The Global Market for Bio-based and Sustainable Materials 2024-2035 (Bio-based Chemicals, Intermediates, Materials, Polymers, Plastics, Construction, Textiles, Paints & Coatings, Fuels & Electronics)

0
  • Published: July 2024
  • Pages: 2,286
  • Tables: 484
  • Figures: 623

 

The market for bio-based and sustainable materials is experiencing rapid growth and transformation, driven by increasing environmental awareness, regulatory pressures, and technological advancements. This sector encompasses a wide range of materials, including bioplastics, natural fiber composites, bio-based chemicals, sustainable construction materials, green packaging solutions, and eco-friendly textiles. Key application areas for these materials include packaging, where biodegradable films and compostable containers are gaining traction; the automotive industry, which is incorporating natural fiber composites in interior parts; construction, with a focus on insulation materials and bio-based concrete alternatives; and the textile industry, where recycled and bio-based fibers are becoming more prevalent.

Technological advancements are playing a crucial role in shaping the market. Advanced biorefinery processes, synthetic biology for creating novel biomaterials,  and carbon capture and utilization in material production are some of the key trends driving innovation in this space. There's also a growing focus on circular economy approaches to material design and recycling, aiming to minimize waste and maximize resource efficiency. The market landscape is diverse, featuring large chemical and material companies diversifying into bio-based products and innovative start-ups focusing on novel biomaterials.

The Global Market for Bio-based and Sustainable Materials 2024-2035 provides an in-depth analysis of  market trends, technological advancements, and growth opportunities. Report contents include:

  • Analysis of biorefineries and various plant-based, waste-derived, and microbial sources for these materials.
  • Analysis of key bio-based chemicals, including starch-derived products, cellulosic materials, lignin, and plant oils. Each chemical is examined in terms of its sources, production processes, applications, and market potential.
  • Market for bio-based polymers and plastics including PLA, bio-PET, PHA, and cellulose-based materials, providing insights into their properties, production capacities, and market trends. Emerging materials such as mycelium-based products and algal biomaterials.
  • Analysis of various types of natural fibers, their properties, and their applications in industries such as automotive, packaging, and construction. Comprehensive overview of the market dynamics, including drivers, challenges, and future prospects for natural fiber composites.
  • Sustainable construction materials including hemp-based products, mycelium composites, and sustainable concrete alternatives. Analysis of technologies such as carbon capture and utilization in construction materials and the emerging field of green steel production.
  • Bio-based and biodegradable packaging materials, including bio-PET, PLA, and cellulose-based packaging. Insights into market trends, regulatory landscapes, and technological innovations driving the adoption of sustainable packaging solutions.
  • Sustainable textiles and apparel including bio-based fibers and innovative materials such as mycelium leather and algae-based textiles.
  • Bio-based coatings and resins, adhesives and sealants, and their applications across various industries. Detailed analysis of market trends, key players, and growth projections.
  • Various types of biofuels, including biodiesel, bioethanol, and advanced biofuels. Production processes, feedstock options, market dynamics, and regulatory landscapes across different regions.
  • Sustainable electronics including innovative materials and manufacturing processes that aim to reduce the environmental impact of electronic devices. Bio-based printed circuit boards, sustainable semiconductors, and eco-friendly electronic components.
  • Profiles of over 1,700 key players, from large chemicals and materials producers to innovative start-ups, offering insights into their strategies, product portfolios, and market positions. Companies profiled include Aduro Clean Technologies, Afyren, Again Bio, Agilyx, Alt.Leather, Alterra, Amsty, APK AG, Aquafil, Arcus, Arda Biomaterials, Avantium, Axens, BASF Chemcycling, Beyond Leather Materials ApS, BiologiQ,Biome Bioplastics, Boreal Bioproducts, Biophilica, Bpacks, Braskem, Bucha Bio, Byogy Renewables, Caphenia, Carbios, CJ CheilJedang, Clariant, DePoly, Dow, Earthodic, Eastman Chemical, Ecovative, Elemental Enzymes, Ensyn, EREMA Group GmbH, Evolved by Nature, Extracthive, ExxonMobil, FlexSea, Floreon, FORGE Hydrocarbons Corporation, Fych Technologies, Gaia Biomaterials, Garbo, Genecis Bioindustries, Ginkgo Bioworks, Global Bioenergies, Gozen Bioworks, gr3n SA, Hyundai Chemical, cytos, Ioniqa, Itero, Kelpi, Kvasir Technologies, Licella, Lignin Industries AB, LignoPure GmbH, MeduSoil, Modern Meadow, Mura Technology, MycoWorks, Natural Fiber Welding, Nium, Nordic Bioproducts Group, Notpla, Origin Materials, Pack2Earth,  Paques Biomaterials, PersiSKIN, PlantSwitch, Plastic Energy, Plastogaz SA, Polybion, Polymateria, ProjectEx, PTT MCC Biochem, Pyrowave, Recyc'ELIT, RePEaT Co., Ltd., revalyu Resources GmbH, SA-Dynamics, Solugen, Sonichem, Stora Enso, Strong By Form, Sulapac, UPM Biochemicals, UBQ Materials, UNCAGED Innovations, Verde Bioresins and Xampla
  • Comprehensive market size and forecast data, segmented by material type, application, and geography.

 

Key features of the report include:

  • In-depth analysis of various bio-based and sustainable materials across multiple industries
  • Detailed market size and forecast data from 2024 to 2035
  • Examination of technological advancements and emerging trends in sustainable materials
  • Analysis of regulatory landscapes and their impact on market dynamics
  • Comprehensive profiles of key market players and their strategies
  • Insights into challenges and opportunities in the sustainable materials market

 

This report is an essential resource for:

  • Material scientists and researchers
  • Product developers and innovation managers
  • Investors and financial analysts
  • Policy makers and regulators
  • Business strategists and market analysts
  • Environmental consultants

 

1             RESEARCH METHODOLOGY 

            

2             INTRODUCTION          

  • 2.1        Definition of Sustainable and Biobased Materials 105
  • 2.2        Importance and Benefits of Biobased and Sustainable Materials              105

 

3             BIOBASED CHEMICALS AND INTERMEDIATES       

  • 3.1        BIOREFINERIES            107
  • 3.2        BIO-BASED FEEDSTOCK AND LAND USE    108
  • 3.3        PLANT-BASED                111
    • 3.3.1    STARCH             111
      • 3.3.1.1 Overview           111
      • 3.3.1.2 Sources             111
      • 3.3.1.3 Global production      112
      • 3.3.1.4 Lysine 112
        • 3.3.1.4.1           Source                113
        • 3.3.1.4.2           Applications   113
        • 3.3.1.4.3           Global production      113
      • 3.3.1.5 Glucose             114
        • 3.3.1.5.1           HMDA 115
          • 3.3.1.5.1.1      Overview           115
          • 3.3.1.5.1.2      Sources             116
          • 3.3.1.5.1.3      Applications   116
          • 3.3.1.5.1.4      Global production      116
        • 3.3.1.5.2           1,5-diaminopentane (DA5)   117
          • 3.3.1.5.2.1      Overview           117
          • 3.3.1.5.2.2      Sources             117
          • 3.3.1.5.2.3      Applications   118
          • 3.3.1.5.2.4      Global production      118
      • 3.3.1.5.3           Sorbitol              119
        • 3.3.1.5.3.1      Isosorbide        119
          • 3.3.1.5.3.1.1  Overview           119
          • 3.3.1.5.3.1.2  Sources             120
          • 3.3.1.5.3.1.3  Applications   120
        • 3.3.1.5.3.1.4  Global production      120
      • 3.3.1.5.4           Lactic acid       121
        • 3.3.1.5.4.1      Overview           121
        • 3.3.1.5.4.2      D-lactic acid   121
        • 3.3.1.5.4.3      L-lactic acid    122
        • 3.3.1.5.4.4      Lactide               122
      • 3.3.1.5.5           Itaconic acid  124
        • 3.3.1.5.5.1      Overview           124
        • 3.3.1.5.5.2      Sources             124
        • 3.3.1.5.5.3      Applications   125
        • 3.3.1.5.5.4      Global production      125
      • 3.3.1.5.6           3-HP     126
        • 3.3.1.5.6.1      Overview           126
        • 3.3.1.5.6.2      Sources             126
        • 3.3.1.5.6.3      Applications   127
        • 3.3.1.5.6.4      Global production      127
        • 3.3.1.5.6.5      Acrylic acid     128
          • 3.3.1.5.6.5.1  Overview           128
          • 3.3.1.5.6.5.2  Applications   128
          • 3.3.1.5.6.5.3  Global production      129
        • 3.3.1.5.6.6      1,3-Propanediol (1,3-PDO)   130
          • 3.3.1.5.6.6.1  Overview           130
          • 3.3.1.5.6.6.2  Applications   130
          • 3.3.1.5.6.6.3  Global production      130
      • 3.3.1.5.7           Succinic Acid 131
        • 3.3.1.5.7.1      Overview           131
        • 3.3.1.5.7.2      Sources             131
        • 3.3.1.5.7.3      Applications   132
        • 3.3.1.5.7.4      Global production      132
        • 3.3.1.5.7.5      1,4-Butanediol (1,4-BDO)     133
          • 3.3.1.5.7.5.1  Overview           133
          • 3.3.1.5.7.5.2  Applications   133
          • 3.3.1.5.7.5.3  Global production      134
        • 3.3.1.5.7.6      Tetrahydrofuran (THF)               135
          • 3.3.1.5.7.6.1  Overview           135
          • 3.3.1.5.7.6.2  Applications   135
          • 3.3.1.5.7.6.3  Global production      135
      • 3.3.1.5.8           Adipic acid      136
        • 3.3.1.5.8.1      Overview           136
        • 3.3.1.5.8.2      Applications   137
        • 3.3.1.5.8.3      Caprolactame               137
          • 3.3.1.5.8.3.1  Overview           137
          • 3.3.1.5.8.3.2  Applications   138
          • 3.3.1.5.8.3.3  Global production      138
      • 3.3.1.5.9           Isobutanol       139
        • 3.3.1.5.9.1      Overview           139
        • 3.3.1.5.9.2      Sources             140
        • 3.3.1.5.9.3      Applications   140
        • 3.3.1.5.9.4      Global production      140
        • 3.3.1.5.9.5      p-Xylene            141
          • 3.3.1.5.9.5.1  Overview           141
          • 3.3.1.5.9.5.2  Sources             141
          • 3.3.1.5.9.5.3  Applications   142
          • 3.3.1.5.9.5.4  Global production      142
          • 3.3.1.5.9.5.5  Terephthalic acid         143
          • 3.3.1.5.9.5.6  Overview           143
      • 3.3.1.5.10        1,3 Proppanediol         144
        • 3.3.1.5.10.1 Overview           144
        • 3.3.1.5.10.2   Sources             144
        • 3.3.1.5.10.3   Applications   145
        • 3.3.1.5.10.4   Global production      145
      • 3.3.1.5.11        Monoethylene glycol (MEG) 146
        • 3.3.1.5.11.1   Overview           146
        • 3.3.1.5.11.2   Sources             146
        • 3.3.1.5.11.3   Applications   146
        • 3.3.1.5.11.4   Global production      147
      • 3.3.1.5.12        Ethanol              147
      • 3.3.1.5.12.1   Overview           147
      • 3.3.1.5.12.2   Sources             148
      • 3.3.1.5.12.3   Applications   148
      • 3.3.1.5.12.4   Global production      149
      • 3.3.1.5.12.5   Ethylene            149
        • 3.3.1.5.12.5.1 Overview           149
        • 3.3.1.5.12.5.2 Applications   150
        • 3.3.1.5.12.5.3 Global production      150
        • 3.3.1.5.12.5.4 Propylene         151
        • 3.3.1.5.12.5.5 Vinyl chloride 152
      • 3.3.1.5.12.6   Methly methacrylate 154
    • 3.3.2    SUGAR CROPS             155
      • 3.3.2.1 Saccharose     155
        • 3.3.2.1.1           Aniline 156
          • 3.3.2.1.1.1      Overview           156
          • 3.3.2.1.1.2      Applications   156
          • 3.3.2.1.1.3      Global production      157
        • 3.3.2.1.2           Fructose            157
          • 3.3.2.1.2.1      Overview           157
          • 3.3.2.1.2.2      Applications   157
          • 3.3.2.1.2.3      Global production      158
          • 3.3.2.1.2.4      5-Hydroxymethylfurfural (5-HMF)    158
            • 3.3.2.1.2.4.1  Overview           158
            • 3.3.2.1.2.4.2  Applications   159
            • 3.3.2.1.2.4.3  Global production      159
          • 3.3.2.1.2.5      5-Chloromethylfurfural (5-CMF)       160
            • 3.3.2.1.2.5.1  Overview           160
            • 3.3.2.1.2.5.2  Applications   160
            • 3.3.2.1.2.5.3  Global production      161
          • 3.3.2.1.2.6      Levulinic Acid 161
            • 3.3.2.1.2.6.1  Overview           161
            • 3.3.2.1.2.6.2  Applications   161
            • 3.3.2.1.2.6.3  Global production      162
          • 3.3.2.1.2.7      FDME  163
            • 3.3.2.1.2.7.1  Overview           163
            • 3.3.2.1.2.7.2  Applications   163
            • 3.3.2.1.2.7.3  Global production      163
          • 3.3.2.1.2.8      2,5-FDCA          164
            • 3.3.2.1.2.8.1  Overview           164
            • 3.3.2.1.2.8.2  Applications   164
            • 3.3.2.1.2.8.3  Global production      165
    • 3.3.3    LIGNOCELLULOSIC BIOMASS           165
      • 3.3.3.1 Levoglucosenone        165
        • 3.3.3.1.1           Overview           165
        • 3.3.3.1.2           Applications   165
        • 3.3.3.1.3           Global production      166
      • 3.3.3.2 Hemicellulose               166
        • 3.3.3.2.1           Overview           166
        • 3.3.3.2.2           Biochemicals from hemicellulose   167
        • 3.3.3.2.3           Global production      168
        • 3.3.3.2.4           Furfural              168
          • 3.3.3.2.4.1      Overview           168
          • 3.3.3.2.4.2      Applications   169
          • 3.3.3.2.4.3      Global production      169
          • 3.3.3.2.4.4      Furfuyl alcohol              170
            • 3.3.3.2.4.4.1  Overview           170
            • 3.3.3.2.4.4.2  Applications   170
            • 3.3.3.2.4.4.3  Global production      170
      • 3.3.3.3 Lignin  171
        • 3.3.3.3.1           Overview           171
        • 3.3.3.3.2           Sources             171
        • 3.3.3.3.3           Applications   173
          • 3.3.3.3.3.1      Aromatic compounds              173
            • 3.3.3.3.3.1.1  Benzene, toluene and xylene               173
            • 3.3.3.3.3.1.2  Phenol and phenolic resins  174
            • 3.3.3.3.3.1.3  Vanillin               174
          • 3.3.3.3.3.2      Polymers           175
        • 3.3.3.3.4           Global production      176
    • 3.3.4    PLANT OILS     177
      • 3.3.4.1 Overview           177
      • 3.3.4.2 Glycerol             177
        • 3.3.4.2.1           Overview           177
        • 3.3.4.2.2           Applications   178
        • 3.3.4.2.3           Global production      178
        • 3.3.4.2.4           MPG     178
          • 3.3.4.2.4.1      Overview           179
          • 3.3.4.2.4.2      Applications   179
          • 3.3.4.2.4.3      Global production      180
        • 3.3.4.2.5           ECH      180
          • 3.3.4.2.5.1      Overview           180
          • 3.3.4.2.5.2      Applications   180
          • 3.3.4.2.5.3      Global production      181
      • 3.3.4.3 Fatty acids       182
        • 3.3.4.3.1           Overview           182
        • 3.3.4.3.2           Applications   182
        • 3.3.4.3.3           Global production      182
      • 3.3.4.4 Castor oil          183
        • 3.3.4.4.1           Overview           183
        • 3.3.4.4.2           Sebacic acid  184
          • 3.3.4.4.2.1      Overview           184
          • 3.3.4.4.2.2      Applications   184
          • 3.3.4.4.2.3      Global production      184
        • 3.3.4.4.3           11-Aminoundecanoic acid (11-AA)  185
          • 3.3.4.4.3.1      Overview           185
          • 3.3.4.4.3.2      Applications   185
          • 3.3.4.4.3.3      Global production      186
      • 3.3.4.5 Dodecanedioic acid (DDDA)                187
        • 3.3.4.5.1           Overview           187
        • 3.3.4.5.2           Applications   187
        • 3.3.4.5.3           Global production      188
      • 3.3.4.6 Pentamethylene diisocyanate            188
        • 3.3.4.6.1           Overview           188
        • 3.3.4.6.2           Applications   189
        • 3.3.4.6.3           Global production      189
    • 3.3.5    NON-EDIBIBLE MILK 190
      • 3.3.5.1 Casein                190
        • 3.3.5.1.1           Overview           190
        • 3.3.5.1.2           Applications   190
        • 3.3.5.1.3           Global production      191
  • 3.4        WASTE                192
    • 3.4.1    Food waste      192
      • 3.4.1.1 Overview           192
      • 3.4.1.2 Products and applications    192
        • 3.4.1.2.1           Global production      193
    • 3.4.2    Agricultural waste       193
      • 3.4.2.1 Overview           193
      • 3.4.2.2 Products and applications    194
      • 3.4.2.3 Global production      194
    • 3.4.3    Forestry waste               195
      • 3.4.3.1 Overview           195
      • 3.4.3.2 Products and applications    195
      • 3.4.3.3 Global production      195
    • 3.4.4    Aquaculture/fishing waste    196
      • 3.4.4.1 Overview           196
      • 3.4.4.2 Products and applications    196
      • 3.4.4.3 Global production      197
    • 3.4.5    Municipal solid waste              197
      • 3.4.5.1 Overview           197
      • 3.4.5.2 Products and applications    197
      • 3.4.5.3 Global production      198
    • 3.4.6    Industrial waste           199
      • 3.4.6.1 Overview           199
    • 3.4.7    Waste oils        199
      • 3.4.7.1 Overview           199
      • 3.4.7.2 Products and applications    199
      • 3.4.7.3 Global production      200
  • 3.5        MICROBIAL & MINERAL SOURCES  200
    • 3.5.1    Microalgae      200
      • 3.5.1.1 Overview           200
      • 3.5.1.2 Products and applications    200
      • 3.5.1.3 Global production      201
    • 3.5.2    Macroalgae     202
      • 3.5.2.1 Overview           202
      • 3.5.2.2 Products and applications    202
      • 3.5.2.3 Global production      203
    • 3.5.3    Mineral sources            203
      • 3.5.3.1 Overview           203
      • 3.5.3.2 Products and applications    204
  • 3.6        GASEOUS         204
    • 3.6.1    Biogas 205
      • 3.6.1.1 Overview           205
      • 3.6.1.2 Products and applications    206
      • 3.6.1.3 Global production      206
    • 3.6.2    Syngas               207
      • 3.6.2.1 Overview           207
      • 3.6.2.2 Products and applications    208
      • 3.6.2.3 Global production      208
    • 3.6.3    Off gases - fermentation CO2, CO   209
      • 3.6.3.1 Overview           209
      • 3.6.3.2 Products and applications    209
  • 3.7        COMPANY PROFILES                210 (126 company profiles)

 

