage 88
- 3.1.2.1 Market overview 88
- 3.1.2.2 Technologies 89
- 3.1.2.3 Market demand and forecasts 90
- 3.1.3 Consumer electronics 91
- 3.1.3.1 Market overview 91
- 3.1.3.2 Technologies 91
- 3.1.3.3 Market demand and forecasts 92
- 3.1.4 Stationary batteries 93
- 3.1.4.1 Market overview 93
- 3.1.4.2 Technologies 94
- 3.1.4.3 Market demand and forecasts 95
- 3.1.1 Electric vehicles 75
- 3.2 Market drivers 95
- 3.3 Battery market megatrends 97
- 3.4 Advanced materials for batteries 100
- 3.5 Motivation for battery development beyond lithium 101
- 3.6 Battery chemistries 102
- 3.7 Lithium-ion batteries (LIBs) 102
- 3.7.1 Technology description 102
- 3.7.1.1 Types of Lithium Batteries 106
- 3.7.2 SWOT analysis 109
- 3.7.3 Anodes 110
- 3.7.3.1 Materials 110
- 3.7.3.1.1 Graphite 111
- 3.7.3.1.2 Lithium Titanate 112
- 3.7.3.1.3 Lithium Metal 112
- 3.7.3.1.4 Silicon anodes 112
- 3.7.3.1.4.1 Benefits 114
- 3.7.3.1.4.2 Development in li-ion batteries 114
- 3.7.3.1.4.3 Manufacturing silicon 115
- 3.7.3.1.4.4 Costs 116
- 3.7.3.1.4.5 Applications 117
- 3.7.3.1.4.5.1 EVs 118
- 3.7.3.1.4.6 Future outlook 119
- 3.7.3.1.5 Alloy materials 119
- 3.7.3.1.6 Carbon nanotubes in Li-ion 120
- 3.7.3.1.7 Graphene coatings for Li-ion 120
- 3.7.3.1.8 Metal-organic frameworks 121
- 3.7.3.1 Materials 110
- 3.7.4 Li-ion electrolytes 122
- 3.7.5 Cathodes 122
- 3.7.5.1 Materials 122
- 3.7.5.1.1 High-nickel cathode materials 124
- 3.7.5.1.2 Manufacturing 125
- 3.7.5.1.3 High manganese content 125
- 3.7.5.1.4 Li-Mn-rich cathodes 126
- 3.7.5.1.5 Lithium Cobalt Oxide(LiCoO2) — LCO 127
- 3.7.5.1.6 Lithium Iron Phosphate(LiFePO4) — LFP 127
- 3.7.5.1.7 Lithium Manganese Oxide (LiMn2O4) — LMO 128
- 3.7.5.1.8 Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) — NMC 129
- 3.7.5.1.9 Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) — NCA 130
- 3.7.5.1.10 LMR-NMC 131
- 3.7.5.1.11 Lithium manganese phosphate (LiMnP) 131
- 3.7.5.1.12 Lithium manganese iron phosphate (LiMnFePO4 or LMFP) 132
- 3.7.5.1.13 Lithium nickel manganese oxide (LNMO) 132
- 3.7.5.2 Comparison of key lithium-ion cathode materials 132
- 3.7.5.3 Emerging cathode material synthesis methods 133
- 3.7.5.4 Cathode coatings 133
- 3.7.5.1 Materials 122
- 3.7.6 Binders and conductive additives 134
- 3.7.6.1 Materials 134
- 3.7.7 Separators 134
- 3.7.7.1 Materials 134
- 3.7.8 Platinum group metals 135
- 3.7.9 Li-ion battery market players 136
- 3.7.10 Li-ion recycling 136
- 3.7.10.1 Comparison of recycling techniques 138
- 3.7.10.2 Hydrometallurgy 139
- 3.7.10.2.1 Method overview 139
- 3.7.10.2.1.1 Solvent extraction 141
- 3.7.10.2.2 SWOT analysis 141
- 3.7.10.2.1 Method overview 139
- 3.7.10.3 Pyrometallurgy 142
- 3.7.10.3.1 Method overview 142
- 3.7.10.3.2 SWOT analysis 143
- 3.7.10.4 Direct recycling 144
- 3.7.10.4.1 Method overview 144
- 3.7.10.4.1.1 Electrolyte separation 145
- 3.7.10.4.1.2 Separating cathode and anode materials 145
- 3.7.10.4.1.3 Binder removal 146
- 3.7.10.4.1.4 Relithiation 146
- 3.7.10.4.1.5 Cathode recovery and rejuvenation 147
- 3.7.10.4.1.6 Hydrometallurgical-direct hybrid recycling 147
- 3.7.10.4.2 SWOT analysis 148
- 3.7.10.4.1 Method overview 144
- 3.7.10.5 Other methods 149
- 3.7.10.5.1 Mechanochemical Pretreatment 149
- 3.7.10.5.2 Electrochemical Method 149
- 3.7.10.5.3 Ionic Liquids 150
- 3.7.10.6 Recycling of Specific Components 150
- 3.7.10.6.1 Anode (Graphite) 150
- 3.7.10.6.2 Cathode 150
- 3.7.10.6.3 Electrolyte 151
- 3.7.10.7 Recycling of Beyond Li-ion Batteries 151
- 3.7.10.7.1 Conventional vs Emerging Processes 151
- 3.7.11 Global revenues 152
- 3.7.1 Technology description 102
- 3.8 Lithium metal batteries 154
- 3.8.1 Technology description 154
- 3.8.2 Lithium-metal anodes 155
- 3.8.3 Challenges 155
- 3.8.4 Energy density 156
- 3.8.5 Anode-less Cells 156
- 3.8.6 Lithium-metal and solid-state batteries 157
- 3.8.7 Applications 157
- 3.8.8 SWOT analysis 158
- 3.8.9 Product developers 159
- 3.9 Lithium sulfur batteries (Li–S) 160
- 3.9.1 Technology description 160
-
- 3.9.1.1 Advantages 160
- 3.9.1.2 Challenges 161
- 3.9.1.3 Commercialization 161
- 3.9.2 SWOT analysis 162
- 3.9.3 Global revenues 163
- 3.9.4 Product developers 164
-
- 3.10 Lithium titanate and niobate batteries 165
- 3.10.1 Technology description 165
- 3.10.2 Niobium titanium oxide (NTO) 165
- 3.10.2.1 Niobium tungsten oxide 166
- 3.10.2.2 Vanadium oxide anodes 167
- 3.10.3 Global revenues 167
- 3.10.4 Product developers 168
- 3.11 Sodium-ion (Na-ion) batteries 170
- 3.11.1 Technology description 170
- 3.11.1.1 Cathode materials 170
- 3.11.1.1.1 Layered transition metal oxides 170
- 3.11.1.1.1.1 Types 170
- 3.11.1.1.1.2 Cycling performance 171
- 3.11.1.1.1.3 Advantages and disadvantages 171
- 3.11.1.1.1.4 Market prospects for LO SIB 172
- 3.11.1.1.2 Polyanionic materials 172
- 3.11.1.1.2.1 Advantages and disadvantages 173
- 3.11.1.1.2.2 Types 173
- 3.11.1.1.2.3 Market prospects for Poly SIB 173
- 3.11.1.1.3 Prussian blue analogues (PBA) 174
- 3.11.1.1.3.1 Types 174
- 3.11.1.1.3.2 Advantages and disadvantages 175
- 3.11.1.1.3.3 Market prospects for PBA-SIB 176
- 3.11.1.1.1 Layered transition metal oxides 170
- 3.11.1.2 Anode materials 176
- 3.11.1.2.1 Hard carbons 177
- 3.11.1.2.2 Carbon black 179
- 3.11.1.2.3 Graphite 179
- 3.11.1.2.4 Carbon nanotubes 183
- 3.11.1.2.5 Graphene 184
- 3.11.1.2.6 Alloying materials 185
- 3.11.1.2.7 Sodium Titanates 186
- 3.11.1.2.8 Sodium Metal 186
- 3.11.1.3 Electrolytes 186
- 3.11.1.1 Cathode materials 170
- 3.11.2 Comparative analysis with other battery types 187
- 3.11.3 Cost comparison with Li-ion 188
- 3.11.4 Materials in sodium-ion battery cells 189
- 3.11.5 SWOT analysis 191
- 3.11.6 Global revenues 192
