The Global Market for Advanced Semiconductor Packaging 2024-2035

0

  • Published: March 2024
  • Pages: 346
  • Tables: 48
  • Figures: 30
  • Series: Electronics 

 

The global landscape of semiconductor manufacturing is rapidly evolving, with advanced packaging emerging as a critical component of manufacturing and design. It affects power, performance, and cost on a macro level, and the basic functionality of all chips on a micro level. Advanced packaging allows for the creation of faster, cost-effective systems by integrating various chips, a technique that's increasingly essential given the physical limitations of traditional chip miniaturization. It is reshaping the industry, enabling the integration of diverse chip types and enhancing processing speeds.

The U.S. government recognizes the importance of advanced packaging and has introduced a $3 billion National Advanced Packaging Manufacturing Program aimed at establishing high-volume packaging facilities by the end of the decade. The focus on packaging complements the existing efforts under the CHIPS and Science Act, emphasizing the interconnectedness of chipmaking and packaging.

The Global Market for Advanced Semiconductor Packaging 2024-2035 provides a comprehensive analysis of the global advanced semiconductor packaging technologies market from 2020-2035. It encompasses packaging approaches like wafer-level packaging, 2.5D/3D integration, chiplets, fan-out, and flip chip, analyzing market values in the billions (USD) by type, region, and end-use application.

Trends analyzed include heterogeneous integration, interconnects, thermal solutions, miniaturization, supply chain maturity, simulation/data analytics. Leading companies profiled include TSMC, Samsung, Intel, JCET, Amkor. Applications covered include AI, mobile, automotive, aerospace, IoT, communications (5G/6G), high performance computing, medical, and consumer electronics.

Regional markets explored include North America, Asia Pacific, Europe, China, Japan, and RoW. The report also assesses drivers like ML/AI, data centers, EV/ADAS; challenges like costs, complexity, reliability; emerging approaches like system-in-package, monolithic 3D ICs, advanced substrates, novel materials. Overall an in-depth benchmark analysis of the opportunities within the advancing semiconductor packaging industry.

Report contents include: 

  • Market size and forecasts
  • Key technology trends
  • Growth drivers and challenges
  • Competitive landscape analysis
  • Future packaging trends outlook
  • In-depth analysis of wafer level packaging (WLP)
  • System-in-Package (SiP) and heterogeneous integration
  • Monolithic 3D ICs overview
  • Advanced semiconductor packaging applications across key markets: AI, mobile, automotive, aerospace, IoT, communications, HPC, medical, consumer electronics
  • Regional market breakdown
  • Assessment of key industry challenges: complexity, costs, supply chain maturity, standards
  • Company profiles: Strategies and technologies of 128 key players. Companies profiled include 3DSEMI, Amkor, Chipbond, ChipMOS, Intel Corporation, Leader-Tech Semiconductor, Powertech, Samsung Electronics, Silicon Box, SJ Semiconductor Corp.,  SK hynix, SPIL, Tongfu, Taiwan Semiconductor Manufacturing Company (TSMC) and Yuehai Integrated  (Full list of companies profiled in table of contents). 

 

1             RESEARCH METHODOLOGY   20

 

2             EXECUTIVE SUMMARY 21

  • 2.1         Semiconductor Packaging Technology Overview          21
    • 2.1.1     Key challenges 22
    • 2.1.2     Evolution of semiconductor packaging               23
      • 2.1.2.1 From 1D to 3D  25
    • 2.1.3     Conventional packaging approaches   26
    • 2.1.4     Advanced packaging approaches          27
  • 2.2         Semiconductor Supply Chain  29
  • 2.3         Advanced Packaging Supply Chain       30
  • 2.4         Key Technology Trends in Advanced Packaging              31
  • 2.5         Market Growth Drivers 31
  • 2.6         Competitive Landscape             32
  • 2.7         Market Challenges        33
  • 2.8         Future outlook 34
    • 2.8.1     Heterogeneous Integration       34
    • 2.8.2     Chiplets and Die Disaggregation            35
    • 2.8.3     Advanced Interconnects            36
    • 2.8.4     Scaling and Miniaturization      36
    • 2.8.5     Thermal Management 37
    • 2.8.6     Materials Innovation    37
    • 2.8.7     Supply Chain Developments    38
    • 2.8.8     Role of Simulation and Data Analytics 39

 

