The Global Market for Advanced Energy Storage & Harvesting Technologies 2024-2034

0

Batteries, Supercapacitors, Hydrogen Energy Storage, Long Duration Energy Storage (LDES), Thermal Energy Storage, Mechanical Energy Storage, Fuel Cells, Photovoltaics, and Other Energy Harvesting & Batteryless Devices. 

  • Published: January 2024
  • Pages: 1,070
  • Tables: 157
  • Figures: 229

 

The global transition toward renewable electricity faces challenges around intermittency and grid stability. Solutions for advancing affordable storage with faster response times, longer duration capacity, greater energy density and location flexibility are essential. 

This extensive report provides global market forecasts for advanced battery technologies, supercapacitors, alternative chemical energy storage, thermal and mechanical concepts from 2018 to 2034. It assesses lithium-ion, solid-state, metal-air, sodium-ion, printed and flexible batteries among other chemistries across transportation, grid infrastructure, consumer electronics and stationary storage.

Regional demand analysis covers North America, Europe, Asia Pacific and Rest of World markets. The report profiles over 700 companies involved in areas like battery materials, management systems, fuel cell development and thermal storage. Multiple alternative storage concepts like power-to-gas, pumped hydro, compressed air and cryogenic storage are examined as well. Technologies covered include:

  • Batteries (Li-ion, Lithium-Metal, Lithium-Sulfur, Lithium Titanate & Niobate, Sodium-ion, Aluminium-ion, All-solid state batteries (ASSBs), Flexible, Transparent, Degradable, Printed, Redox Flow, and Zinc, Iron-air, High Temperature)
  • Supercapacitors
  • Hydrogen Energy Storage
  • Long Duration Energy Storage (LDES)
  • Thermal Energy Storage
  • Mechanical Energy Storage
  • Fuel Cells
  • Photovoltaics
  • Other Energy Harvesting & Batteryless Devices. 

 

Latest developments in battery recycling processes, manufacturing equipment innovation, sharing economy business models, second-life utilization and environmental impact reduction are reviewed. Long duration storage requirements associated with stabilizing renewable energy penetration are evaluated. Report contents include:

  • Global market analysis and forecasts for lithium-ion, sodium-ion, metal-air, solid-state, printed, flexible, transparent and other advanced battery technologies
  • Assessment of supercapacitors, hydrogen storage, synthetic fuels, thermal and mechanical storage, fuel Cells, photovoltaics, and energy Harvesting & batteryless devices. 
  • Regional demand analysis - North America, Europe, Asia Pacific, Rest of World
  • Renewable energy storage requirements and cost evolution projections
  • Emerging storage techniques – redox flow batteries, cryogenic, gravity concepts etc
  • Technology review of battery materials, manufacturing processes, recycling
  • Strategic metal availability concerns affecting battery value chains
  • Grid infrastructure technology analysis from decentralized to scaled centralized
  • Behind-the-meter residential and commercial storage demands
  • Transport electrification requirements for cars, buses, trucks, marine vessels
  • Stationary storage needs across data centers, communications infrastructure
  • Space utilization trade-offs: density vs power vs discharge duration vs cost
  • Integration issues - smart grids, EV charging, hydrogen infrastructure
  • Player ecosystem across established battery firms, startups, industrial groups
  • Standards evolution for second life utilization, environmental reporting tools
  • Start-up activity heat map across advanced storage technology categories
  • 700+ company profiles across Li-ion value chain, capacitors, fuel cells etc. Companies profiled include AMSL Aero, Aquabattery,  Atlas Materials, Ambri Inc, Battolyser Systems, Brilliant Matters, Cactos, CMBlu Energy AG, Energy Vault, Enerpoly, Enervenue, EnyGy, ESS Tech, e-Zinc, Factorial, Form Energy, Fourth Power, Flow Aluminum, Inc., Gelion, GKN Hydrogen, Gotion High Tech, Graphene Manufacturing Group, H2MOF, High Performace Battery Holding AG, Inobat, Inx, Jolt Electrodes, Kraftblock, LIND Limited, Lyten, MFA Thermal, Nanoramic Laboratories, Northvolt, Our Next Energy (ONE), Oxford Photovoltaics, RedoxBlox, Rondo Energy, Salient Energy, SaltX, Sicona Battery Technologies, Sila, Skeleton Technologies, Soleolico, Solid Power, Stabl Energy, TasmanIon, Tiamat, Verkor and VFlowTech.

 

1              RESEARCH METHODOLOGY         59

 

2              INTRODUCTION 60

  • 2.1          Classification of energy storage technologies       60
  • 2.2          Global Market for Advanced Energy Storage and Energy Harvesting Technologies               61
    • 2.2.1      Lithium-ion Batteries      61
    • 2.2.2      Emerging Advanced Batteries     62
    • 2.2.3      Supercapacitors 62
    • 2.2.4      Hydrogen for LDES           63
    • 2.2.5      Thermal/Mechanical Storage      63
    • 2.2.6      Energy Harvesting            64
  • 2.3          Technologies     65
  • 2.4          Global revenues               67
    • 2.4.1      By technologies 67
    • 2.4.2      By markets         69
    • 2.4.3      By region             71

 