- 3.11.7 Product developers 193
- 3.11.7.1 Battery Manufacturers 193
- 3.11.7.2 Large Corporations 193
- 3.11.7.3 Automotive Companies 193
- 3.11.7.4 Chemicals and Materials Firms 194
- 3.11.1 Technology description 170
- 3.12 Sodium-sulfur (Na-S) batteries 194
- 3.12.1 Technology description 194
- 3.12.2 Applications 196
- 3.12.3 SWOT analysis 197
- 3.13 Aluminium-ion batteries 198
- 3.13.1 Technology description 198
- 3.13.2 SWOT analysis 199
- 3.13.3 Commercialization 200
- 3.13.4 Global revenues 201
- 3.13.5 Product developers 202
- 3.14 All-solid state batteries (ASSBs) 203
- 3.14.1 Technology description 203
- 3.14.1.1 Solid-state electrolytes 204
- 3.14.2 Features and advantages 205
- 3.14.3 Technical specifications 206
- 3.14.4 Types 208
- 3.14.5 Microbatteries 210
- 3.14.5.1 Introduction 210
- 3.14.5.2 Materials 211
- 3.14.5.3 Applications 211
- 3.14.5.4 3D designs 212
- 3.14.5.4.1 3D printed batteries 212
- 3.14.6 Bulk type solid-state batteries 212
- 3.14.7 SWOT analysis 213
- 3.14.8 Limitations 214
- 3.14.9 Global revenues 216
- 3.14.10 Product developers 217
- 3.14.1 Technology description 203
- 3.15 Flexible batteries 219
- 3.15.1 Technology description 219
- 3.15.2 Technical specifications 220
- 3.15.2.1 Approaches to flexibility 221
- 3.15.3 Flexible electronics 224
- 3.15.3.1 Flexible materials 225
- 3.15.4 Flexible and wearable Metal-sulfur batteries 226
- 3.15.5 Flexible and wearable Metal-air batteries 226
- 3.15.6 Flexible Lithium-ion Batteries 227
- 3.15.6.1 Electrode designs 230
- 3.15.6.2 Fiber-shaped Lithium-Ion batteries 233
- 3.15.6.3 Stretchable lithium-ion batteries 234
- 3.15.6.4 Origami and kirigami lithium-ion batteries 235
- 3.15.7 Flexible Li/S batteries 236
- 3.15.7.1 Components 237
- 3.15.7.2 Carbon nanomaterials 237
- 3.15.8 Flexible lithium-manganese dioxide (Li–MnO2) batteries 237
- 3.15.9 Flexible zinc-based batteries 238
- 3.15.9.1 Components 239
- 3.15.9.1.1 Anodes 239
- 3.15.9.1.2 Cathodes 239
- 3.15.9.2 Challenges 239
- 3.15.9.3 Flexible zinc-manganese dioxide (Zn–Mn) batteries 240
- 3.15.9.4 Flexible silver–zinc (Ag–Zn) batteries 241
- 3.15.9.5 Flexible Zn–Air batteries 242
- 3.15.9.6 Flexible zinc-vanadium batteries 243
- 3.15.9.1 Components 239
- 3.15.10 Fiber-shaped batteries 243
- 3.15.10.1 Carbon nanotubes 243
- 3.15.10.2 Types 244
- 3.15.10.3 Applications 245
- 3.15.10.4 Challenges 245
- 3.15.11 Energy harvesting combined with wearable energy storage devices 246
- 3.15.12 SWOT analysis 248
- 3.15.13 Global revenues 249
- 3.15.14 Product developers 250
- 3.16 Transparent batteries 252
- 3.16.1 Technology description 252
- 3.16.2 Components 253
- 3.16.3 SWOT analysis 254
- 3.16.4 Market outlook 255
- 3.17 Degradable batteries 256
- 3.17.1 Technology description 256
- 3.17.2 Biobased materials 257
- 3.17.2.1 Cellulose nanofibers 257
- 3.17.2.2 Biochar 258
- 3.17.2.3 Lignin 258
- 3.17.2.3.1 Anodes for lithium-ion batteries 258
- 3.17.2.3.2 Gel electrolytes for lithium-ion batteries 259
- 3.17.2.3.3 Binders for lithium-ion batteries 259
- 3.17.2.3.4 Cathodes for lithium-ion batteries 260
- 3.17.2.3.5 Sodium-ion batteries 260
- 3.17.2.4 Alginate Polymers 260
- 3.17.2.5 Agricultural Waste Fibers 261
- 3.17.3 Components 261
- 3.17.4 SWOT analysis 263
- 3.17.5 Market outlook 264
- 3.17.6 Product developers 264
- 3.18 Printed batteries 264
- 3.18.1 Technical specifications 265
- 3.18.2 Components 265
- 3.18.3 Design 267
- 3.18.4 Key features 268
- 3.18.5 Printable current collectors 268
- 3.18.6 Printable electrodes 269
- 3.18.7 Materials 269
- 3.18.8 Applications 269
- 3.18.9 Printing techniques 270
- 3.18.10 Lithium-ion (LIB) printed batteries 272
- 3.18.11 Zinc-based printed batteries 273
- 3.18.12 3D Printed batteries 275
- 3.18.12.1 3D Printing techniques for battery manufacturing 277
- 3.18.12.2 Materials for 3D printed batteries 278
- 3.18.12.2.1 Electrode materials 278
- 3.18.12.2.2 Electrolyte Materials 279
- 3.18.13 SWOT analysis 279
- 3.18.14 Global revenues 280
- 3.18.15 Product developers 281
- 3.19 Redox Flow Batteries 283
- 3.19.1 Technology description 283
- 3.19.2 Vanadium redox flow batteries (VRFB) 284
- 3.19.3 Zinc-bromine flow batteries (ZnBr) 285
- 3.19.4 Polysulfide bromine flow batteries (PSB) 285
- 3.19.5 Iron-chromium flow batteries (ICB) 286
- 3.19.6 All-Iron flow batteries 287
- 3.19.7 Zinc-iron (Zn-Fe) flow batteries 287
- 3.19.8 Hydrogen-bromine (H-Br) flow batteries 288
- 3.19.9 Hydrogen-Manganese (H-Mn) flow batteries 289
- 3.19.10 Organic flow batteries 290
- 3.19.11 Hybrid Flow Batteries 291
- 3.19.11.1 Zinc-Cerium Hybrid 291
- 3.19.11.2 Zinc-Polyiodide Hybrid Flow Battery 291
- 3.19.11.3 Zinc-Nickel Hybrid Flow Battery 292
- 3.19.11.4 Zinc-Bromine Hybrid Flow Battery 293
- 3.19.11.5 Vanadium-Polyhalide Flow Battery 293
- 3.19.12 Global revenues 294
- 3.19.13 Product developers 294
- 3.20 Rechargeable Zinc (Zn) batteries 295
- 3.20.1 Technology description 295
- 3.20.1.1 Zinc-Air batteries 296
- 3.20.1.2 Zinc-ion batteries 297
- 3.20.1.3 Zinc-bromine 298
- 3.20.2 Market outlook 298
- 3.20.3 Product developers 299
- 3.20.1 Technology description 295
- 3.21 Iron-air (Fe-air) batteries 299
- 3.21.1 Technology description 299
- 3.21.2 Market outlook 300
- 3.21.3 Product developers 302
- 3.22 High-temperature / molten-salt 302
- 3.22.1 Technology description 302
- 3.22.2 Market outlook 303
- 3.22.3 Product developers 304
- 3.23 Companies 305 (312 company profiles)
4 SUPERCAPACITORS 548
- 4.1 Technology description 548
- 4.1.1 Electrostatic double-layer capacitors (EDLC) 550
- 4.1.2 Pseudocapacitors 551
- 4.1.2.1 Pseudocapacitive materials 551
- 4.1.2.2 Performance 552
- 4.1.3 Hybrid capacitors 554