4             BIOBASED POLYMERS AND PLASTICS          

  • 4.1        Overview           292
    • 4.1.1    Drop-in bio-based plastics   292
    • 4.1.2    Novel bio-based plastics       293
  • 4.2        Biodegradable and compostable plastics  293
    • 4.2.1    Biodegradability          294
    • 4.2.2    Compostability            295
  • 4.3        Types   295
  • 4.4        Key market players     297
  • 4.5        Synthetic biobased polymers             298
    • 4.5.1    Polylactic acid (Bio-PLA)        298
      • 4.5.1.1 Market analysis            298
      • 4.5.1.2 Production       300
      • 4.5.1.3 Producers and production capacities, current and planned          300
        • 4.5.1.3.1           Lactic acid producers and production capacities 300
        • 4.5.1.3.2           PLA producers and production capacities 300
        • 4.5.1.3.3           Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes) 302
    • 4.5.2    Polyethylene terephthalate (Bio-PET)            302
      • 4.5.2.1 Market analysis            302
      • 4.5.2.2 Producers and production capacities           303
      • 4.5.2.3 Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes)     304
    • 4.5.3    Polytrimethylene terephthalate (Bio-PTT)   304
      • 4.5.3.1 Market analysis            304
      • 4.5.3.2 Producers and production capacities           305
      • 4.5.3.3 Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes)      305
    • 4.5.4    Polyethylene furanoate (Bio-PEF)     306
      • 4.5.4.1 Market analysis            306
      • 4.5.4.2 Comparative properties to PET          307
      • 4.5.4.3 Producers and production capacities           308
        • 4.5.4.3.1           FDCA and PEF producers and production capacities         308
        • 4.5.4.3.2           Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes).            309
    • 4.5.5    Polyamides (Bio-PA)  309
      • 4.5.5.1 Market analysis            309
      • 4.5.5.2 Producers and production capacities           310
      • 4.5.5.3 Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes)           311
    • 4.5.6    Poly(butylene adipate-co-terephthalate) (Bio-PBAT)           311
      • 4.5.6.1 Market analysis            311
      • 4.5.6.2 Producers and production capacities           312
      • 4.5.6.3 Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes)    313
    • 4.5.7    Polybutylene succinate (PBS) and copolymers       313
      • 4.5.7.1 Market analysis            314
      • 4.5.7.2 Producers and production capacities           314
      • 4.5.7.3 Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes)      315
    • 4.5.8    Polyethylene (Bio-PE)               315
      • 4.5.8.1 Market analysis            315
      • 4.5.8.2 Producers and production capacities           316
      • 4.5.8.3 Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes).      317
    • 4.5.9    Polypropylene (Bio-PP)            317
      • 4.5.9.1 Market analysis            317
      • 4.5.9.2 Producers and production capacities           318
      • 4.5.9.3 Polypropylene (Bio-PP) production 2019-2035 (1,000 tonnes)     318
  • 4.6        Natural biobased polymers  319
    • 4.6.1    Polyhydroxyalkanoates (PHA)             319
      • 4.6.1.1 Technology description           319
      • 4.6.1.2 Types   320
        • 4.6.1.2.1           PHB      322
        • 4.6.1.2.2           PHBV   323
      • 4.6.1.3 Synthesis and production processes             324
      • 4.6.1.4 Market analysis            326
      • 4.6.1.5 Commercially available PHAs            327
      • 4.6.1.6 Markets for PHAs        328
        • 4.6.1.6.1           Packaging        329
        • 4.6.1.6.2           Cosmetics       331
          • 4.6.1.6.2.1      PHA microspheres     331
        • 4.6.1.6.3           Medical              331
          • 4.6.1.6.3.1      Tissue engineering      331
          • 4.6.1.6.3.2      Drug delivery  331
        • 4.6.1.6.4           Agriculture       331
          • 4.6.1.6.4.1      Mulch film        331
          • 4.6.1.6.4.2      Grow bags        332
      • 4.6.1.7 Producers and production capacities           332
    • 4.6.2    Cellulose          333
      • 4.6.2.1 Microfibrillated cellulose (MFC)        333
        • 4.6.2.1.1           Market analysis            333
        • 4.6.2.1.2           Producers and production capacities           334
      • 4.6.2.2 Nanocellulose               335
        • 4.6.2.2.1           Cellulose nanocrystals           335
          • 4.6.2.2.1.1      Synthesis          335
          • 4.6.2.2.1.2      Properties         337
          • 4.6.2.2.1.3      Production       338
          • 4.6.2.2.1.4      Applications   338
          • 4.6.2.2.1.5      Market analysis            339
          • 4.6.2.2.1.6      Producers and production capacities           341
        • 4.6.2.2.2           Cellulose nanofibers 341
          • 4.6.2.2.2.1      Applications   342
          • 4.6.2.2.2.2      Market analysis            343
          • 4.6.2.2.2.3      Producers and production capacities           344
        • 4.6.2.2.3           Bacterial Nanocellulose (BNC)          345
          • 4.6.2.2.3.1      Production       345
          • 4.6.2.2.3.2      Applications   347
    • 4.6.3    Protein-based bioplastics     348
      • 4.6.3.1 Types, applications and producers  349
    • 4.6.4    Algal and fungal           350
      • 4.6.4.1 Algal     350
        • 4.6.4.1.1           Advantages     350
        • 4.6.4.1.2           Production       351
        • 4.6.4.1.3           Producers         352
      • 4.6.4.2 Mycelium          352
        • 4.6.4.2.1           Properties         352
        • 4.6.4.2.2           Applications   353
        • 4.6.4.2.3           Commercialization    354
    • 4.6.5    Chitosan           355
      • 4.6.5.1 Technology description           355
  • 4.7        Production by region 356
    • 4.7.1    North America              357
    • 4.7.2    Europe                357
    • 4.7.3    Asia-Pacific    357
      • 4.7.3.1 China  358
      • 4.7.3.2 Japan  358
      • 4.7.3.3 Thailand            358
      • 4.7.3.4 Indonesia         358
    • 4.7.4    Latin America 359
  • 4.8        End use markets          360
    • 4.8.1    Packaging        361
      • 4.8.1.1 Processes for bioplastics in packaging        361
      • 4.8.1.2 Applications   362
      • 4.8.1.3 Flexible packaging     362
        • 4.8.1.3.1           Production volumes 2019-2035       364
      • 4.8.1.4 Rigid packaging            365
        • 4.8.1.4.1           Production volumes 2019-2035       366
    • 4.8.2    Consumer products  367
      • 4.8.2.1 Applications   367
      • 4.8.2.2 Production volumes 2019-2035       367
    • 4.8.3    Automotive      368
      • 4.8.3.1 Applications   368
      • 4.8.3.2 Production volumes 2019-2035       369
    • 4.8.4    Construction  369
      • 4.8.4.1 Applications   369
      • 4.8.4.2 Production volumes 2019-2035       370
    • 4.8.5    Textiles               370
      • 4.8.5.1 Apparel              371
      • 4.8.5.2 Footwear           371
      • 4.8.5.3 Medical textiles            372
      • 4.8.5.4 Production volumes 2019-2035       373
    • 4.8.6    Electronics      373
      • 4.8.6.1 Applications   373
      • 4.8.6.2 Production volumes 2019-2035       374
    • 4.8.7    Agriculture and horticulture 374
      • 4.8.7.1 Production volumes 2019-2035       375
  • 4.9        Lignin  376
    • 4.9.1    Introduction    376
      • 4.9.1.1 What is lignin?              376
        • 4.9.1.1.1           Lignin structure             376
      • 4.9.1.2 Types of lignin               377
        • 4.9.1.2.1           Sulfur containing lignin           380
        • 4.9.1.2.2           Sulfur-free lignin from biorefinery process 380
      • 4.9.1.3 Properties         380
      • 4.9.1.4 The lignocellulose biorefinery             382
      • 4.9.1.5 Markets and applications      383
      • 4.9.1.6 Challenges for using lignin    384
    • 4.9.2    Lignin production processes               385
      • 4.9.2.1 Lignosulphonates       386
      • 4.9.2.2 Kraft Lignin      387
        • 4.9.2.2.1           LignoBoost process   387
        • 4.9.2.2.2           LignoForce method    388
        • 4.9.2.2.3           Sequential Liquid Lignin Recovery and Purification              388
        • 4.9.2.2.4           A-Recovery+   389
      • 4.9.2.3 Soda lignin      390
      • 4.9.2.4 Biorefinery lignin         390
        • 4.9.2.4.1           Commercial and pre-commercial biorefinery lignin production facilities and  processes                392
      • 4.9.2.5 Organosolv lignins     394
      • 4.9.2.6 Hydrolytic lignin           394
    • 4.9.3    Markets for lignin        395
      • 4.9.3.1 Market drivers and trends for lignin 395
      • 4.9.3.2 Production capacities              396
        • 4.9.3.2.1           Technical lignin availability (dry ton/y)           396
        • 4.9.3.2.2           Biomass conversion (Biorefinery)    397
      • 4.9.3.3 Global consumption of lignin              397
        • 4.9.3.3.1           By type                398
        • 4.9.3.3.2           By market         400
      • 4.9.3.4 Prices  402
      • 4.9.3.5 Heat and power energy            402
      • 4.9.3.6 Pyrolysis and syngas 402
      • 4.9.3.7 Aromatic compounds              402
        • 4.9.3.7.1           Benzene, toluene and xylene               402
        • 4.9.3.7.2           Phenol and phenolic resins  403
        • 4.9.3.7.3           Vanillin               403
      • 4.9.3.8 Plastics and polymers              404
  • 4.10     COMPANY PROFILES                405 (522 company profiles)

 

5             NATURAL FIBER PLASTICS AND COMPOSITES    

  • 5.1        Introduction    775
    • 5.1.1    What are natural fiber materials?     775
    • 5.1.2    Benefits of natural fibers over synthetic       778
    • 5.1.3    Markets and applications for natural fibers               778
    • 5.1.4    Commercially available natural fiber products       780
    • 5.1.5    Market drivers for natural fibers         783
    • 5.1.6    Market challenges      784
    • 5.1.7    Wood flour as a plastic filler 785
  • 5.2        Types of natural fibers in plastic composites           785
    • 5.2.1    Plants 787
      • 5.2.1.1 Seed fibers      787
        • 5.2.1.1.1           Kapok 787
        • 5.2.1.1.2           Luffa    788
      • 5.2.1.2 Bast fibers        789
        • 5.2.1.2.1           Jute       789
        • 5.2.1.2.2           Hemp  790
        • 5.2.1.2.3           Flax       792
        • 5.2.1.2.4           Ramie 793
        • 5.2.1.2.5           Kenaf   794
      • 5.2.1.3 Leaf fibers        794
        • 5.2.1.3.1           Sisal     795
        • 5.2.1.3.2           Abaca 795
      • 5.2.1.4 Fruit fibers       796
        • 5.2.1.4.1           Coir      796
        • 5.2.1.4.2           Banana              797
        • 5.2.1.4.3           Pineapple         798
      • 5.2.1.5 Stalk fibers from agricultural residues          799
        • 5.2.1.5.1           Rice fiber          799
        • 5.2.1.5.2           Corn     800
      • 5.2.1.6 Cane, grasses and reed           801
        • 5.2.1.6.1           Switchgrass    801
        • 5.2.1.6.2           Sugarcane (agricultural residues)    802
        • 5.2.1.6.3           Bamboo            803
        • 5.2.1.6.4           Fresh grass (green biorefinery)           804
      • 5.2.1.7 Modified natural polymers    804
        • 5.2.1.7.1           Mycelium          804
        • 5.2.1.7.2           Chitosan           806
        • 5.2.1.7.3           Alginate              807
    • 5.2.2    Animal (fibrous protein)          808
      • 5.2.2.1 Silk fiber            808
    • 5.2.3    Wood-based natural fibers   810
      • 5.2.3.1 Cellulose fibers            810
        • 5.2.3.1.1           Market overview           810
        • 5.2.3.1.2           Producers         810
      • 5.2.3.2 Microfibrillated cellulose (MFC)        811
        • 5.2.3.2.1           Market overview           811
        • 5.2.3.2.2           Producers         812
      • 5.2.3.3 Cellulose nanocrystals           813
        • 5.2.3.3.1           Market overview           813
        • 5.2.3.3.2           Producers         814
      • 5.2.3.4 Cellulose nanofibers 815
        • 5.2.3.4.1           Market overview           815
        • 5.2.3.4.2           Producers         816
  • 5.3        Processing and Treatment of Natural Fibers              817
  • 5.4        Interface and Compatibility of Natural Fibers with Plastic Matrices          818
    • 5.4.1    Adhesion and Bonding            818
    • 5.4.2    Moisture Absorption and Dimensional Stability      818
    • 5.4.3    Thermal Expansion and Compatibility          819
    • 5.4.4    Dispersion and Distribution 819
    • 5.4.5    Matrix Selection           819
    • 5.4.6    Fiber Content and Alignment              819
    • 5.4.7    Manufacturing Techniques   819
  • 5.5        Manufacturing processes      819
    • 5.5.1    Injection molding        821
    • 5.5.2    Compression moulding          822
    • 5.5.3    Extrusion          823
    • 5.5.4    Thermoforming            823
    • 5.5.5    Thermoplastic pultrusion      824
    • 5.5.6    Additive manufacturing (3D printing)             824
  • 5.6        Global market for natural fibers         825
    • 5.6.1    Automotive      827
      • 5.6.1.1 Applications   828
      • 5.6.1.2 Commercial production         828
      • 5.6.1.3 SWOT analysis              831
    • 5.6.2    Packaging        832
      • 5.6.2.1 Applications   832
      • 5.6.2.2 SWOT analysis              834
    • 5.6.3    Construction  835
      • 5.6.3.1 Applications   835
      • 5.6.3.2 SWOT analysis              836
    • 5.6.4    Appliances      837
      • 5.6.4.1 Applications   837
      • 5.6.4.2 SWOT analysis              838
    • 5.6.5    Consumer electronics             840
      • 5.6.5.1 Applications   840
      • 5.6.5.2 SWOT analysis              842
    • 5.6.6    Furniture           843
      • 5.6.6.1 Applications   843
      • 5.6.6.2 SWOT analysis              843
  • 5.7        Competitive landscape          844
  • 5.8        Future outlook              844
  • 5.9        Revenues          845
    • 5.9.1    By end use market      845
    • 5.9.2    By Material Type           846
    • 5.9.3    By Plastic Type              847
    • 5.9.4    By region           848
  • 5.10     Company profiles       850 (67 company profiles)

 

6             SUSTAINABLE CONSTRUCTION MATERIALS            

  • 6.1        Market overview           919
    • 6.1.1    Benefits of Sustainable Construction            919
    • 6.1.2    Global Trends and Drivers     919
  • 6.2        Global revenues           921
    • 6.2.1    By materials type         921
    • 6.2.2    By market         924
  • 6.3        Types of sustainable construction materials            926
    • 6.3.1    Established bio-based construction materials       926
    • 6.3.2    Hemp-based Materials           928
      • 6.3.2.1 Hemp Concrete (Hempcrete)              928
      • 6.3.2.2 Hemp Fiberboard        928
      • 6.3.2.3 Hemp Insulation          929
    • 6.3.3    Mycelium-based Materials   929
      • 6.3.3.1 Insulation         930
      • 6.3.3.2 Structural Elements  930
      • 6.3.3.3 Acoustic Panels           931
      • 6.3.3.4 Decorative Elements 931
    • 6.3.4    Sustainable Concrete and Cement Alternatives     931
      • 6.3.4.1 Geopolymer Concrete              931
      • 6.3.4.2 Recycled Aggregate Concrete             932
      • 6.3.4.3 Lime-Based Materials              932
      • 6.3.4.4 Self-healing concrete                933
        • 6.3.4.4.1           Bioconcrete    934
        • 6.3.4.4.2           Fiber concrete               935
      • 6.3.4.5 Microalgae biocement             936
      • 6.3.4.6 Carbon-negative concrete     938
      • 6.3.4.7 Biomineral binders     938
    • 6.3.5    Natural Fiber Composites     939
      • 6.3.5.1 Types of Natural Fibers            939
      • 6.3.5.2 Properties         939
      • 6.3.5.3 Applications in Construction              939
    • 6.3.6    Cellulose nanofibers 940
      • 6.3.6.1 Sandwich composites             940
      • 6.3.6.2 Cement additives       940
      • 6.3.6.3 Pump primers                941
      • 6.3.6.4 Insulation materials  941
      • 6.3.6.5 Coatings and paints  942
      • 6.3.6.6 3D printing materials 942
    • 6.3.7    Sustainable Insulation Materials      943
      • 6.3.7.1 Types of sustainable insulation materials   943
      • 6.3.7.2 Aerogel Insulation       944
        • 6.3.7.2.1           Silica aerogels               946
          • 6.3.7.2.1.1      Properties         946
          • 6.3.7.2.1.2      Thermal conductivity                947
          • 6.3.7.2.1.3      Mechanical     947
          • 6.3.7.2.1.4      Silica aerogel precursors        947
          • 6.3.7.2.1.5      Products           948
            • 6.3.7.2.1.5.1  Monoliths         948
            • 6.3.7.2.1.5.2  Powder               948
            • 6.3.7.2.1.5.3  Granules           949
            • 6.3.7.2.1.5.4  Blankets            950
            • 6.3.7.2.1.5.5  Aerogel boards             951
            • 6.3.7.2.1.5.6  Aerogel renders            952
          • 6.3.7.2.1.6      3D printing of aerogels             952
          • 6.3.7.2.1.7      Silica aerogel from sustainable feedstocks               953
          • 6.3.7.2.1.8      Silica composite aerogels     953
            • 6.3.7.2.1.8.1  Organic crosslinkers 954
          • 6.3.7.2.1.9      Cost of silica aerogels              954
          • 6.3.7.2.1.10   Main players   954
        • 6.3.7.2.2           Aerogel-like foam materials 955
          • 6.3.7.2.2.1      Properties         955
          • 6.3.7.2.2.2      Applications   956
        • 6.3.7.2.3           Metal oxide aerogels 956
        • 6.3.7.2.4           Organic aerogels         957
          • 6.3.7.2.4.1      Polymer aerogels         957
        • 6.3.7.2.5           Biobased and sustainable aerogels (bio-aerogels)               959
          • 6.3.7.2.5.1      Cellulose aerogels     960
            • 6.3.7.2.5.1.1  Cellulose nanofiber (CNF) aerogels                961
            • 6.3.7.2.5.1.2  Cellulose nanocrystal aerogels         961
            • 6.3.7.2.5.1.3  Bacterial nanocellulose aerogels     962
          • 6.3.7.2.5.2      Lignin aerogels              962
          • 6.3.7.2.5.3      Alginate aerogels         963
          • 6.3.7.2.5.4      Starch aerogels            963
          • 6.3.7.2.5.5      Chitosan aerogels      964
        • 6.3.7.2.6           Carbon aerogels          964
          • 6.3.7.2.6.1      Carbon nanotube aerogels   966
          • 6.3.7.2.6.2      Graphene and graphite aerogels       967
        • 6.3.7.2.7           Additive manufacturing (3D printing)             967
          • 6.3.7.2.7.1      Carbon nitride               968
          • 6.3.7.2.7.2      Gold     969
          • 6.3.7.2.7.3      Cellulose          969
          • 6.3.7.2.7.4      Graphene oxide            969
        • 6.3.7.2.8           Hybrid aerogels            970
  • 6.4        Carbon capture and utilization          970
    • 6.4.1    Overview           970
    • 6.4.2    Market structure          972
    • 6.4.3    CCUS technologies in the cement industry               975
    • 6.4.4    Products           977
      • 6.4.4.1 Carbonated aggregates          977
      • 6.4.4.2 Additives during mixing           978
      • 6.4.4.3 Carbonates from natural minerals  979
      • 6.4.4.4 Carbonates from waste          979
    • 6.4.5    Concrete curing           980
    • 6.4.6    Costs  981
    • 6.4.7    Challenges      981
  • 6.5        Green steel      982
    • 6.5.1    Current Steelmaking processes        982
      • 6.5.1.1.1           Capturing then sequestering or utilizing carbon emissions from conventional steel mills.                984
    • 6.5.2    Decarbonization target and policies               985
      • 6.5.2.1 EU Carbon Border Adjustment Mechanism (CBAM)            987
    • 6.5.3    Advances in clean production technologies             988
    • 6.5.4    Production technologies        988
      • 6.5.4.1 The role of hydrogen  988
      • 6.5.4.2 Comparative analysis              989
      • 6.5.4.3 Hydrogen Direct Reduced Iron (DRI)              990
      • 6.5.4.4 Electrolysis      992
      • 6.5.4.5 Carbon Capture, Utilization and Storage (CCUS)  993
      • 6.5.4.6 Biochar replacing coke            994
      • 6.5.4.7 Hydrogen Blast Furnace         995
      • 6.5.4.8 Renewable energy powered processes        996
      • 6.5.4.9 Flash ironmaking        997
      • 6.5.4.10            Hydrogen Plasma Iron Ore Reduction           998
      • 6.5.4.11            Ferrous Bioprocessing            1000
      • 6.5.4.12            Microwave Processing             1000
      • 6.5.4.13            Additive Manufacturing          1001
      • 6.5.4.14            Technology readiness level (TRL)      1001
    • 6.5.5    Properties         1002
  • 6.6        Markets and applications      1004
    • 6.6.1    Residential Buildings                1005
    • 6.6.2    Commercial and Office Buildings    1006
    • 6.6.3    Infrastructure 1008
  • 6.7        Company profiles       1011 (144 company profiles)

