- Published: March 2024
- Pages: 346
- Tables: 48
- Figures: 30
- Series: Electronics
The global landscape of semiconductor manufacturing is rapidly evolving, with advanced packaging emerging as a critical component of manufacturing and design. It affects power, performance, and cost on a macro level, and the basic functionality of all chips on a micro level. Advanced packaging allows for the creation of faster, cost-effective systems by integrating various chips, a technique that's increasingly essential given the physical limitations of traditional chip miniaturization. It is reshaping the industry, enabling the integration of diverse chip types and enhancing processing speeds.
The U.S. government recognizes the importance of advanced packaging and has introduced a $3 billion National Advanced Packaging Manufacturing Program aimed at establishing high-volume packaging facilities by the end of the decade. The focus on packaging complements the existing efforts under the CHIPS and Science Act, emphasizing the interconnectedness of chipmaking and packaging.
The Global Market for Advanced Semiconductor Packaging 2024-2035 provides a comprehensive analysis of the global advanced semiconductor packaging technologies market from 2020-2035. It encompasses packaging approaches like wafer-level packaging, 2.5D/3D integration, chiplets, fan-out, and flip chip, analyzing market values in the billions (USD) by type, region, and end-use application.
Trends analyzed include heterogeneous integration, interconnects, thermal solutions, miniaturization, supply chain maturity, simulation/data analytics. Leading companies profiled include TSMC, Samsung, Intel, JCET, Amkor. Applications covered include AI, mobile, automotive, aerospace, IoT, communications (5G/6G), high performance computing, medical, and consumer electronics.
Regional markets explored include North America, Asia Pacific, Europe, China, Japan, and RoW. The report also assesses drivers like ML/AI, data centers, EV/ADAS; challenges like costs, complexity, reliability; emerging approaches like system-in-package, monolithic 3D ICs, advanced substrates, novel materials. Overall an in-depth benchmark analysis of the opportunities within the advancing semiconductor packaging industry.
Report contents include:
- Market size and forecasts
- Key technology trends
- Growth drivers and challenges
- Competitive landscape analysis
- Future packaging trends outlook
- In-depth analysis of wafer level packaging (WLP)
- System-in-Package (SiP) and heterogeneous integration
- Monolithic 3D ICs overview
- Advanced semiconductor packaging applications across key markets: AI, mobile, automotive, aerospace, IoT, communications, HPC, medical, consumer electronics
- Regional market breakdown
- Assessment of key industry challenges: complexity, costs, supply chain maturity, standards
- Company profiles: Strategies and technologies of 128 key players. Companies profiled include 3DSEMI, Amkor, Chipbond, ChipMOS, Intel Corporation, Leader-Tech Semiconductor, Powertech, Samsung Electronics, Silicon Box, SJ Semiconductor Corp., SK hynix, SPIL, Tongfu, Taiwan Semiconductor Manufacturing Company (TSMC) and Yuehai Integrated (Full list of companies profiled in table of contents).
1 RESEARCH METHODOLOGY 20
2 EXECUTIVE SUMMARY 21