- 4.1.4 Advantages and disadvantages 555
- 4.2 Costs 555
- 4.3 Electrolytes 556
- 4.4 Conductive hydrogels 557
- 4.5 Flexible and stretchable supercapacitors 558
- 4.5.1 Flexible wearable supercapacitors 560
- 4.5.2 Paper supercapacitors 562
- 4.5.3 Flexible printed circuits 563
- 4.5.4 Micro-supercapacitors 564
- 4.5.5 Materials 565
- 4.5.5.1 Graphene 566
- 4.5.5.2 Carbon nanotubes 569
- 4.5.5.3 Nanodiamonds 571
- 4.5.5.4 Carbon nanofibers 572
- 4.5.5.5 Carbon aerogels 573
- 4.5.5.6 Graphene aerogels 573
- 4.5.5.7 Cellulose nanocrystal aerogels 574
- 4.5.5.8 Carbon nano-onions 575
- 4.5.5.9 MXenes 575
- 4.5.5.10 Metal Organic Frameworks (MOF) 577
- 4.5.5.11 Diamond 577
- 4.5.5.12 Other 2D materials 578
- 4.6 Printed supercapacitors 578
- 4.6.1 Electrode materials 580
- 4.6.2 Electrolytes 581
- 4.7 Biomass-based supercapacitors 585
- 4.7.1 Biochar 585
- 4.7.2 Lignin 586
- 4.8 Markets for supercapacitors 587
- 4.8.1 Electric vehicles 588
- 4.8.2 Aerospace 590
- 4.8.3 Power grid 591
- 4.8.4 Industrial 593
- 4.8.5 Medical wearables 594
- 4.8.6 Military 595
- 4.8.7 Power and signal electronics 596
- 4.9 Companies 597 (44 company profiles)
5 CHEMICAL ENERGY STORAGE 631
- 5.1 Market overview 631
- 5.2 Power-to-gas (PtG) 633
- 5.3 Power-to-liquid (PtL) 634
- 5.4 Hydrogen 638
- 5.4.1 Long Duration Energy Storage (LDES) 638
- 5.4.2 Hydrogen storage methods 639
- 5.4.3 Compressed hydrogen storage 640
- 5.4.4 Stationary storage systems 641
- 5.4.5 Metal hydrides for hydrogen storage 642
- 5.4.6 Underground hydrogen storage (UHS) 643
- 5.4.6.1 Salt caverns 644
- 5.4.6.2 Porous rock formations 645
- 5.5 Feedstocks 647
- 5.5.1 Hydrogen electrolysis 647
- 5.5.2 CO2 capture 648
- 5.6 Production 648
- 5.7 Electrolysers 650
- 5.7.1 Commercial alkaline electrolyser cells (AECs) 651
- 5.7.2 PEM electrolysers (PEMEC) 652
- 5.7.3 High-temperature solid oxide electrolyser cells (SOECs) 652
- 5.8 Direct Air Capture (DAC) 653
- 5.8.1 Technologies 653
- 5.8.2 Markets for DAC 655
- 5.8.3 Costs 655
- 5.8.4 Challenges 656
- 5.8.5 Companies and production 657
- 5.8.6 CO2 capture from point sources 658
- 5.9 Costs 658
- 5.10 Market challenges 661
- 5.11 Companies 661 (20 company profiles)
6 THERMAL ENERGY STORAGE 675
- 6.1 Overview 675
- 6.2 Types of thermal storage systems 676
- 6.3 Sensible heat storage 677
- 6.4 Latent heat storage 677
- 6.5 Reversible thermochemical reactions 679
- 6.6 Phase change materials 680
- 6.6.1 Markets 680
- 6.6.2 Properties of Phase Change Materials (PCMs) 681
- 6.6.3 Types 682
- 6.6.3.1 Organic/biobased phase change materials 683
- 6.6.3.1.1 Advantages and disadvantages 683
- 6.6.3.1.2 Paraffin wax 684
- 6.6.3.1.3 Non-Paraffins/Bio-based 685
- 6.6.3.2 Inorganic phase change materials 685
- 6.6.3.2.1 Salt hydrates 685
- 6.6.3.2.1.1 Advantages and disadvantages 686
- 6.6.3.2.1.2 Metal and metal alloy PCMs (High-temperature) 686
- 6.6.3.2.2 Eutectic mixtures 687
- 6.6.3.2.3 Encapsulation of PCMs 687
- 6.6.3.2.4 Macroencapsulation 688
- 6.6.3.2.5 Micro/nanoencapsulation 688
- 6.6.3.2.1 Salt hydrates 685
- 6.6.3.3 Nanomaterial phase change materials 688
- 6.6.3.1 Organic/biobased phase change materials 683
- 6.7 Electro-thermal energy storage 688
- 6.8 Companies 691 (77 company profiles)
7 MECHANICAL ENERGY STORAGE 746
- 7.1 Introduction 746
- 7.2 Compressed air energy storage 747
- 7.2.1 Overview 747
- 7.2.2 SWOT Analysis 748
- 7.3 Liquid-air energy storage 750
- 7.3.1 Overview 750
- 7.2.2 SWOT Analysis 751
- 7.4 Liquid CO2 Energy Storage 751
- 7.4.1 Overview 751
- 7.4.2 SWOT Analysis 752
- 7.5 SENS 753
- 7.5.1 Overview 753
- 7.5.2 SWOT Analysis 753
- 7.6 Gravitational energy storage 754
- 7.6.1 Overview 755
- 7.6.2 SWOT Analysis 755
- 7.7 Companies 755 (22 company profiles)
8 FUEL CELLS 767
- 8.1 Introduction 767
- 8.2 Fuel cell technologies 769
- 8.2.1 Proton exchange membrane (PEM) (PEMFC) 769
- 8.2.1.1 High temperature PEMFC (HT-PEMFC) 771
- 8.2.1.2 Components, materials and producers 772
- 8.2.2 Solid oxide fuel cells (SOFC) 774
- 8.2.2.1 Components and materials 775
- 8.2.2.1.1 Anode 775
- 8.2.2.1.2 Electrolyte 776
- 8.2.2.1.3 Cathode 777
- 8.2.2.1.4 Interconnects 778
- 8.2.2.1.5 Other 778
- 8.2.2.2 Solid Oxide Electrolyzer Cells (SOECs) 780
- 8.2.2.3 Low-temperature solid oxide fuel cells (LT-SOFCs) 781
- 8.2.2.1 Components and materials 775
- 8.2.3 Alkaline Fuel Cell (AFC) 781
- 8.2.4 Molten Carbonate Fuel Cell (MCFC) 781
- 8.2.1 Proton exchange membrane (PEM) (PEMFC) 769
- 8.3 Markets and applications 782
- 8.3.1 Electric vehicles market 783
- 8.3.1.1 Hydrogen Refueling 783
- 8.3.1.2 Hydrogen Storage 784
- 8.3.2 Commercial and industrial (C&I) 785
- 8.3.3 Marine 786
- 8.3.4 Residential 787
- 8.3.1 Electric vehicles market 783
- 8.4 Companies 788 (81 company profiles)
9 PHOTOVOLTAICS 848
- 9.1 Global Solar PV market 849
- 9.2 Thin film and Flexible Solar Cells 851
- 9.2.1 Dye sensitized solar cells 851
- 9.2.1.1 DSSC materials 853
- 9.2.2 Organic Photovoltaics 854
- 9.2.2.1 Organic PV materials 854
- 9.2.3 Perovskite solar cells 856
- 9.2.3.1 Introduction 856
- 9.2.3.2 Material components 857
- 9.2.3.3 Energy harvesting 860
- 9.2.3.4 Thin film perovskite solar cells 860
- 9.2.3.4.1 Technology description 860
- 9.2.3.4.2 Markets and applications 861
- 9.2.3.4.3 Product developers 861
- 9.2.3.5 Tandem perovskite PV 863
- 9.2.3.5.1 Technology description 863
- 9.2.3.5.2 Markets and applications 864
- 9.2.3.5.3 Product developers 864
- 9.2.4 Inorganic silicon PV alternatives 864
- 9.2.4.1 Cadmium Telluride (CdTe) 866
- 9.2.4.2 Copper Indium Gallium Selenide (CIGS) 868
- 9.2.4.3 Gallium Arsenide 869
- 9.2.4.4 Amorphous Silicon 870
- 9.2.4.5 Copper Zinc Tin Sulfide (CZTS) 871
- 9.2.5 Tandem photovoltaics 872