3              BATTERIES           73

  • 3.1          The global market for advanced batteries             73
    • 3.1.1      Electric vehicles 75
      • 3.1.1.1   Market overview             75
      • 3.1.1.2   Battery Electric Vehicles 76
      • 3.1.1.3   Electric buses, vans and trucks   77
        • 3.1.1.3.1               Electric medium and heavy duty trucks   77
        • 3.1.1.3.2               Electric light commercial vehicles (LCVs) 78
        • 3.1.1.3.3               Electric buses    78
        • 3.1.1.3.4               Micro EVs            79
      • 3.1.1.4   Electric off-road 80
        • 3.1.1.4.1               Construction vehicles     80
        • 3.1.1.4.2               Electric trains     82
        • 3.1.1.4.3               Electric boats     82
      • 3.1.1.5   Market demand and forecasts    84
    • 3.1.2      Grid storage       88
      • 3.1.2.1   Market overview             88
      • 3.1.2.2   Technologies     89
      • 3.1.2.3   Market demand and forecasts    90
    • 3.1.3      Consumer electronics    91
      • 3.1.3.1   Market overview             91
      • 3.1.3.2   Technologies     91
      • 3.1.3.3   Market demand and forecasts    92
    • 3.1.4      Stationary batteries        93
      • 3.1.4.1   Market overview             93
      • 3.1.4.2   Technologies     94
      • 3.1.4.3   Market demand and forecasts    95
  • 3.2          Market drivers  95
  • 3.3          Battery market megatrends        97
  • 3.4          Advanced materials for batteries              100
  • 3.5          Motivation for battery development beyond lithium        101
  • 3.6          Battery chemistries         102
  • 3.7          Lithium-ion batteries (LIBs)          102
    • 3.7.1      Technology description 102
      • 3.7.1.1   Types of Lithium Batteries            106
    • 3.7.2      SWOT analysis   109
    • 3.7.3      Anodes 110
      • 3.7.3.1   Materials             110
        • 3.7.3.1.1               Graphite              111
        • 3.7.3.1.2               Lithium Titanate               112
        • 3.7.3.1.3               Lithium Metal    112
        • 3.7.3.1.4               Silicon anodes   112
          • 3.7.3.1.4.1           Benefits               114
          • 3.7.3.1.4.2           Development in li-ion batteries  114
          • 3.7.3.1.4.3           Manufacturing silicon     115
          • 3.7.3.1.4.4           Costs     116
          • 3.7.3.1.4.5           Applications       117
          • 3.7.3.1.4.5.1        EVs         118
          • 3.7.3.1.4.6           Future outlook  119
        • 3.7.3.1.5               Alloy materials  119
        • 3.7.3.1.6               Carbon nanotubes in Li-ion          120
        • 3.7.3.1.7               Graphene coatings for Li-ion        120
        • 3.7.3.1.8               Metal-organic frameworks          121
    • 3.7.4      Li-ion electrolytes            122
    • 3.7.5      Cathodes             122
      • 3.7.5.1   Materials             122
        • 3.7.5.1.1               High-nickel cathode materials     124
        • 3.7.5.1.2               Manufacturing  125
        • 3.7.5.1.3               High manganese content             125
        • 3.7.5.1.4               Li-Mn-rich cathodes        126
        • 3.7.5.1.5               Lithium Cobalt Oxide(LiCoO2) — LCO       127
        • 3.7.5.1.6               Lithium Iron Phosphate(LiFePO4) — LFP 127
        • 3.7.5.1.7               Lithium Manganese Oxide (LiMn2O4) — LMO      128
        • 3.7.5.1.8               Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) — NMC   129
        • 3.7.5.1.9               Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) — NCA         130
        • 3.7.5.1.10             LMR-NMC           131
        • 3.7.5.1.11             Lithium manganese phosphate (LiMnP) 131
        • 3.7.5.1.12             Lithium manganese iron phosphate (LiMnFePO4 or LMFP)             132
        • 3.7.5.1.13             Lithium nickel manganese oxide (LNMO)               132
      • 3.7.5.2   Comparison of key lithium-ion cathode materials               132
      • 3.7.5.3   Emerging cathode material synthesis methods   133
      • 3.7.5.4   Cathode coatings             133
    • 3.7.6      Binders and conductive additives              134
      • 3.7.6.1   Materials             134
    • 3.7.7      Separators          134
      • 3.7.7.1   Materials             134
    • 3.7.8      Platinum group metals   135
    • 3.7.9      Li-ion battery market players      136
    • 3.7.10    Li-ion recycling  136
      • 3.7.10.1                Comparison of recycling techniques        138
      • 3.7.10.2                Hydrometallurgy              139
        • 3.7.10.2.1             Method overview            139
          • 3.7.10.2.1.1         Solvent extraction           141
        • 3.7.10.2.2             SWOT analysis   141
      • 3.7.10.3                Pyrometallurgy 142
        • 3.7.10.3.1             Method overview            142
        • 3.7.10.3.2             SWOT analysis   143
      • 3.7.10.4                Direct recycling 144
        • 3.7.10.4.1             Method overview            144
          • 3.7.10.4.1.1         Electrolyte separation    145
          • 3.7.10.4.1.2         Separating cathode and anode materials               145
          • 3.7.10.4.1.3         Binder removal 146
          • 3.7.10.4.1.4         Relithiation         146
          • 3.7.10.4.1.5         Cathode recovery and rejuvenation         147
          • 3.7.10.4.1.6         Hydrometallurgical-direct hybrid recycling            147
        • 3.7.10.4.2             SWOT analysis   148
      • 3.7.10.5                Other methods 149
        • 3.7.10.5.1             Mechanochemical Pretreatment              149
        • 3.7.10.5.2             Electrochemical Method               149
        • 3.7.10.5.3             Ionic Liquids       150
      • 3.7.10.6                Recycling of Specific Components             150
        • 3.7.10.6.1             Anode (Graphite)            150
        • 3.7.10.6.2             Cathode               150
        • 3.7.10.6.3             Electrolyte          151
      • 3.7.10.7                Recycling of Beyond Li-ion Batteries         151
        • 3.7.10.7.1             Conventional vs Emerging Processes       151
    • 3.7.11    Global revenues               152
  • 3.8          Lithium metal batteries 154
    • 3.8.1      Technology description 154
    • 3.8.2      Lithium-metal anodes    155
    • 3.8.3      Challenges          155
    • 3.8.4      Energy density  156
    • 3.8.5      Anode-less Cells               156
    • 3.8.6      Lithium-metal and solid-state batteries  157
    • 3.8.7      Applications       157
    • 3.8.8      SWOT analysis   158
    • 3.8.9      Product developers        159
  • 3.9          Lithium sulfur batteries (Li–S)     160
  • 3.9.1      Technology description 160
      • 3.9.1.1   Advantages        160
      • 3.9.1.2   Challenges          161
      • 3.9.1.3   Commercialization           161
    • 3.9.2      SWOT analysis   162
    • 3.9.3      Global revenues               163
    • 3.9.4      Product developers        164
  • 3.10        Lithium titanate and niobate batteries    165
    • 3.10.1    Technology description 165
    • 3.10.2    Niobium titanium oxide (NTO)   165
      • 3.10.2.1                Niobium tungsten oxide 166
      • 3.10.2.2                Vanadium oxide anodes 167
    • 3.10.3    Global revenues               167
    • 3.10.4    Product developers        168
  • 3.11        Sodium-ion (Na-ion) batteries    170
    • 3.11.1    Technology description 170
      • 3.11.1.1                Cathode materials           170
        • 3.11.1.1.1             Layered transition metal oxides 170
          • 3.11.1.1.1.1         Types    170
          • 3.11.1.1.1.2         Cycling performance      171
          • 3.11.1.1.1.3         Advantages and disadvantages  171
          • 3.11.1.1.1.4         Market prospects for LO SIB        172
        • 3.11.1.1.2             Polyanionic materials     172
          • 3.11.1.1.2.1         Advantages and disadvantages  173
          • 3.11.1.1.2.2         Types    173
          • 3.11.1.1.2.3         Market prospects for Poly SIB     173
        • 3.11.1.1.3             Prussian blue analogues (PBA)   174
          • 3.11.1.1.3.1         Types    174
          • 3.11.1.1.3.2         Advantages and disadvantages  175
          • 3.11.1.1.3.3         Market prospects for PBA-SIB     176
      • 3.11.1.2                Anode materials               176
        • 3.11.1.2.1             Hard carbons     177