3             SEMICONDUCTOR PACKAGING TECHNOLOGIES       40

  • 3.1         Transistor Device Scaling          40
    • 3.1.1     Overview            40
    • 3.1.2     Heterogeneous Architecture Transition             41
    • 3.1.3     Co-Design Focus Areas              41
  • 3.2         Wafer Level Packaging 44
  • 3.3         Fan-Out Wafer Level Packaging              45
  • 3.4         Chiplets              46
    • 3.4.1     AMD EPYC and Ryzen processor families          48
    • 3.4.2     Disaggregation Needs 49
  • 3.5         Interconnection in Semiconductor Packaging 50
    • 3.5.1     Overview            51
    • 3.5.2     Wire Bonding    52
    • 3.5.3     Flip-chip bonding           52
    • 3.5.4     Interposer          53
    • 3.5.5     Through-silicon via (TSV) bonding          54
    • 3.5.6     Hybrid bonding with chiplets    54
  • 3.6         2.5D and 3D Packaging               55
    • 3.6.1     2.5D packaging               55
      • 3.6.1.1 Overview            55
        • 3.6.1.1.1             Silicon Interposer 2.5D                57
          • 3.6.1.1.1.1         Through Si Via (TSV)      57
          • 3.6.1.1.1.2         (SiO2) based redistribution layers (RDLs)           58
        • 3.6.1.1.2             2.5D Organic-based packaging               59
          • 3.6.1.1.2.1         Chip-first and chip-last fan-out packaging        60
          • 3.6.1.1.2.2         Organic substrates        62
          • 3.6.1.1.2.3         Organic RDL     63
        • 3.6.1.1.3             2.5D glass-based packaging     64
          • 3.6.1.1.3.1         Benefits              65
          • 3.6.1.1.3.2         Glass Si interposers in advanced packaging     66
          • 3.6.1.1.3.3         Glass material properties          67
          • 3.6.1.1.3.4         2/2 μm line/space metal pitch on glass substrates       68
          • 3.6.1.1.3.5         3D Glass Panel Embedding (GPE) packaging    69
          • 3.6.1.1.3.6         Thermal management 71
          • 3.6.1.1.3.7         Polymer dielectric films             71
          • 3.6.1.1.3.8         Challenges        72
          • 3.6.1.1.3.9         Comparison with other substrates        73
        • 3.6.1.1.4             2.5D vs. 3D Packaging 74
      • 3.6.1.2 Benefits              74
      • 3.6.1.3 Challenges        75
      • 3.6.1.4 Trends  75
      • 3.6.1.5 Market players 76
    • 3.6.2     3D packaging   76
      • 3.6.2.1 Overview            78
        • 3.6.2.1.1             Conventional 3D packaging      78
        • 3.6.2.1.2             Advanced 3D Packaging with through-silicon vias (TSVs)           79
        • 3.6.2.1.3             Three-dimensional (3D) hybrid bonding              80
          • 3.6.2.1.3.1         Devices using hybrid bonding   81
      • 3.6.2.2 3D Microbump technology        82
        • 3.6.2.2.1             Technologies    82
        • 3.6.2.2.2             Challenges        84
        • 3.6.2.2.3             Bumpless copper-to-copper (Cu-Cu) hybrid bonding  84
      • 3.6.2.3 Trends  86

 

4             WAFER-LEVEL PACKAGING     88

  • 4.1         Introduction      88
  • 4.2         Benefits              88
  • 4.3         Types of Wafer Level Packaging              89
    • 4.3.1     Wafer Level Chip Scale Packaging        89
      • 4.3.1.1 Overview            89
      • 4.3.1.2 Advantages       90
      • 4.3.1.3 Applications     90
    • 4.3.2     Wafer Level Fan-Out Packaging              91
      • 4.3.2.1 Overview            91
      • 4.3.2.2 Advantages       92
      • 4.3.2.3 Applications     93
    • 4.3.3     Wafer Level Fan-In Packaging  94
      • 4.3.3.1 Overview            94
      • 4.3.3.2 Advantages       94
      • 4.3.3.3 Applications     95
    • 4.3.4     Other Types of WLP       95
      • 4.3.4.1 Cu-Pillar Flip Chip          95
      • 4.3.4.2 Advantages       96
        • 4.3.4.2.1             Applications     96
      • 4.3.4.3 Embedded Wafer Level BGA (eWLB)    97
      • 4.3.4.4 Advantages       98
        • 4.3.4.4.1             Applications     98
      • 4.3.4.5 Chip-last FO-WLP          99
        • 4.3.4.5.1             Advantages       99
        • 4.3.4.5.2             Applications     100
      • 4.3.4.6 Wafer-on-Wafer (WoW)               101
        • 4.3.4.6.1             Applications     102
  • 4.4         WLP Manufacturing Processes               102
    • 4.4.1     Wafer Preparation         102
    • 4.4.2     RDL Buildup      103
    • 4.4.3     Bumping             104
    • 4.4.4     Encapsulation 104
    • 4.4.5     Integration         104
    • 4.4.6     Test and Singulation     105
  • 4.5         Wafer Level Packaging Trends 105
  • 4.6         Applications of Wafer Level Packaging 107
    • 4.6.1     Mobile and Consumer Electronics        107
    • 4.6.2     Automotive Electronics              107
    • 4.6.3     IoT and Industrial           107
    • 4.6.4     High Performance Computing 108
    • 4.6.5     Aerospace and Defense             108
  • 4.7         Wafer Level Packaging Outlook              108