- 9.2.6 Metamaterials 874
- 9.2.7 Deposition Methods 875
- 9.2.1 Dye sensitized solar cells 851
- 9.3 Market players 877
- 9.4 Concentrated solar power 881
- 9.4.1 Technology description 881
- 9.4.2 Commercialization 883
- 9.5 Agrivoltaics 884
- 9.5.1 Technology description 884
- 9.5.2 Commercialization 885
- 9.6 Building Integrated Photovoltaics (BIPV) 885
- 9.6.1 Photovoltaic glazing 888
- 9.6.2 Dye-sensitized solar cells (DSSCs) 888
- 9.6.3 Organic solar cells (OSCs) 888
- 9.6.4 Perovskite solar cells (PSCs) 889
- 9.6.5 Quantum dot solar cells (QDSCs) 889
- 9.6.6 Copper zinc tin sulphide solar cells (CZTS) 890
- 9.7 Floating photovoltaics (FPV) 891
- 9.8 Global market for PV solar cells to 2033, by technology (revenues) 893
- 9.9 Company profiles 894 (102 company profiles)
10 ENERGY HARVESTING AND BATTERYLESS TECHNOLOGIES 963
- 10.1 Passive Devices 963
- 10.2 Active Backscatter Devices 964
- 10.3 Wireless Power Transfer 965
- 10.4 Radio frequency (RF) energy harvesting 967
- 10.5 Piezoelectric materials 972
- 10.6 Thermoelectric materials 972
- 10.7 Electromagnetics 974
- 10.8 Electrochemical 974
- 10.9 Triboelectric Harvesting 974
- 10.10 Acoustic Harvesting 974
- 10.11 Battery-free electronics 974
- 10.12 Metamaterials 977
- 10.13 Powering E-textiles 978
- 10.13.1 Supercapacitors 979
- 10.13.2 Batteries 979
- 10.13.3 Textiles 982
- 10.13.3.1 Energy harvesting nanogenerators 983
- 10.13.3.1.1 TENGs 983
- 10.13.3.1.2 PENGs 984
- 10.13.3.1 Energy harvesting nanogenerators 983
- 10.14 Wireless sensor networks (WSN) 984
- 10.15 Supply chain/Logistics item tagging 984
- 10.16 Smart city deployments 984
- 10.17 Electronic shelf labels, retail tech (RFID) 984
- 10.18 Marine energy harvesting 985
- 10.19 Company profiles 986 (54 company profiles)
11 REFERENCES 1037
List of Tables
- Table 1. Global revenues for advanced energy storage & harvesting technologies, by type, 2018-2034 (Billions USD). 67
- Table 2. Global revenues for advanced energy storage & harvesting technologies, by type, 2018-2034 (Billions USD). 68
- Table 3. Global revenues for advanced energy storage & harvesting technologies, by end markets, 2018-2034 (Billions USD). 69
- Table 4. Global revenues for advanced energy storage & harvesting technologies, by region, 2018-2034 (Billions USD). 71
- Table 5. Battery chemistries used in electric buses. 79
- Table 6. Micro EV types 79
- Table 7. Battery Sizes for Different Vehicle Types. 81
- Table 8. Competing technologies for batteries in electric boats. 83
- Table 9. Competing technologies for batteries in grid storage. 89
- Table 10. Competing technologies for batteries in consumer electronics 91
- Table 11. Competing technologies for sodium-ion batteries in grid storage. 94
- Table 12. Market drivers for use of advanced materials and technologies in batteries. 95
- Table 13. Battery market megatrends. 97
- Table 14. Advanced materials for batteries. 100
- Table 15. Commercial Li-ion battery cell composition. 102
- Table 16. Lithium-ion (Li-ion) battery supply chain. 106
- Table 17. Types of lithium battery. 107
- Table 18. Li-ion battery anode materials. 110
- Table 19. Manufacturing methods for nano-silicon anodes. 115
- Table 20. Markets and applications for silicon anodes. 117
- Table 21. Applications of Metal-Organic Frameworks (MOFs) in batteries and supercapacitors. 121
- Table 22. Li-ion battery cathode materials. 123
- Table 23. Key technology trends shaping lithium-ion battery cathode development. 123
- Table 24. Properties of Lithium Cobalt Oxide) as a cathode material for lithium-ion batteries. 127
- Table 25. Properties of lithium iron phosphate (LiFePO4 or LFP) as a cathode material for lithium-ion batteries. 128
- Table 26. Properties of Lithium Manganese Oxide cathode material. 129
- Table 27. Properties of Lithium Nickel Manganese Cobalt Oxide (NMC). 130
- Table 28. Properties of Lithium Nickel Cobalt Aluminum Oxide 130
- Table 29. Comparison table of key lithium-ion cathode materials 133
- Table 30. Li-ion battery Binder and conductive additive materials. 134
- Table 31. Li-ion battery Separator materials. 135
- Table 32. Li-ion battery market players. 136
- Table 33. Typical lithium-ion battery recycling process flow. 137
- Table 34. Main feedstock streams that can be recycled for lithium-ion batteries. 138
- Table 35. Comparison of LIB recycling methods. 138
- Table 36. Comparison of conventional and emerging processes for recycling beyond lithium-ion batteries. 152
- Table 37. Global revenues for Li-ion batteries, 2018-2034, by market (Billions USD). 152
- Table 38. Applications for Li-metal batteries. 157
- Table 39. Li-metal battery developers 159
- Table 40. Comparison of the theoretical energy densities of lithium-sulfur batteries versus other common battery types. 161
- Table 41. Global revenues for Lithium-sulfur, 2018-2034, by market (Billions USD). 163
- Table 42. Lithium-sulphur battery product developers. 164
- Table 43. Product developers in Lithium titanate and niobate batteries. 168
- Table 44. Comparison of cathode materials. 170
- Table 45. Layered transition metal oxide cathode materials for sodium-ion batteries. 170
- Table 46. General cycling performance characteristics of common layered transition metal oxide cathode materials. 171
- Table 47. Polyanionic materials for sodium-ion battery cathodes. 172
- Table 48. Comparative analysis of different polyanionic materials. 173
- Table 49. Common types of Prussian Blue Analogue materials used as cathodes or anodes in sodium-ion batteries. 175
- Table 50. Comparison of Na-ion battery anode materials. 176
- Table 51. Hard Carbon producers for sodium-ion battery anodes. 177