        • 3.11.1.2.2             Carbon black      179
        • 3.11.1.2.3             Graphite              179
        • 3.11.1.2.4             Carbon nanotubes           183
        • 3.11.1.2.5             Graphene           184
        • 3.11.1.2.6             Alloying materials            185
        • 3.11.1.2.7             Sodium Titanates             186
        • 3.11.1.2.8             Sodium Metal    186
      • 3.11.1.3                Electrolytes        186
    • 3.11.2    Comparative analysis with other battery types    187
    • 3.11.3    Cost comparison with Li-ion         188
    • 3.11.4    Materials in sodium-ion battery cells       189
    • 3.11.5    SWOT analysis   191
    • 3.11.6    Global revenues               192
    • 3.11.7    Product developers        193
      • 3.11.7.1                Battery Manufacturers  193
      • 3.11.7.2                Large Corporations          193
      • 3.11.7.3                Automotive Companies 193
      • 3.11.7.4                Chemicals and Materials Firms   194
  • 3.12        Sodium-sulfur (Na-S) batteries   194
    • 3.12.1    Technology description 194
    • 3.12.2    Applications       196
    • 3.12.3    SWOT analysis   197
  • 3.13        Aluminium-ion batteries               198
    • 3.13.1    Technology description 198
    • 3.13.2    SWOT analysis   199
    • 3.13.3    Commercialization           200
    • 3.13.4    Global revenues               201
    • 3.13.5    Product developers        202
  • 3.14        All-solid state batteries (ASSBs) 203
    • 3.14.1    Technology description 203
      • 3.14.1.1                Solid-state electrolytes  204
    • 3.14.2    Features and advantages              205
    • 3.14.3    Technical specifications 206
    • 3.14.4    Types    208
    • 3.14.5    Microbatteries  210
      • 3.14.5.1                Introduction       210
      • 3.14.5.2                Materials             211
      • 3.14.5.3                Applications       211
      • 3.14.5.4                3D designs          212
        • 3.14.5.4.1             3D printed batteries       212
    • 3.14.6    Bulk type solid-state batteries    212
    • 3.14.7    SWOT analysis   213
    • 3.14.8    Limitations          214
    • 3.14.9    Global revenues               216
    • 3.14.10  Product developers        217
  • 3.15        Flexible batteries             219
    • 3.15.1    Technology description 219
    • 3.15.2    Technical specifications 220
      • 3.15.2.1                Approaches to flexibility                221
    • 3.15.3    Flexible electronics          224
      • 3.15.3.1                Flexible materials             225
    • 3.15.4    Flexible and wearable Metal-sulfur batteries       226
    • 3.15.5    Flexible and wearable Metal-air batteries              226
    • 3.15.6    Flexible Lithium-ion Batteries     227
      • 3.15.6.1                Electrode designs             230
      • 3.15.6.2                Fiber-shaped Lithium-Ion batteries          233
      • 3.15.6.3                Stretchable lithium-ion batteries               234
      • 3.15.6.4                Origami and kirigami lithium-ion batteries            235
    • 3.15.7    Flexible Li/S batteries     236
      • 3.15.7.1                Components      237
      • 3.15.7.2                Carbon nanomaterials    237
    • 3.15.8    Flexible lithium-manganese dioxide (Li–MnO2) batteries 237
    • 3.15.9    Flexible zinc-based batteries       238
      • 3.15.9.1                Components      239
        • 3.15.9.1.1             Anodes 239
        • 3.15.9.1.2             Cathodes             239
      • 3.15.9.2                Challenges          239
      • 3.15.9.3                Flexible zinc-manganese dioxide (Zn–Mn) batteries          240
      • 3.15.9.4                Flexible silver–zinc (Ag–Zn) batteries       241
      • 3.15.9.5                Flexible Zn–Air batteries               242
      • 3.15.9.6                Flexible zinc-vanadium batteries               243
    • 3.15.10  Fiber-shaped batteries  243
      • 3.15.10.1              Carbon nanotubes           243
      • 3.15.10.2              Types    244
      • 3.15.10.3              Applications       245
      • 3.15.10.4              Challenges          245
    • 3.15.11  Energy harvesting combined with wearable energy storage devices          246
    • 3.15.12  SWOT analysis   248
    • 3.15.13  Global revenues               249
    • 3.15.14  Product developers        250
  • 3.16        Transparent batteries    252
    • 3.16.1    Technology description 252
    • 3.16.2    Components      253
    • 3.16.3    SWOT analysis   254
    • 3.16.4    Market outlook 255
  • 3.17        Degradable batteries      256
    • 3.17.1    Technology description 256
    • 3.17.2    Biobased materials          257
      • 3.17.2.1                Cellulose nanofibers       257
      • 3.17.2.2                Biochar 258
      • 3.17.2.3                Lignin    258
        • 3.17.2.3.1             Anodes for lithium-ion batteries 258
        • 3.17.2.3.2             Gel electrolytes for lithium-ion batteries                259
        • 3.17.2.3.3             Binders for lithium-ion batteries 259
        • 3.17.2.3.4             Cathodes for lithium-ion batteries            260
        • 3.17.2.3.5             Sodium-ion batteries      260
      • 3.17.2.4                Alginate Polymers           260
      • 3.17.2.5                Agricultural Waste Fibers              261
    • 3.17.3    Components      261
    • 3.17.4    SWOT analysis   263
    • 3.17.5    Market outlook 264
    • 3.17.6    Product developers        264
  • 3.18        Printed batteries              264
    • 3.18.1    Technical specifications 265
    • 3.18.2    Components      265
    • 3.18.3    Design  267
    • 3.18.4    Key features      268
    • 3.18.5    Printable current collectors          268
    • 3.18.6    Printable electrodes       269
    • 3.18.7    Materials             269
    • 3.18.8    Applications       269
    • 3.18.9    Printing techniques         270
    • 3.18.10  Lithium-ion (LIB) printed batteries            272
    • 3.18.11  Zinc-based printed batteries       273
    • 3.18.12  3D Printed batteries       275
      • 3.18.12.1              3D Printing techniques for battery manufacturing             277
      • 3.18.12.2              Materials for 3D printed batteries            278
        • 3.18.12.2.1          Electrode materials         278
        • 3.18.12.2.2          Electrolyte Materials      279
    • 3.18.13  SWOT analysis   279
    • 3.18.14  Global revenues               280
    • 3.18.15  Product developers        281
  • 3.19        Redox Flow Batteries      283
    • 3.19.1    Technology description 283
    • 3.19.2    Vanadium redox flow batteries (VRFB)   284
    • 3.19.3    Zinc-bromine flow batteries (ZnBr)           285
    • 3.19.4    Polysulfide bromine flow batteries (PSB)               285
    • 3.19.5    Iron-chromium flow batteries (ICB)          286
    • 3.19.6    All-Iron flow batteries    287
    • 3.19.7    Zinc-iron (Zn-Fe) flow batteries  287
    • 3.19.8    Hydrogen-bromine (H-Br) flow batteries 288
    • 3.19.9    Hydrogen-Manganese (H-Mn) flow batteries       289
    • 3.19.10  Organic flow batteries   290
    • 3.19.11  Hybrid Flow Batteries     291
      • 3.19.11.1              Zinc-Cerium Hybrid          291
      • 3.19.11.2              Zinc-Polyiodide Hybrid Flow Battery        291
      • 3.19.11.3              Zinc-Nickel Hybrid Flow Battery 292
      • 3.19.11.4              Zinc-Bromine Hybrid Flow Battery            293
      • 3.19.11.5              Vanadium-Polyhalide Flow Battery           293
    • 3.19.12  Global revenues               294
    • 3.19.13  Product developers        294
  • 3.20        Rechargeable Zinc (Zn) batteries               295
    • 3.20.1    Technology description 295
      • 3.20.1.1                Zinc-Air batteries             296
      • 3.20.1.2                Zinc-ion batteries             297
      • 3.20.1.3                Zinc-bromine     298
    • 3.20.2    Market outlook 298
    • 3.20.3    Product developers        299
  • 3.21        Iron-air (Fe-air) batteries              299
    • 3.21.1    Technology description 299
    • 3.21.2    Market outlook 300
    • 3.21.3    Product developers        302
  • 3.22        High-temperature / molten-salt 302
    • 3.22.1    Technology description 302
    • 3.22.2    Market outlook 303
    • 3.22.3    Product developers        304
  • 3.23        Companies         305 (312 company profiles)