 

7             BIOBASED PACKAGING MATERIALS               

  • 7.1        Market overview           1124
    • 7.1.1    Current global packaging market and materials     1124
    • 7.1.2    Market trends 1125
    • 7.1.3    Drivers for recent growth in bioplastics in packaging          1126
    • 7.1.4    Challenges for bio-based and sustainable packaging        1126
  • 7.2        Materials           1127
    • 7.2.1    Materials innovation 1127
    • 7.2.2    Active packaging         1128
    • 7.2.3    Monomaterial packaging       1128
    • 7.2.4    Conventional polymer materials used in packaging            1129
      • 7.2.4.1 Polyolefins: Polypropylene and polyethylene            1129
      • 7.2.4.2 PET and other polyester polymers   1131
      • 7.2.4.3 Renewable and bio-based polymers for packaging             1132
      • 7.2.4.4 Comparison of synthetic fossil-based and bio-based polymers  1134
      • 7.2.4.5 Processes for bioplastics in packaging        1134
      • 7.2.4.6 End-of-life treatment of bio-based and sustainable packaging   1135
  • 7.3        Synthetic bio-based packaging materials   1136
    • 7.3.1    Polylactic acid (Bio-PLA)        1136
      • 7.3.1.1 Properties         1136
      • 7.3.1.2 Applicaitons   1137
    • 7.3.2    Polyethylene terephthalate (Bio-PET)            1139
      • 7.3.2.1 Properties         1140
      • 7.3.2.2 Applications   1140
      • 7.3.2.3 Advantages of Bio-PET in Packaging              1141
      • 7.3.2.4 Challenges and Limitations 1141
    • 7.3.3    Polytrimethylene terephthalate (Bio-PTT)   1143
      • 7.3.3.1 Production Process   1143
      • 7.3.3.2 Properties         1143
      • 7.3.3.3 Applications   1144
      • 7.3.3.4 Advantages of Bio-PTT in Packaging               1144
      • 7.3.3.5 Challenges and Limitations 1144
    • 7.3.4    Polyethylene furanoate (Bio-PEF)     1145
      • 7.3.4.1 Properties         1145
      • 7.3.4.2 Applications   1146
      • 7.3.4.3 Advantages of Bio-PEF in Packaging              1146
      • 7.3.4.4 Challenges and Limitations 1146
    • 7.3.5    Bio-PA 1147
      • 7.3.5.1 Properties         1147
      • 7.3.5.2 Applications in Packaging     1148
      • 7.3.5.3 Advantages of Bio-PA in Packaging 1148
      • 7.3.5.4 Challenges and Limitations 1148
    • 7.3.6    Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters                1149
      • 7.3.6.1 Properties         1149
      • 7.3.6.2 Applications in Packaging     1150
      • 7.3.6.3 Advantages of Bio-PBAT in Packaging           1150
      • 7.3.6.4 Challenges and Limitations 1150
    • 7.3.7    Polybutylene succinate (PBS) and copolymers       1151
      • 7.3.7.1 Properties         1151
      • 7.3.7.2 Applications in Packaging     1151
      • 7.3.7.3 Advantages of Bio-PBS and Co-polymers in Packaging     1152
      • 7.3.7.4 Challenges and Limitations 1152
    • 7.3.8    Polypropylene (Bio-PP)            1153
      • 7.3.8.1 Properties         1153
      • 7.3.8.2 Applications in Packaging     1153
      • 7.3.8.3 Advantages of Bio-PP in Packaging 1154
      • 7.3.8.4 Challenges and Limitations 1154
  • 7.4        Natural bio-based packaging materials       1154
    • 7.4.1    Polyhydroxyalkanoates (PHA)             1155
      • 7.4.1.1 Properties         1155
      • 7.4.1.2 Applications in Packaging     1155
      • 7.4.1.3 Advantages of PHA in Packaging      1157
      • 7.4.1.4 Challenges and Limitations 1157
    • 7.4.2    Starch-based blends 1158
      • 7.4.2.1 Properties         1158
      • 7.4.2.2 Applications in Packaging     1158
      • 7.4.2.3 Advantages of Starch-Based Blends in Packaging 1159
      • 7.4.2.4 Challenges and Limitations 1159
    • 7.4.3    Cellulose          1159
      • 7.4.3.1 Feedstocks      1159
        • 7.4.3.1.1           Wood  1160
        • 7.4.3.1.2           Plant    1160
        • 7.4.3.1.3           Tunicate             1161
        • 7.4.3.1.4           Algae   1161
        • 7.4.3.1.5           Bacteria             1162
      • 7.4.3.2 Microfibrillated cellulose (MFC)        1163
        • 7.4.3.2.1           Properties         1163
      • 7.4.3.3 Nanocellulose               1164
        • 7.4.3.3.1           Cellulose nanocrystals           1164
          • 7.4.3.3.1.1      Applications in packaging     1164
        • 7.4.3.3.2           Cellulose nanofibers 1166
          • 7.4.3.3.2.1      Applications in packaging     1166
            • 7.4.3.3.2.1.1  Reinforcement and barrier    1171
            • 7.4.3.3.2.1.2  Biodegradable food packaging foil and films            1171
            • 7.4.3.3.2.1.3  Paperboard coatings 1172
        • 7.4.3.3.3           Bacterial Nanocellulose (BNC)          1172
          • 7.4.3.3.3.1      Applications in packaging     1175
    • 7.4.4    Protein-based bioplastics in packaging       1176
    • 7.4.5    Lipids and waxes for packaging         1178
    • 7.4.6    Seaweed-based packaging  1178
      • 7.4.6.1 Production       1180
      • 7.4.6.2 Applications in packaging     1180
      • 7.4.6.3 Producers         1180
    • 7.4.7    Mycelium          1181
      • 7.4.7.1 Applications in packaging     1182
    • 7.4.8    Chitosan           1183
      • 7.4.8.1 Applications in packaging     1184
    • 7.4.9    Bio-naphtha   1184
      • 7.4.9.1 Overview           1184
      • 7.4.9.2 Markets and applications      1185
  • 7.5        Applications   1187
    • 7.5.1    Paper and board packaging 1187
    • 7.5.2    Food packaging           1187
      • 7.5.2.1 Bio-Based films and trays      1188
      • 7.5.2.2 Bio-Based pouches and bags             1188
      • 7.5.2.3 Bio-Based textiles and nets  1188
    • 7.5.2.4 Bioadhesives 1189
      • 7.5.2.4.1           Starch 1190
      • 7.5.2.4.2           Cellulose          1190
      • 7.5.2.4.3           Protein-Based               1190
    • 7.5.2.5 Barrier coatings and films     1191
      • 7.5.2.5.1           Polysaccharides          1192
        • 7.5.2.5.1.1      Chitin  1192
        • 7.5.2.5.1.2      Chitosan           1192
        • 7.5.2.5.1.3      Starch 1192
      • 7.5.2.5.2           Poly(lactic acid) (PLA)              1192
      • 7.5.2.5.3           Poly(butylene Succinate)       1192
      • 7.5.2.5.4           Functional Lipid and Proteins Based Coatings        1192
    • 7.5.2.6 Active and Smart Food Packaging   1193
      • 7.5.2.6.1           Active Materials and Packaging Systems    1193
      • 7.5.2.6.2           Intelligent and Smart Food Packaging           1194
    • 7.5.2.7 Antimicrobial films and agents          1195
      • 7.5.2.7.1           Natural               1196
      • 7.5.2.7.2           Inorganic nanoparticles          1197
      • 7.5.2.7.3           Biopolymers   1197
    • 7.5.2.8 Bio-based Inks and Dyes        1197
    • 7.5.2.9 Edible films and coatings       1198
  • 7.6        Biobased films and coatings in packaging 1200
    • 7.6.1    Challenges using bio-based paints and coatings   1200
    • 7.6.2    Types of bio-based coatings and films in packaging           1203
      • 7.6.2.1 Polyurethane coatings             1203
        • 7.6.2.1.1           Properties         1203
        • 7.6.2.1.2           Bio-based polyurethane coatings     1203
        • 7.6.2.1.3           Products           1204
      • 7.6.2.2 Acrylate resins              1205
        • 7.6.2.2.1           Properties         1205
        • 7.6.2.2.2           Bio-based acrylates  1205
        • 7.6.2.2.3           Products           1206
      • 7.6.2.3 Polylactic acid (Bio-PLA)        1206
        • 7.6.2.3.1           Properties         1208
        • 7.6.2.3.2           Bio-PLA coatings and films  1208
      • 7.6.2.4 Polyhydroxyalkanoates (PHA) coatings         1209
      • 7.6.2.5 Cellulose coatings and films               1210
        • 7.6.2.5.1           Microfibrillated cellulose (MFC)        1210
        • 7.6.2.5.2           Cellulose nanofibers 1211
          • 7.6.2.5.2.1      Properties         1211
          • 7.6.2.5.2.2      Product developers    1212
      • 7.6.2.6 Lignin coatings              1214
      • 7.6.2.7 Protein-based biomaterials for coatings      1215
        • 7.6.2.7.1           Plant derived proteins              1215
        • 7.6.2.7.2           Animal origin proteins              1215
  • 7.7        Carbon capture derived materials for packaging   1216
    • 7.7.1    Benefits of carbon utilization for plastics feedstocks         1217
    • 7.7.2    CO₂-derived polymers and plastics 1220
    • 7.7.3    CO2 utilization products        1220
  • 7.8        Global biobased packaging markets              1222
    • 7.8.1    Flexible packaging     1222
    • 7.8.2    Rigid packaging            1225
    • 7.8.3    Coatings and films     1227
  • 7.9        Company profiles       1228 (207 company profiles)

 

8             SUSTAINABLE TEXTILES AND APPAREL        

  • 8.1        Types of bio-based fibres       1397
    • 8.1.1    Natural fibres 1399
    • 8.1.2    Main-made bio-based fibres               1400
  • 8.2        Bio-based synthetics                1401
  • 8.3        Recyclability of bio-based fibres       1401
  • 8.4        Lyocell                1402
  • 8.5        Bacterial cellulose      1403
  • 8.6        Algae textiles  1403
  • 8.7        Bio-based leather        1404
    • 8.7.1    Properties of bio-based leathers       1407
      • 8.7.1.1 Tear strength. 1407
      • 8.7.1.2 Tensile strength            1408
      • 8.7.1.3 Bally flexing     1408
    • 8.7.2    Comparison with conventional leathers      1409
    • 8.7.3    Comparative analysis of bio-based leathers             1412
    • 8.7.4    Plant-based leather   1412
      • 8.7.4.1 Overview           1412
      • 8.7.4.2 Production processes              1413
        • 8.7.4.2.1           Feedstocks      1413
          • 8.7.4.2.1.1      Agriculture Residues 1413
          • 8.7.4.2.1.2      Food Processing Waste          1413
          • 8.7.4.2.1.3      Invasive Plants              1414
          • 8.7.4.2.1.4      Culture-Grown Inputs              1414
        • 8.7.4.2.2           Textile-Based  1414
        • 8.7.4.2.3           Bio-Composite             1415
      • 8.7.4.3 Products           1415
      • 8.7.4.4 Market players               1416
    • 8.7.5    Mycelium leather         1418
      • 8.7.5.1 Overview           1418
      • 8.7.5.2 Production process   1420
        • 8.7.5.2.1           Growth conditions     1420
        • 8.7.5.2.2           Tanning Mycelium Leather     1421
        • 8.7.5.2.3           Dyeing Mycelium Leather       1421
      • 8.7.5.3 Products           1422
      • 8.7.5.4 Market players               1422
    • 8.7.6    Microbial leather          1423
      • 8.7.6.1 Overview           1423
      • 8.7.6.2 Production process   1423
      • 8.7.6.3 Fermentation conditions       1424
      • 8.7.6.4 Harvesting       1425
      • 8.7.6.5 Products           1425
      • 8.7.6.6 Market players               1428
    • 8.7.7    Lab grown leather        1429
      • 8.7.7.1 Overview           1429
      • 8.7.7.2 Production process   1429
      • 8.7.7.3 Products           1430
      • 8.7.7.4 Market players               1431
    • 8.7.8    Protein-based leather               1431
      • 8.7.8.1 Overview           1431
      • 8.7.8.2 Production process   1432
      • 8.7.8.3 Commercial activity  1432
    • 8.7.9    Sustainable textiles coatings and dyes         1433
      • 8.7.9.1 Overview           1433
        • 8.7.9.1.1           Coatings            1433
        • 8.7.9.1.2           Dyes     1434
    • 8.7.9.2 Commercial activity  1435
  • 8.8        Markets              1436
    • 8.8.1    Footwear           1436
    • 8.8.2    Fashion & Accessories            1437
    • 8.8.3    Automotive & Transport          1438
    • 8.8.4    Furniture           1438
  • 8.9        Global market revenues          1440
    • 8.9.1    By region           1440
    • 8.9.2    By end use market      1442
  • 8.10     Company profiles       1444 (67 company profiles)

 

9             BIOBASED COATINGS AND RESINS                

  • 9.1        Drop-in replacements              1499
  • 9.2        Bio-based resins         1499
  • 9.3        Reducing carbon footprint in industrial and protective coatings  1500
  • 9.4        Market drivers                1501
  • 9.5        Challenges using bio-based coatings            1501
  • 9.6        Types   1502
    • 9.6.1    Eco-friendly coatings technologies 1502
      • 9.6.1.1 UV-cure             1503
      • 9.6.1.2 Waterborne coatings 1503
      • 9.6.1.3 Treatments with less or no solvents                1503
      • 9.6.1.4 Hyperbranched polymers for coatings          1504
      • 9.6.1.5 Powder coatings          1504
      • 9.6.1.6 High solid (HS) coatings          1505
      • 9.6.1.7 Use of bio-based materials in coatings         1505
        • 9.6.1.7.1           Biopolymers   1505
        • 9.6.1.7.2           Coatings based on agricultural waste           1506
        • 9.6.1.7.3           Vegetable oils and fatty acids             1506
        • 9.6.1.7.4           Proteins             1507
        • 9.6.1.7.5           Cellulose          1507
        • 9.6.1.7.6           Plant-Based wax coatings     1508
    • 9.6.2    Barrier coatings            1509
      • 9.6.2.1 Polysaccharides          1510
        • 9.6.2.1.1           Chitin  1511
        • 9.6.2.1.2           Chitosan           1511
        • 9.6.2.1.3           Starch 1511
      • 9.6.2.2 Poly(lactic acid) (PLA)              1511
      • 9.6.2.3 Poly(butylene Succinate         1511
      • 9.6.2.4 Functional Lipid and Proteins Based Coatings        1512
    • 9.6.3    Alkyd coatings               1512
      • 9.6.3.1 Alkyd resin properties               1512
      • 9.6.3.2 Bio-based alkyd coatings       1513
      • 9.6.3.3 Products           1515
    • 9.6.4    Polyurethane coatings             1516
      • 9.6.4.1 Properties         1516
      • 9.6.4.2 Bio-based polyurethane coatings     1516
        • 9.6.4.2.1           Bio-based polyols       1516
        • 9.6.4.2.2           Non-isocyanate polyurethane (NIPU)            1517
      • 9.6.4.3 Products           1518
    • 9.6.5    Epoxy coatings              1518
      • 9.6.5.1 Properties         1519
      • 9.6.5.2 Bio-based epoxy coatings     1519
      • 9.6.5.3 Prod     1521
      • 9.6.5.4 Products           1521
    • 9.6.6    Acrylate resins              1521
      • 9.6.6.1 Properties         1522
      • 9.6.6.2 Bio-based acrylates  1522
      • 9.6.6.3 Products           1522
    • 9.6.7    Polylactic acid (Bio-PLA)        1523
      • 9.6.7.1 Properties         1525
      • 9.6.7.2 Bio-PLA coatings and films  1525
    • 9.6.8    Polyhydroxyalkanoates (PHA)             1526
      • 9.6.8.1 Properties         1527
      • 9.6.8.2 PHA coatings  1530
      • 9.6.8.3 Commercially available PHAs            1530
    • 9.6.9    Cellulose          1532
      • 9.6.9.1 Microfibrillated cellulose (MFC)        1537
        • 9.6.9.1.1           Properties         1538
        • 9.6.9.1.2           Applications in coatings         1539
      • 9.6.9.2 Cellulose nanofibers 1540
        • 9.6.9.2.1           Properties         1540
        • 9.6.9.2.2           Applications in coatings         1542
      • 9.6.9.3 Cellulose nanocrystals           1545
      • 9.6.9.4 Bacterial Nanocellulose (BNC)          1547
    • 9.6.10 Rosins 1548
    • 9.6.11 Bio-based carbon black         1548
      • 9.6.11.1            Lignin-based  1548
      • 9.6.11.2            Algae-based   1549
    • 9.6.12 Lignin coatings              1549
    • 9.6.13 Edible films and coatings       1549
    • 9.6.14 Antimicrobial films and agents          1551
      • 9.6.14.1            Natural               1552
      • 9.6.14.2            Inorganic nanoparticles          1553
      • 9.6.14.3            Biopolymers   1553
    • 9.6.15 Nanocoatings 1553
    • 9.6.16 Protein-based biomaterials for coatings      1555
      • 9.6.16.1            Plant derived proteins              1555
      • 9.6.16.2            Animal origin proteins              1555
    • 9.6.17 Algal coatings 1556
    • 9.6.18 Polypeptides  1559
    • 9.6.19 Global market revenues          1560
  • 9.7        Company profiles       1562 (168 company profiles)

 