 

5             SYSTEM-IN-PACKAGE AND HETEROGENEOUS INTEGRATION               110

  • 5.1         Introduction      110
  • 5.2         Approaches for heterogenous integration         111
    • 5.2.1     Technology Building Blocks      112
  • 5.3         SiP Manufacturing Approaches              113
    • 5.3.1     2.5D Integrated Interposers      114
    • 5.3.2     Multi-Chip Modules      114
    • 5.3.3     3D Stacked packages  115
    • 5.3.4     Fan-Out Wafer Level Packaging              115
    • 5.3.5     Flip Chip Package-on-Package               115
  • 5.4         SiP Component Integration       115
  • 5.5         Heterogeneous Integration Drivers       116
  • 5.6         Trends Driving SiP Adoption      117
  • 5.7         SiP Applications             119
  • 5.8         SiP Industry Landscape              120
  • 5.9         Future Outlook on Heterogeneous Integration 121

 

6             MONOLITHIC 3D IC      123

  • 6.1         Overview            123
    • 6.1.1     Transitioning from 2D Systems               123
    • 6.1.2     Motivation for developing monolithic 3D manufacturing           123
    • 6.1.3     Improved M3D Interconnect Density   124
    • 6.1.4     Heterogenous 3D vs Monolithic 3D       125
    • 6.1.5     2D Materials     126
  • 6.2         Benefits              127
  • 6.3         Challenges        128
  • 6.4         Future outlook 128

 