 

4              SUPERCAPACITORS         548

  • 4.1          Technology description 548
    • 4.1.1      Electrostatic double-layer capacitors (EDLC)         550
    • 4.1.2      Pseudocapacitors            551
      • 4.1.2.1   Pseudocapacitive materials         551
      • 4.1.2.2   Performance     552
    • 4.1.3      Hybrid capacitors             554
    • 4.1.4      Advantages and disadvantages  555
  • 4.2          Costs     555
  • 4.3          Electrolytes        556
  • 4.4          Conductive hydrogels    557
  • 4.5          Flexible and stretchable supercapacitors               558
    • 4.5.1      Flexible wearable supercapacitors            560
    • 4.5.2      Paper supercapacitors   562
    • 4.5.3      Flexible printed circuits  563
    • 4.5.4      Micro-supercapacitors   564
    • 4.5.5      Materials             565
      • 4.5.5.1   Graphene           566
      • 4.5.5.2   Carbon nanotubes           569
      • 4.5.5.3   Nanodiamonds 571
      • 4.5.5.4   Carbon nanofibers           572
      • 4.5.5.5   Carbon aerogels               573
      • 4.5.5.6   Graphene aerogels         573
      • 4.5.5.7   Cellulose nanocrystal aerogels   574
      • 4.5.5.8   Carbon nano-onions       575
      • 4.5.5.9   MXenes               575
      • 4.5.5.10                Metal Organic Frameworks (MOF)           577
      • 4.5.5.11                Diamond              577
      • 4.5.5.12                Other 2D materials          578
  • 4.6          Printed supercapacitors 578
    • 4.6.1      Electrode materials         580
    • 4.6.2      Electrolytes        581
  • 4.7          Biomass-based supercapacitors 585
    • 4.7.1      Biochar 585
    • 4.7.2      Lignin    586
  • 4.8          Markets for supercapacitors        587
    • 4.8.1      Electric vehicles 588
    • 4.8.2      Aerospace          590
    • 4.8.3      Power grid          591
    • 4.8.4      Industrial             593
    • 4.8.5      Medical wearables          594
    • 4.8.6      Military 595
    • 4.8.7      Power and signal electronics       596
  • 4.9          Companies         597 (44 company profiles)