10          BIOFUELS        

  • 10.1     Comparison to fossil fuels    1700
  • 10.2     Role in the circular economy               1700
  • 10.3     Market drivers                1701
  • 10.4     Market challenges      1702
  • 10.5     Liquid biofuels market             1702
    • 10.5.1 Liquid biofuel production and consumption (in thousands of m3), 2000-2022 1702
    • 10.5.2 Liquid biofuels market 2020-2035, by type and production.          1704
  • 10.6     The global biofuels market    1706
    • 10.6.1 Diesel substitutes and alternatives 1707
    • 10.6.2 Gasoline substitutes and alternatives           1708
  • 10.7     SWOT analysis: Biofuels market        1709
  • 10.8     Comparison of biofuel costs 2023, by type                1710
  • 10.9     Types   1711
    • 10.9.1 Solid Biofuels 1711
    • 10.9.2 Liquid Biofuels              1712
    • 10.9.3 Gaseous Biofuels       1712
    • 10.9.4 Conventional Biofuels             1713
    • 10.9.5 Advanced Biofuels     1713
  • 10.10  Feedstocks      1714
    • 10.10.1              First-generation (1-G)               1716
    • 10.10.2              Second-generation (2-G)       1717
      • 10.10.2.1         Lignocellulosic wastes and residues             1718
      • 10.10.2.2         Biorefinery lignin         1719
    • 10.10.3              Third-generation (3-G)             1723
      • 10.10.3.1         Algal biofuels 1723
        • 10.10.3.1.1     Properties         1724
        • 10.10.3.1.2     Advantages     1724
    • 10.10.4              Fourth-generation (4-G)          1725
    • 10.10.5              Advantages and disadvantages, by generation        1726
    • 10.10.6              Energy crops  1727
      • 10.10.6.1         Feedstocks      1727
      • 10.10.6.2         SWOT analysis              1727
    • 10.10.7              Agricultural residues 1728
      • 10.10.7.1         Feedstocks      1728
      • 10.10.7.2         SWOT analysis              1729
    • 10.10.8              Manure, sewage sludge and organic waste                1730
      • 10.10.8.1         Processing pathways                1730
      • 10.10.8.2         SWOT analysis              1731
    • 10.10.9              Forestry and wood waste       1732
      • 10.10.9.1         Feedstocks      1732
      • 10.10.9.2         SWOT analysis              1732
    • 10.10.10           Feedstock costs          1733
  • 10.11  Hydrocarbon biofuels              1734
    • 10.11.1              Biodiesel           1734
      • 10.11.1.1         Biodiesel by generation           1735
      • 10.11.1.2         SWOT analysis              1736
      • 10.11.1.3         Production of biodiesel and other biofuels 1738
        • 10.11.1.3.1     Pyrolysis of biomass 1738
        • 10.11.1.3.2     Vegetable oil transesterification       1741
        • 10.11.1.3.3     Vegetable oil hydrogenation (HVO)  1742
          • 10.11.1.3.3.1 Production process   1742
        • 10.11.1.3.4     Biodiesel from tall oil                1743
        • 10.11.1.3.5     Fischer-Tropsch BioDiesel     1744
        • 10.11.1.3.6     Hydrothermal liquefaction of biomass         1745
        • 10.11.1.3.7     CO2 capture and Fischer-Tropsch (FT)          1746
        • 10.11.1.3.8     Dymethyl ether (DME)              1746
      • 10.11.1.4         Prices  1747
      • 10.11.1.5         Global production and consumption            1748
    • 10.11.2              Renewable diesel        1750
      • 10.11.2.1         Production       1750
      • 10.11.2.2         SWOT analysis              1751
      • 10.11.2.3         Global consumption 1752
      • 10.11.2.4         Prices  1754
    • 10.11.3              Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel)              1755
      • 10.11.3.1         Description     1755
      • 10.11.3.2         SWOT analysis              1755
      • 10.11.3.3         Global production and consumption            1756
      • 10.11.3.4         Production pathways                1756
      • 10.11.3.5         Prices  1758
      • 10.11.3.6         Bio-aviation fuel production capacities       1759
      • 10.11.3.7         Market challenges      1759
      • 10.11.3.8         Global consumption 1760
    • 10.11.4              Bio-naphtha   1761
      • 10.11.4.1         Overview           1761
      • 10.11.4.2         SWOT analysis              1762
      • 10.11.4.3         Markets and applications      1763
      • 10.11.4.4         Prices  1764
      • 10.11.4.5         Production capacities, by producer, current and planned               1765
      • 10.11.4.6         Production capacities, total (tonnes), historical, current and planned   1766
  • 10.12  Alcohol fuels  1767
    • 10.12.1              Biomethanol  1767
      • 10.12.1.1         SWOT analysis              1767
      • 10.12.1.2         Methanol-to gasoline technology     1768
        • 10.12.1.2.1     Production processes              1769
          • 10.12.1.2.1.1 Anaerobic digestion  1770
          • 10.12.1.2.1.2 Biomass gasification 1770
          • 10.12.1.2.1.3 Power to Methane       1771
    • 10.12.2              Ethanol              1772
      • 10.12.2.1         Technology description           1772
      • 10.12.2.2         1G Bio-Ethanol             1772
      • 10.12.2.3         SWOT analysis              1773
      • 10.12.2.4         Ethanol to jet fuel technology             1774
      • 10.12.2.5         Methanol from pulp & paper production      1774
      • 10.12.2.6         Sulfite spent liquor fermentation      1775
      • 10.12.2.7         Gasification    1775
        • 10.12.2.7.1     Biomass gasification and syngas fermentation       1775
        • 10.12.2.7.2     Biomass gasification and syngas thermochemical conversion    1776
      • 10.12.2.8         CO2 capture and alcohol synthesis               1776
      • 10.12.2.9         Biomass hydrolysis and fermentation           1776
        • 10.12.2.9.1     Separate hydrolysis and fermentation           1776
        • 10.12.2.9.2     Simultaneous saccharification and fermentation (SSF)    1777
        • 10.12.2.9.3     Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)      1777
        • 10.12.2.9.4     Simultaneous saccharification and co-fermentation (SSCF)         1778
        • 10.12.2.9.5     Direct conversion (consolidated bioprocessing) (CBP)      1778
      • 10.12.2.10      Global ethanol consumption              1779
    • 10.12.3              Biobutanol      1780
      • 10.12.3.1         Production       1782
      • 10.12.3.2         Prices  1782
  • 10.13  Biomass-based Gas 1782
    • 10.13.1              Feedstocks      1784
      • 10.13.1.1         Biomethane    1784
      • 10.13.1.2         Production pathways                1786
        • 10.13.1.2.1     Landfill gas recovery 1786
        • 10.13.1.2.2     Anaerobic digestion  1787
        • 10.13.1.2.3     Thermal gasification 1788
      • 10.13.1.3         SWOT analysis              1788
      • 10.13.1.4         Global production      1789
      • 10.13.1.5         Prices  1789
        • 10.13.1.5.1     Raw Biogas     1789
        • 10.13.1.5.2     Upgraded Biomethane            1790
      • 10.13.1.6         Bio-LNG             1790
        • 10.13.1.6.1     Markets              1790
          • 10.13.1.6.1.1 Trucks 1790
          • 10.13.1.6.1.2 Marine 1790
        • 10.13.1.6.2     Production       1790
        • 10.13.1.6.3     Plants 1791
      • 10.13.1.7         bio-CNG (compressed natural gas derived from biogas)  1791
      • 10.13.1.8         Carbon capture from biogas               1792
    • 10.13.2              Biosyngas        1793
      • 10.13.2.1         Production       1793
      • 10.13.2.2         Prices  1794
    • 10.13.3              Biohydrogen   1794
      • 10.13.3.1         Description     1794
      • 10.13.3.2         SWOT analysis              1795
      • 10.13.3.3         Production of biohydrogen from biomass  1796
        • 10.13.3.3.1     Biological Conversion Routes             1796
          • 10.13.3.3.1.1 Bio-photochemical Reaction              1796
          • 10.13.3.3.1.2 Fermentation and Anaerobic Digestion        1797
        • 10.13.3.3.2     Thermochemical conversion routes               1797
          • 10.13.3.3.2.1 Biomass Gasification               1797
          • 10.13.3.3.2.2 Biomass Pyrolysis      1797
          • 10.13.3.3.2.3 Biomethane Reforming           1798
      • 10.13.3.4         Applications   1798
      • 10.13.3.5         Prices  1799
    • 10.13.4              Biochar in biogas production              1799
    • 10.13.5              Bio-DME            1800
  • 10.14  Chemical recycling for biofuels         1800
    • 10.14.1              Plastic pyrolysis           1800
    • 10.14.2              Used tires pyrolysis   1801
      • 10.14.2.1         Conversion to biofuel               1802
    • 10.14.3              Co-pyrolysis of biomass and plastic wastes             1804
    • 10.14.4              Gasification    1804
      • 10.14.4.1         Syngas conversion to methanol        1805
      • 10.14.4.2         Biomass gasification and syngas fermentation       1809
      • 10.14.4.3         Biomass gasification and syngas thermochemical conversion    1809
    • 10.14.5              Hydrothermal cracking           1809
    • 10.14.6              SWOT analysis              1810
  • 10.15  Electrofuels (E-fuels, power-to-gas/liquids/fuels) 1811
    • 10.15.1              Introduction    1811
    • 10.15.2              Benefits of e-fuels       1814
    • 10.15.3              Feedstocks      1815
      • 10.15.3.1         Hydrogen electrolysis               1815
      • 10.15.3.2         CO2 capture   1815
    • 10.15.4              SWOT analysis              1816
    • 10.15.5              Production       1817
      • 10.15.5.1         eFuel production facilities, current and planned   1819
    • 10.15.6              Electrolysers   1820
      • 10.15.6.1         Commercial alkaline electrolyser cells (AECs)        1821
      • 10.15.6.2         PEM electrolysers (PEMEC)  1821
      • 10.15.6.3         High-temperature solid oxide electrolyser cells (SOECs) 1821
    • 10.15.7              Prices  1821
    • 10.15.8              Market challenges      1824
    • 10.15.9              Companies     1825
  • 10.16  Algae-derived biofuels             1826
    • 10.16.1              Technology description           1826
    • 10.16.2              Conversion pathways               1826
    • 10.16.3              SWOT analysis              1827
    • 10.16.4              Production       1828
    • 10.16.5              Market challenges      1829
    • 10.16.6              Prices  1829
    • 10.16.7              Producers         1830
  • 10.17  Green Ammonia          1830
    • 10.17.1              Production       1830
      • 10.17.1.1         Decarbonisation of ammonia production  1832
      • 10.17.1.2         Green ammonia projects       1833
    • 10.17.2              Green ammonia synthesis methods              1833
      • 10.17.2.1         Haber-Bosch process              1833
      • 10.17.2.2         Biological nitrogen fixation   1834
      • 10.17.2.3         Electrochemical production                1835
      • 10.17.2.4         Chemical looping processes               1835
    • 10.17.3              SWOT analysis              1835
    • 10.17.4              Blue ammonia              1836
      • 10.17.4.1         Blue ammonia projects           1836
    • 10.17.5              Markets and applications      1837
      • 10.17.5.1         Chemical energy storage       1837
        • 10.17.5.1.1     Ammonia fuel cells    1837
      • 10.17.5.2         Marine fuel      1837
    • 10.17.6              Prices  1839
    • 10.17.7              Estimated market demand   1841
    • 10.17.8              Companies and projects        1841
  • 10.18  Biofuels from carbon capture             1842
    • 10.18.1              Overview           1843
    • 10.18.2              CO2 capture from point sources      1845
    • 10.18.3              Production routes       1846
    • 10.18.4              SWOT analysis              1847
    • 10.18.5              Direct air capture (DAC)         1847
      • 10.18.5.1         Description     1847
      • 10.18.5.2         Deployment    1849
      • 10.18.5.3         Point source carbon capture versus Direct Air Capture     1850
      • 10.18.5.4         Technologies  1850
        • 10.18.5.4.1     Solid sorbents               1852
        • 10.18.5.4.2     Liquid sorbents            1853
        • 10.18.5.4.3     Liquid solvents             1854
        • 10.18.5.4.4     Airflow equipment integration            1855
        • 10.18.5.4.5     Passive Direct Air Capture (PDAC)   1855
        • 10.18.5.4.6     Direct conversion        1855
        • 10.18.5.4.7     Co-product generation            1856
        • 10.18.5.4.8     Low Temperature DAC             1856
        • 10.18.5.4.9     Regeneration methods            1856
      • 10.18.5.5         Commercialization and plants           1857
      • 10.18.5.6         Metal-organic frameworks (MOFs) in DAC  1857
      • 10.18.5.7         DAC plants and projects-current and planned        1858
      • 10.18.5.8         Markets for DAC           1863
      • 10.18.5.9         Costs  1864
      • 10.18.5.10      Challenges      1869
      • 10.18.5.11      Players and production           1869
    • 10.18.6              Carbon utilization for biofuels            1870
      • 10.18.6.1         Production routes       1874
        • 10.18.6.1.1     Electrolyzers   1874
        • 10.18.6.1.2     Low-carbon hydrogen              1875
      • 10.18.6.2         Products & applications         1876
        • 10.18.6.2.1     Vehicles             1876
        • 10.18.6.2.2     Shipping            1876
        • 10.18.6.2.3     Aviation              1877
        • 10.18.6.2.4     Costs  1878
        • 10.18.6.2.5     Ethanol              1878
        • 10.18.6.2.6     Methanol          1878
        • 10.18.6.2.7     Sustainable Aviation Fuel      1882
        • 10.18.6.2.8     Methane            1882
        • 10.18.6.2.9     Algae based biofuels 1884
        • 10.18.6.2.10  CO₂-fuels from solar 1884
      • 10.18.6.3         Challenges      1886
      • 10.18.6.4         SWOT analysis              1887
      • 10.18.6.5         Companies     1888
  • 10.19  Bio-oils (pyrolysis oils)            1890
    • 10.19.1              Description     1890
      • 10.19.1.1         Advantages of bio-oils             1890
    • 10.19.2              Production       1892
      • 10.19.2.1         Fast Pyrolysis 1892
      • 10.19.2.2         Costs of production  1892
      • 10.19.2.3         Upgrading        1892
    • 10.19.3              SWOT analysis              1894
    • 10.19.4              Applications   1894
    • 10.19.5              Bio-oil producers         1895
    • 10.19.6              Prices  1896
  • 10.20  Refuse Derived Fuels (RDF)  1896
    • 10.20.1              Overview           1896
    • 10.20.2              Production       1897
      • 10.20.2.1         Production process   1897
      • 10.20.2.2         Mechanical biological treatment      1897
    • 10.20.3              Markets              1898
  • 10.21  Company profiles       1899 (211 company profiles)

 

11          SUSTAINABLE ELECTRONICS             

  • 11.1     Overview           2049
    • 11.1.1 Green electronics manufacturing    2049
    • 11.1.2 Drivers for sustainable electronics  2050
    • 11.1.3 Environmental Impacts of Electronics Manufacturing       2051
      • 11.1.3.1            E-Waste Generation  2051
      • 11.1.3.2            Carbon Emissions     2052
      • 11.1.3.3            Resource Utilization  2052
      • 11.1.3.4            Waste Minimization  2053
      • 11.1.3.5            Supply Chain Impacts             2054
    • 11.1.4 New opportunities from sustainable electronics   2054
    • 11.1.5 Regulations     2055
      • 11.1.5.1            Certifications 2056
    • 11.1.6 Powering sustainable electronics (Bio-based batteries)   2056
    • 11.1.7 Bioplastics in injection moulded electronics parts              2057
  • 11.2     Green electronics manufacturing    2057
    • 11.2.1 Conventional electronics manufacturing   2057
    • 11.2.2 Benefits of Green Electronics manufacturing          2058
    • 11.2.3 Challenges in adopting Green Electronics manufacturing              2059
    • 11.2.4 Approaches    2060
      • 11.2.4.1            Closed-Loop Manufacturing               2060
      • 11.2.4.2            Digital Manufacturing              2061
        • 11.2.4.2.1        Advanced robotics & automation    2061
        • 11.2.4.2.2        AI & machine learning analytics        2061
        • 11.2.4.2.3        Internet of Things (IoT)             2061
        • 11.2.4.2.4        Additive manufacturing          2062
        • 11.2.4.2.5        Virtual prototyping     2062
        • 11.2.4.2.6        Blockchain-enabled supply chain traceability         2062
      • 11.2.4.3            Renewable Energy Usage      2062
      • 11.2.4.4            Energy Efficiency         2064
      • 11.2.4.5            Materials Efficiency   2064
      • 11.2.4.6            Sustainable Chemistry            2065
      • 11.2.4.7            Recycled Materials    2065
        • 11.2.4.7.1        Advanced chemical recycling             2066
      • 11.2.4.8            Bio-Based Materials  2069
    • 11.2.5 Greening the Supply Chain   2071
      • 11.2.5.1            Key focus areas            2072
      • 11.2.5.2            Sustainability activities from major electronics brands    2074
      • 11.2.5.3            Key challenges              2075
      • 11.2.5.4            Use of digital technologies    2075
    • 11.2.6 Sustainable Printed Circuit Board (PCB) manufacturing  2076
      • 11.2.6.1            Conventional PCB manufacturing   2076
      • 11.2.6.2            Trends in PCBs              2077
        • 11.2.6.2.1        High-Speed PCBs       2078
        • 11.2.6.2.2        Flexible PCBs 2078
        • 11.2.6.2.3        3D Printed PCBs          2079
        • 11.2.6.2.4        Sustainable PCBs       2080
      • 11.2.6.3            Reconciling sustainability with performance            2080
      • 11.2.6.4            Sustainable supply chains   2081
      • 11.2.6.5            Sustainability in PCB manufacturing             2082
        • 11.2.6.5.1        Sustainable cleaning of PCBs             2083
      • 11.2.6.6            Design of PCBs for sustainability     2084
        • 11.2.6.6.1        Rigid    2085
        • 11.2.6.6.2        Flexible               2086
        • 11.2.6.6.3        Additive manufacturing          2086
        • 11.2.6.6.4        In-mold elctronics (IME)         2088
      • 11.2.6.7            Materials           2088
        • 11.2.6.7.1        Metal cores     2088
        • 11.2.6.7.2        Recycled laminates   2088
        • 11.2.6.7.3        Conductive inks           2089
        • 11.2.6.7.4        Green and lead-free solder   2091
        • 11.2.6.7.5        Biodegradable substrates     2092
          • 11.2.6.7.5.1   Bacterial Cellulose     2092
          • 11.2.6.7.5.2   Mycelium          2093
          • 11.2.6.7.5.3   Lignin  2095
          • 11.2.6.7.5.4   Cellulose Nanofibers               2097
          • 11.2.6.7.5.5   Soy Protein      2099
          • 11.2.6.7.5.6   Algae   2099
        • 11.2.6.7.5.7   PHAs   2100
        • 11.2.6.7.6        Biobased inks                2101
      • 11.2.6.8            Substrates       2101
        • 11.2.6.8.1        Halogen-free FR4        2101
          • 11.2.6.8.1.1   FR4 limitations             2101
          • 11.2.6.8.1.2   FR4 alternatives           2103
          • 11.2.6.8.1.3   Bio-Polyimide 2103
        • 11.2.6.8.2        Metal-core PCBs         2105
        • 11.2.6.8.3        Biobased PCBs             2105
          • 11.2.6.8.3.1   Flexible (bio) polyimide PCBs             2106
          • 11.2.6.8.3.2   Recent commercial activity  2107
        • 11.2.6.8.4        Paper-based PCBs     2108
        • 11.2.6.8.5        PCBs without solder mask   2108
        • 11.2.6.8.6        Thinner dielectrics      2108
        • 11.2.6.8.7        Recycled plastic substrates 2108
        • 11.2.6.8.8        Flexible substrates     2109
      • 11.2.6.9            Sustainable patterning and metallization in electronics manufacturing 2109
        • 11.2.6.9.1        Introduction    2109
        • 11.2.6.9.2        Issues with sustainability      2109
        • 11.2.6.9.3        Regeneration and reuse of etching chemicals         2110
        • 11.2.6.9.4        Transition from Wet to Dry phase patterning             2111
        • 11.2.6.9.5        Print-and-plate              2111
        • 11.2.6.9.6        Approaches    2112
          • 11.2.6.9.6.1   Direct Printed Electronics      2112
          • 11.2.6.9.6.2   Photonic Sintering      2113
          • 11.2.6.9.6.3   Biometallization          2114
          • 11.2.6.9.6.4   Plating Resist Alternatives     2114
          • 11.2.6.9.6.5   Laser-Induced Forward Transfer       2115
          • 11.2.6.9.6.6   Electrohydrodynamic Printing            2117
          • 11.2.6.9.6.7   Electrically conductive adhesives (ECAs    2118
          • 11.2.6.9.6.8   Green electroless plating       2119
          • 11.2.6.9.6.9   Smart Masking             2120
          • 11.2.6.9.6.10 Component Integration           2120
          • 11.2.6.9.6.11 Bio-inspired material deposition      2120
          • 11.2.6.9.6.12 Multi-material jetting 2121
          • 11.2.6.9.6.13 Vacuumless deposition          2122
          • 11.2.6.9.6.14 Upcycling waste streams      2122
      • 11.2.6.10         Sustainable attachment and integration of components 2123
        • 11.2.6.10.1     Conventional component attachment materials   2123
        • 11.2.6.10.2     Materials           2124
          • 11.2.6.10.2.1 Conductive adhesives             2124
          • 11.2.6.10.2.2 Biodegradable adhesives      2124
          • 11.2.6.10.2.3 Magnets            2124
          • 11.2.6.10.2.4 Bio-based solders      2125
          • 11.2.6.10.2.5 Bio-derived solders   2125
          • 11.2.6.10.2.6 Recycled plastics       2125
          • 11.2.6.10.2.7 Nano adhesives           2126
          • 11.2.6.10.2.8 Shape memory polymers       2126
          • 11.2.6.10.2.9 Photo-reversible polymers    2127
          • 11.2.6.10.2.10              Conductive biopolymers        2128
        • 11.2.6.10.3     Processes        2128
        • 11.2.6.10.3.1 Traditional thermal processing methods     2129
        • 11.2.6.10.3.2 Low temperature solder          2129
        • 11.2.6.10.3.3 Reflow soldering          2132
        • 11.2.6.10.3.4 Induction soldering    2132
        • 11.2.6.10.3.5 UV curing          2133
        • 11.2.6.10.3.6 Near-infrared (NIR) radiation curing 2133
        • 11.2.6.10.3.7 Photonic sintering/curing       2134
        • 11.2.6.10.3.8 Hybrid integration       2134
    • 11.2.7 Sustainable integrated circuits          2135
      • 11.2.7.1            IC manufacturing        2135
      • 11.2.7.2            Sustainable IC manufacturing           2135
      • 11.2.7.3            Wafer production        2136
        • 11.2.7.3.1        Silicon 2136
        • 11.2.7.3.2        Gallium nitride ICs     2137
        • 11.2.7.3.3        Flexible ICs      2137
        • 11.2.7.3.4        Fully printed organic ICs         2138
      • 11.2.7.4            Oxidation methods    2138
        • 11.2.7.4.1        Sustainable oxidation              2138
        • 11.2.7.4.2        Metal oxides   2139
        • 11.2.7.4.3        Recycling          2140
        • 11.2.7.4.4        Thin gate oxide layers                2140
      • 11.2.7.5            Patterning and doping              2141
        • 11.2.7.5.1        Processes        2141
          • 11.2.7.5.1.1   Wet etching     2141
          • 11.2.7.5.1.2   Dry plasma etching    2141
          • 11.2.7.5.1.3   Lift-off patterning        2142
          • 11.2.7.5.1.4   Surface doping             2142
      • 11.2.7.6            Metallization  2143
        • 11.2.7.6.1        Evaporation    2143
        • 11.2.7.6.2        Plating 2143
        • 11.2.7.6.3        Printing              2144
          • 11.2.7.6.3.1   Printed metal gates for organic thin film transistors            2144
        • 11.2.7.6.4        Physical vapour deposition (PVD)    2144
    • 11.2.8 End of life         2145
      • 11.2.8.1            Hazardous waste        2145
      • 11.2.8.2            Emissions        2146
      • 11.2.8.3            Water Usage   2147
      • 11.2.8.4            Recycling          2147
        • 11.2.8.4.1        Mechanical recycling                2148
        • 11.2.8.4.2        Electro-Mechanical Separation         2149
        • 11.2.8.4.3        Chemical Recycling   2149
      • 11.2.8.5            Electrochemical Processes  2150
        • 11.2.8.5.1        Thermal Recycling      2150
      • 11.2.8.6            Green Certification     2151
  • 11.3     Global market                2151
    • 11.3.1 Global PCB manufacturing industry               2151
      • 11.3.1.1            PCB revenues 2151
    • 11.3.2 Sustainable PCBs       2153
    • 11.3.3 Sustainable ICs            2155
  • 11.4     Company profiles       2157 (45 company profiles)