- 2.1 Semiconductor Packaging Technology Overview 21
- 2.1.1 Key challenges 22
- 2.1.2 Evolution of semiconductor packaging 23
- 2.1.2.1 From 1D to 3D 25
- 2.1.3 Conventional packaging approaches 26
- 2.1.4 Advanced packaging approaches 27
- 2.2 Semiconductor Supply Chain 29
- 2.3 Advanced Packaging Supply Chain 30
- 2.4 Key Technology Trends in Advanced Packaging 31
- 2.5 Market Growth Drivers 31
- 2.6 Competitive Landscape 32
- 2.7 Market Challenges 33
- 2.8 Future outlook 34
- 2.8.1 Heterogeneous Integration 34
- 2.8.2 Chiplets and Die Disaggregation 35
- 2.8.3 Advanced Interconnects 36
- 2.8.4 Scaling and Miniaturization 36
- 2.8.5 Thermal Management 37
- 2.8.6 Materials Innovation 37
- 2.8.7 Supply Chain Developments 38
- 2.8.8 Role of Simulation and Data Analytics 39
3 SEMICONDUCTOR PACKAGING TECHNOLOGIES 40
- 3.1 Transistor Device Scaling 40
- 3.1.1 Overview 40
- 3.1.2 Heterogeneous Architecture Transition 41
- 3.1.3 Co-Design Focus Areas 41
- 3.2 Wafer Level Packaging 44
- 3.3 Fan-Out Wafer Level Packaging 45
- 3.4 Chiplets 46
- 3.4.1 AMD EPYC and Ryzen processor families 48
- 3.4.2 Disaggregation Needs 49
- 3.5 Interconnection in Semiconductor Packaging 50
- 3.5.1 Overview 51
- 3.5.2 Wire Bonding 52
- 3.5.3 Flip-chip bonding 52
- 3.5.4 Interposer 53
- 3.5.5 Through-silicon via (TSV) bonding 54
- 3.5.6 Hybrid bonding with chiplets 54
- 3.6 2.5D and 3D Packaging 55
- 3.6.1 2.5D packaging 55
- 3.6.1.1 Overview 55
- 3.6.1.1.1 Silicon Interposer 2.5D 57
- 3.6.1.1.1.1 Through Si Via (TSV) 57
- 3.6.1.1.1.2 (SiO2) based redistribution layers (RDLs) 58
- 3.6.1.1.2 2.5D Organic-based packaging 59
- 3.6.1.1.2.1 Chip-first and chip-last fan-out packaging 60
- 3.6.1.1.2.2 Organic substrates 62
- 3.6.1.1.2.3 Organic RDL 63
- 3.6.1.1.3 2.5D glass-based packaging 64
- 3.6.1.1.3.1 Benefits 65
- 3.6.1.1.3.2 Glass Si interposers in advanced packaging 66
- 3.6.1.1.3.3 Glass material properties 67
- 3.6.1.1.3.4 2/2 μm line/space metal pitch on glass substrates 68
- 3.6.1.1.3.5 3D Glass Panel Embedding (GPE) packaging 69
- 3.6.1.1.3.6 Thermal management 71
- 3.6.1.1.3.7 Polymer dielectric films 71
- 3.6.1.1.3.8 Challenges 72
- 3.6.1.1.3.9 Comparison with other substrates 73
- 3.6.1.1.4 2.5D vs. 3D Packaging 74
- 3.6.1.1.1 Silicon Interposer 2.5D 57
- 3.6.1.2 Benefits 74
- 3.6.1.3 Challenges 75
- 3.6.1.4 Trends 75
- 3.6.1.5 Market players 76
- 3.6.1.1 Overview 55
- 3.6.2 3D packaging 76
- 3.6.2.1 Overview 78
- 3.6.2.1.1 Conventional 3D packaging 78
- 3.6.2.1.2 Advanced 3D Packaging with through-silicon vias (TSVs) 79
- 3.6.2.1.3 Three-dimensional (3D) hybrid bonding 80
- 3.6.2.1.3.1 Devices using hybrid bonding 81
- 3.6.2.2 3D Microbump technology 82
- 3.6.2.2.1 Technologies 82
- 3.6.2.2.2 Challenges 84
- 3.6.2.2.3 Bumpless copper-to-copper (Cu-Cu) hybrid bonding 84
- 3.6.2.3 Trends 86
- 3.6.2.1 Overview 78
- 3.6.1 2.5D packaging 55
4 WAFER-LEVEL PACKAGING 88
- 4.1 Introduction 88
- 4.2 Benefits 88
- 4.3 Types of Wafer Level Packaging 89
- 4.3.1 Wafer Level Chip Scale Packaging 89
- 4.3.1.1 Overview 89
- 4.3.1.2 Advantages 90
- 4.3.1.3 Applications 90
- 4.3.2 Wafer Level Fan-Out Packaging 91
- 4.3.2.1 Overview 91
- 4.3.2.2 Advantages 92
- 4.3.2.3 Applications 93
- 4.3.3 Wafer Level Fan-In Packaging 94
- 4.3.3.1 Overview 94
- 4.3.3.2 Advantages 94
- 4.3.3.3 Applications 95