 

5              CHEMICAL ENERGY STORAGE      631

  • 5.1          Market overview             631
  • 5.2          Power-to-gas (PtG)         633
  • 5.3          Power-to-liquid (PtL)      634
  • 5.4          Hydrogen            638
    • 5.4.1      Long Duration Energy Storage (LDES)       638
    • 5.4.2      Hydrogen storage methods         639
    • 5.4.3      Compressed hydrogen storage  640
    • 5.4.4      Stationary storage systems          641
    • 5.4.5      Metal hydrides for hydrogen storage      642
    • 5.4.6      Underground hydrogen storage (UHS)    643
      • 5.4.6.1   Salt caverns        644
      • 5.4.6.2   Porous rock formations 645
  • 5.5          Feedstocks         647
    • 5.5.1      Hydrogen electrolysis     647
    • 5.5.2      CO2 capture       648
  • 5.6          Production          648
  • 5.7          Electrolysers      650
    • 5.7.1      Commercial alkaline electrolyser cells (AECs)       651
    • 5.7.2      PEM electrolysers (PEMEC)         652
    • 5.7.3      High-temperature solid oxide electrolyser cells (SOECs)  652
  • 5.8          Direct Air Capture (DAC)               653
    • 5.8.1      Technologies     653
    • 5.8.2      Markets for DAC               655
    • 5.8.3      Costs     655
    • 5.8.4      Challenges          656
    • 5.8.5      Companies and production          657
    • 5.8.6      CO2 capture from point sources 658
  • 5.9          Costs     658
  • 5.10        Market challenges           661
  • 5.11        Companies         661 (20 company profiles)

 

6              THERMAL ENERGY STORAGE       675

  • 6.1          Overview            675
  • 6.2          Types of thermal storage systems             676
  • 6.3          Sensible heat storage     677
  • 6.4          Latent heat storage         677
  • 6.5          Reversible thermochemical reactions      679
  • 6.6          Phase change materials 680
    • 6.6.1      Markets               680
    • 6.6.2      Properties of Phase Change Materials (PCMs)     681
    • 6.6.3      Types    682
      • 6.6.3.1   Organic/biobased phase change materials            683
        • 6.6.3.1.1               Advantages and disadvantages  683
        • 6.6.3.1.2               Paraffin wax       684
        • 6.6.3.1.3               Non-Paraffins/Bio-based              685
      • 6.6.3.2   Inorganic phase change materials             685
        • 6.6.3.2.1           Salt hydrates      685
          • 6.6.3.2.1.1        Advantages and disadvantages  686
          • 6.6.3.2.1.2           Metal and metal alloy PCMs (High-temperature) 686
        • 6.6.3.2.2               Eutectic mixtures             687
        • 6.6.3.2.3               Encapsulation of PCMs  687
        • 6.6.3.2.4               Macroencapsulation       688
        • 6.6.3.2.5               Micro/nanoencapsulation            688
      • 6.6.3.3   Nanomaterial phase change materials     688
  • 6.7          Electro-thermal energy storage 688
  • 6.8          Companies         691 (77 company profiles)

 

7              MECHANICAL ENERGY STORAGE 746

  • 7.1          Introduction       746
  • 7.2          Compressed air energy storage  747
    • 7.2.1      Overview            747
    • 7.2.2      SWOT Analysis  748
  • 7.3          Liquid-air energy storage              750
    • 7.3.1      Overview            750
    • 7.2.2      SWOT Analysis  751
  • 7.4          Liquid CO2 Energy Storage           751
    • 7.4.1      Overview            751
    • 7.4.2      SWOT Analysis  752
  • 7.5          SENS      753
    • 7.5.1      Overview            753
    • 7.5.2      SWOT Analysis  753
  • 7.6          Gravitational energy storage       754
    • 7.6.1      Overview            755
    • 7.6.2      SWOT Analysis  755
  • 7.7          Companies         755 (22 company profiles)

 

8              FUEL CELLS          767

  • 8.1          Introduction       767
  • 8.2          Fuel cell technologies     769
    • 8.2.1      Proton exchange membrane (PEM) (PEMFC)       769
      • 8.2.1.1   High temperature PEMFC (HT-PEMFC)   771
      • 8.2.1.2   Components, materials and producers   772
    • 8.2.2      Solid oxide fuel cells (SOFC)         774
      • 8.2.2.1   Components and materials          775
        • 8.2.2.1.1               Anode  775
        • 8.2.2.1.2               Electrolyte          776
        • 8.2.2.1.3               Cathode               777
        • 8.2.2.1.4               Interconnects    778
        • 8.2.2.1.5               Other    778
      • 8.2.2.2   Solid Oxide Electrolyzer Cells (SOECs)      780
      • 8.2.2.3   Low-temperature solid oxide fuel cells (LT-SOFCs)             781
    • 8.2.3      Alkaline Fuel Cell (AFC)  781
    • 8.2.4      Molten Carbonate Fuel Cell (MCFC)         781
  • 8.3          Markets and applications              782
    • 8.3.1      Electric vehicles market 783
      • 8.3.1.1   Hydrogen Refueling        783
      • 8.3.1.2   Hydrogen Storage            784
    • 8.3.2      Commercial and industrial (C&I) 785
    • 8.3.3      Marine 786
    • 8.3.4      Residential          787
  • 8.4          Companies         788 (81 company profiles)

 

9              PHOTOVOLTAICS             848

  • 9.1          Global Solar PV market  849
  • 9.2          Thin film and Flexible Solar Cells 851
    • 9.2.1      Dye sensitized solar cells               851
      • 9.2.1.1   DSSC materials  853
    • 9.2.2      Organic Photovoltaics    854
      • 9.2.2.1   Organic PV materials      854
    • 9.2.3      Perovskite solar cells       856
      • 9.2.3.1   Introduction       856
      • 9.2.3.2   Material components    857
      • 9.2.3.3   Energy harvesting            860
      • 9.2.3.4   Thin film perovskite solar cells    860
        • 9.2.3.4.1               Technology description 860
        • 9.2.3.4.2               Markets and applications              861
        • 9.2.3.4.3               Product developers        861
      • 9.2.3.5   Tandem perovskite PV   863
        • 9.2.3.5.1               Technology description 863
        • 9.2.3.5.2               Markets and applications              864
        • 9.2.3.5.3               Product developers        864
    • 9.2.4      Inorganic silicon PV alternatives 864
      • 9.2.4.1   Cadmium Telluride (CdTe)            866
      • 9.2.4.2   Copper Indium Gallium Selenide (CIGS)  868
      • 9.2.4.3   Gallium Arsenide             869
      • 9.2.4.4   Amorphous Silicon           870
      • 9.2.4.5   Copper Zinc Tin Sulfide (CZTS)    871
    • 9.2.5      Tandem photovoltaics   872
    • 9.2.6      Metamaterials  874
    • 9.2.7      Deposition Methods       875
  • 9.3          Market players  877
  • 9.4          Concentrated solar power            881
    • 9.4.1      Technology description 881
    • 9.4.2      Commercialization           883
  • 9.5          Agrivoltaics         884
    • 9.5.1      Technology description 884
    • 9.5.2      Commercialization           885
  • 9.6          Building Integrated Photovoltaics (BIPV) 885
    • 9.6.1      Photovoltaic glazing        888
    • 9.6.2      Dye-sensitized solar cells (DSSCs)              888
    • 9.6.3      Organic solar cells (OSCs)             888
    • 9.6.4      Perovskite solar cells (PSCs)        889
    • 9.6.5      Quantum dot solar cells (QDSCs)               889
    • 9.6.6      Copper zinc tin sulphide solar cells (CZTS)             890
  • 9.7          Floating photovoltaics (FPV)        891
  • 9.8          Global market for PV solar cells to 2033, by technology (revenues)            893
  • 9.9          Company profiles             894 (102 company profiles)