 

12          BIOBASED ADHESIVES AND SEALANTS      

  • 12.1     Overview           2203
    • 12.1.1 Biobased Epoxy Adhesives   2203
    • 12.1.2 Bioobased Polyurethane Adhesives                2204
    • 12.1.3 Other Biobased Adhesives and Sealants    2204
  • 12.2     Types   2205
    • 12.2.1 Cellulose-Based          2205
    • 12.2.2 Starch-Based 2206
    • 12.2.3 Lignin-Based  2206
    • 12.2.4 Vegetable Oils               2207
    • 12.2.5 Protein-Based               2207
    • 12.2.6 Tannin-Based 2208
    • 12.2.7 Algae-based   2208
    • 12.2.8 Chitosan-based           2209
    • 12.2.9 Natural Rubber-based             2210
    • 12.2.10              Silkworm Silk-based 2211
    • 12.2.11              Mussel Protein-based              2211
    • 12.2.12              Soy-based Foam         2212
  • 12.3     Global revenues           2213
    • 12.3.1 By types             2213
    • 12.3.2 By market         2215
  • 12.4     Company profiles       2217 (15 company profiles)

 

13          REFERENCES 2229

 

List of Tables

  • Table 1. Plant-based feedstocks and biochemicals produced.    108
  • Table 2. Waste-based feedstocks and biochemicals produced.  109
  • Table 3. Microbial and mineral-based feedstocks and biochemicals produced.              110
  • Table 4. Common starch sources that can be used as feedstocks for producing biochemicals.           111
  • Table 5. Common lysine sources that can be used as feedstocks for producing biochemicals.            113
  • Table 6. Applications of  lysine as a feedstock for biochemicals.                113
  • Table 7. HDMA sources that can be used as feedstocks for producing biochemicals. 116
  • Table 8. Applications of bio-based HDMA. 116
  • Table 9. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5).            118
  • Table 10. Applications of DN5.           118
  • Table 11. Biobased feedstocks for isosorbide.        120
  • Table 12. Applications of bio-based isosorbide.    120
  • Table 13. Lactide applications.          123
  • Table 14. Biobased feedstock sources for itaconic acid.  124
  • Table 15. Applications of bio-based itaconic acid.               125
  • Table 16. Biobased feedstock sources for 3-HP.     127
  • Table 17. Applications of 3-HP.           127
  • Table 18. Applications of bio-based acrylic acid.  129
  • Table 19. Applications of bio-based 1,3-Propanediol (1,3-PDO). 130
  • Table 20. Biobased feedstock sources for Succinic acid. 132
  • Table 21. Applications of succinic acid.       132
  • Table 22. Applications of bio-based 1,4-Butanediol (BDO).           133
  • Table 23. Applications of bio-based Tetrahydrofuran (THF).           135
  • Table 24. Applications of bio-based adipic acid.    137
  • Table 25. Applications of bio-based caprolactam.               138
  • Table 26. Biobased feedstock sources for isobutanol.       140
  • Table 27. Applications of bio-based isobutanol.    140
  • Table 28. Biobased feedstock sources for p-Xylene.            141
  • Table 29. Applications of bio-based p-Xylene.         142
  • Table 30. Applications of bio-based Terephthalic acid (TPA).         143
  • Table 31. Biobased feedstock sources for 1,3 Proppanediol.        144
  • Table 32. Applications of bio-based 1,3 Proppanediol.     145
  • Table 33. Biobased feedstock sources for MEG.     146
  • Table 34. Applications of bio-based MEG.  146
  • Table 35. Biobased MEG producers capacities.     147
  • Table 36. Biobased feedstock sources for ethanol.              148
  • Table 37. Applications of bio-based ethanol.           148
  • Table 38. Applications of bio-based ethylene.         150
  • Table 39. Applications of bio-based propylene.      151
  • Table 40. Applications of bio-based vinyl chloride.               152
  • Table 41. Applications of bio-based Methly methacrylate.              154
  • Table 42. Applications of bio-based aniline.             156
  • Table 43. Applications of biobased fructose.            157
  • Table 44. Applications of bio-based 5-Hydroxymethylfurfural (5-HMF). 159
  • Table 45. Applications of 5-(Chloromethyl)furfural (CMF).              160
  • Table 46. Applications of Levulinic acid.      162
  • Table 47. Markets and applications for bio-based FDME. 163
  • Table 48. Applications of FDCA.        164
  • Table 49. Markets and applications for bio-based levoglucosenone.       166
  • Table 50. Biochemicals derived from hemicellulose            167
  • Table 51. Markets and applications for bio-based hemicellulose               167
  • Table 52. Markets and applications for bio-based furfuryl alcohol.           170
  • Table 53. Commercial and pre-commercial biorefinery lignin production facilities and processes     171
  • Table 54. Lignin aromatic compound products.     173
  • Table 55. Prices of benzene, toluene, xylene and their derivatives.            173
  • Table 56. Lignin products in polymeric materials. 175
  • Table 57. Application of lignin in plastics and composites.             175
  • Table 58. Markets and applications for bio-based glycerol.            178
  • Table 59. Markets and applications for Bio-based MPG.   179
  • Table 60. Markets and applications: Bio-based ECH.         181
  • Table 61. Mineral source products and applications.         204
  • Table 62. Type of biodegradation.    294
  • Table 63. Advantages and disadvantages of biobased plastics compared to conventional plastics.  295
  • Table 64. Types of Bio-based and/or Biodegradable Plastics, applications.         295
  • Table 65. Key market players by Bio-based and/or Biodegradable Plastic types.              297
  • Table 66. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.  298
  • Table 67. Lactic acid producers and production capacities.          300
  • Table 68. PLA producers and production capacities.          300
  • Table 69. Planned PLA capacity expansions in China.        301
  • Table 70. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications.     303
  • Table 71. Bio-based Polyethylene terephthalate (PET) producers and production capacities, 303
  • Table 72. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications.     304
  • Table 73. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.          305
  • Table 74. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.  306
  • Table 75. PEF vs. PET.               307
  • Table 76. FDCA and PEF producers.               308
  • Table 77. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications.        309
  • Table 78. Leading Bio-PA producers production capacities.          310
  • Table 79. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications.     311
  • Table 80. Leading PBAT producers, production capacities and brands. 312
  • Table 81. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications.         314
  • Table 82. Leading PBS producers and production capacities.      314
  • Table 83. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.        315
  • Table 84. Leading Bio-PE producers.              316
  • Table 85. Bio-PP market analysis- manufacture, advantages, disadvantages and applications.           317
  • Table 86. Leading Bio-PP producers and capacities.          318
  • Table 87.Types of PHAs and properties.       321
  • Table 88. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers.         323
  • Table 89. Polyhydroxyalkanoate (PHA) extraction methods.           325
  • Table 90. Polyhydroxyalkanoates (PHA) market analysis. 326
  • Table 91. Commercially available PHAs.     327
  • Table 92. Markets and applications for PHAs.          328
  • Table 93. Applications, advantages and disadvantages of PHAs in packaging. 329
  • Table 94. Polyhydroxyalkanoates (PHA) producers.              332
  • Table 95. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications.        333
  • Table 96. Leading MFC producers and capacities.               334
  • Table 97. Synthesis methods for cellulose nanocrystals (CNC). 336
  • Table 98. CNC sources, size and yield.         336
  • Table 99. CNC properties.     337
  • Table 100. Mechanical properties of CNC and other reinforcement materials. 337
  • Table 101. Applications of nanocrystalline cellulose (NCC).         339
  • Table 102. Cellulose nanocrystals analysis.             339
  • Table 103: Cellulose nanocrystal production capacities and production process, by producer.            341
  • Table 104. Applications of cellulose nanofibers (CNF).     342
  • Table 105. Cellulose nanofibers market analysis. 343
  • Table 106. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes.              344
  • Table 107. Applications of bacterial nanocellulose (BNC).             347
  • Table 108. Types of protein based-bioplastics, applications and companies.   349
  • Table 109. Types of algal and fungal based-bioplastics, applications and companies.               350
  • Table 110. Overview of alginate-description, properties, application and market size. 350
  • Table 111. Companies developing algal-based bioplastics.          352
  • Table 112. Overview of mycelium fibers-description, properties, drawbacks and applications.            352
  • Table 113. Companies developing mycelium-based bioplastics.               354
  • Table 114. Overview of chitosan-description, properties, drawbacks and applications.             355
  • Table 115. Global production of bioplastics in 2019-2035, by region, 1,000 tonnes.     356
  • Table 116. Biobased and sustainable plastics producers in North America.       357
  • Table 117. Biobased and sustainable plastics producers in Europe.        357
  • Table 118. Biobased and sustainable plastics producers in Asia-Pacific.             358
  • Table 119. Biobased and sustainable plastics producers in Latin America.        359
  • Table 120. Processes for bioplastics in packaging.              361
  • Table 121. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.   362
  • Table 122. Typical applications for bioplastics in flexible packaging.      363
  • Table 123. Typical applications for bioplastics in rigid packaging.             365
  • Table 124. Technical lignin types and applications.             378
  • Table 125. Classification of technical lignins.          380
  • Table 126. Lignin content of selected biomass.     380
  • Table 127. Properties of lignins and their applications.     381
  • Table 128. Example markets and applications for lignin.  383
  • Table 129. Processes for lignin production.               385
  • Table 130. Biorefinery feedstocks.   391
  • Table 131. Comparison of pulping and biorefinery lignins.              391
  • Table 132. Commercial and pre-commercial biorefinery lignin production facilities and  processes 392
  • Table 133. Market drivers and trends for lignin.       396
  • Table 134. Production capacities of technical lignin producers.  396
  • Table 135. Production capacities of biorefinery lignin producers.              397
  • Table 136. Estimated consumption of lignin, by type, 2019-2035 (000 MT).        398
  • Table 137. Estimated consumption of lignin, by market, 2019-2034 (000 MT).  400
  • Table 138. Prices of benzene, toluene, xylene and their derivatives.         403
  • Table 139. Application of lignin in plastics and polymers.                404
  • Table 140. Lactips plastic pellets.    589
  • Table 141. Oji Holdings CNF products.         654
  • Table 142. Types of natural fibers.    775
  • Table 143. Markets and applications for natural fibers.     778
  • Table 144. Commercially available natural fiber products.             780
  • Table 145. Market drivers for natural fibers.               783
  • Table 146. Typical properties of natural fibers.        786
  • Table 147. Overview of kapok fibers-description, properties, drawbacks and applications.     787
  • Table 148. Overview of luffa fibers-description, properties, drawbacks and applications.        788
  • Table 149. Overview of jute fibers-description, properties, drawbacks and applications.          790
  • Table 150. Overview of hemp fibers-description, properties, drawbacks and applications.     791
  • Table 151. Overview of flax fibers-description, properties, drawbacks and applications.          792
  • Table 152. Overview of ramie fibers-description, properties, drawbacks and applications.     793
  • Table 153. Overview of kenaf fibers-description, properties, drawbacks and applications.      794
  • Table 154. Overview of sisal fibers-description, properties, drawbacks and applications.        795
  • Table 155. Overview of abaca fibers-description, properties, drawbacks and applications.    796
  • Table 156. Overview of coir fibers-description, properties, drawbacks and applications.          797
  • Table 157. Overview of banana fibers-description, properties, drawbacks and applications. 798
  • Table 158. Overview of pineapple fibers-description, properties, drawbacks and applications.           798
  • Table 159. Overview of rice fibers-description, properties, drawbacks and applications.          800
  • Table 160. Overview of corn fibers-description, properties, drawbacks and applications.        800
  • Table 161. Overview of switch grass fibers-description, properties and applications.  801
  • Table 162. Overview of sugarcane fibers-description, properties, drawbacks and application and market size.    802
  • Table 163. Overview of bamboo fibers-description, properties, drawbacks and applications.               803
  • Table 164. Overview of mycelium fibers-description, properties, drawbacks and applications.            805
  • Table 165. Overview of chitosan fibers-description, properties, drawbacks and applications.               807
  • Table 166. Overview of alginate-description, properties, application and market size. 808
  • Table 167. Overview of silk fibers-description, properties, application and market size.            809
  • Table 168. Next-gen silk producers.                810
  • Table 169. Companies developing cellulose fibers for application in plastic composites.        811
  • Table 170. Microfibrillated cellulose (MFC) market analysis.        812
  • Table 171. Leading MFC producers and capacities.            812
  • Table 172. Cellulose nanocrystals market overview.           813
  • Table 173. Cellulose nanocrystal production capacities and production process, by producer.            814
  • Table 174. Cellulose nanofibers market analysis. 815
  • Table 175. CNF production capacities and production process, by producer, in metric tons. 816
  • Table 176. Processing and treatment methods for natural fibers used in plastic composites. 817
  • Table 177. Application, manufacturing method, and matrix materials of natural fibers.             819
  • Table 178. Properties of natural fiber-bio-based polymer compounds.  821
  • Table 179. Typical properties of short natural fiber-thermoplastic composites.               821
  • Table 180. Properties of non-woven natural fiber mat composites.           823
  • Table 181. Applications of natural fibers in plastics.           825
  • Table 182. Applications of natural fibers in the automotive industry.       828
  • Table 183. Natural fiber-reinforced polymer composite in the automotive market.        829
  • Table 184. Applications of natural fibers in packaging.      832
  • Table 185. Applications of natural fibers in construction. 835
  • Table 186. Applications of natural fibers in the appliances market.           837
  • Table 187. Applications of natural fibers in the consumer electronics market.  840
  • Table 188. Global market for natural fiber based plastics, 2018-2035, by end use sector (Billion USD).                845
  • Table 189. Global market for natural fiber based plastics, 2018-2035, by material type (Billion USD).                846
  • Table 190. Global market for natural fiber based plastics, 2018-2035, by plastic type (Billion USD).  847
  • Table 191. Global market for natural fiber based plastics, 2018-2035, by region (Billion USD).              848
  • Table 192. Granbio Nanocellulose Processes.        883
  • Table 193. Oji Holdings CNF products.         901
  • Table 194. Global trends and drivers in sustainable construction materials.      919
  • Table 195. Global revenues in sustainable construction materials, by materials type, 2020-2035 (millions USD).             921
  • Table 196. Global revenues in sustainable construction materials, by market, 2020-2035 (millions USD).                924
  • Table 197. Established bio-based construction materials.             927
  • Table 198. Types of self-healing concrete.  934
  • Table 199. General properties and value of aerogels.         945
  • Table 200. Key properties of silica aerogels.             947
  • Table 201. Chemical precursors used to synthesize silica aerogels.        947
  • Table 202. Commercially available aerogel-enhanced blankets. 951
  • Table 203. Main manufacturers of silica aerogels and product offerings.              954
  • Table 204. Typical structural properties of metal oxide aerogels.                956
  • Table 205. Polymer aerogels companies.   958
  • Table 206. Types of biobased aerogels.        959
  • Table 207. Carbon aerogel companies.        966
  • Table 208. Conversion pathway for CO2-derived building materials.       971
  • Table 209. Carbon capture technologies and projects in the cement sector       975
  • Table 210. Carbonation of recycled concrete companies.              980
  • Table 211. Current and projected costs for some key CO2 utilization applications in the construction industry.            981
  • Table 212. Market challenges for CO2 utilization in construction materials.       981
  • Table 213. Global Decarbonization Targets and Policies related to Green Steel.               985
  • Table 214. Estimated cost for iron and steel industry under the Carbon Border Adjustment Mechanism (CBAM).             987
  • Table 215. Hydrogen-based steelmaking technologies.    989
  • Table 216. Comparison of green steel production technologies. 989
  • Table 217. Advantages and disadvantages of each potential hydrogen carrier. 991
  • Table 218. CCUS in green steel production.              993
  • Table 219. Biochar in steel and metal.          995
  • Table 220. Hydrogen blast furnace schematic.       996
  • Table 221. Applications of microwave processing in green steelmaking.               1000
  • Table 222. Applications of additive manufacturing (AM) in steelmaking.               1001
  • Table 223.  Technology readiness level (TRL) for key green steel production technologies.       1001
  • Table 224. Properties of Green steels.           1002
  • Table 225. Applications of green steel in the construction industry.         1003
  • Table 226. Market trends in bio-based and sustainable packaging           1125
  • Table 227. Drivers for recent growth in the bioplastics and biopolymers markets.          1126
  • Table 228. Challenges for bio-based and sustainable packaging.             1126
  • Table 229. Types of bio-based plastics and fossil-fuel-based plastics    1129
  • Table 230. Comparison of synthetic fossil-based and bio-based polymers.        1134
  • Table 231. Processes for bioplastics in packaging.              1135
  • Table 232. PLA properties for packaging applications.       1136
  • Table 233. Applications, advantages and disadvantages of PHAs in packaging.              1156
  • Table 234. Major polymers found in the extracellular covering of different algae.            1162