7             MARKETS AND APPLICATIONS 130

  • 7.1         Market value chain        130
    • 7.1.1     SiP OEM/Designers       131
    • 7.1.2     Chiplet OEM/Designer and Chiplet Foundry     131
    • 7.1.3     Chiplet Integrator           132
      • 7.1.3.1 Integrated Device Manufacturers (IDMs)            132
      • 7.1.3.2 Outsourced Semiconductor Assembly and Test (OSAT) Providers        132
    • 7.1.4     Material Suppliers         132
    • 7.1.5     Equipment Suppliers    133
    • 7.1.6     Substrate and PCB suppliers    133
    • 7.1.7     EDA Tools Suppliers     133
    • 7.1.8     Interposer Foundry        133
  • 7.2         Packaging trends by market      134
    • 7.2.1     Mobile Devices               135
    • 7.2.2     High-Performance Computing (HPC)  135
    • 7.2.3     Automotive       136
    • 7.2.4     Internet of Things (IoT)  136
    • 7.2.5     Consumer Electronics 137
    • 7.2.6     Aerospace and Defense             137
    • 7.2.7     Medical Devices             137
  • 7.3         Design requirements   138
  • 7.4         Artificial Intelligence (AI)            139
    • 7.4.1     Challenges in AI              139
    • 7.4.2     Advanced Packaging Solutions               140
      • 7.4.2.1 2.5D and 3D Integration              140
      • 7.4.2.2 Chiplet-based Packaging           140
      • 7.4.2.3 Wafer-Level Packaging (WLP)  140
    • 7.4.3     Addressing AI Challenges through Advanced Packaging            141
      • 7.4.3.1 Processing Power          141
      • 7.4.3.2 Memory Bandwidth       141
      • 7.4.3.3 Energy Efficiency           141
      • 7.4.3.4 Scalability         141
    • 7.4.4     Applications     142
      • 7.4.4.1 Data Center and Cloud Computing       142
      • 7.4.4.2 Edge Devices and IoT   142
      • 7.4.4.3 Healthcare and Medical Devices           142
      • 7.4.4.4 Autonomous Vehicles 142
  • 7.5         Mobile Devices               143
    • 7.5.1     Challenges        143
    • 7.5.2     Advanced Packaging Solutions               144
      • 7.5.2.1 System-in-Package (SiP)            144
      • 7.5.2.2 Fan-Out Wafer-Level Packaging (FOWLP)         144
      • 7.5.2.3 3D IC Packaging             144
      • 7.5.2.4 Wafer-Level Chip-Scale Packaging (WLCSP)   144
    • 7.5.3     Addressing Challenges through Advanced Packaging 145
      • 7.5.3.1 Power Consumption and Thermal Management            145
      • 7.5.3.2 Size Constraints             145
      • 7.5.3.3 Cost      145
    • 7.5.4     Applications     145
      • 7.5.4.1 Smartphones   145
      • 7.5.4.2 Tablets 146
      • 7.5.4.3 Wearables         146
      • 7.5.4.4 AR/VR Devices 146
    • 7.5.5     Future trends    146
  • 7.6         High Performance Computing (HPC)   147
    • 7.6.1     Challenges        148
    • 7.6.2     Advanced Packaging Solutions for HPC              148
      • 7.6.2.1 2.5D and 3D Integration              149
      • 7.6.2.2 Hybrid bonding                149
      • 7.6.2.3 Multi-Chip Modules (MCMs)     150
      • 7.6.2.4 Chiplet-based Architectures    150
      • 7.6.2.5 Advanced Interconnect Technologies 151
    • 7.6.3     Addressing HPC Challenges through Advanced Packaging       151
      • 7.6.3.1 Performance Scaling   151
      • 7.6.3.2 Power Consumption     152
      • 7.6.3.3 Interconnect Bandwidth             152
      • 7.6.3.4 Reliability          153
    • 7.6.4     Applications     153
      • 7.6.4.1 Supercomputers            153
      • 7.6.4.2 Data Center and Cloud Computing       153
      • 7.6.4.3 Artificial Intelligence and Machine Learning    153
      • 7.6.4.4 Scientific Computing and Simulation  154
      • 7.6.4.5 Co-Packaged Optics    154
        • 7.6.4.5.1             Network Switch              154
        • 7.6.4.5.2             Optical communication in data centers             154
        • 7.6.4.5.3             Thermal Management 154