 

10           ENERGY HARVESTING AND BATTERYLESS TECHNOLOGIES               963

  • 10.1        Passive Devices 963
  • 10.2        Active Backscatter Devices           964
  • 10.3        Wireless Power Transfer               965
  • 10.4        Radio frequency (RF) energy harvesting 967
  • 10.5        Piezoelectric materials   972
  • 10.6        Thermoelectric materials              972
  • 10.7        Electromagnetics             974
  • 10.8        Electrochemical 974
  • 10.9        Triboelectric Harvesting 974
  • 10.10     Acoustic Harvesting        974
  • 10.11     Battery-free electronics 974
  • 10.12     Metamaterials  977
  • 10.13     Powering E-textiles         978
    • 10.13.1  Supercapacitors 979
    • 10.13.2  Batteries              979
    • 10.13.3  Textiles 982
      • 10.13.3.1              Energy harvesting nanogenerators           983
        • 10.13.3.1.1          TENGs   983
        • 10.13.3.1.2          PENGs  984
  • 10.14     Wireless sensor networks (WSN)              984
  • 10.15     Supply chain/Logistics item tagging          984
  • 10.16     Smart city deployments 984
  • 10.17     Electronic shelf labels, retail tech (RFID) 984
  • 10.18     Marine energy harvesting            985
  • 10.19     Company profiles             986 (54 company profiles)

 

11           REFERENCES       1037

 