  • Table 235. Market overview for cellulose microfibers (microfibrillated cellulose) in paperboard and packaging-market age, key benefits, applications and producers.            1163
  • Table 236. Applications of nanocrystalline cellulose (CNC).         1165
  • Table 237. Market overview for cellulose nanofibers in packaging.           1167
  • Table 238. Types of protein based-bioplastics, applications and companies.   1176
  • Table 239. Overview of alginate-description, properties, application and market size. 1179
  • Table 240. Companies developing algal-based bioplastics.          1180
  • Table 241. Overview of mycelium fibers-description, properties, drawbacks and applications.            1181
  • Table 242. Overview of chitosan-description, properties, drawbacks and applications.             1184
  • Table 243. Bio-based naphtha markets and applications.               1185
  • Table 244. Bio-naphtha market value chain.            1186
  • Table 245. Pros and cons of different type of food packaging materials. 1187
  • Table 246. Active Biodegradable Films films and their food applications.             1194
  • Table 247. Intelligent Biodegradable Films.               1194
  • Table 248. Edible films and coatings market summary.    1198
  • Table 249. Summary of barrier films and coatings for packaging.              1201
  • Table 250. Types of polyols. 1203
  • Table 251. Polyol producers.                1204
  • Table 252. Bio-based polyurethane coating products.       1204
  • Table 253. Bio-based acrylate resin products.         1206
  • Table 254. Polylactic acid (PLA) market analysis.  1206
  • Table 255. Commercially available PHAs.  1209
  • Table 256. Market overview for cellulose nanofibers in paints and coatings.       1211
  • Table 257. Companies developing cellulose nanofibers products in paints and coatings.         1212
  • Table 258. Types of protein based-biomaterials, applications and companies. 1216
  • Table 259. CO2 utilization and removal pathways.                1218
  • Table 260. CO2 utilization products developed by chemical and plastic producers.     1220
  • Table 261. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.   1222
  • Table 262. Typical applications for bioplastics in flexible packaging.      1223
  • Table 263. Typical applications for bioplastics in rigid packaging.             1225
  • Table 264. Market revenues for bio-based coatings, 2018-2035 (billions USD), high estimate.               1227
  • Table 265. Lactips plastic pellets.    1325
  • Table 266. Oji Holdings CNF products.         1349
  • Table 267. Properties and applications of the main natural fibres              1399
  • Table 268. Types of sustainable alternative leathers.          1406
  • Table 269. Properties of bio-based leathers.             1407
  • Table 270. Comparison with conventional leathers.            1409
  • Table 271. Price of commercially available sustainable alternative leather products.  1411
  • Table 272. Comparative analysis of sustainable alternative leathers.      1412
  • Table 273. Key processing steps involved in transforming plant fibers into leather materials. 1413
  • Table 274. Current and emerging plant-based leather products. 1415
  • Table 275. Companies developing plant-based leather products.             1416
  • Table 276. Overview of mycelium-description, properties, drawbacks and applications.          1418
  • Table 277. Companies developing mycelium-based leather products.  1422
  • Table 278. Types of microbial-derived leather alternative.               1425
  • Table 279. Companies developing microbial leather products.   1428
  • Table 280. Companies developing plant-based leather products.             1431
  • Table 281. Types of protein-based leather alternatives.     1431
  • Table 282. Companies developing protein based leather.                1433
  • Table 283. Companies developing sustainable coatings and dyes for leather - 1435
  • Table 284. Markets and applications for bio-based textiles and leather. 1436
  • Table 285. Applications of biobased leather in furniture and upholstery.              1439
  • Table 286. Global revenues for bio-based textiles by type, 2018-2035 (millions USD). 1440
  • Table 287. Global revenues for bio-based and sustainable textiles by end use market, 2018-2035 (millions USD).             1442
  • Table 288. Market drivers and trends in bio-based and sustainable coatings.    1501
  • Table 289. Example envinronmentally friendly coatings, advantages and disadvantages.        1502
  • Table 290. Plant Waxes.          1508
  • Table 291. Types of alkyd resins and properties.     1513
  • Table 292. Market summary for bio-based alkyd coatings-raw materials, advantages, disadvantages, applications and producers.                1514
  • Table 293. Bio-based alkyd coating products.         1515
  • Table 294. Types of polyols. 1516
  • Table 295. Polyol producers.                1517
  • Table 296. Bio-based polyurethane coating products.       1518
  • Table 297. Market summary for bio-based epoxy resins.  1519
  • Table 298. Bio-based polyurethane coating products.       1521
  • Table 299. Bio-based acrylate resin products.         1522
  • Table 300. Polylactic acid (PLA) market analysis.  1523
  • Table 301. PLA producers and production capacities.       1524
  • Table 302. Polyhydroxyalkanoates (PHA) market analysis.             1526
  • Table 303.Types of PHAs and properties.     1529
  • Table 304. Polyhydroxyalkanoates (PHA) producers.           1530
  • Table 305. Commercially available PHAs.  1531
  • Table 306. Properties of micro/nanocellulose, by type.     1534
  • Table 307: Types of nanocellulose. 1536
  • Table 308. Microfibrillated Cellulose (MFC) production capacities in metric tons and production process, by producer, metric tons. 1538
  • Table 309. Commercially available Microfibrillated Cellulose products.               1539
  • Table 310. Market overview for cellulose nanofibers in paints and coatings.       1540
  • Table 311. Market assessment for cellulose nanofibers in paints and coatings-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global paints and coatings OEMs.               1542
  • Table 312. Companies developing CNF products in paints and coatings, applications targeted and stage of commercialization. 1544
  • Table 313. CNC properties.  1545
  • Table 314: Cellulose nanocrystal capacities (by type, wet or dry) and production process, by producer, metric tonnes.              1547
  • Table 315. Applications of bacterial nanocellulose (BNC).             1547
  • Table 316. Edible films and coatings market summary.    1550
  • Table 317. Types of protein based-biomaterials, applications and companies. 1556
  • Table 318. Overview of algal coatings-description, properties, application and market size.  1557
  • Table 319. Companies developing algal-based plastics.  1559
  • Table 320. Market revenues for bio-based coatings by market, 2018-2035 (billions USD), conservative estimate.          1560
  • Table 321. Lactips plastic pellets.    1635
  • Table 322. Oji Holdings CNF products.         1659
  • Table 323. Market drivers for biofuels.          1701
  • Table 324. Market challenges for biofuels. 1702
  • Table 325. Liquid biofuels market 2020-2035, by type and production.  1704
  • Table 326. Comparison of biofuels. 1705
  • Table 327. Comparison of biofuel costs (USD/liter) 2023, by type.             1710
  • Table 328. Categories and examples of solid biofuel.         1711
  • Table 329. Comparison of biofuels and e-fuels to fossil and electricity.  1713
  • Table 330. Classification of biomass feedstock.    1714
  • Table 331. Biorefinery feedstocks.   1715
  • Table 332. Feedstock conversion pathways.             1715
  • Table 333. First-Generation Feedstocks.     1716
  • Table 334.  Lignocellulosic ethanol plants and capacities.             1718
  • Table 335. Comparison of pulping and biorefinery lignins.              1719
  • Table 336. Commercial and pre-commercial biorefinery lignin production facilities and  processes 1720
  • Table 337. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol.   1721
  • Table 338. Properties of microalgae and macroalgae.       1724
  • Table 339. Yield of algae and other biodiesel crops.            1725
  • Table 340. Advantages and disadvantages of biofuels, by generation.    1726
  • Table 341. Biodiesel by generation. 1735
  • Table 342. Biodiesel production techniques.            1738
  • Table 343. Summary of pyrolysis technique under different operating conditions.         1739
  • Table 344. Biomass materials and their bio-oil yield.          1740
  • Table 345. Biofuel production cost from the biomass pyrolysis process.              1740
  • Table 346. Properties of vegetable oils in comparison to diesel.  1742
  • Table 347. Main producers of HVO and capacities.              1743
  • Table 348. Example commercial Development of BtL processes.              1744
  • Table 349. Pilot or demo projects for biomass to liquid (BtL) processes.               1745
  • Table 350. Global biodiesel consumption, 2010-2035 (M litres/year).     1749
  • Table 351. Global renewable diesel consumption, 2010-2035 (M litres/year).   1753
  • Table 352. Renewable diesel price ranges. 1754
  • Table 353. Advantages and disadvantages of Bio-aviation fuel.   1755
  • Table 354. Production pathways for Bio-aviation fuel.        1757
  • Table 355. Current and announced Bio-aviation fuel facilities and capacities. 1759
  • Table 356. Global bio-jet fuel consumption 2019-2035 (Million litres/year).       1760
  • Table 357. Bio-based naphtha markets and applications.               1763
  • Table 358. Bio-naphtha market value chain.            1763
  • Table 359. Bio-naphtha pricing against petroleum-derived naphtha and related fuel products.            1765
  • Table 360. Bio-based Naphtha production capacities, by producer.         1765
  • Table 361. Comparison of biogas, biomethane and natural gas. 1770
  • Table 362.  Processes in bioethanol production.  1777
  • Table 363. Microorganisms used in CBP for ethanol production from biomass lignocellulosic.             1778
  • Table 364. Ethanol consumption 2010-2035 (million litres).          1779
  • Table 365. Biogas feedstocks.            1784
  • Table 366. Existing and planned bio-LNG production plants.        1791
  • Table 367. Methods for capturing carbon dioxide from biogas.    1792
  • Table 368. Comparison of different Bio-H2 production pathways.             1796
  • Table 369. Markets and applications for biohydrogen.       1798
  • Table 370. Summary of gasification technologies.                1804
  • Table 371. Overview of hydrothermal cracking for advanced chemical recycling.            1809
  • Table 372. Applications of e-fuels, by type.                1813
  • Table 373. Overview of e-fuels.          1814
  • Table 374. Benefits of e-fuels.             1814
  • Table 375. eFuel production facilities, current and planned.         1819
  • Table 376. Main characteristics of different electrolyzer technologies.  1820
  • Table 377. Market challenges for e-fuels.    1824
  • Table 378. E-fuels companies.           1825
  • Table 379. Algae-derived biofuel producers.             1830
  • Table 380. Green ammonia projects (current and planned).          1833
  • Table 381. Blue ammonia projects. 1836
  • Table 382. Ammonia fuel cell technologies.              1837
  • Table 383. Market overview of green ammonia in marine fuel.      1838
  • Table 384. Summary of marine alternative fuels.   1839
  • Table 385. Estimated costs for different types of ammonia.          1840
  • Table 386. Main players in green ammonia.              1841
  • Table 387. Market overview for CO2 derived fuels.               1843
  • Table 388. Point source examples.  1846
  • Table 389. Advantages and disadvantages of DAC.              1849
  • Table 390. Companies developing airflow equipment integration with DAC.      1855
  • Table 391. Companies developing Passive Direct Air Capture (PDAC) technologies.    1855
  • Table 392. Companies developing regeneration methods for DAC technologies.            1856
  • Table 393. DAC companies and technologies.        1857
  • Table 394. DAC technology developers and production.  1859
  • Table 395. DAC projects in development.   1862
  • Table 396. Markets for DAC. 1864
  • Table 397. Costs summary for DAC.               1864
  • Table 398. Cost estimates of DAC.  1867
  • Table 399. Challenges for DAC technology.               1869
  • Table 400. DAC companies and technologies.        1869
  • Table 401. Market overview for CO2 derived fuels.               1871
  • Table 402. Main production routes and processes for manufacturing fuels from captured carbon dioxide.              1874
  • Table 403. CO₂-derived fuels projects.         1875
  • Table 404. Thermochemical methods to produce methanol from CO2. 1879
  • Table 405. pilot plants for CO2-to-methanol conversion. 1882
  • Table 406. Microalgae products and prices.              1884
  • Table 407. Main Solar-Driven CO2 Conversion Approaches.         1886
  • Table 408. Market challenges for CO2 derived fuels.           1886
  • Table 409. Companies in CO2-derived fuel products.        1888
  • Table 410. Typical composition and physicochemical properties reported for bio-oils and heavy petroleum-derived oils.          1891
  • Table 411. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil.                1891
  • Table 412. Main techniques used to upgrade bio-oil into higher-quality fuels.   1893
  • Table 413. Markets and applications for bio-oil.     1894
  • Table 414. Bio-oil producers.              1895
  • Table 415. Key resource recovery technologies       1897
  • Table 416. Markets and end uses for refuse-derived fuels (RDF).                1898
  • Table 417. Granbio Nanocellulose Processes.        1963
  • Table 418. Key factors driving adoption of green electronics.         2051
  • Table 419. Key circular economy strategies for electronics.           2053
  • Table 420. Regulations pertaining to green electronics.    2055
  • Table 421. Companies developing bio-based batteries for application in sustainable electronics.     2056
  • Table 422. Benefits of Green Electronics Manufacturing  2058
  • Table 423. Challenges in adopting Green Electronics manufacturing.    2059
  • Table 424. Major chipmakers' renewable energy road maps.        2063
  • Table 425. Energy efficiency in sustainable electronics manufacturing. 2064
  • Table 426. Composition of plastic waste streams.               2067
  • Table 427. Comparison of mechanical and advanced chemical recycling.          2067
  • Table 428. Example chemically recycled plastic products.             2068
  • Table 429. Bio-based and non-toxic materials in sustainable electronics.           2069
  • Table 430. Key focus areas for enabling greener and ethically responsible electronics supply chains.                2072
  • Table 431. Sustainability programs and disclosure from major electronics brands.      2074
  • Table 432. PCB manufacturing process.      2077
  • Table 433. Challenges in PCB manufacturing.        2077
  • Table 434. 3D PCB manufacturing. 2080
  • Table 435.  Comparison of some sustainable PCB alternatives against conventional options in terms of key performance factors.      2081
  • Table 436. Sustainable PCB supply chain. 2082
  • Table 437. Key areas where the PCB industry can improve sustainability.            2082
  • Table 438. Improving sustainability of PCB design.              2084
  • Table 439. PCB design options for sustainability.  2085
  • Table 440.  Sustainability benefits and challenges associated with 3D printing.              2087
  • Table 441. Conductive ink producers.           2090
  • Table 442.  Green and lead-free solder companies.            2091
  • Table 443. Biodegradable substrates for PCBs.      2092
  • Table 444. Overview of mycelium fibers-description, properties, drawbacks and applications.            2093
  • Table 445. Application of lignin in composites.       2095
  • Table 446. Properties of lignins and their applications.     2095
  • Table 447. Properties of flexible electronics‐cellulose nanofiber film (nanopaper).       2097
  • Table 448. Companies developing cellulose nanofibers for electronics.                2098
  • Table 449. Commercially available PHAs.  2100
  • Table 450. Main limitations of the FR4 material system used for manufacturing printed circuit boards (PCBs).              2102
  • Table 451. Halogen-free FR4 companies.   2104
  • Table 452. Properties of biobased PCBs.    2105
  • Table 453. Applications of flexible (bio) polyimide PCBs. 2107
  • Table 454. Main patterning and metallization steps in PCB fabrication and sustainable options.         2109
  • Table 455. Sustainability issues with conventional metallization processes.     2110
  • Table 456. Benefits of print-and-plate.          2111
  • Table 457. Sustainable alternative options to standard plating resists used in printed circuit board (PCB) fabrication.     2114
  • Table 458. Applications for laser induced forward transfer             2116
  • Table 459. Copper versus silver inks in laser-induced forward transfer (LIFT) for electronics fabrication.                2116
  • Table 460. Approaches for in-situ oxidation prevention.   2117
  • Table 461. Market readiness and maturity of different lead-free solders and electrically conductive adhesives (ECAs) for electronics manufacturing. 2119
  • Table 462. Advantages of green electroless plating.            2119
  • Table 463. Comparison of component attachment materials.     2123
  • Table 464. Comparison between sustainable and conventional component attachment materials for printed circuit boards              2124
  • Table 465. Comparison between the SMAs and SMPs.      2126
  • Table 466. Comparison of conductive biopolymers versus conventional materials for printed circuit board fabrication.       2128
  • Table 467. Comparison of curing and reflow processes used for attaching components in electronics assembly.        2128
  • Table 468. Low temperature solder alloys. 2130
  • Table 469. Thermally sensitive substrate materials.            2130
  • Table 470. Limitations of existing IC production.   2135
  • Table 471. Strategies for improving sustainability in integrated circuit (IC) manufacturing.      2135
  • Table 472. Comparison of oxidation methods and level of sustainability.             2139
  • Table 473. Stage of commercialization for oxides. 2139
  • Table 474. Alternative doping techniques.  2142
  • Table 475.  Metal content mg / Kg in Printed Circuit Boards (PCBs) from waste desktop computers. 2148
  • Table 476. Chemical recycling methods for handling electronic waste. 2149
  • Table 477.  Electrochemical processes for recycling metals from electronic waste       2150
  • Table 478. Thermal recycling processes for electronic waste.      2150
  • Table 479. Global PCB revenues 2018-2035 (billions USD), by substrate types.               2152
  • Table 480. Global sustainable PCB revenues 2018-2035, by type (millions USD).           2153
  • Table 481. Global sustainable ICs revenues 2018-2035, by type (millions USD).             2156
  • Table 482. Oji Holdings CNF products.         2187
  • Table 483. Global market revenues for bio-based adhesives & sealants, by types,  2018-2035 (millions USD).  2213
  • Table 484. Global market revenues for bio-based adhesives & sealants, by market,  2018-2035 (millions USD).  2215

 