        • 7.6.4.5.4             Challenges in CPO        155
        • 7.6.4.5.5             Package Structure         155
        • 7.6.4.5.6             Fan-Out Embedded Bridge (FOEB) structure    156
        • 7.6.4.5.7             Advancing Switching and AI Networks 156
    • 7.6.5     Future Trends   157
  • 7.7         Automotive Electronics              158
    • 7.7.1     Challenges        158
    • 7.7.2     Advanced Packaging Solutions for Automotive Electronics      159
      • 7.7.2.1 System-in-Package (SiP)            159
      • 7.7.2.2 Flip-Chip and Wafer-Level Packaging (WLP)    159
      • 7.7.2.3 3D Integration and Through-Silicon Vias (TSVs)              160
    • 7.7.3     Addressing Automotive Electronics Challenges through Advanced Packaging               160
      • 7.7.3.1 ADAS/Autonomous driving systems     160
      • 7.7.3.2 Harsh Environment Reliability 161
      • 7.7.3.3 Safety and Reliability   161
      • 7.7.3.4 Miniaturization and Integration               161
      • 7.7.3.5 High-Speed Communication   161
      • 7.7.3.6 Thermal Management 162
    • 7.7.4     Applications     162
      • 7.7.4.1 Advanced Driver Assistance Systems (ADAS) and Autonomous Driving             162
        • 7.7.4.1.1             Radar packaging             164
      • 7.7.4.2 Electric Vehicle (EV) Power Electronics              164
      • 7.7.4.3 Infotainment and Telematics   164
      • 7.7.4.4 Sensors and Actuators 165
    • 7.7.5     Future Trends   165
  • 7.8         Internet of Things (IoT) Devices               167
    • 7.8.1     Challenges        167
    • 7.8.2     Advanced Packaging Solutions for IoT Devices               167
      • 7.8.2.1 Wafer-Level Packaging (WLP)  167
      • 7.8.2.2 System-in-Package (SiP)            168
      • 7.8.2.3 Fan-Out Wafer-Level Packaging (FOWLP)         168
      • 7.8.2.4 3D Packaging and Through-Silicon Vias (TSVs)                168
    • 7.8.3     Addressing IoT Device Challenges through Advanced Packaging          168
      • 7.8.3.1 Size Constraints             168
      • 7.8.3.2 Power Consumption     169
      • 7.8.3.3 Cost Pressures                169
      • 7.8.3.4 Integration and Functionality   169
      • 7.8.3.5 Reliability and Robustness        169
    • 7.8.4     Applications     170
      • 7.8.4.1 Wearable Devices         170
      • 7.8.4.2 Smart Home Devices   170
      • 7.8.4.3 Industrial IoT Devices  170
      • 7.8.4.4 Medical IoT Devices      171
    • 7.8.5     Future Trends   171
  • 7.9         5G & 6G Communications Infrastructure          172
    • 7.9.1     Challenges        172
    • 7.9.2     Trends in 5G and 6G packaging               173
    • 7.9.3     Advanced Packaging Solutions for 5G and 6G Communications Infrastructure             174
      • 7.9.3.1 Antenna-in-Package (AiP)          174
      • 7.9.3.2 System-in-Package (SiP)            175
      • 7.9.3.3 3D Packaging and Through-Silicon Vias (TSVs)                175
      • 7.9.3.4 Fan-Out Wafer-Level Packaging (FOWLP)         176
    • 7.9.4     Addressing 5G and 6G Infrastructure Challenges through Advanced Packaging            176
      • 7.9.4.1 High-Frequency Operation       176
      • 7.9.4.2 Massive MIMO and Beamforming          177
      • 7.9.4.3 Energy Efficiency           177
      • 7.9.4.4 Cost and Scalability     178
      • 7.9.4.5 Thermal Management 178
    • 7.9.5     Applications     178
      • 7.9.5.1 Base Stations and Small Cells 178
      • 7.9.5.2 Backhaul and Fronthaul Networks        179
      • 7.9.5.3 Edge Computing and Network Slicing 179
      • 7.9.5.4 Satellite and Non-Terrestrial Networks               179
    • 7.9.6     Future Trends   179
  • 7.10       Aerospace and Defense Electronics    181
    • 7.10.1   Challenges        181
    • 7.10.2   Advanced Packaging Solutions for Aerospace and Defense Electronics            182