- 4.3.4 Other Types of WLP 95
- 4.3.4.1 Cu-Pillar Flip Chip 95
- 4.3.4.2 Advantages 96
- 4.3.4.2.1 Applications 96
- 4.3.4.3 Embedded Wafer Level BGA (eWLB) 97
- 4.3.4.4 Advantages 98
- 4.3.4.4.1 Applications 98
- 4.3.4.5 Chip-last FO-WLP 99
- 4.3.4.5.1 Advantages 99
- 4.3.4.5.2 Applications 100
- 4.3.4.6 Wafer-on-Wafer (WoW) 101
- 4.3.4.6.1 Applications 102
- 4.3.1 Wafer Level Chip Scale Packaging 89
- 4.4 WLP Manufacturing Processes 102
- 4.4.1 Wafer Preparation 102
- 4.4.2 RDL Buildup 103
- 4.4.3 Bumping 104
- 4.4.4 Encapsulation 104
- 4.4.5 Integration 104
- 4.4.6 Test and Singulation 105
- 4.5 Wafer Level Packaging Trends 105
- 4.6 Applications of Wafer Level Packaging 107
- 4.6.1 Mobile and Consumer Electronics 107
- 4.6.2 Automotive Electronics 107
- 4.6.3 IoT and Industrial 107
- 4.6.4 High Performance Computing 108
- 4.6.5 Aerospace and Defense 108
- 4.7 Wafer Level Packaging Outlook 108
5 SYSTEM-IN-PACKAGE AND HETEROGENEOUS INTEGRATION 110
- 5.1 Introduction 110
- 5.2 Approaches for heterogenous integration 111
- 5.2.1 Technology Building Blocks 112
- 5.3 SiP Manufacturing Approaches 113
- 5.3.1 2.5D Integrated Interposers 114
- 5.3.2 Multi-Chip Modules 114
- 5.3.3 3D Stacked packages 115
- 5.3.4 Fan-Out Wafer Level Packaging 115
- 5.3.5 Flip Chip Package-on-Package 115
- 5.4 SiP Component Integration 115
- 5.5 Heterogeneous Integration Drivers 116
- 5.6 Trends Driving SiP Adoption 117
- 5.7 SiP Applications 119
- 5.8 SiP Industry Landscape 120
- 5.9 Future Outlook on Heterogeneous Integration 121
6 MONOLITHIC 3D IC 123
- 6.1 Overview 123
- 6.1.1 Transitioning from 2D Systems 123
- 6.1.2 Motivation for developing monolithic 3D manufacturing 123
- 6.1.3 Improved M3D Interconnect Density 124
- 6.1.4 Heterogenous 3D vs Monolithic 3D 125
- 6.1.5 2D Materials 126
- 6.2 Benefits 127
- 6.3 Challenges 128
- 6.4 Future outlook 128
7 MARKETS AND APPLICATIONS 130
- 7.1 Market value chain 130
- 7.1.1 SiP OEM/Designers 131
- 7.1.2 Chiplet OEM/Designer and Chiplet Foundry 131
- 7.1.3 Chiplet Integrator 132
- 7.1.3.1 Integrated Device Manufacturers (IDMs) 132
- 7.1.3.2 Outsourced Semiconductor Assembly and Test (OSAT) Providers 132
- 7.1.4 Material Suppliers 132
- 7.1.5 Equipment Suppliers 133
- 7.1.6 Substrate and PCB suppliers 133
- 7.1.7 EDA Tools Suppliers 133
- 7.1.8 Interposer Foundry 133
- 7.2 Packaging trends by market 134
- 7.2.1 Mobile Devices 135
- 7.2.2 High-Performance Computing (HPC) 135
- 7.2.3 Automotive 136
- 7.2.4 Internet of Things (IoT) 136
- 7.2.5 Consumer Electronics 137
- 7.2.6 Aerospace and Defense 137
- 7.2.7 Medical Devices 137
- 7.3 Design requirements 138
- 7.4 Artificial Intelligence (AI) 139
- 7.4.1 Challenges in AI 139
- 7.4.2 Advanced Packaging Solutions 140
- 7.4.2.1 2.5D and 3D Integration 140
- 7.4.2.2 Chiplet-based Packaging 140
- 7.4.2.3 Wafer-Level Packaging (WLP) 140
- 7.4.3 Addressing AI Challenges through Advanced Packaging 141
- 7.4.3.1 Processing Power 141
- 7.4.3.2 Memory Bandwidth 141
- 7.4.3.3 Energy Efficiency 141
- 7.4.3.4 Scalability 141
- 7.4.4 Applications 142
- 7.4.4.1 Data Center and Cloud Computing 142
- 7.4.4.2 Edge Devices and IoT 142
- 7.4.4.3 Healthcare and Medical Devices 142
- 7.4.4.4 Autonomous Vehicles 142
- 7.5 Mobile Devices 143
- 7.5.1 Challenges 143
- 7.5.2 Advanced Packaging Solutions 144