List of Figures

  • Figure 1. Schematic of biorefinery processes.         107
  • Figure 2. Global production of starch for biobased chemicals and intermediates, 2018-2035 (million metric tonnes).             112
  • Figure 3. Global production of biobased lysine, 2018-2035 (metric tonnes).      114
  • Figure 4. Global glucose production for bio-based chemicals and intermediates 2018-2035 (million metric tonnes).             115
  • Figure 5. Global production volumes of bio-HMDA, 2018 to 2035 in metric tonnes.      117
  • Figure 6. Global production of bio-based DN5, 2018-2035 (metric tonnes).       119
  • Figure 7. Global production of bio-based isosorbide, 2018-2035 (metric tonnes).         121
  • Figure 8. L-lactic acid (L-LA) production, 2018-2035 (metric tonnes).     122
  • Figure 9. Global lactide production, 2018-2035 (metric tonnes).                124
  • Figure 10. Global production of bio-itaconic acid, 2018-2035 (metric tonnes). 126
  • Figure 11. Global production of 3-HP,  2018-2035 (metric tonnes).           128
  • Figure 12. Global production of bio-based acrylic acid,  2018-2035 (metric tonnes).   129
  • Figure 13. Global production of bio-based 1,3-Propanediol (1,3-PDO), 2018-2035 (metric tonnes).  131
  • Figure 14. Global production of bio-based Succinic acid, 2018-2035 (metric tonnes). 133
  • Figure 15. Global production of 1,4-Butanediol (BDO), 2018-2035 (metric tonnes).      134
  • Figure 16. Global production of bio-based tetrahydrofuran (THF), 2018-2035 (metric tonnes).              136
  • Figure 17. Overview of Toray process.            137
  • Figure 18. Global production of bio-based caprolactam, 2018-2035 (metric tonnes). 139
  • Figure 19. Global production of bio-based isobutanol, 2018-2035 (metric tonnes).      141
  • Figure 20. Global production of bio-based p-xylene, 2018-2035 (metric tonnes).           143
  • Figure 21. Global production of biobased terephthalic acid (TPA), 2018-2035 (metric tonnes).             144
  • Figure 22. Global production of biobased 1,3 Proppanediol, 2018-2035 (metric tonnes).         145
  • Figure 23. Global production of biobased MEG, 2018-2035 (metric tonnes).      147
  • Figure 24. Global production of biobased ethanol, 2018-2035 (million metric tonnes).              149
  • Figure 25. Global production of biobased ethylene, 2018-2035 (million metric tonnes).            150
  • Figure 26. Global production of biobased propylene, 2018-2035 (metric tonnes).          152
  • Figure 27. Global production of biobased vinyl chloride, 2018-2035 (metric tonnes).  153
  • Figure 28. Global production of bio-based Methly methacrylate, 2018-2035 (metric tonnes).               155
  • Figure 29. Global production of biobased aniline, 2018-2035 (metric tonnes). 157
  • Figure 30. Global production of biobased fructose, 2018-2035 (metric tonnes).              158
  • Figure 31. Global production of biobased 5-Hydroxymethylfurfural (5-HMF), 2018-2035 (metric tonnes).                159
  • Figure 32. Global production of biobased 5-(Chloromethyl)furfural (CMF), 2018-2035 (metric tonnes).                161
  • Figure 33. Global production of biobased Levulinic acid, 2018-2035 (metric tonnes). 162
  • Figure 34. Global production of biobased FDME, 2018-2035 (metric tonnes).   164
  • Figure 35. Global production of biobased Furan-2,5-dicarboxylic acid (FDCA), 2018-2035 (metric tonnes).             165
  • Figure 36. Global production projections for bio-based levoglucosenone from 2018 to 2035 in metric tonnes:              166
  • Figure 37. Global production of hemicellulose, 2018-2035 (metric tonnes).       168
  • Figure 38. Global production of biobased furfural, 2018-2035 (metric tonnes). 169
  • Figure 39. Global production of biobased furfuryl alcohol, 2018-2035 (metric tonnes).              171
  • Figure 40. Schematic of WISA plywood home.        174
  • Figure 41. Global production of biobased lignin, 2018-2035 (metric tonnes).    176
  • Figure 42. Global production of biobased glycerol, 2018-2035 (metric tonnes).               178
  • Figure 43. Global production of Bio-MPG, 2018-2035 (metric tonnes).   180
  • Figure 44. Global production of biobased ECH, 2018-2035 (metric tonnes).      181
  • Figure 45. Global production of biobased fatty acids, 2018-2035 (million metric tonnes).        183
  • Figure 46. Global production of biobased sebacic acid, 2018-2035 (metric tonnes).   185
  • Figure 47. Global production of biobased 11-Aminoundecanoic acid (11-AA), 2018-2035 (metric tonnes).             186
  • Figure 48. Global production of biobased Dodecanedioic acid (DDDA), 2018-2035 (metric tonnes). 188
  • Figure 49. Global production of biobased Pentamethylene diisocyanate, 2018-2035 (metric tonnes).                189
  • Figure 50. Global production of biobased casein, 2018-2035 (metric tonnes). 191
  • Figure 51. Global production of food waste for biochemicals, 2018-2035 (million metric tonnes).      193
  • Figure 52. Global production of agricultural waste for biochemicals, 2018-2035 (million metric tonnes).                194
  • Figure 53. Global production of forestry waste for biochemicals, 2018-2035 (million metric tonnes).                196
  • Figure 54. Global production of aquaculture/fishing waste for biochemicals, 2018-2035 (million metric tonnes).             197
  • Figure 55. Global production of municipal solid waste for biochemicals, 2018-2035 (million metric tonnes).             198
  • Figure 56. Global production of waste oils for biochemicals, 2018-2035 (million metric tonnes).        200
  • Figure 57. Global microalgae production, 2018-2035 (million metric tonnes).  201
  • Figure 58. Global macroalgae production, 2018-2035 (million metric tonnes). 203
  • Figure 59. Global production of biogas, 2018-2035 (billion m3). 206
  • Figure 60. Global production of syngas, 2018-2035 (billion m3). 208
  • Figure 61. formicobio™ technology. 228
  • Figure 62. Domsjö process.  232
  • Figure 63.  TMP-Bio Process.               238
  • Figure 64. Lignin gel. 259
  • Figure 65. BioFlex process.   262
  • Figure 66. LX Process.              264
  • Figure 67. METNIN™ Lignin refining technology.      267
  • Figure 68. Enfinity cellulosic ethanol technology process.              273
  • Figure 69.  Precision Photosynthesis™ technology.               275
  • Figure 70. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.               277
  • Figure 71. UPM biorefinery process.               287
  • Figure 72. The Proesa® Process.        288
  • Figure 73. Goldilocks process and applications.   289
  • Figure 74.  Coca-Cola PlantBottle®. 293
  • Figure 75. Interrelationship between conventional, bio-based and biodegradable plastics.    293
  • Figure 76. Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes).        302
  • Figure 77. Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes)              304
  • Figure 78. Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes).             306
  • Figure 79. Production capacities of Polyethylene furanoate (PEF) to 2025.          308
  • Figure 80. Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes).     309
  • Figure 81. Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes).  311
  • Figure 82. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes).                313
  • Figure 83. Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes).             315
  • Figure 84. Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes).               317
  • Figure 85. Polypropylene (Bio-PP) production capacities 2019-2035 (1,000 tonnes).   318
  • Figure 86. PHA family.              321
  • Figure 87. TEM image of cellulose nanocrystals.   335
  • Figure 88. CNC preparation. 335
  • Figure 89. Extracting CNC from trees.            336
  • Figure 90. CNC slurry.              338
  • Figure 91. CNF gel.     341
  • Figure 92. Bacterial nanocellulose shapes 346
  • Figure 93. BLOOM masterbatch from Algix.               351
  • Figure 94. Typical structure of mycelium-based foam.      353
  • Figure 95. Commercial mycelium composite construction materials.    354
  • Figure 96. Global production capacities for bioplastics by region 2019-2035, 1,000 tonnes.  356
  • Figure 97. Global production capacities for bioplastics by end user market 2019-2035, 1,000 tonnes.                360
  • Figure 98. PHA bioplastics products.             362
  • Figure 99. The global market for biobased and biodegradable plastics for flexible packaging 2019–2033 (‘000 tonnes). 364
  • Figure 100. Production volumes for bioplastics for rigid packaging, 2019–2033 (‘000 tonnes).              366
  • Figure 101. Global production for biobased and biodegradable plastics in consumer products 2019-2035, in 1,000 tonnes.             367
  • Figure 102. Global production capacities for biobased and biodegradable plastics in automotive 2019-2035, in 1,000 tonnes.             369
  • Figure 103. Global production volumes for biobased and biodegradable plastics in building and construction 2019-2035, in 1,000 tonnes. 370
  • Figure 104. Global production volumes for biobased and biodegradable plastics in textiles 2019-2035, in 1,000 tonnes.           373
  • Figure 105. Global production volumes for biobased and biodegradable plastics in electronics 2019-2035, in 1,000 tonnes.             374
  • Figure 106. Biodegradable mulch films.      375
  • Figure 107. Global production volulmes for biobased and biodegradable plastics in agriculture 2019-2035, in 1,000 tonnes.             375
  • Figure 108. High purity lignin.              376
  • Figure 109. Lignocellulose architecture.      377
  • Figure 110. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins.        378
  • Figure 111. The lignocellulose biorefinery. 383
  • Figure 112. LignoBoost process.       387
  • Figure 113. LignoForce system for lignin recovery from black liquor.        388
  • Figure 114. Sequential liquid-lignin recovery and purification (SLPR) system.   389
  • Figure 115. A-Recovery+ chemical recovery concept.        390
  • Figure 116.  Schematic of a biorefinery for production of carriers and chemicals.          392
  • Figure 117. Organosolv lignin.            394
  • Figure 118. Hydrolytic lignin powder.             395
  • Figure 119. Estimated consumption of lignin, by type, 2019-2035 (000 MT).      399
  • Figure 120. Estimated consumption of lignin, by market, 2019-2035 (000 MT). 401
  • Figure 121. Pluumo.  408
  • Figure 122. ANDRITZ Lignin Recovery process.       417
  • Figure 123. Anpoly cellulose nanofiber hydrogel.  419
  • Figure 124. MEDICELLU™.      419
  • Figure 125. Asahi Kasei CNF fabric sheet.  428
  • Figure 126. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.       428
  • Figure 127. CNF nonwoven fabric.   429
  • Figure 128. Roof frame made of natural fiber.          438
  • Figure 129. Beyond Leather Materials product.       441
  • Figure 130. BIOLO e-commerce mailer bag made from PHA.        447
  • Figure 131. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc.          448
  • Figure 132. Fiber-based screw cap. 460
  • Figure 133. formicobio™ technology.              479
  • Figure 134. nanoforest-S.      481
  • Figure 135. nanoforest-PDP. 481
  • Figure 136. nanoforest-MB.  482
  • Figure 137. sunliquid® production process.              489
  • Figure 138. CuanSave film.   492
  • Figure 139. Celish.     493
  • Figure 140. Trunk lid incorporating CNF.      495
  • Figure 141. ELLEX products. 496
  • Figure 142. CNF-reinforced PP compounds.            497
  • Figure 143. Kirekira! toilet wipes.      497
  • Figure 144. Color CNF.             498
  • Figure 145. Rheocrysta spray.             504
  • Figure 146. DKS CNF products.         504
  • Figure 147. Domsjö process.               506
  • Figure 148. Mushroom leather.           515
  • Figure 149. CNF based on citrus peel.           517
  • Figure 150. Citrus cellulose nanofiber.         517
  • Figure 151. Filler Bank CNC products.          528
  • Figure 152. Fibers on kapok tree and after processing.      530
  • Figure 153.  TMP-Bio Process.             533
  • Figure 154. Flow chart of the lignocellulose biorefinery pilot plant in Leuna.      534
  • Figure 155. Water-repellent cellulose.           536
  • Figure 156. Cellulose Nanofiber (CNF) composite with polyethylene (PE).          537
  • Figure 157. PHA production process.            538
  • Figure 158. CNF products from Furukawa Electric.              539
  • Figure 159. AVAPTM process.              549
  • Figure 160. GreenPower+™ process.               549
  • Figure 161. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.               551
  • Figure 162. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer).     553
  • Figure 163. CNF gel.  560
  • Figure 164. Block nanocellulose material. 560
  • Figure 165. CNF products developed by Hokuetsu.             561
  • Figure 166. Marine leather products.             564
  • Figure 167. Inner Mettle Milk products.        567
  • Figure 168. Kami Shoji CNF products.           578
  • Figure 169. Dual Graft System.          580
  • Figure 170. Engine cover utilizing Kao CNF composite resins.      581
  • Figure 171. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).        582
  • Figure 172. Kel Labs yarn.      582
  • Figure 173. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side).                586
  • Figure 174. Lignin gel.               594
  • Figure 175. BioFlex process. 598
  • Figure 176. Nike Algae Ink graphic tee.          599
  • Figure 177. LX Process.           603
  • Figure 178. Made of Air's HexChar panels. 605
  • Figure 179. TransLeather.       607
  • Figure 180. Chitin nanofiber product.            611
  • Figure 181. Marusumi Paper cellulose nanofiber products.           612
  • Figure 182. FibriMa cellulose nanofiber powder.    613
  • Figure 183. METNIN™ Lignin refining technology.    617
  • Figure 184. IPA synthesis method.   620
  • Figure 185. MOGU-Wave panels.      623
  • Figure 186. CNF slurries.        624
  • Figure 187. Range of CNF products.               624
  • Figure 188. Reishi.      628
  • Figure 189. Compostable water pod.             644
  • Figure 190. Leather made from leaves.         645
  • Figure 191. Nike shoe with beLEAF™.              645
  • Figure 192. CNF clear sheets.             654
  • Figure 193. Oji Holdings CNF polycarbonate product.       656
  • Figure 194. Enfinity cellulosic ethanol technology process.           669
  • Figure 195. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.             673
  • Figure 196. XCNF.       680
  • Figure 197: Plantrose process.           681
  • Figure 198. LOVR hemp leather.         684
  • Figure 199. CNF insulation flat plates.          686
  • Figure 200. Hansa lignin.       692
  • Figure 201. Manufacturing process for STARCEL.  696
  • Figure 202. Manufacturing process for STARCEL.  700
  • Figure 203. 3D printed cellulose shoe.          707
  • Figure 204. Lyocell process. 710
  • Figure 205. North Face Spiber Moon Parka.              714
  • Figure 206. PANGAIA LAB NXT GEN Hoodie.             715
  • Figure 207. Spider silk production.  716
  • Figure 208. Stora Enso lignin battery materials.      720
  • Figure 209. 2 wt.% CNF suspension.            721
  • Figure 210. BiNFi-s Dry Powder.         722
  • Figure 211. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.        722
  • Figure 212. Silk nanofiber (right) and cocoon of raw material.       723
  • Figure 213. Sulapac cosmetics containers.              724
  • Figure 214.  Sulzer equipment for PLA polymerization processing.            725
  • Figure 215. Solid Novolac Type lignin modified phenolic resins. 726
  • Figure 216. Teijin bioplastic film for door handles. 735
  • Figure 217. Corbion FDCA production process.     742
  • Figure 218. Comparison of weight reduction effect using CNF.    743
  • Figure 219. CNF resin products.        747
  • Figure 220. UPM biorefinery process.            749
  • Figure 221. Vegea production process.        753
  • Figure 222. The Proesa® Process.     755
  • Figure 223. Goldilocks process and applications. 756
  • Figure 224. Visolis’ Hybrid Bio-Thermocatalytic Process. 759
  • Figure 225. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.            761
  • Figure 226. Worn Again products.    766
  • Figure 227. Zelfo Technology GmbH CNF production process.    770
  • Figure 228. Absolut natural based fiber bottle cap.              780
  • Figure 229. Adidas algae-ink tees.   780
  • Figure 230. Carlsberg natural fiber beer bottle.       781
  • Figure 231. Miratex watch bands.     781
  • Figure 232. Adidas Made with Nature Ultraboost 22.          781
  • Figure 233. PUMA RE:SUEDE sneaker            782
  • Figure 234. Types of natural fibers.  786
  • Figure 235.  Luffa cylindrica fiber.     789
  • Figure 236. Pineapple fiber.  799
  • Figure 237. Typical structure of mycelium-based foam.   805
  • Figure 238. Commercial mycelium composite construction materials. 805
  • Figure 239. SEM image of microfibrillated cellulose.           811
  • Figure 240. Hemp fibers combined with PP in car door panel.      824
  • Figure 241. Car door produced from Hemp fiber.  827
  • Figure 242. Natural fiber composites in the BMW M4 GT4 racing car.       829
  • Figure 243. Mercedes-Benz components containing natural fibers.         829
  • Figure 244. SWOT analysis: natural fibers in the automotive market.       831
  • Figure 245. SWOT analysis: natural fibers in the packaging market.         835
  • Figure 246. SWOT analysis: natural fibers in the appliances market.        837
  • Figure 247. SWOT analysis: natural fibers in the appliances market.        839
  • Figure 248. SWOT analysis: natural fibers in the consumer electronics market.               843
  • Figure 249. SWOT analysis: natural fibers in the furniture market.             844
  • Figure 250. Global market for natural fiber based plastics, 2018-2035, by market (Billion USD).          846
  • Figure 251. Global market for natural fiber based plastics, 2018-2035, by material type (Billion USD).                847
  • Figure 252. Global market for natural fiber based plastics, 2018-2035, by plastic type (Billion USD). 848
  • Figure 253. Global market for natural fiber based plastics, 2018-2035, by region (Billion USD).            849
  • Figure 254. Asahi Kasei CNF fabric sheet.  854
  • Figure 255. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.       854
  • Figure 256. CNF nonwoven fabric.   855
  • Figure 257. Roof frame made of natural fiber.          857
  • Figure 258.Tras Rei chair incorporating ampliTex fibers.    860
  • Figure 259. Natural fibres racing seat.           860
  • Figure 260. Porche Cayman GT4 Clubsport incorporating BComp flax fibers.    860
  • Figure 261. Fiber-based screw cap. 864
  • Figure 262. Cellugy materials.            869
  • Figure 263. CuanSave film.   872
  • Figure 264. Trunk lid incorporating CNF.      873
  • Figure 265. ELLEX products. 874
  • Figure 266. CNF-reinforced PP compounds.            875
  • Figure 267. Kirekira! toilet wipes.      875
  • Figure 268. DKS CNF products.         878
  • Figure 269. Cellulose Nanofiber (CNF) composite with polyethylene (PE).          881
  • Figure 270. CNF products from Furukawa Electric.              882
  • Figure 271. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.               885
  • Figure 272. CNF gel.  887
  • Figure 273. Block nanocellulose material. 887
  • Figure 274. CNF products developed by Hokuetsu.             888
  • Figure 275. Dual Graft System.          889
  • Figure 276. Engine cover utilizing Kao CNF composite resins.      890
  • Figure 277. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).        890
  • Figure 278. Cellulomix production process.              894
  • Figure 279. Nanobase versus conventional products.        894
  • Figure 280. MOGU-Wave panels.      896
  • Figure 281. CNF clear sheets.             901
  • Figure 282. Oji Holdings CNF polycarbonate product.       902
  • Figure 283. A vacuum cleaner part made of cellulose fiber (left) and the assembled vacuum cleaner.                903
  • Figure 284. XCNF.       906
  • Figure 285. Manufacturing process for STARCEL.  908
  • Figure 286. 2 wt.% CNF suspension.            910
  • Figure 287. Sulapac cosmetics containers.              912