List of Tables

  • Table 1. Global revenues for advanced energy storage & harvesting technologies, by type, 2018-2034 (Billions USD).                67
  • Table 2. Global revenues for advanced energy storage & harvesting technologies, by type, 2018-2034 (Billions USD).                68
  • Table 3. Global revenues for advanced energy storage & harvesting technologies, by end markets, 2018-2034 (Billions USD).    69
  • Table 4. Global revenues for advanced energy storage & harvesting technologies, by region, 2018-2034 (Billions USD).                71
  • Table 5. Battery chemistries used in electric buses.           79
  • Table 6. Micro EV types 79
  • Table 7. Battery Sizes for Different Vehicle Types.             81
  • Table 8. Competing technologies for batteries in electric boats.   83
  • Table 9. Competing technologies for batteries in grid storage.      89
  • Table 10. Competing technologies for batteries in consumer electronics  91
  • Table 11. Competing technologies for sodium-ion batteries in grid storage.            94
  • Table 12. Market drivers for use of advanced materials and technologies in batteries.       95
  • Table 13. Battery market megatrends.    97
  • Table 14. Advanced materials for batteries.          100
  • Table 15. Commercial Li-ion battery cell composition.      102
  • Table 16.  Lithium-ion (Li-ion) battery supply chain.           106
  • Table 17. Types of lithium battery.           107
  • Table 18. Li-ion battery anode materials.               110
  • Table 19. Manufacturing methods for nano-silicon anodes.           115
  • Table 20. Markets and applications for silicon anodes.     117
  • Table 21. Applications of Metal-Organic Frameworks (MOFs) in batteries and supercapacitors.     121
  • Table 22. Li-ion battery cathode materials.            123
  • Table 23. Key technology trends shaping lithium-ion battery cathode development.          123
  • Table 24. Properties of Lithium Cobalt Oxide) as a cathode material for lithium-ion batteries.        127
  • Table 25. Properties of lithium iron phosphate (LiFePO4 or LFP) as a cathode material for lithium-ion batteries.    128
  • Table 26. Properties of Lithium Manganese Oxide cathode material.         129
  • Table 27. Properties of Lithium Nickel Manganese Cobalt Oxide (NMC).  130
  • Table 28. Properties of Lithium Nickel Cobalt Aluminum Oxide     130
  • Table 29. Comparison table of key lithium-ion cathode materials 133
  • Table 30. Li-ion battery Binder and conductive additive materials.              134
  • Table 31. Li-ion battery Separator materials.        135
  • Table 32. Li-ion battery market players.  136
  • Table 33. Typical lithium-ion battery recycling process flow.          137
  • Table 34. Main feedstock streams that can be recycled for lithium-ion batteries. 138
  • Table 35. Comparison of LIB recycling methods. 138
  • Table 36. Comparison of conventional and emerging processes for recycling beyond lithium-ion batteries.              152
  • Table 37. Global revenues for Li-ion batteries, 2018-2034, by market (Billions USD).           152
  • Table 38. Applications for Li-metal batteries.       157
  • Table 39. Li-metal battery developers     159
  • Table 40. Comparison of the theoretical energy densities of lithium-sulfur batteries versus other common battery types.   161
  • Table 41. Global revenues for Lithium-sulfur, 2018-2034, by market (Billions USD).             163
  • Table 42. Lithium-sulphur battery product developers.   164
  • Table 43. Product developers in Lithium titanate and niobate batteries.  168
  • Table 44. Comparison of cathode materials.         170
  • Table 45.  Layered transition metal oxide cathode materials for sodium-ion batteries.       170
  • Table 46. General cycling performance characteristics of common layered transition metal oxide cathode materials.                171
  • Table 47. Polyanionic materials for sodium-ion battery cathodes.               172
  • Table 48. Comparative analysis of different polyanionic materials.              173
  • Table 49.  Common types of Prussian Blue Analogue materials used as cathodes or anodes in sodium-ion batteries.                175
  • Table 50. Comparison of Na-ion battery anode materials.               176
  • Table 51. Hard Carbon producers for sodium-ion battery anodes.               177
  • Table 52. Comparison of carbon materials in sodium-ion battery anodes. 178
  • Table 53. Comparison between Natural and Synthetic Graphite. 180
  • Table 54. Properties of graphene, properties of competing materials, applications thereof.            184
  • Table 55. Comparison of carbon based anodes.  185
  • Table 56.  Alloying materials used in sodium-ion batteries.            185
  • Table 57. Na-ion electrolyte formulations.            186
  • Table 58. Pros and cons compared to other battery types.             187
  • Table 59. Cost comparison with Li-ion batteries. 188
  • Table 60. Key materials in sodium-ion battery cells.           189
  • Table 61. Product developers in aluminium-ion batteries.              202
  • Table 62. Types of solid-state electrolytes.            204
  • Table 63. Market segmentation and status for solid-state batteries.          204
  • Table 64.  Typical process chains for manufacturing key components and assembly of solid-state batteries.            206
  • Table 65. Comparison between liquid and solid-state batteries.  210
  • Table 66. Limitations of solid-state thin film batteries.     215
  • Table 67. Global revenues for All-Solid State Batteries, 2018-2034, by market (Billions USD).          216
  • Table 68. Solid-state thin-film battery market players.     217
  • Table 69. Flexible battery applications and technical requirements.           220
  • Table 70. Flexible Li-ion battery prototypes.         228
  • Table 71. Electrode designs in flexible lithium-ion batteries.          230
  • Table 72. Summary of fiber-shaped lithium-ion batteries.              233
  • Table 73. Types of fiber-shaped batteries.            244
  • Table 74. Global revenues for flexible batteries, 2018-2034, by market (Billions USD).       249
  • Table 75. Product developers in flexible batteries.             250
  • Table 76. Components of transparent batteries. 253
  • Table 77. Lignin-derived anodes in lithium batteries.        258
  • Table 78. Components of degradable batteries. 261
  • Table 79. Product developers in degradable batteries.     264
  • Table 80. Main components and properties of different printed battery types.     266
  • Table 81. Applications of printed batteries and their physical and electrochemical requirements. 270
  • Table 82. 2D and 3D printing techniques.              270
  • Table 83. Printing techniques applied to printed batteries.            271
  • Table 84. Main components and corresponding electrochemical values of lithium-ion printed batteries.   272
  • Table 85. Printing technique, main components and corresponding electrochemical values of printed batteries based on Zn–MnO2 and other battery types.    273
  • Table 86. Main 3D Printing techniques for battery manufacturing.             277
  • Table 87. Electrode Materials for 3D Printed Batteries.    278
  • Table 88. Global revenues for printed batteries, 2018-2034, by market (Billions USD).       280
  • Table 89. Product developers in printed batteries.            281
  • Table 90. Advantages and disadvantages of redox flow batteries.               284
  • Table 91. Vanadium redox flow batteries (VRFB)-key features, advantages, limitations, performance, components and applications.       284
  • Table 92. Zinc-bromine (ZnBr) flow batteries-key features, advantages, limitations, performance, components and applications.       285
  • Table 93. Polysulfide bromine flow batteries (PSB)-key features, advantages, limitations, performance, components and applications.              286
  • Table 94. Iron-chromium (ICB) flow batteries-key features, advantages, limitations, performance, components and applications.       286
  • Table 95. All-Iron flow batteries-key features, advantages, limitations, performance, components and applications.                287
  • Table 96. Zinc-iron (Zn-Fe) flow batteries-key features, advantages, limitations, performance, components and applications.       288
  • Table 97. Hydrogen-bromine (H-Br) flow batteries-key features, advantages, limitations, performance, components and applications.              289
  • Table 98. Hydrogen-Manganese (H-Mn) flow batteries-key features, advantages, limitations, performance, components and applications.    290
  • Table 99. Organic flow batteries-key features, advantages, limitations, performance, components and applications.                290
  • Table 100. Zinc-Cerium Hybrid flow batteries-key features, advantages, limitations, performance, components and applications.       291
  • Table 101. Zinc-Polyiodide Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications.       292
  • Table 102. Zinc-Nickel Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications.       292
  • Table 103. Zinc-Bromine Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications.       293
  • Table 104. Vanadium-Polyhalide Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications.    293
  • Table 105. Redox flow batteries product developers.       295
  • Table 106. ZN-based battery product developers.              299
  • Table 107. Iron-air (Fe-air) battery product developers.  302
  • Table 108. High-temperature batteries product developers.         304
  • Table 109. CATL sodium-ion battery characteristics.          348
  • Table 110. CHAM sodium-ion battery characteristics.       353
  • Table 111. Chasm SWCNT products.         354
  • Table 112. Faradion sodium-ion battery characteristics.  380
  • Table 113. HiNa Battery sodium-ion battery characteristics.          412
  • Table 114. Battery performance test specifications of J. Flex batteries.     433
  • Table 115. LiNa Energy battery characteristics.    449
  • Table 116. Natrium Energy battery characteristics.            467
  • Table 117. Comparison of types of supercapacitors.          548
  • Table 118.  Pros and cons of supercapacitors.      555
  • Table 119. EDLC cost and performance estimates for 1 MW, 45 seconds of storage.           555
  • Table 120. Properties and applications of conductive hydrogels. 557
  • Table 121. Hydrogels in supercapacitors.               557
  • Table 122. Applications of advanced materials in supercapacitors, by advanced materials type and benefits thereof.                561
  • Table 123. Graphene in supercapacitors-Market age, applications, Key benefits and motivation for use, Graphene concentration.  566
  • Table 124. Comparative properties of graphene supercapacitors and lithium-ion batteries.             568
  • Table 125. Market and applications for carbon nanotubes in supercapacitors.       569
  • Table 126. Market overview for nanodiamonds in supercapacitors.           571
  • Table 127. Nanodiamonds in supercapacitors. Market age, applications, Key benefits and motivation for use, concentration    571
  • Table 128. Other 2D materials for supercapacitors.           578
  • Table 129. Methods for printing supercapacitors.              579
  • Table 130. Electrode Materials for printed supercapacitors.          580
  • Table 131. Electrolytes for printed supercapacitors.          581
  • Table 132. Main properties and components of printed supercapacitors. 581
  • Table 133. Markets for supercapacitors. 587
  • Table 134. Applications of e-fuels, by type.           636
  • Table 135. Overview of e-fuels. 637
  • Table 136. Applications for hydrogen in LDES       638
  • Table 137. Main characteristics of different electrolyzer technologies.     650
  • Table 138. Advantages and disadvantages of DAC.             653
  • Table 139. DAC companies and technologies.      654
  • Table 140. Markets for DAC.        655
  • Table 141. Cost estimates of DAC.             655
  • Table 142. Challenges for DAC technology.           656
  • Table 143. DAC technology developers and production.  657
  • Table 144. Market challenges for e-fuels.              661
  • Table 145. Properties of PCMs.  681
  • (b)          Table 146.  PCM Types and properties.   682
  • Table 147. Advantages and disadvantages of organic PCMs.          683
  • Table 148. Advantages and disadvantages of organic PCM Fatty Acids.     685
  • Table 149. Advantages and disadvantages of salt hydrates             686
  • Table 150. Advantages and disadvantages of low melting point metals.    686
  • Table 151. Advantages and disadvantages of eutectics.   687
  • Table 152. CrodaTherm Range.  700
  • Table 153. Compressed air energy storage technologies. 749
  • Table 154. Comparison of fuel cell technologies. 769
  • Table 155. SOFC and PEMFC comparison.              774
  • Table 156. Other components and materials in SOFCs.    778
  • Table 157. Markets and applications for fuel cells.             782
  • Table 158. Product developers in thin film perovskite photovoltaics.         861
  • Table 159. Product developers in tandem perovskite photovoltaics.          864
  • Table 160. Technologies generating electricity in smart buildings.               970
  • Table 161. Comparison of prototype batteries (flexible, textile, and other) in terms of area-specific performance. 980

 