- 7.5.2.1 System-in-Package (SiP) 144
- 7.5.2.2 Fan-Out Wafer-Level Packaging (FOWLP) 144
- 7.5.2.3 3D IC Packaging 144
- 7.5.2.4 Wafer-Level Chip-Scale Packaging (WLCSP) 144
- 7.5.3 Addressing Challenges through Advanced Packaging 145
- 7.5.3.1 Power Consumption and Thermal Management 145
- 7.5.3.2 Size Constraints 145
- 7.5.3.3 Cost 145
- 7.5.4 Applications 145
- 7.5.4.1 Smartphones 145
- 7.5.4.2 Tablets 146
- 7.5.4.3 Wearables 146
- 7.5.4.4 AR/VR Devices 146
- 7.5.5 Future trends 146
- 7.6 High Performance Computing (HPC) 147
- 7.6.1 Challenges 148
- 7.6.2 Advanced Packaging Solutions for HPC 148
- 7.6.2.1 2.5D and 3D Integration 149
- 7.6.2.2 Hybrid bonding 149
- 7.6.2.3 Multi-Chip Modules (MCMs) 150
- 7.6.2.4 Chiplet-based Architectures 150
- 7.6.2.5 Advanced Interconnect Technologies 151
- 7.6.3 Addressing HPC Challenges through Advanced Packaging 151
- 7.6.3.1 Performance Scaling 151
- 7.6.3.2 Power Consumption 152
- 7.6.3.3 Interconnect Bandwidth 152
- 7.6.3.4 Reliability 153
- 7.6.4 Applications 153
- 7.6.4.1 Supercomputers 153
- 7.6.4.2 Data Center and Cloud Computing 153
- 7.6.4.3 Artificial Intelligence and Machine Learning 153
- 7.6.4.4 Scientific Computing and Simulation 154
- 7.6.4.5 Co-Packaged Optics 154
- 7.6.4.5.1 Network Switch 154
- 7.6.4.5.2 Optical communication in data centers 154
- 7.6.4.5.3 Thermal Management 154
- 7.6.4.5.4 Challenges in CPO 155
- 7.6.4.5.5 Package Structure 155
- 7.6.4.5.6 Fan-Out Embedded Bridge (FOEB) structure 156
- 7.6.4.5.7 Advancing Switching and AI Networks 156
- 7.6.5 Future Trends 157
- 7.7 Automotive Electronics 158
- 7.7.1 Challenges 158
- 7.7.2 Advanced Packaging Solutions for Automotive Electronics 159
- 7.7.2.1 System-in-Package (SiP) 159
- 7.7.2.2 Flip-Chip and Wafer-Level Packaging (WLP) 159
- 7.7.2.3 3D Integration and Through-Silicon Vias (TSVs) 160
- 7.7.3 Addressing Automotive Electronics Challenges through Advanced Packaging 160
- 7.7.3.1 ADAS/Autonomous driving systems 160
- 7.7.3.2 Harsh Environment Reliability 161
- 7.7.3.3 Safety and Reliability 161
- 7.7.3.4 Miniaturization and Integration 161
- 7.7.3.5 High-Speed Communication 161
- 7.7.3.6 Thermal Management 162
- 7.7.4 Applications 162
- 7.7.4.1 Advanced Driver Assistance Systems (ADAS) and Autonomous Driving 162
- 7.7.4.1.1 Radar packaging 164
- 7.7.4.2 Electric Vehicle (EV) Power Electronics 164
- 7.7.4.3 Infotainment and Telematics 164
- 7.7.4.4 Sensors and Actuators 165
- 7.7.4.1 Advanced Driver Assistance Systems (ADAS) and Autonomous Driving 162
- 7.7.5 Future Trends 165
- 7.8 Internet of Things (IoT) Devices 167
- 7.8.1 Challenges 167
- 7.8.2 Advanced Packaging Solutions for IoT Devices 167
- 7.8.2.1 Wafer-Level Packaging (WLP) 167
- 7.8.2.2 System-in-Package (SiP) 168
- 7.8.2.3 Fan-Out Wafer-Level Packaging (FOWLP) 168
- 7.8.2.4 3D Packaging and Through-Silicon Vias (TSVs) 168
- 7.8.3 Addressing IoT Device Challenges through Advanced Packaging 168
- 7.8.3.1 Size Constraints 168
- 7.8.3.2 Power Consumption 169
- 7.8.3.3 Cost Pressures 169
- 7.8.3.4 Integration and Functionality 169
- 7.8.3.5 Reliability and Robustness 169
- 7.8.4 Applications 170
- 7.8.4.1 Wearable Devices 170
- 7.8.4.2 Smart Home Devices 170
- 7.8.4.3 Industrial IoT Devices 170
- 7.8.4.4 Medical IoT Devices 171
- 7.8.5 Future Trends 171