- Table 52. Comparison of carbon materials in sodium-ion battery anodes. 178
- Table 53. Comparison between Natural and Synthetic Graphite. 180
- Table 54. Properties of graphene, properties of competing materials, applications thereof. 184
- Table 55. Comparison of carbon based anodes. 185
- Table 56. Alloying materials used in sodium-ion batteries. 185
- Table 57. Na-ion electrolyte formulations. 186
- Table 58. Pros and cons compared to other battery types. 187
- Table 59. Cost comparison with Li-ion batteries. 188
- Table 60. Key materials in sodium-ion battery cells. 189
- Table 61. Product developers in aluminium-ion batteries. 202
- Table 62. Types of solid-state electrolytes. 204
- Table 63. Market segmentation and status for solid-state batteries. 204
- Table 64. Typical process chains for manufacturing key components and assembly of solid-state batteries. 206
- Table 65. Comparison between liquid and solid-state batteries. 210
- Table 66. Limitations of solid-state thin film batteries. 215
- Table 67. Global revenues for All-Solid State Batteries, 2018-2034, by market (Billions USD). 216
- Table 68. Solid-state thin-film battery market players. 217
- Table 69. Flexible battery applications and technical requirements. 220
- Table 70. Flexible Li-ion battery prototypes. 228
- Table 71. Electrode designs in flexible lithium-ion batteries. 230
- Table 72. Summary of fiber-shaped lithium-ion batteries. 233
- Table 73. Types of fiber-shaped batteries. 244
- Table 74. Global revenues for flexible batteries, 2018-2034, by market (Billions USD). 249
- Table 75. Product developers in flexible batteries. 250
- Table 76. Components of transparent batteries. 253
- Table 77. Lignin-derived anodes in lithium batteries. 258
- Table 78. Components of degradable batteries. 261
- Table 79. Product developers in degradable batteries. 264
- Table 80. Main components and properties of different printed battery types. 266
- Table 81. Applications of printed batteries and their physical and electrochemical requirements. 270
- Table 82. 2D and 3D printing techniques. 270
- Table 83. Printing techniques applied to printed batteries. 271
- Table 84. Main components and corresponding electrochemical values of lithium-ion printed batteries. 272
- Table 85. Printing technique, main components and corresponding electrochemical values of printed batteries based on Zn–MnO2 and other battery types. 273
- Table 86. Main 3D Printing techniques for battery manufacturing. 277
- Table 87. Electrode Materials for 3D Printed Batteries. 278
- Table 88. Global revenues for printed batteries, 2018-2034, by market (Billions USD). 280
- Table 89. Product developers in printed batteries. 281
- Table 90. Advantages and disadvantages of redox flow batteries. 284
- Table 91. Vanadium redox flow batteries (VRFB)-key features, advantages, limitations, performance, components and applications. 284
- Table 92. Zinc-bromine (ZnBr) flow batteries-key features, advantages, limitations, performance, components and applications. 285
- Table 93. Polysulfide bromine flow batteries (PSB)-key features, advantages, limitations, performance, components and applications. 286
- Table 94. Iron-chromium (ICB) flow batteries-key features, advantages, limitations, performance, components and applications. 286
- Table 95. All-Iron flow batteries-key features, advantages, limitations, performance, components and applications. 287
- Table 96. Zinc-iron (Zn-Fe) flow batteries-key features, advantages, limitations, performance, components and applications. 288
- Table 97. Hydrogen-bromine (H-Br) flow batteries-key features, advantages, limitations, performance, components and applications. 289
- Table 98. Hydrogen-Manganese (H-Mn) flow batteries-key features, advantages, limitations, performance, components and applications. 290
- Table 99. Organic flow batteries-key features, advantages, limitations, performance, components and applications. 290
- Table 100. Zinc-Cerium Hybrid flow batteries-key features, advantages, limitations, performance, components and applications. 291
- Table 101. Zinc-Polyiodide Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications. 292
- Table 102. Zinc-Nickel Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications. 292
- Table 103. Zinc-Bromine Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications. 293
- Table 104. Vanadium-Polyhalide Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications. 293
- Table 105. Redox flow batteries product developers. 295
- Table 106. ZN-based battery product developers. 299
- Table 107. Iron-air (Fe-air) battery product developers. 302
- Table 108. High-temperature batteries product developers. 304
- Table 109. CATL sodium-ion battery characteristics. 348
- Table 110. CHAM sodium-ion battery characteristics. 353
- Table 111. Chasm SWCNT products. 354
- Table 112. Faradion sodium-ion battery characteristics. 380
- Table 113. HiNa Battery sodium-ion battery characteristics. 412
- Table 114. Battery performance test specifications of J. Flex batteries. 433
- Table 115. LiNa Energy battery characteristics. 449
- Table 116. Natrium Energy battery characteristics. 467
- Table 117. Comparison of types of supercapacitors. 548
- Table 118. Pros and cons of supercapacitors. 555
- Table 119. EDLC cost and performance estimates for 1 MW, 45 seconds of storage. 555
- Table 120. Properties and applications of conductive hydrogels. 557
- Table 121. Hydrogels in supercapacitors. 557
- Table 122. Applications of advanced materials in supercapacitors, by advanced materials type and benefits thereof. 561
- Table 123. Graphene in supercapacitors-Market age, applications, Key benefits and motivation for use, Graphene concentration. 566