List of Figures

  • Figure 1. Classification of energy storage technologies    61
  • Figure 2. Global revenues for advanced energy storage & harvesting technologies, by type, 2018-2034 (Billions USD).                69
  • Figure 3. Global revenues for advanced energy storage & harvesting technologies, by end markets, 2018-2034 (Billions USD).    70
  • Figure 4. Global revenues for advanced energy storage & harvesting technologies, by region, 2018-2034 (Billions USD).                72
  • Figure 5. Annual sales of battery electric vehicles and plug-in hybrid electric vehicles.       75
  • Figure 6. Electric car Li-ion demand forecast (GWh), 2018-2034.  85
  • Figure 7. EV Li-ion battery market (US$B), 2018-2034.       86
  • Figure 8. Electric bus, truck and van battery forecast (GWh), 2018-2034.  87
  • Figure 9. Micro EV Li-ion demand forecast (GWh).            88
  • Figure 10. Lithium-ion battery grid storage demand forecast (GWh), 2018-2034.  90
  • Figure 11. Sodium-ion grid storage units.               91
  • Figure 12. Salt-E Dog mobile battery.       93
  • Figure 13. I.Power Nest - Residential Energy Storage System Solution.      94
  • Figure 14. Costs of batteries to 2030.       100
  • Figure 15. Lithium Cell Design.    104
  • Figure 16. Functioning of a lithium-ion battery.   104
  • Figure 17. Li-ion battery cell pack.             105
  • Figure 18. Li-ion electric vehicle (EV) battery.       108
  • Figure 19. SWOT analysis: Li-ion batteries.            110
  • Figure 20. Silicon anode value chain.        114
  • Figure 21. Li-cobalt structure.     127
  • Figure 22.  Li-manganese structure.         129
  • Figure 23. Typical direct, pyrometallurgical, and hydrometallurgical recycling methods for recovery of Li-ion battery active materials.               137
  • Figure 24. Flow chart of recycling processes of lithium-ion batteries (LIBs).             139
  • Figure 25. Hydrometallurgical recycling flow sheet.          140
  • Figure 26. SWOT analysis for Hydrometallurgy Li-ion Battery Recycling.    142
  • Figure 27. Umicore recycling flow diagram.           143
  • Figure 28. SWOT analysis for Pyrometallurgy Li-ion Battery Recycling.       144
  • Figure 29. Schematic of direct recyling process.  145
  • Figure 30. SWOT analysis for Direct Li-ion Battery Recycling.         149
  • Figure 31. Global revenues for Li-ion batteries, 2018-2034, by market (Billions USD).         153
  • Figure 32. Schematic diagram of a Li-metal battery.          154
  • Figure 33. SWOT analysis: Lithium-metal batteries.           159
  • Figure 34. Schematic diagram of Lithium–sulfur battery. 160
  • Figure 35. SWOT analysis: Lithium-sulfur batteries.           163
  • Figure 36. Global revenues for Lithium-sulfur, 2018-2034, by market (Billions USD).           164
  • Figure 37. Global revenues for Lithium titanate and niobate batteries, 2018-2034, by market (Billions USD).           168
  • Figure 38. Schematic of Prussian blue analogues (PBA).  174
  • Figure 39. Comparison of SEM micrographs of sphere-shaped natural graphite (NG; after several processing steps) and synthetic graphite (SG). 180
  • Figure 40. Overview of graphite production, processing and applications.                182
  • Figure 41. Schematic diagram of a multi-walled carbon nanotube (MWCNT).        183
  • Figure 42. Schematic diagram of a Na-ion battery.             190
  • Figure 43. SWOT analysis: Sodium-ion batteries. 192
  • Figure 44. Global revenues for sodium-ion batteries, 2018-2034, by market (Billions USD).              192
  • Figure 45.  Schematic of a Na–S battery. 195
  • Figure 46. SWOT analysis: Sodium-sulfur batteries.           197
  • Figure 47. Saturnose battery chemistry. 199
  • Figure 48. SWOT analysis: Aluminium-ion batteries.         200
  • Figure 49. Global revenues for aluminium-ion batteries, 2018-2034, by market (Billions USD).       201
  • Figure 50. Schematic illustration of all-solid-state lithium battery.              203
  • Figure 51. ULTRALIFE thin film battery.   204
  • Figure 52. Examples of applications of thin film batteries.              207
  • Figure 53. Capacities and voltage windows of various cathode and anode materials.          208
  • Figure 54. Traditional lithium-ion battery (left), solid state battery (right).               209
  • Figure 55. Bulk type compared to thin film type SSB.        213
  • Figure 56. SWOT analysis: All-solid state batteries.            214
  • Figure 57. Global revenues for All-Solid State Batteries, 2018-2034, by market (Billions USD).        217
  • Figure 58. Ragone plots of diverse batteries and the commonly used electronics powered by flexible batteries.    219
  • Figure 59. Flexible, rechargeable battery.              221
  • Figure 60. Various architectures for flexible and stretchable electrochemical energy storage.        222
  • Figure 61. Types of flexible batteries.      224
  • Figure 62. Flexible label and printed paper battery.           224
  • Figure 63. Materials and design structures in flexible lithium ion batteries.             228
  • Figure 64. Flexible/stretchable LIBs with different structures.      230
  • Figure 65. Schematic of the structure of stretchable LIBs.               231
  • Figure 66. Electrochemical performance of materials in flexible LIBs.         231
  • Figure 67. a–c) Schematic illustration of coaxial (a), twisted (b), and stretchable (c) LIBs.  234
  • Figure 68. a) Schematic illustration of the fabrication of the superstretchy LIB based on an MWCNT/LMO composite fiber and an MWCNT/LTO composite fiber. b,c) Photograph (b) and the schematic illustration (c) of a stretchable fiber-shaped battery under stretching conditions. d) Schematic illustration of the spring-like stretchable LIB. e) SEM images of a fiberat different strains. f) Evolution of specific capacitance with strain. d–f) 235
  • Figure 69. Origami disposable battery.    236
  • Figure 70. Zn–MnO2 batteries produced by Brightvolt.    238
  • Figure 71. Charge storage mechanism of alkaline Zn-based batteries and zinc-ion batteries.           240
  • Figure 72. Zn–MnO2 batteries produced by Blue Spark.   241
  • Figure 73. Ag–Zn batteries produced by Imprint Energy. 242
  • Figure 74.  Wearable self-powered devices.         247
  • Figure 75. SWOT analysis: Flexible  batteries.       249
  • Figure 76. Global revenues for flexible batteries, 2018-2034, by market (Billions USD).      250
  • Figure 77. Transparent batteries.              253
  • Figure 78. SWOT analysis: Transparent batteries.               255
  • Figure 79. Degradable batteries. 256
  • Figure 80. SWOT analysis: Degradable batteries. 264
  • Figure 81. Various applications of printed paper batteries.             265
  • Figure 82.Schematic representation of the main components of a battery.             266
  • Figure 83. Schematic of a printed battery in a sandwich cell architecture, where the anode and cathode of the battery are stacked together.     267
  • Figure 84. Manufacturing Processes for Conventional Batteries (I), 3D Microbatteries (II), and 3D-Printed Batteries (III).                276
  • Figure 85. SWOT analysis: Printed batteries.        280
  • Figure 86. Global revenues for printed batteries, 2018-2034, by market (Billions USD).     281
  • Figure 87. Scheme of a redox flow battery.           283
  • Figure 88. Global revenues for redox flow batteries, 2018-2034, by market (Billions USD).               294
  • Figure 89. 24M battery. 306
  • Figure 90. AC biode prototype.  308
  • Figure 91. Schematic diagram of liquid metal battery operation. 317
  • Figure 92. Ampcera’s all-ceramic dense solid-state electrolyte separator sheets (25 um thickness, 50mm x 100mm size, flexible and defect free, room temperature ionic conductivity ~1 mA/cm).             318
  • Figure 93. Amprius battery products.      319
  • Figure 94. All-polymer battery schematic.             322
  • Figure 95. All Polymer Battery Module.  323
  • Figure 96. Resin current collector.             323
  • Figure 97. Ateios thin-film, printed battery.          325
  • Figure 98. The structure of aluminum-sulfur battery from Avanti Battery.               328
  • Figure 99. Containerized NAS® batteries.              330
  • Figure 100. 3D printed lithium-ion battery.           336
  • Figure 101. Blue Solution module.            337
  • Figure 102. TempTraq wearable patch.   339
  • Figure 103. Schematic of a fluidized bed reactor which is able to scale up the generation of SWNTs using the CoMoCAT process.               355
  • Figure 104. Cymbet EnerChip™  359
  • Figure 105. E-magy nano sponge structure.          367
  • Figure 106. Enerpoly zinc-ion battery.     369
  • Figure 107. SoftBattery®.             370
  • Figure 108. ASSB All-Solid-State Battery by EGI 300 Wh/kg.           372
  • Figure 109. Roll-to-roll equipment working with ultrathin steel substrate.              374
  • Figure 110. 40 Ah battery cell.    379
  • Figure 111. FDK Corp battery.     382
  • Figure 112. 2D paper batteries.  390
  • Figure 113. 3D Custom Format paper batteries.  390
  • Figure 114. Fuji carbon nanotube products.         391
  • Figure 115. Gelion Endure battery.           394
  • Figure 116. Portable desalination plant. 394
  • Figure 117. Grepow flexible battery.       405
  • Figure 118. HPB solid-state battery.         411
  • Figure 119. HiNa Battery pack for EV.      413
  • Figure 120. JAC demo EV powered by a HiNa Na-ion battery.        413
  • Figure 121. Nanofiber Nonwoven Fabrics from Hirose.     414
  • Figure 122. Hitachi Zosen solid-state battery.      415
  • Figure 123. Ilika solid-state batteries.      419
  • Figure 124. ZincPoly™ technology.            420
  • Figure 125. TAeTTOOz printable battery materials.            424
  • Figure 126. Ionic Materials battery cell.  429
  • Figure 127. Schematic of Ion Storage Systems solid-state battery structure.           430
  • Figure 128. ITEN micro batteries.              431
  • Figure 129. Kite Rise’s A-sample sodium-ion battery module.       438
  • Figure 130. LiBEST flexible battery.           443
  • Figure 131. Li-FUN sodium-ion battery cells.         446
  • Figure 132. LiNa Energy battery. 448
  • Figure 133. 3D solid-state thin-film battery technology.  451
  • Figure 134. Lyten batteries.         454
  • Figure 135. Cellulomix production process.           456
  • Figure 136. Nanobase versus conventional products.       457
  • Figure 137. Nanotech Energy battery.     466
  • Figure 138. Hybrid battery powered electrical motorbike concept.             469
  • Figure 139. Schematic illustration of three-chamber system for SWCNH production.          470
  • Figure 140. TEM images of carbon nanobrush.    471
  • Figure 141. EnerCerachip.            475
  • Figure 142. Cambrian battery.    485
  • Figure 143. Printed battery.         489
  • Figure 144. Prieto Foam-Based 3D Battery.           490
  • Figure 145. Printed Energy flexible battery.          493
  • Figure 146. ProLogium solid-state battery.            495
  • Figure 147. QingTao solid-state batteries.             496
  • Figure 148. Schematic of the quinone flow battery.          498
  • Figure 149. Sakuú Corporation 3Ah Lithium Metal Solid-state Battery.      501
  • Figure 150. Salgenx S3000 seawater flow battery.             502
  • Figure 151. Samsung SDI's sixth-generation prismatic batteries.  504
  • Figure 152. SES Apollo batteries.               509
  • Figure 153. Sionic Energy battery cell.     515
  • Figure 154. Solid Power battery pouch cell.           517
  • Figure 155. Stora Enso lignin battery materials.   519
  • Figure 156. Stora Enso lignin battery materials.   523
  • Figure 157.TeraWatt Technology solid-state battery         527
  • Figure 158. Zeta Energy 20 Ah cell.           545
  • Figure 159. Zoolnasm batteries. 547
  • Figure 160. . Schematics of three types of supercapacitors: (a) electrochemical double-layer capacitor, (b)              549
  • Figure 161. Schematic illustration of EDLC.            550
  • Figure 162. Schematic of supercapacitors in wearables.  559
  • Figure 163. (A) Schematic overview of a flexible supercapacitor as compared to conventional supercapacitor.        560
  • Figure 164. Stretchable graphene supercapacitor.             566
  • Figure 165. Applications of graphene in supercapacitors. 568
  • Figure 166. Graphene aerogel.   574
  • Figure 167. Structure diagram of Ti3C2Tx.              576
  • Figure 168. Main printing methods for supercapacitors.  579
  • Figure 169. Prototype of lignin based supercapacitor.      586
  • Figure 170. Graphene battery schematic.              608
  • Figure 171. NBD battery.              622
  • Figure 172. PtL production pathways.     634
  • Figure 173. Process steps in the production of electrofuels.          635
  • Figure 174. Mapping storage technologies according to performance characteristics.        636
  • Figure 175. Production process for green hydrogen.         647
  • Figure 176. E-liquids production routes. 648
  • Figure 177. Fischer-Tropsch liquid e-fuel products.            649
  • Figure 178. Resources required for liquid e-fuel production.         650
  • Figure 179. Schematic of Climeworks DAC system.            654
  • Figure 180. Levelized cost and fuel-switching CO2 prices of e-fuels.           659
  • Figure 181. Cost breakdown for e-fuels. 660
  • Figure 182. Thermal energy storage materials.    677
  • Figure 183. Phase Change Material transient behaviour. 677
  • Figure 184. PCM mode of operation.       680
  • Figure 185. Classification of PCMs.           682
  • Figure 186. Phase-change materials in their original states.           682
  • Figure 187. Solid State Reflective Display (SRD®) schematic.          696
  • Figure 188. Transtherm® PCMs. 697
  • Figure 189. HI-FLOW Phase Change Materials.     714
  • Figure 190. Heatcube tanks of molten-salts.         717
  • Figure 191. Crēdo™ ProMed transport bags.        724
  • Figure 192. SWOT analysis: Compressed air energy storage.          748
  • Figure 193. SWOT analysis: Liquefied CO2 energy storage.             752
  • Figure 194. SWOT analysis: SENS.              753
  • Figure 195. SWOT analysis: Gravitational energy storage.               755
  • Figure 196. PEM fuel cell schematic.        770
  • Figure 197. PEMFC assembly and materials.         771
  • Figure 198. Toyota Mirai 2nd generation.              783
  • Figure 199. Hyundai NEXO.          783
  • Figure 200. BMW'S Cryo-compressed storage tank.          784
  • Figure 201. Solar PV module production by technology, 2011-2021.           849
  • Figure 202. Efficiency of different solar PV cell types.       850
  • Figure 203. Dye sensitized solar cell schemartic. 852
  • Figure 204. Metamaterial solar coating.  875
  • Figure 205. Thin film and flexible solar cell Deposition Methods. 875
  • Figure 206. Thin film and flexible solar cells players.         878
  • Figure 207. The Sun Rock building, Taiwan.           886
  • Figure 208. Photovoltaic solar cells.          887
  • Figure 209. Classification of BIPV products.           888
  • Figure 210. Global market for PV solar cells to 2033, by technology (revenues).   893
  • Figure 211. Hikari building incorporating SunEwat Square solar glazing.    894
  • Figure 212. Elegante solar glass panel.    896
  • Figure 213. Certainteed Apollo-2 solar shingles roof.        903
  • Figure 214. Triple insulated glass unit for the Stadtwerke Konstanz energy cube in Germany.        906
  • Figure 215. Moscow building incorporating Hevel's BIPV product.               921
  • Figure 216. Mitrex solar façade layers.    928
  • Figure 217. Solar Brick by Mitrex               928
  • Figure 218. QDSSC Module.         929
  • Figure 219. DragonScales technology.     932
  • Figure 220. Photovoltaic integration in façade at the Gioia 22 skyscraper, in Milan.             940
  • Figure 221. S6 flexible solar module.       957
  • Figure 222. Ubiquitous Energy windows installed at the Boulder Commons in Colorado.   960
  • Figure 223. Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper.               967
  • Figure 224. Energy harvesting technologies.         969
  • Figure 225. Energy harvesting solutions in smart buildings.            970
  • Figure 226. TE module schematic.             973
  • Figure 227. Utilization of TE materials in exterior walls for energy generation, heating and cooling.             973
  • Figure 228. Textile-based car seat heaters.           977
  • Figure 229 . 3D print piezoelectric material.          983

 

 

 

The Global Market for Advanced Energy Storage & Harvesting Technologies 2024-2034
The Global Market for Advanced Energy Storage & Harvesting Technologies 2024-2034
PDF download.

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.