- 7.9 5G & 6G Communications Infrastructure 172
- 7.9.1 Challenges 172
- 7.9.2 Trends in 5G and 6G packaging 173
- 7.9.3 Advanced Packaging Solutions for 5G and 6G Communications Infrastructure 174
- 7.9.3.1 Antenna-in-Package (AiP) 174
- 7.9.3.2 System-in-Package (SiP) 175
- 7.9.3.3 3D Packaging and Through-Silicon Vias (TSVs) 175
- 7.9.3.4 Fan-Out Wafer-Level Packaging (FOWLP) 176
- 7.9.4 Addressing 5G and 6G Infrastructure Challenges through Advanced Packaging 176
- 7.9.4.1 High-Frequency Operation 176
- 7.9.4.2 Massive MIMO and Beamforming 177
- 7.9.4.3 Energy Efficiency 177
- 7.9.4.4 Cost and Scalability 178
- 7.9.4.5 Thermal Management 178
- 7.9.5 Applications 178
- 7.9.5.1 Base Stations and Small Cells 178
- 7.9.5.2 Backhaul and Fronthaul Networks 179
- 7.9.5.3 Edge Computing and Network Slicing 179
- 7.9.5.4 Satellite and Non-Terrestrial Networks 179
- 7.9.6 Future Trends 179
- 7.10 Aerospace and Defense Electronics 181
- 7.10.1 Challenges 181
- 7.10.2 Advanced Packaging Solutions for Aerospace and Defense Electronics 182
- 7.10.2.1 3D Packaging and Through-Silicon Vias (TSVs) 182
- 7.10.2.2 Chip-Scale Packaging (CSP) and Wafer-Level Packaging (WLP) 182
- 7.10.2.3 Flip-Chip and Ball Grid Array (BGA) Packaging 182
- 7.10.2.4 Hermetic Packaging and Sealing 182
- 7.10.3 Addressing Aerospace and Defense Electronics Challenges through Advanced Packaging 182
- 7.10.3.1 Size, Weight, and Power (SWaP) Optimization 183
- 7.10.3.2 Harsh Environment Reliability 183
- 7.10.3.3 High Performance and Speed 183
- 7.10.3.4 Long-Term Reliability and Maintainability 183
- 7.10.3.5 Security and Anti-Tamper Features 184
- 7.10.4 Applications 184
- 7.10.4.1 Avionics and Flight Control Systems 184
- 7.10.4.2 Radar and Electronic Warfare Systems 184
- 7.10.4.3 Satellite Communications and Payload Electronics 184
- 7.10.4.4 Missile Guidance and Control Electronics 185
- 7.10.5 Future Trends 185
- 7.11 Medical Electronics 187
- 7.11.1 Challenges 187
- 7.11.2 Advanced Packaging Solutions for Medical Electronics 187
- 7.11.2.1 3D Packaging and Through-Silicon Vias (TSVs) 187
- 7.11.2.2 Wafer-Level Packaging (WLP) and Chip-Scale Packaging (CSP) 188
- 7.11.2.3 Flexible and Stretchable Packaging 188
- 7.11.2.4 Microfluidic Packaging 188
- 7.11.3 Addressing Medical Electronics Challenges through Advanced Packaging 189
- 7.11.3.1 Miniaturization 189
- 7.11.3.2 Biocompatibility 189
- 7.11.3.3 Reliability 189
- 7.11.3.4 Power Efficiency 189
- 7.11.3.5 High Performance 190
- 7.11.4 Applications 190
- 7.11.4.1 Implantable Devices 190
- 7.11.4.2 Wearable Health Monitors 190
- 7.11.4.3 Diagnostic Imaging Equipment 190
- 7.11.4.4 Surgical Robotics and Instruments 191
- 7.11.5 Future Trends 191
- 7.12 Consumer Electronics 192
- 7.12.1 Challenges 193
- 7.12.2 Advanced Packaging Solutions for Consumer Electronics 193
- 7.12.2.1 System-in-Package (SiP) 193
- 7.12.2.2 Fan-Out Wafer-Level Packaging (FOWLP) 193
- 7.12.2.3 3D Packaging and Through-Silicon Vias (TSVs) 194
- 7.12.2.4 Embedded Die Packaging 194
- 7.12.3 Addressing Consumer Electronics Challenges through Advanced Packaging 194
- 7.12.3.1 Miniaturization 194
- 7.12.3.2 Power Efficiency 195
- 7.12.3.3 High Performance 195
- 7.12.3.4 Cost Reduction 195
- 7.12.3.5 Time-to-Market 195
- 7.12.4 Applications 196
- 7.12.4.1 Smartphones and Tablets 196