- Table 124. Comparative properties of graphene supercapacitors and lithium-ion batteries. 568
- Table 125. Market and applications for carbon nanotubes in supercapacitors. 569
- Table 126. Market overview for nanodiamonds in supercapacitors. 571
- Table 127. Nanodiamonds in supercapacitors. Market age, applications, Key benefits and motivation for use, concentration 571
- Table 128. Other 2D materials for supercapacitors. 578
- Table 129. Methods for printing supercapacitors. 579
- Table 130. Electrode Materials for printed supercapacitors. 580
- Table 131. Electrolytes for printed supercapacitors. 581
- Table 132. Main properties and components of printed supercapacitors. 581
- Table 133. Markets for supercapacitors. 587
- Table 134. Applications of e-fuels, by type. 636
- Table 135. Overview of e-fuels. 637
- Table 136. Applications for hydrogen in LDES 638
- Table 137. Main characteristics of different electrolyzer technologies. 650
- Table 138. Advantages and disadvantages of DAC. 653
- Table 139. DAC companies and technologies. 654
- Table 140. Markets for DAC. 655
- Table 141. Cost estimates of DAC. 655
- Table 142. Challenges for DAC technology. 656
- Table 143. DAC technology developers and production. 657
- Table 144. Market challenges for e-fuels. 661
- Table 145. Properties of PCMs. 681
- (b) Table 146. PCM Types and properties. 682
- Table 147. Advantages and disadvantages of organic PCMs. 683
- Table 148. Advantages and disadvantages of organic PCM Fatty Acids. 685
- Table 149. Advantages and disadvantages of salt hydrates 686
- Table 150. Advantages and disadvantages of low melting point metals. 686
- Table 151. Advantages and disadvantages of eutectics. 687
- Table 152. CrodaTherm Range. 700
- Table 153. Compressed air energy storage technologies. 749
- Table 154. Comparison of fuel cell technologies. 769
- Table 155. SOFC and PEMFC comparison. 774
- Table 156. Other components and materials in SOFCs. 778
- Table 157. Markets and applications for fuel cells. 782
- Table 158. Product developers in thin film perovskite photovoltaics. 861
- Table 159. Product developers in tandem perovskite photovoltaics. 864
- Table 160. Technologies generating electricity in smart buildings. 970
- Table 161. Comparison of prototype batteries (flexible, textile, and other) in terms of area-specific performance. 980
List of Figures
- Figure 1. Classification of energy storage technologies 61
- Figure 2. Global revenues for advanced energy storage & harvesting technologies, by type, 2018-2034 (Billions USD). 69
- Figure 3. Global revenues for advanced energy storage & harvesting technologies, by end markets, 2018-2034 (Billions USD). 70
- Figure 4. Global revenues for advanced energy storage & harvesting technologies, by region, 2018-2034 (Billions USD). 72
- Figure 5. Annual sales of battery electric vehicles and plug-in hybrid electric vehicles. 75
- Figure 6. Electric car Li-ion demand forecast (GWh), 2018-2034. 85
- Figure 7. EV Li-ion battery market (US$B), 2018-2034. 86
- Figure 8. Electric bus, truck and van battery forecast (GWh), 2018-2034. 87
- Figure 9. Micro EV Li-ion demand forecast (GWh). 88
- Figure 10. Lithium-ion battery grid storage demand forecast (GWh), 2018-2034. 90
- Figure 11. Sodium-ion grid storage units. 91
- Figure 12. Salt-E Dog mobile battery. 93
- Figure 13. I.Power Nest - Residential Energy Storage System Solution. 94
- Figure 14. Costs of batteries to 2030. 100
- Figure 15. Lithium Cell Design. 104
- Figure 16. Functioning of a lithium-ion battery. 104
- Figure 17. Li-ion battery cell pack. 105
- Figure 18. Li-ion electric vehicle (EV) battery. 108
- Figure 19. SWOT analysis: Li-ion batteries. 110
- Figure 20. Silicon anode value chain. 114
- Figure 21. Li-cobalt structure. 127
- Figure 22. Li-manganese structure. 129
- Figure 23. Typical direct, pyrometallurgical, and hydrometallurgical recycling methods for recovery of Li-ion battery active materials. 137
- Figure 24. Flow chart of recycling processes of lithium-ion batteries (LIBs). 139
- Figure 25. Hydrometallurgical recycling flow sheet. 140
- Figure 26. SWOT analysis for Hydrometallurgy Li-ion Battery Recycling. 142
- Figure 27. Umicore recycling flow diagram. 143
- Figure 28. SWOT analysis for Pyrometallurgy Li-ion Battery Recycling. 144
- Figure 29. Schematic of direct recyling process. 145
- Figure 30. SWOT analysis for Direct Li-ion Battery Recycling. 149
- Figure 31. Global revenues for Li-ion batteries, 2018-2034, by market (Billions USD). 153
- Figure 32. Schematic diagram of a Li-metal battery. 154
- Figure 33. SWOT analysis: Lithium-metal batteries. 159
- Figure 34. Schematic diagram of Lithium–sulfur battery. 160
- Figure 35. SWOT analysis: Lithium-sulfur batteries. 163
- Figure 36. Global revenues for Lithium-sulfur, 2018-2034, by market (Billions USD). 164
- Figure 37. Global revenues for Lithium titanate and niobate batteries, 2018-2034, by market (Billions USD). 168
- Figure 38. Schematic of Prussian blue analogues (PBA). 174
- Figure 39. Comparison of SEM micrographs of sphere-shaped natural graphite (NG; after several processing steps) and synthetic graphite (SG). 180
- Figure 40. Overview of graphite production, processing and applications. 182
- Figure 41. Schematic diagram of a multi-walled carbon nanotube (MWCNT). 183
- Figure 42. Schematic diagram of a Na-ion battery. 190
- Figure 43. SWOT analysis: Sodium-ion batteries. 192
- Figure 44. Global revenues for sodium-ion batteries, 2018-2034, by market (Billions USD). 192
- Figure 45. Schematic of a Na–S battery. 195
- Figure 46. SWOT analysis: Sodium-sulfur batteries. 197