      • 7.10.2.1               3D Packaging and Through-Silicon Vias (TSVs)                182
      • 7.10.2.2               Chip-Scale Packaging (CSP) and Wafer-Level Packaging (WLP)             182
      • 7.10.2.3               Flip-Chip and Ball Grid Array (BGA) Packaging 182
      • 7.10.2.4               Hermetic Packaging and Sealing           182
    • 7.10.3   Addressing Aerospace and Defense Electronics Challenges through Advanced Packaging     182
      • 7.10.3.1               Size, Weight, and Power (SWaP) Optimization 183
      • 7.10.3.2               Harsh Environment Reliability 183
      • 7.10.3.3               High Performance and Speed  183
      • 7.10.3.4               Long-Term Reliability and Maintainability          183
      • 7.10.3.5               Security and Anti-Tamper Features      184
    • 7.10.4   Applications     184
      • 7.10.4.1               Avionics and Flight Control Systems    184
      • 7.10.4.2               Radar and Electronic Warfare Systems              184
      • 7.10.4.3               Satellite Communications and Payload Electronics    184
      • 7.10.4.4               Missile Guidance and Control Electronics        185
    • 7.10.5   Future Trends   185
  • 7.11       Medical Electronics      187
    • 7.11.1   Challenges        187
    • 7.11.2   Advanced Packaging Solutions for Medical Electronics             187
      • 7.11.2.1               3D Packaging and Through-Silicon Vias (TSVs)                187
      • 7.11.2.2               Wafer-Level Packaging (WLP) and Chip-Scale Packaging (CSP)             188
      • 7.11.2.3               Flexible and Stretchable Packaging      188
      • 7.11.2.4               Microfluidic Packaging 188
    • 7.11.3   Addressing Medical Electronics Challenges through Advanced Packaging       189
      • 7.11.3.1               Miniaturization 189
      • 7.11.3.2               Biocompatibility            189
      • 7.11.3.3               Reliability          189
      • 7.11.3.4               Power Efficiency            189
      • 7.11.3.5               High Performance         190
    • 7.11.4   Applications     190
      • 7.11.4.1               Implantable Devices    190
      • 7.11.4.2               Wearable Health Monitors        190
      • 7.11.4.3               Diagnostic Imaging Equipment               190
      • 7.11.4.4               Surgical Robotics and Instruments       191
    • 7.11.5   Future Trends   191
  • 7.12       Consumer Electronics 192
    • 7.12.1   Challenges        193
    • 7.12.2   Advanced Packaging Solutions for Consumer Electronics        193
      • 7.12.2.1               System-in-Package (SiP)            193
      • 7.12.2.2               Fan-Out Wafer-Level Packaging (FOWLP)         193
      • 7.12.2.3               3D Packaging and Through-Silicon Vias (TSVs)                194
      • 7.12.2.4               Embedded Die Packaging          194
    • 7.12.3   Addressing Consumer Electronics Challenges through Advanced Packaging 194
      • 7.12.3.1               Miniaturization 194
      • 7.12.3.2               Power Efficiency            195
      • 7.12.3.3               High Performance         195
      • 7.12.3.4               Cost Reduction               195
      • 7.12.3.5               Time-to-Market               195
    • 7.12.4   Applications     196
      • 7.12.4.1               Smartphones and Tablets          196
      • 7.12.4.2               Wearables and IoT Devices       196
      • 7.12.4.3               Gaming Consoles and VR/AR Devices 196
      • 7.12.4.4               Smart Home Devices   196
    • 7.12.5   Future Trends   197
  • 7.13       Additive manufacturing for advanced packaging           198
  • 7.14       Silicon photonics           200
  • 7.15       Global market (Revenues)         202
    • 7.15.1   By type 202
    • 7.15.2   By market          205
    • 7.15.3   By region            208