- 7.12.4.2 Wearables and IoT Devices 196
- 7.12.4.3 Gaming Consoles and VR/AR Devices 196
- 7.12.4.4 Smart Home Devices 196
- 7.12.5 Future Trends 197
- 7.13 Additive manufacturing for advanced packaging 198
- 7.14 Silicon photonics 200
- 7.15 Global market (Revenues) 202
- 7.15.1 By type 202
- 7.15.2 By market 205
- 7.15.3 By region 208
8 MARKET PLAYERS 211
- 8.1 Integrated Device Manufacturers 211
- 8.2 Outsourced Semiconductor Assembly and Test (OSAT) Companies 213
- 8.3 Foundries 215
- 8.4 Electronics OEMs 219
- 8.5 Packaging Equipment and Materials Companies 221
9 MARKET CHALLENGES 222
10 COMPANY PROFILES 224
- 10.1 AaltoSemi 224
- 10.2 Absolic, Inc. 224
- 10.3 ACCRETECH (Europe) GmbH 225
- 10.4 Adeia, Inc. 226
- 10.5 Advanced Micro Devices, Inc. (AMD) 227
- 10.6 Analog Devices, Inc. (ADI) 230
- 10.7 Amkor Technology 230
- 10.8 Anmuquan Intelligent Technology (AMQ Intelligent) 233
- 10.9 Apple 233
- 10.10 Applied Materials 234
- 10.11 Ardentec Corporation 235
- 10.12 ARM 235
- 10.13 ASE 236
- 10.14 ASMPT Ltd 238
- 10.15 Besi 239
- 10.16 Biren Technology 239
- 10.17 Blue Ocean Smart System 240
- 10.18 Brewer Science 241
- 10.19 Broadcom 243
- 10.20 BroadPak 244
- 10.21 Cambricon Technologies Co., 245
- 10.22 Capcon Semiconductor 246
- 10.23 CAS Microelectronics Integration 246
- 10.24 CD Micro-Technology 247
- 10.25 CEA-Leti 248
- 10.26 Cerebras 248
- 10.27 China Wafer Level CSP Co 249
- 10.28 Chipbond Technology Corporation 250
- 10.29 Chipletz 252
- 10.30 ChipMOS Technologies, Inc. 252
- 10.31 Corning 253
- 10.32 Dewo Advanced Automation (DAA 254
- 10.33 Disco 254
- 10.34 Dupont 255
- 10.35 Ebara 256
- 10.36 Eliyan 257
- 10.37 EMC Semi-Conductor Technology 258
- 10.38 EPS Technology 258
- 10.39 Entegris 259
- 10.40 EV Group 260
- 10.41 GlobalFoundries 261
- 10.42 Global Unichip 261
- 10.43 Gloway 262
- 10.44 Goldenscope Tech 263
- 10.45 Gona Semiconductor Technology 263
- 10.46 Graphcore 264
- 10.47 Greatek Electronics Inc 265
- 10.48 Hangke Chuangxing (Aero Inno-Star) 266
- 10.49 Hanmi Semiconductor 266
- 10.50 HiSilicon 267
- 10.51 HLMC (Shanghai Huali Microelectronics Corporation) 268
- 10.52 Huatian Huichuang Technology (Xi'an) Co., Ltd. 269
- 10.53 Huawei 269
- 10.54 Ibiden 270
- 10.55 IBM 271
- 10.56 ICLeague Technology Co Ltd 272
- 10.57 IMEC 273
- 10.58 Infineon Technologies AG 273
- 10.59 Integra 274
- 10.60 Inari Amertron Berhad 275
- 10.61 Intel Corporation 276
- 10.62 JCET Group 279
- 10.63 Jiangsu IC Assembly & Test (ICAT) 280
- 10.64 Jingdu Semiconductor 280
- 10.65 Keyang Semiconductor (KYS) 281
- 10.66 King Yuan Electronics Co., Ltd. 281
- 10.67 Kioxia 282
- 10.68 KyLitho 283
- 10.69 Kyocera 283
- 10.70 Lam Research 284
- 10.71 Lapis Technology 284
- 10.72 LB Semicon Co Ltd 285
- 10.73 Leading Interconnect Semiconductor Technology 286
- 10.74 Lidrotec GmbH 286
- 10.75 Lux Semiconductors 287
- 10.76 Malaysian Pacific Industries Berhad 288
- 10.77 Micron Technology, Inc. 288
- 10.78 Mediatek 289
- 10.79 Micross Components 290
- 10.80 Mitsubishi 291
- 10.81 National Center For Advanced Packaging China (NCAP China) 291
- 10.82 NEC 292
- 10.83 Nvidia Corporation 293
- 10.84 Nepes Corporation 294
- 10.85 Onsemi 294
- 10.86 Orient Semiconductor Electronics Ltd. 295
- 10.87 Panasonic 296
- 10.88 Powertech Technology Inc. 297