- Figure 47. Saturnose battery chemistry. 199
- Figure 48. SWOT analysis: Aluminium-ion batteries. 200
- Figure 49. Global revenues for aluminium-ion batteries, 2018-2034, by market (Billions USD). 201
- Figure 50. Schematic illustration of all-solid-state lithium battery. 203
- Figure 51. ULTRALIFE thin film battery. 204
- Figure 52. Examples of applications of thin film batteries. 207
- Figure 53. Capacities and voltage windows of various cathode and anode materials. 208
- Figure 54. Traditional lithium-ion battery (left), solid state battery (right). 209
- Figure 55. Bulk type compared to thin film type SSB. 213
- Figure 56. SWOT analysis: All-solid state batteries. 214
- Figure 57. Global revenues for All-Solid State Batteries, 2018-2034, by market (Billions USD). 217
- Figure 58. Ragone plots of diverse batteries and the commonly used electronics powered by flexible batteries. 219
- Figure 59. Flexible, rechargeable battery. 221
- Figure 60. Various architectures for flexible and stretchable electrochemical energy storage. 222
- Figure 61. Types of flexible batteries. 224
- Figure 62. Flexible label and printed paper battery. 224
- Figure 63. Materials and design structures in flexible lithium ion batteries. 228
- Figure 64. Flexible/stretchable LIBs with different structures. 230
- Figure 65. Schematic of the structure of stretchable LIBs. 231
- Figure 66. Electrochemical performance of materials in flexible LIBs. 231
- Figure 67. a–c) Schematic illustration of coaxial (a), twisted (b), and stretchable (c) LIBs. 234
- Figure 68. a) Schematic illustration of the fabrication of the superstretchy LIB based on an MWCNT/LMO composite fiber and an MWCNT/LTO composite fiber. b,c) Photograph (b) and the schematic illustration (c) of a stretchable fiber-shaped battery under stretching conditions. d) Schematic illustration of the spring-like stretchable LIB. e) SEM images of a fiberat different strains. f) Evolution of specific capacitance with strain. d–f) 235
- Figure 69. Origami disposable battery. 236
- Figure 70. Zn–MnO2 batteries produced by Brightvolt. 238
- Figure 71. Charge storage mechanism of alkaline Zn-based batteries and zinc-ion batteries. 240
- Figure 72. Zn–MnO2 batteries produced by Blue Spark. 241
- Figure 73. Ag–Zn batteries produced by Imprint Energy. 242
- Figure 74. Wearable self-powered devices. 247
- Figure 75. SWOT analysis: Flexible batteries. 249
- Figure 76. Global revenues for flexible batteries, 2018-2034, by market (Billions USD). 250
- Figure 77. Transparent batteries. 253
- Figure 78. SWOT analysis: Transparent batteries. 255
- Figure 79. Degradable batteries. 256
- Figure 80. SWOT analysis: Degradable batteries. 264
- Figure 81. Various applications of printed paper batteries. 265
- Figure 82.Schematic representation of the main components of a battery. 266
- Figure 83. Schematic of a printed battery in a sandwich cell architecture, where the anode and cathode of the battery are stacked together. 267
- Figure 84. Manufacturing Processes for Conventional Batteries (I), 3D Microbatteries (II), and 3D-Printed Batteries (III). 276
- Figure 85. SWOT analysis: Printed batteries. 280
- Figure 86. Global revenues for printed batteries, 2018-2034, by market (Billions USD). 281
- Figure 87. Scheme of a redox flow battery. 283
- Figure 88. Global revenues for redox flow batteries, 2018-2034, by market (Billions USD). 294
- Figure 89. 24M battery. 306
- Figure 90. AC biode prototype. 308
- Figure 91. Schematic diagram of liquid metal battery operation. 317
- Figure 92. Ampcera’s all-ceramic dense solid-state electrolyte separator sheets (25 um thickness, 50mm x 100mm size, flexible and defect free, room temperature ionic conductivity ~1 mA/cm). 318
- Figure 93. Amprius battery products. 319
- Figure 94. All-polymer battery schematic. 322
- Figure 95. All Polymer Battery Module. 323
- Figure 96. Resin current collector. 323
- Figure 97. Ateios thin-film, printed battery. 325
- Figure 98. The structure of aluminum-sulfur battery from Avanti Battery. 328
- Figure 99. Containerized NAS® batteries. 330
- Figure 100. 3D printed lithium-ion battery. 336
- Figure 101. Blue Solution module. 337
- Figure 102. TempTraq wearable patch. 339
- Figure 103. Schematic of a fluidized bed reactor which is able to scale up the generation of SWNTs using the CoMoCAT process. 355
- Figure 104. Cymbet EnerChip™ 359
- Figure 105. E-magy nano sponge structure. 367
- Figure 106. Enerpoly zinc-ion battery. 369
- Figure 107. SoftBattery®. 370
- Figure 108. ASSB All-Solid-State Battery by EGI 300 Wh/kg. 372
- Figure 109. Roll-to-roll equipment working with ultrathin steel substrate. 374
- Figure 110. 40 Ah battery cell. 379
- Figure 111. FDK Corp battery. 382
- Figure 112. 2D paper batteries. 390
- Figure 113. 3D Custom Format paper batteries. 390
- Figure 114. Fuji carbon nanotube products. 391
- Figure 115. Gelion Endure battery. 394
- Figure 116. Portable desalination plant. 394
- Figure 117. Grepow flexible battery. 405
- Figure 118. HPB solid-state battery. 411
- Figure 119. HiNa Battery pack for EV. 413
- Figure 120. JAC demo EV powered by a HiNa Na-ion battery. 413
- Figure 121. Nanofiber Nonwoven Fabrics from Hirose. 414
- Figure 122. Hitachi Zosen solid-state battery. 415
- Figure 123. Ilika solid-state batteries. 419
- Figure 124. ZincPoly™ technology. 420
- Figure 125. TAeTTOOz printable battery materials. 424
- Figure 126. Ionic Materials battery cell. 429
- Figure 127. Schematic of Ion Storage Systems solid-state battery structure. 430
- Figure 128. ITEN micro batteries. 431
- Figure 129. Kite Rise’s A-sample sodium-ion battery module. 438
- Figure 130. LiBEST flexible battery. 443