 

8             MARKET PLAYERS         211

  • 8.1         Integrated Device Manufacturers          211
  • 8.2         Outsourced Semiconductor Assembly and Test (OSAT) Companies    213
  • 8.3         Foundries           215
  • 8.4         Electronics OEMs          219
  • 8.5         Packaging Equipment and Materials Companies           221

 

9             MARKET CHALLENGES               222

 

10           COMPANY PROFILES  224

  • 10.1       AaltoSemi         224
  • 10.2       Absolic, Inc.      224
  • 10.3       ACCRETECH (Europe) GmbH   225
  • 10.4       Adeia, Inc.          226
  • 10.5       Advanced Micro Devices, Inc. (AMD)    227
  • 10.6       Analog Devices, Inc. (ADI)          230
  • 10.7       Amkor Technology         230
  • 10.8       Anmuquan Intelligent Technology (AMQ Intelligent)     233
  • 10.9       Apple    233
  • 10.10    Applied Materials           234
  • 10.11    Ardentec Corporation  235
  • 10.12    ARM      235
  • 10.13    ASE       236
  • 10.14    ASMPT Ltd         238
  • 10.15    Besi       239
  • 10.16    Biren Technology            239
  • 10.17    Blue Ocean Smart System        240
  • 10.18    Brewer Science              241
  • 10.19    Broadcom          243
  • 10.20    BroadPak           244
  • 10.21    Cambricon Technologies Co.,  245
  • 10.22    Capcon Semiconductor             246
  • 10.23    CAS Microelectronics Integration         246
  • 10.24    CD Micro-Technology  247
  • 10.25    CEA-Leti             248
  • 10.26    Cerebras            248
  • 10.27    China Wafer Level CSP Co        249
  • 10.28    Chipbond Technology Corporation       250
  • 10.29    Chipletz              252
  • 10.30    ChipMOS Technologies, Inc.    252
  • 10.31    Corning               253
  • 10.32    Dewo Advanced Automation (DAA        254
  • 10.33    Disco    254
  • 10.34    Dupont 255
  • 10.35    Ebara    256
  • 10.36    Eliyan   257
  • 10.37    EMC Semi-Conductor Technology        258
  • 10.38    EPS Technology              258
  • 10.39    Entegris               259
  • 10.40    EV Group            260
  • 10.41    GlobalFoundries            261
  • 10.42    Global Unichip 261
  • 10.43    Gloway 262
  • 10.44    Goldenscope Tech        263
  • 10.45    Gona Semiconductor Technology         263
  • 10.46    Graphcore         264
  • 10.47    Greatek Electronics Inc              265
  • 10.48    Hangke Chuangxing (Aero Inno-Star)   266
  • 10.49    Hanmi Semiconductor 266
  • 10.50    HiSilicon            267
  • 10.51    HLMC (Shanghai Huali Microelectronics Corporation)               268
  • 10.52    Huatian Huichuang Technology (Xi'an) Co., Ltd.             269
  • 10.53    Huawei               269
  • 10.54    Ibiden   270
  • 10.55    IBM        271
  • 10.56    ICLeague Technology Co Ltd    272
  • 10.57    IMEC     273
  • 10.58    Infineon Technologies AG          273
  • 10.59    Integra 274
  • 10.60    Inari Amertron Berhad 275
  • 10.61    Intel Corporation            276
  • 10.62    JCET Group        279
  • 10.63    Jiangsu IC Assembly & Test (ICAT)         280
  • 10.64    Jingdu Semiconductor 280
  • 10.65    Keyang Semiconductor (KYS)  281
  • 10.66    King Yuan Electronics Co., Ltd.               281
  • 10.67    Kioxia   282
  • 10.68    KyLitho 283
  • 10.69    Kyocera              283
  • 10.70    Lam Research 284
  • 10.71    Lapis Technology           284
  • 10.72    LB Semicon Co Ltd        285
  • 10.73    Leading Interconnect Semiconductor Technology        286
  • 10.74    Lidrotec GmbH               286
  • 10.75    Lux Semiconductors    287
  • 10.76    Malaysian Pacific Industries Berhad    288
  • 10.77    Micron Technology, Inc.              288
  • 10.78    Mediatek            289
  • 10.79    Micross Components   290
  • 10.80    Mitsubishi          291
  • 10.81    National Center For Advanced Packaging China (NCAP China)              291
  • 10.82    NEC      292
  • 10.83    Nvidia Corporation        293
  • 10.84    Nepes Corporation        294
  • 10.85    Onsemi               294
  • 10.86    Orient Semiconductor Electronics Ltd.              295
  • 10.87    Panasonic         296
  • 10.88    Powertech Technology Inc.       297
  • 10.89    Pragmatic Semiconductor        298
  • 10.90    Qorvo   298
  • 10.91    Renesas              299
  • 10.92    Rigger Micro Technologies (RMT)            300
  • 10.93    Rohm   300
  • 10.94    Rong Semiconductor   301
  • 10.95    Samsung Electronics   302
  • 10.96    Samtec, Inc.     305
  • 10.97    Schott AG          305
  • 10.98    Sharp   306
  • 10.99    Shinko Electric Industries          307
  • 10.100 Showa Denko   307
  • 10.101 Sigurd Microelectronics Corporation   308
  • 10.102 Silicon Box        309
  • 10.103 Siliconware Precision Industries (SPIL)              310
  • 10.104 SJ Semiconductor         311
  • 10.105 SK Hynix             312
  • 10.106 Skywater            313
  • 10.107 Sony Corporation           314
  • 10.108 Starmask           315
  • 10.109 STMicroelectronics      315
  • 10.110 Suss Microtec 316
  • 10.111 SZLQ Intelligence (Suzhou Lieqi Intelligent Equipment)             317
  • 10.112 Taiwan Semiconductor Manufacturing Company (TSMC)         317
  • 10.113 Techsense International             320
  • 10.114 Tezzaron Semiconductor           321
  • 10.115 Tongfu Microelectronics Co., Ltd.          321
  • 10.116 Texas Instruments         322
  • 10.117 Tokyo Seimitsu Co., Ltd.             323
  • 10.118 Tong Hsing Electronic Industries, Ltd. 324
  • 10.119 Toshiba               325
  • 10.120 Tower Semiconductor 325
  • 10.121 Unimicron         326
  • 10.122 Unisem               327
  • 10.123 UTAC Group      328
  • 10.124 Walton Advanced Engineering Inc.        329
  • 10.125 Winstek Semiconductor Technology Co., Ltd. 329
  • 10.126 Xinhe Semiconductor  330
  • 10.127 Yibu Semiconductor    331
  • 10.128 Yuehai Integrated           331