- 10.89 Pragmatic Semiconductor 298
- 10.90 Qorvo 298
- 10.91 Renesas 299
- 10.92 Rigger Micro Technologies (RMT) 300
- 10.93 Rohm 300
- 10.94 Rong Semiconductor 301
- 10.95 Samsung Electronics 302
- 10.96 Samtec, Inc. 305
- 10.97 Schott AG 305
- 10.98 Sharp 306
- 10.99 Shinko Electric Industries 307
- 10.100 Showa Denko 307
- 10.101 Sigurd Microelectronics Corporation 308
- 10.102 Silicon Box 309
- 10.103 Siliconware Precision Industries (SPIL) 310
- 10.104 SJ Semiconductor 311
- 10.105 SK Hynix 312
- 10.106 Skywater 313
- 10.107 Sony Corporation 314
- 10.108 Starmask 315
- 10.109 STMicroelectronics 315
- 10.110 Suss Microtec 316
- 10.111 SZLQ Intelligence (Suzhou Lieqi Intelligent Equipment) 317
- 10.112 Taiwan Semiconductor Manufacturing Company (TSMC) 317
- 10.113 Techsense International 320
- 10.114 Tezzaron Semiconductor 321
- 10.115 Tongfu Microelectronics Co., Ltd. 321
- 10.116 Texas Instruments 322
- 10.117 Tokyo Seimitsu Co., Ltd. 323
- 10.118 Tong Hsing Electronic Industries, Ltd. 324
- 10.119 Toshiba 325
- 10.120 Tower Semiconductor 325
- 10.121 Unimicron 326
- 10.122 Unisem 327
- 10.123 UTAC Group 328
- 10.124 Walton Advanced Engineering Inc. 329
- 10.125 Winstek Semiconductor Technology Co., Ltd. 329
- 10.126 Xinhe Semiconductor 330
- 10.127 Yibu Semiconductor 331
- 10.128 Yuehai Integrated 331
11 REFERENCES 333
List of Tables
- Table 1. Evolution of semiconductor packaging. 23
- Table 2. Summary of key advanced semiconductor packaging approaches. 28
- Table 3. Key Technology Trends in Advanced Semiconductor Packaging. 31
- Table 4. Market Growth Drivers for advanced semiconductor packaging. 31
- Table 5. Challenges Facing Advanced Packaging Adoption. 33
- Table 6. Challenges in transistor scaling. 43
- Table 7. Use cases and benefits of using chiplets in semiconductor design. 48
- Table 8. Specifications of interconnection methods. 51
- Table 9. Interconnection technique in semiconductor packaging 51
- Table 10. Passive vs active interposer. 53
- Table 11. Comparative benchmark overview table of key semiconductor interconnection technologies 54
- Table 12. Fan-out packaging process overview. 59
- Table 13. Comparison between mainstream silicon dioxide (SiO2) and leading organic dielectrics for electronic interconnect substrates. 63
- Table 14. Benefits of glass in 2.5D glass-based packaging. 65
- Table 15. Comparison between key properties of glass and polymer molding compounds commonly used in semiconductor packaging applications. 70
- Table 16. Challenges of glass semiconductor packaging. 72
- Table 17. Comparison between silicon, organic laminates and glass as packaging substrates. 73
- Table 18. 2.5D vs. 3D packaging. 74
- Table 19. 2.5D packaging challenges. 75
- Table 20. Market players in 2.5D packaging. 76
- Table 21. Advantages and disadvantages of 3D packaging. 78
- Table 22. Comparison between 2.5D, 3D micro bump, and 3D hybrid bonding. 81
- Table 23. Challenges in 3D Hybrid Bonding. 82
- Table 24. Challenges in scaling bumps. 84
- Table 25. Key methods for enabling copper-to-copper (Cu-Cu) hybrid bonding in advanced semiconductor packaging: 85
- Table 26. Micro bumps vs Cu-Cu bumpless hybrid bonding. 85
- Table 27. Benefits of Wafer-Level Packaging. 88
- Table 28. Types of wafer level packaging. 89