- Figure 131. Li-FUN sodium-ion battery cells. 446
- Figure 132. LiNa Energy battery. 448
- Figure 133. 3D solid-state thin-film battery technology. 451
- Figure 134. Lyten batteries. 454
- Figure 135. Cellulomix production process. 456
- Figure 136. Nanobase versus conventional products. 457
- Figure 137. Nanotech Energy battery. 466
- Figure 138. Hybrid battery powered electrical motorbike concept. 469
- Figure 139. Schematic illustration of three-chamber system for SWCNH production. 470
- Figure 140. TEM images of carbon nanobrush. 471
- Figure 141. EnerCerachip. 475
- Figure 142. Cambrian battery. 485
- Figure 143. Printed battery. 489
- Figure 144. Prieto Foam-Based 3D Battery. 490
- Figure 145. Printed Energy flexible battery. 493
- Figure 146. ProLogium solid-state battery. 495
- Figure 147. QingTao solid-state batteries. 496
- Figure 148. Schematic of the quinone flow battery. 498
- Figure 149. Sakuú Corporation 3Ah Lithium Metal Solid-state Battery. 501
- Figure 150. Salgenx S3000 seawater flow battery. 502
- Figure 151. Samsung SDI's sixth-generation prismatic batteries. 504
- Figure 152. SES Apollo batteries. 509
- Figure 153. Sionic Energy battery cell. 515
- Figure 154. Solid Power battery pouch cell. 517
- Figure 155. Stora Enso lignin battery materials. 519
- Figure 156. Stora Enso lignin battery materials. 523
- Figure 157.TeraWatt Technology solid-state battery 527
- Figure 158. Zeta Energy 20 Ah cell. 545
- Figure 159. Zoolnasm batteries. 547
- Figure 160. . Schematics of three types of supercapacitors: (a) electrochemical double-layer capacitor, (b) 549
- Figure 161. Schematic illustration of EDLC. 550
- Figure 162. Schematic of supercapacitors in wearables. 559
- Figure 163. (A) Schematic overview of a flexible supercapacitor as compared to conventional supercapacitor. 560
- Figure 164. Stretchable graphene supercapacitor. 566
- Figure 165. Applications of graphene in supercapacitors. 568
- Figure 166. Graphene aerogel. 574
- Figure 167. Structure diagram of Ti3C2Tx. 576
- Figure 168. Main printing methods for supercapacitors. 579
- Figure 169. Prototype of lignin based supercapacitor. 586
- Figure 170. Graphene battery schematic. 608
- Figure 171. NBD battery. 622
- Figure 172. PtL production pathways. 634
- Figure 173. Process steps in the production of electrofuels. 635
- Figure 174. Mapping storage technologies according to performance characteristics. 636
- Figure 175. Production process for green hydrogen. 647
- Figure 176. E-liquids production routes. 648
- Figure 177. Fischer-Tropsch liquid e-fuel products. 649
- Figure 178. Resources required for liquid e-fuel production. 650
- Figure 179. Schematic of Climeworks DAC system. 654
- Figure 180. Levelized cost and fuel-switching CO2 prices of e-fuels. 659
- Figure 181. Cost breakdown for e-fuels. 660
- Figure 182. Thermal energy storage materials. 677
- Figure 183. Phase Change Material transient behaviour. 677
- Figure 184. PCM mode of operation. 680
- Figure 185. Classification of PCMs. 682
- Figure 186. Phase-change materials in their original states. 682
- Figure 187. Solid State Reflective Display (SRD®) schematic. 696
- Figure 188. Transtherm® PCMs. 697
- Figure 189. HI-FLOW Phase Change Materials. 714
- Figure 190. Heatcube tanks of molten-salts. 717
- Figure 191. Crēdo™ ProMed transport bags. 724
- Figure 192. SWOT analysis: Compressed air energy storage. 748
- Figure 193. SWOT analysis: Liquefied CO2 energy storage. 752
- Figure 194. SWOT analysis: SENS. 753
- Figure 195. SWOT analysis: Gravitational energy storage. 755
- Figure 196. PEM fuel cell schematic. 770
- Figure 197. PEMFC assembly and materials. 771
- Figure 198. Toyota Mirai 2nd generation. 783
- Figure 199. Hyundai NEXO. 783
- Figure 200. BMW'S Cryo-compressed storage tank. 784
- Figure 201. Solar PV module production by technology, 2011-2021. 849
- Figure 202. Efficiency of different solar PV cell types. 850
- Figure 203. Dye sensitized solar cell schemartic. 852
- Figure 204. Metamaterial solar coating. 875
- Figure 205. Thin film and flexible solar cell Deposition Methods. 875
- Figure 206. Thin film and flexible solar cells players. 878
- Figure 207. The Sun Rock building, Taiwan. 886
- Figure 208. Photovoltaic solar cells. 887
- Figure 209. Classification of BIPV products. 888
- Figure 210. Global market for PV solar cells to 2033, by technology (revenues). 893
- Figure 211. Hikari building incorporating SunEwat Square solar glazing. 894
- Figure 212. Elegante solar glass panel. 896
- Figure 213. Certainteed Apollo-2 solar shingles roof. 903
- Figure 214. Triple insulated glass unit for the Stadtwerke Konstanz energy cube in Germany. 906
- Figure 215. Moscow building incorporating Hevel's BIPV product. 921
- Figure 216. Mitrex solar façade layers. 928
- Figure 217. Solar Brick by Mitrex 928
- Figure 218. QDSSC Module. 929
- Figure 219. DragonScales technology. 932
- Figure 220. Photovoltaic integration in façade at the Gioia 22 skyscraper, in Milan. 940
- Figure 221. S6 flexible solar module. 957
- Figure 222. Ubiquitous Energy windows installed at the Boulder Commons in Colorado. 960
- Figure 223. Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper. 967
- Figure 224. Energy harvesting technologies. 969
- Figure 225. Energy harvesting solutions in smart buildings. 970
- Figure 226. TE module schematic. 973
- Figure 227. Utilization of TE materials in exterior walls for energy generation, heating and cooling. 973
- Figure 228. Textile-based car seat heaters. 977
- Figure 229 . 3D print piezoelectric material. 983
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer.
To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.