 

11           REFERENCES   333

 

List of Tables

  • Table 1. Evolution of semiconductor packaging.            23
  • Table 2. Summary of key advanced semiconductor packaging approaches.    28
  • Table 3. Key Technology Trends in Advanced Semiconductor Packaging.         31
  • Table 4. Market Growth Drivers for advanced semiconductor packaging.         31
  • Table 5. Challenges Facing Advanced Packaging Adoption.     33
  • Table 6. Challenges in transistor scaling.           43
  • Table 7. Use cases and benefits of using chiplets in semiconductor design.   48
  • Table 8.  Specifications of interconnection methods.  51
  • Table 9. Interconnection technique in semiconductor packaging         51
  • Table 10. Passive vs active interposer. 53
  • Table 11. Comparative benchmark overview table of key semiconductor interconnection technologies          54
  • Table 12. Fan-out packaging process overview.             59
  • Table 13. Comparison between mainstream silicon dioxide (SiO2) and leading organic dielectrics for electronic interconnect substrates.            63
  • Table 14. Benefits of glass in 2.5D glass-based packaging.       65
  • Table 15. Comparison between key properties of glass and polymer molding compounds commonly used in semiconductor packaging applications.            70
  • Table 16. Challenges of glass semiconductor packaging.          72
  • Table 17. Comparison between silicon, organic laminates and glass as packaging substrates.             73
  • Table 18. 2.5D vs. 3D packaging.            74
  • Table 19. 2.5D packaging challenges.  75
  • Table 20. Market players in 2.5D packaging.     76
  • Table 21. Advantages and disadvantages of 3D packaging.      78
  • Table 22. Comparison between 2.5D, 3D micro bump, and 3D hybrid bonding.             81
  • Table 23. Challenges in 3D Hybrid Bonding.      82
  • Table 24. Challenges in scaling bumps.              84
  • Table 25. Key methods for enabling copper-to-copper (Cu-Cu) hybrid bonding in advanced semiconductor packaging:         85
  • Table 26. Micro bumps vs Cu-Cu bumpless hybrid bonding.    85
  • Table 27. Benefits of Wafer-Level Packaging.  88
  • Table 28. Types of wafer level packaging.          89
  • Table 29. Key trends shaping wafer level packaging.    106
  • Table 30. Packaging approaches utilized for assembling System-in-Package modules.            113
  • Table 31. Considerations for integrating key component categories into system-in-package (SiP) modules/  116
  • Table 32. Key factors driving adoption of heterogeneous integration through SiPs and multi-die packages.    117
  • Table 33. Key trends influencing adoption of System-in-Package modules.     118
  • Table 34.  System-in-package (SiP) module applications.         119
  • Table 35. Comparison between heterogeneous 3D integration and monolithic 3D integration.              125
  • Table 36.  Key 2D materials in monolithic 3D integrated circuits.          126
  • Table 37. Benefits of monolithic 3D ICs.             127
  • Table 38. Challenges of monolithic 3D ICs.       128
  • Table 39. Advanced semiconductor packaging trends by market.         134
  • Table 40. Design requirements in advanced packaging, by market.      138
  • Table 41. Global market for Advanced semiconductor packaging, 2020-2035, by packaging type, (billions USD).                203
  • Table 42. Global market for Advanced semiconductor packaging, 2020-2035, by end use market (billions USD).                206
  • Table 43. Recent expansion activities by companies in Malaysia.         208
  • Table 44. Global market for Advanced semiconductor packaging, 2020-2035, by region (billions USD).            209
  • Table 45 : Main Global Wafer Foundry Companies 2023.           217
  • Table 46. Market challenges for advanced semiconductor packaging.               222
  • Table 47. AMD AI chip range.    227
  • Table 48.  Intel's products that adopt 3D FOVEROS.    278

 

List of Figures

  • Figure 1. Timeline of different packaging technologies.              25
  • Figure 2. Evolution roadmap for semiconductor packaging.     27
  • Figure 3. Semiconductor Supply Chain.              29
  • Figure 4. Advanced packaging supply chain.    30
  • Figure 5. Scaling technology roadmap.               43
  • Figure 6. Wafer-level chip scale packaging (WLCSP)    44
  • Figure 7. Embedded wafer-level ball grid array (eWLB).              45
  • Figure 8. Fan-out wafer-level packaging (FOWLP).        46
  • Figure 9. Chiplet design.             47
  • Figure 10. Chiplet SoC.                49
  • Figure 11. 2D chip packaging.  56
  • Figure 12. Typical structure of 2.5D IC package utilizing interposer.    57
  • Figure 13. Fan-out chip-first process flow and Fan-out chip-last process flow.              61
  • Figure 14. Manufacturing process for glass interposers.            68
  • Figure 15. 3D Glass Panel Embedding (GPE) package. 70
  • Figure 16. Typical FOWLP structure.    92
  • Figure 17. System-in-Package (SiP) for HI.        111
  • Figure 18. 2.5D chiplet integration.       114
  • Figure 19. Advanced packaging supply chain. 131
  • Figure 20. Packaging of sensors used in advanced driver assistance systems (ADAS) and autonomous driving.                165
  • Figure 21. Global market for Advanced semiconductor packaging, 2020-2035, by packaging type, (billions USD).                204
  • Figure 22. Global market for Advanced semiconductor packaging, 2020-2035, by end use market (billions USD).                207
  • Figure 23. Global market for Advanced semiconductor packaging, 2020-2035, by region (billions USD).          210
  • Figure 24. Absolic glass substrate.        225
  • Figure 25. AMD Radeon Instinct.            227
  • Figure 26. AMD Ryzen 7040.      228
  • Figure 27. Alveo V70.    228
  • Figure 28. Versal Adaptive SOC.             228
  • Figure 29. AMD’s MI300 chip.   229
  • Figure 30. 12-layer HBM3.         313

 

 

The Global Market for Advanced Semiconductor Packaging 2024-2035
The Global Market for Advanced Semiconductor Packaging 2024-2035
PDF download/by email.

The Global Market for Advanced Semiconductor Packaging 2024-2035
The Global Market for Advanced Semiconductor Packaging 2024-2035
PDF and print edition (including tracked FEDEX delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.