- Table 29. Key trends shaping wafer level packaging. 106
- Table 30. Packaging approaches utilized for assembling System-in-Package modules. 113
- Table 31. Considerations for integrating key component categories into system-in-package (SiP) modules/ 116
- Table 32. Key factors driving adoption of heterogeneous integration through SiPs and multi-die packages. 117
- Table 33. Key trends influencing adoption of System-in-Package modules. 118
- Table 34. System-in-package (SiP) module applications. 119
- Table 35. Comparison between heterogeneous 3D integration and monolithic 3D integration. 125
- Table 36. Key 2D materials in monolithic 3D integrated circuits. 126
- Table 37. Benefits of monolithic 3D ICs. 127
- Table 38. Challenges of monolithic 3D ICs. 128
- Table 39. Advanced semiconductor packaging trends by market. 134
- Table 40. Design requirements in advanced packaging, by market. 138
- Table 41. Global market for Advanced semiconductor packaging, 2020-2035, by packaging type, (billions USD). 203
- Table 42. Global market for Advanced semiconductor packaging, 2020-2035, by end use market (billions USD). 206
- Table 43. Recent expansion activities by companies in Malaysia. 208
- Table 44. Global market for Advanced semiconductor packaging, 2020-2035, by region (billions USD). 209
- Table 45 : Main Global Wafer Foundry Companies 2023. 217
- Table 46. Market challenges for advanced semiconductor packaging. 222
- Table 47. AMD AI chip range. 227
- Table 48. Intel's products that adopt 3D FOVEROS. 278
List of Figures
- Figure 1. Timeline of different packaging technologies. 25
- Figure 2. Evolution roadmap for semiconductor packaging. 27
- Figure 3. Semiconductor Supply Chain. 29
- Figure 4. Advanced packaging supply chain. 30
- Figure 5. Scaling technology roadmap. 43
- Figure 6. Wafer-level chip scale packaging (WLCSP) 44
- Figure 7. Embedded wafer-level ball grid array (eWLB). 45
- Figure 8. Fan-out wafer-level packaging (FOWLP). 46
- Figure 9. Chiplet design. 47
- Figure 10. Chiplet SoC. 49
- Figure 11. 2D chip packaging. 56
- Figure 12. Typical structure of 2.5D IC package utilizing interposer. 57
- Figure 13. Fan-out chip-first process flow and Fan-out chip-last process flow. 61
- Figure 14. Manufacturing process for glass interposers. 68
- Figure 15. 3D Glass Panel Embedding (GPE) package. 70
- Figure 16. Typical FOWLP structure. 92
- Figure 17. System-in-Package (SiP) for HI. 111
- Figure 18. 2.5D chiplet integration. 114
- Figure 19. Advanced packaging supply chain. 131
- Figure 20. Packaging of sensors used in advanced driver assistance systems (ADAS) and autonomous driving. 165
- Figure 21. Global market for Advanced semiconductor packaging, 2020-2035, by packaging type, (billions USD). 204
- Figure 22. Global market for Advanced semiconductor packaging, 2020-2035, by end use market (billions USD). 207
- Figure 23. Global market for Advanced semiconductor packaging, 2020-2035, by region (billions USD). 210
- Figure 24. Absolic glass substrate. 225
- Figure 25. AMD Radeon Instinct. 227
- Figure 26. AMD Ryzen 7040. 228
- Figure 27. Alveo V70. 228
- Figure 28. Versal Adaptive SOC. 228
- Figure 29. AMD’s MI300 chip. 229
- Figure 30. 12-layer HBM3. 313
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer.
To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.