  • Figure 288. Comparison of weight reduction effect using CNF.    915
  • Figure 289. CNF resin products.        916
  • Figure 290. Global revenues in sustainable construction materials, by materials type, 2020-2035 (millions USD).             923
  • Figure 291. Global revenues in sustainable construction materials, by market, 2020-2035 (millions USD).  925
  • Figure 292. Luum Temple, constructed from Bamboo.      926
  • Figure 293. Typical structure of mycelium-based foam.   930
  • Figure 294. Commercial mycelium composite construction materials. 930
  • Figure 295. Self-healing concrete test study with cracked concrete (left) and self-healed concrete after 28 days (right).              933
  • Figure 296. Self-healing bacteria crack filler for concrete.               935
  • Figure 297. Self-healing bio concrete.           935
  • Figure 298. Microalgae based biocement masonry bloc. 937
  • Figure 299. Classification of aerogels.          944
  • Figure 300. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner.                946
  • Figure 301. Monolithic aerogel.          948
  • Figure 302. Aerogel granules.              949
  • Figure 303. Internal aerogel granule applications. 950
  • Figure 304. 3D printed aerogels.       953
  • Figure 305. Lignin-based aerogels.  962
  • Figure 306. Fabrication routes for starch-based aerogels.               964
  • Figure 307. Graphene aerogel.           967
  • Figure 308. Schematic of CCUS in cement sector.                972
  • Figure 309. Carbon8 Systems’ ACT process.             977
  • Figure 310. CO2 utilization in the Carbon Cure process.  978
  • Figure 311. Share of (a) production, (b) energy consumption and (c) CO2 emissions from different steel making routes.              983
  • Figure 312. Transition to hydrogen-based production.       984
  • Figure 313. CO2 emissions from steelmaking (tCO2/ton crude steel).    985
  • Figure 314. CO2 emissions of different process routes for liquid steel.  987
  • Figure 315. Hydrogen Direct Reduced Iron (DRI) process.               991
  • Figure 316. Molten oxide electrolysis process.        993
  • Figure 317. Steelmaking with CCS. 994
  • Figure 318. Flash ironmaking process.         998
  • Figure 319. Hydrogen Plasma Iron Ore Reduction process.            999
  • Figure 320. Aizawa self-healing concrete.   1012
  • Figure 321. ArcelorMittal decarbonization strategy.             1022
  • Figure 322. Thermal Conductivity Performance of ArmaGel HT.  1024
  • Figure 323. SLENTEX® roll (piece).    1027
  • Figure 324. Biozeroc Biocement.      1031
  • Figure 325. Carbon Re’s DeltaZero dashboard.      1043
  • Figure 326. Neustark modular plant.             1083
  • Figure 327. HIP AERO paint. 1090
  • Figure 328. Sunthru Aerogel pane.   1099
  • Figure 329. Quartzene®.          1101
  • Figure 330. Schematic of HyREX technology.           1107
  • Figure 331. EAF Quantum.    1109
  • Figure 332. CNF insulation flat plates.          1111
  • Figure 333. Global packaging market by material type.      1124
  • Figure 334. Routes for synthesizing polymers from fossil-based and bio-based resources.      1133
  • Figure 335. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms. 1160
  • Figure 336. Biosynthesis of (a) wood cellulose (b) tunicate cellulose and (c) BC.            1161
  • Figure 337. Cellulose microfibrils and nanofibrils.               1163
  • Figure 338. TEM image of cellulose nanocrystals. 1164
  • Figure 339. CNC slurry.           1165
  • Figure 340. CNF gel.  1166
  • Figure 341. Bacterial nanocellulose shapes             1174
  • Figure 342. BLOOM masterbatch from Algix.            1179
  • Figure 343. Typical structure of mycelium-based foam.   1182
  • Figure 344. Commercial mycelium composite construction materials. 1183
  • Figure 345. Types of bio-based materials used for antimicrobial food packaging application.                1196
  • Figure 346. Schematic of gas barrier properties of nanoclay film.              1201
  • Figure 347. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test.             1214
  • Figure 348. Applications for CO2.    1217
  • Figure 349. Life cycle of CO2-derived products and services.       1219
  • Figure 350.  Conversion pathways for CO2-derived polymeric materials               1220
  • Figure 351. Bioplastics for flexible packaging by bioplastic material type, 2019–2035 (‘000 tonnes). 1224
  • Figure 352. Bioplastics for rigid packaging by bioplastic material type, 2019–2035 (‘000 tonnes).       1226
  • Figure 353. Market revenues for bio-based coatings, 2018-2035 (billions USD), conservative estimate.                1227
  • Figure 354. Pluumo.  1231
  • Figure 355. Anpoly cellulose nanofiber hydrogel.  1238
  • Figure 356. MEDICELLU™.      1238
  • Figure 357. Asahi Kasei CNF fabric sheet.  1245
  • Figure 358. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.       1246
  • Figure 359. CNF nonwoven fabric.   1247
  • Figure 360. Passionfruit wrapped in Xgo Circular packaging.        1252
  • Figure 361. BIOLO e-commerce mailer bag made from PHA.        1257
  • Figure 362. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc.          1258
  • Figure 363. Fiber-based screw cap. 1267
  • Figure 364. CuanSave film.   1280
  • Figure 365. ELLEX products. 1282
  • Figure 366. CNF-reinforced PP compounds.            1283
  • Figure 367. Kirekira! toilet wipes.      1283
  • Figure 368. Rheocrysta spray.             1287
  • Figure 369. DKS CNF products.         1287
  • Figure 370. Photograph (a) and micrograph (b) of mineral/ MFC composite showing the high viscosity and fibrillar structure.              1298
  • Figure 371. PHA production process.            1303
  • Figure 372. AVAPTM process.              1307
  • Figure 373. GreenPower+™ process.               1308
  • Figure 374. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.               1310
  • Figure 375. CNF gel.  1312
  • Figure 376. Block nanocellulose material. 1313
  • Figure 377. CNF products developed by Hokuetsu.             1313
  • Figure 378. Kami Shoji CNF products.           1319
  • Figure 379. IPA synthesis method.   1336
  • Figure 380. Compostable water pod.             1344
  • Figure 381. XCNF.       1360
  • Figure 382: Innventia AB movable nanocellulose demo plant.     1361
  • Figure 383. Shellworks packaging containers.         1365
  • Figure 384. Thales packaging incorporating Fibrease.        1371
  • Figure 385. Sulapac cosmetics containers.              1373
  • Figure 386.  Sulzer equipment for PLA polymerization processing.            1374
  • Figure 387. Silver / CNF composite dispersions.   1380
  • Figure 388. CNF/nanosilver powder.               1381
  • Figure 389. Corbion FDCA production process.     1382
  • Figure 390. UPM biorefinery process.            1384
  • Figure 391. Vegea production process.        1387
  • Figure 392. Worn Again products.    1391
  • Figure 393. S-CNF in powder form. 1393
  • Figure 394. AlgiKicks sneaker, made with the Algiknit biopolymer gel.    1404
  • Figure 395. Conceptual landscape of next-gen leather materials.             1405
  • Figure 396. Typical structure of mycelium-based foam.   1419
  • Figure 397. Hermès bag made of MycoWorks' mycelium leather.               1422
  • Figure 398. Ganni blazer made from bacterial cellulose.  1427
  • Figure 399. Bou Bag by GANNI and Modern Synthesis.      1428
  • Figure 400. Global revenues for bio-based textiles by type, 2018-2035 (millions USD).              1441
  • Figure 401. Global revenues for bio-based and sustainable textiles by end use market, 2018-2035 (millions USD).             1443
  • Figure 402. Beyond Leather Materials product.       1449
  • Figure 403. Treekind. 1451
  • Figure 404. Examples of Stella McCartney and Adidas products made using leather alternative Mylo.                1453
  • Figure 405. Mushroom leather.           1456
  • Figure 406. Ecovative Design Forager Hides.            1457
  • Figure 407. LUNA® leather.    1462
  • Figure 408. TransLeather.       1465
  • Figure 409. Reishi.      1471
  • Figure 410. AirCarbon Pellets and AirCarbon Leather.        1475
  • Figure 411. Leather made from leaves.         1479
  • Figure 412. Nike shoe with beLEAF™.              1480
  • Figure 413.  Persiskin leather.              1483
  • Figure 414. LOVR hemp leather.         1487
  • Figure 415. North Face Spiber Moon Parka.              1490
  • Figure 416. PANGAIA LAB NXT GEN Hoodie.             1491
  • Figure 417.  Ultrasuede headrest covers.    1493
  • Figure 418. Vegea production process.        1495
  • Figure 419. Schematic of production of powder coatings.               1504
  • Figure 420. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms. 1507
  • Figure 421. PHA family.           1529
  • Figure 422: Schematic diagram of partial molecular structure of cellulose chain with numbering for carbon atoms and n= number of cellobiose repeating unit.           1533
  • Figure 423: Scale of cellulose materials.     1533
  • Figure 424. Nanocellulose preparation methods and resulting materials.            1534
  • Figure 425: Relationship between different kinds of nanocelluloses.      1536
  • Figure 426. SEM image of microfibrillated cellulose.           1538
  • Figure 427. Applications of cellulose nanofibers in paints and coatings.               1542
  • Figure 428: CNC slurry.           1546
  • Figure 429. Types of bio-based materials used for antimicrobial food packaging application.                1552
  • Figure 430. BLOOM masterbatch from Algix.            1558
  • Figure 431. Market revenues for bio-based coatings by market, 2018-2035 (billions USD), conservative estimate.          1561
  • Figure 432. Dulux Better Living Air Clean Bio-based.           1564
  • Figure 433. NCCTM Process.               1588
  • Figure 434. CNC produced at Tech Futures’ pilot plant; cloudy suspension (1 wt.%), gel-like (10 wt.%), flake-like crystals, and very fine powder. Product advantages include:  1589
  • Figure 435. Cellugy materials.            1590
  • Figure 436. EcoLine® 3690 (left) vs Solvent-Based Competitor Coating (right). 1595
  • Figure 437. Rheocrysta spray.             1601
  • Figure 438. DKS CNF products.         1602
  • Figure 439. Domsjö process.               1603
  • Figure 440. CNF gel.  1622
  • Figure 441. Block nanocellulose material. 1622
  • Figure 442. CNF products developed by Hokuetsu.             1623
  • Figure 443. VIVAPUR® MCC Spheres.             1628
  • Figure 444. BioFlex process. 1639
  • Figure 445. Marusumi Paper cellulose nanofiber products.           1642
  • Figure 446. Melodea CNC barrier coating packaging.        1644
  • Figure 447. Fluorene cellulose ® powder.    1663
  • Figure 448. XCNF.       1671
  • Figure 449. Plantrose process.           1672
  • Figure 450. Spider silk production.  1682
  • Figure 451. CNF dispersion and powder from Starlite.       1684
  • Figure 452. 2 wt.% CNF suspension.            1687
  • Figure 453. BiNFi-s Dry Powder.         1688
  • Figure 454. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.        1688
  • Figure 455. Silk nanofiber (right) and cocoon of raw material.       1689
  • Figure 456. traceless® hooks.             1692
  • Figure 457. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.            1694
  • Figure 458. Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film.               1695
  • Figure 459. Bioalkyd products.           1699
  • Figure 460. Liquid biofuel production and consumption (in thousands of m3), 2000-2022.     1703
  • Figure 461. Distribution of global liquid biofuel production in 2023.        1704
  • Figure 462. Diesel and gasoline alternatives and blends. 1708
  • Figure 463. SWOT analysis for biofuels.       1710
  • Figure 464.  Schematic of a biorefinery for production of carriers and chemicals.          1720
  • Figure 465. Hydrolytic lignin powder.             1723
  • Figure 466. SWOT analysis for energy crops in biofuels.   1728
  • Figure 467. SWOT analysis for agricultural residues in biofuels.  1730
  • Figure 468. SWOT analysis for Manure, sewage sludge and organic waste in biofuels. 1732
  • Figure 469. SWOT analysis for forestry and wood waste in biofuels.         1733
  • Figure 470. Range of biomass cost by feedstock type.       1734
  • Figure 471. Regional production of biodiesel (billion litres).           1735
  • Figure 472. SWOT analysis for biodiesel.     1737
  • Figure 473. Flow chart for biodiesel production.    1741
  • Figure 474. Biodiesel (B20) average prices, current and historical, USD/litre.     1747
  • Figure 475. Global biodiesel consumption, 2010-2035 (M litres/year).   1749
  • Figure 476. SWOT analysis for renewable iesel.      1752
  • Figure 477. Global renewable diesel consumption, 2010-2035 (M litres/year). 1753
  • Figure 478. SWOT analysis for Bio-aviation fuel.    1756
  • Figure 479. Global bio-jet fuel consumption to 2019-2035 (Million litres/year). 1760
  • Figure 480. SWOT analysis for bio-naphtha.             1763
  • Figure 481. Bio-based naphtha production capacities, 2018-2035 (tonnes).     1766
  • Figure 482. SWOT analysis biomethanol.   1768
  • Figure 483. Renewable Methanol Production Processes from Different Feedstocks.    1769
  • Figure 484. Production of biomethane through anaerobic digestion and upgrading.     1770
  • Figure 485. Production of biomethane through biomass gasification and methanation.            1771
  • Figure 486. Production of biomethane through the Power to methane process.               1771
  • Figure 487. SWOT analysis for ethanol.        1773
  • Figure 488. Ethanol consumption 2010-2035 (million litres).        1779
  • Figure 489. Properties of petrol and biobutanol.    1781
  • Figure 490. Biobutanol production route.   1781
  • Figure 491. Biogas and biomethane pathways.       1783
  • Figure 492. Overview of biogas utilization. 1785
  • Figure 493. Biogas and biomethane pathways.       1786
  • Figure 494. Schematic overview of anaerobic digestion process for biomethane production. 1787
  • Figure 495. Schematic overview of biomass gasification for biomethane production. 1788
  • Figure 496. SWOT analysis for biogas.          1789
  • Figure 497. Total syngas market by product in MM Nm³/h of Syngas, 2021.         1793
  • Figure 498. SWOT analysis for biohydrogen.             1796
  • Figure 499. Waste plastic production pathways to (A) diesel and (B) gasoline   1801
  • Figure 500. Schematic for Pyrolysis of Scrap Tires.              1802
  • Figure 501. Used tires conversion process.               1803
  • Figure 502. Total syngas market by product in MM Nm³/h of Syngas, 2021.         1805
  • Figure 503. Overview of biogas utilization. 1807
  • Figure 504. Biogas and biomethane pathways.       1808
  • Figure 505. SWOT analysis for chemical recycling of biofuels.     1811
  • Figure 506. Process steps in the production of electrofuels.          1812
  • Figure 507. Mapping storage technologies according to performance characteristics.               1813
  • Figure 508. Production process for green hydrogen.            1815
  • Figure 509. SWOT analysis for E-fuels.          1816
  • Figure 510. E-liquids production routes.      1817
  • Figure 511. Fischer-Tropsch liquid e-fuel products.              1818
  • Figure 512. Resources required for liquid e-fuel production.         1818
  • Figure 513. Levelized cost and fuel-switching CO2 prices of e-fuels.       1822
  • Figure 514. Cost breakdown for e-fuels.      1824
  • Figure 515.  Pathways for algal biomass conversion to biofuels. 1826
  • Figure 516. SWOT analysis for algae-derived biofuels.       1827
  • Figure 517. Algal biomass conversion process for biofuel production.   1828
  • Figure 518. Classification and process technology according to carbon emission in ammonia production.     1831
  • Figure 519. Green ammonia production and use. 1832
  • Figure 520. Schematic of the Haber Bosch ammonia synthesis reaction.            1834
  • Figure 521. Schematic of hydrogen production via steam methane reformation.            1834
  • Figure 522. SWOT analysis for green ammonia.     1836
  • Figure 523. Estimated production cost of green ammonia.            1840
  • Figure 524. Projected annual ammonia production, million tons.              1841
  • Figure 525. CO2 capture and separation technology.         1843
  • Figure 526. Conversion route for CO2-derived fuels and chemical intermediates.         1844
  • Figure 527.  Conversion pathways for CO2-derived methane, methanol and diesel.     1845
  • Figure 528. SWOT analysis for biofuels from carbon capture.       1847
  • Figure 529. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.     1848
  • Figure 530. Global CO2 capture from biomass and DAC in the Net Zero Scenario.         1849
  • Figure 531.  DAC technologies.          1851
  • Figure 532. Schematic of Climeworks DAC system.            1852
  • Figure 533. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.                1853
  • Figure 534.  Flow diagram for solid sorbent DAC.   1853
  • Figure 535. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.        1854
  • Figure 536. Global capacity of direct air capture facilities.             1858
  • Figure 537. Global map of DAC and CCS plants.   1863
  • Figure 538. Schematic of costs of DAC technologies.        1866
  • Figure 539. DAC cost breakdown and comparison.             1866
  • Figure 540. Operating costs of generic liquid and solid-based DAC systems.    1868
  • Figure 541. Conversion route for CO2-derived fuels and chemical intermediates.         1873
  • Figure 542.  Conversion pathways for CO2-derived methane, methanol and diesel.     1874
  • Figure 543. CO2 feedstock for the production of e-methanol.      1881
  • Figure 544. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2.             1885
  • Figure 545. SWOT analysis: CO2 utilization in fuels.            1887
  • Figure 546. Audi synthetic fuels.       1888
  • Figure 547. Bio-oil upgrading/fractionation techniques.   1893
  • Figure 548. SWOT analysis for bio-oils.        1894
  • Figure 549. ANDRITZ Lignin Recovery process.       1905
  • Figure 550. ChemCyclingTM prototypes.     1911
  • Figure 551. ChemCycling circle by BASF.    1912
  • Figure 552. FBPO process     1923
  • Figure 553. Direct Air Capture Process.        1927
  • Figure 554. CRI process.        1929
  • Figure 555. Cassandra Oil  process.               1932
  • Figure 556. Colyser process.               1939
  • Figure 557. ECFORM electrolysis reactor schematic.         1944
  • Figure 558. Dioxycle modular electrolyzer. 1945
  • Figure 559. Domsjö process.               1946
  • Figure 560. FuelPositive system.       1957
  • Figure 561. INERATEC unit.   1973
  • Figure 562. Infinitree swing method.              1974
  • Figure 563. Audi/Krajete unit.              1980
  • Figure 564. Enfinity cellulosic ethanol technology process.           2007
  • Figure 565: Plantrose process.           2014
  • Figure 566. Sunfire process for Blue Crude production.    2030
  • Figure 567. Takavator.               2033
  • Figure 568. O12 Reactor.        2037
  • Figure 569. Sunglasses with lenses made from CO2-derived materials.               2037
  • Figure 570. CO2 made car part.        2037
  • Figure 571. The Velocys process.     2040
  • Figure 572. Goldilocks process and applications. 2043
  • Figure 573. The Proesa® Process.     2044
  • Figure 574. Closed-loop manufacturing.    2060
  • Figure 575. Sustainable supply chain for electronics.         2072
  • Figure 576. Flexible PCB.        2079
  • Figure 577. Vapor degreasing.            2083
  • Figure 578. Multi-layered PCB.           2085
  • Figure 579. 3D printed PCB. 2087
  • Figure 580. In-mold electronics prototype devices and products.              2088
  • Figure 581. Silver nanocomposite ink after sintering and resin bonding of discrete electronic components. 2089
  • Figure 582. Typical structure of mycelium-based foam.   2094
  • Figure 583. Flexible electronic substrate made from CNF.              2098
  • Figure 584. CNF composite. 2098
  • Figure 585. Oji CNF transparent sheets.      2099
  • Figure 586. Electronic components using cellulose nanofibers as insulating materials.            2099
  • Figure 587. BLOOM masterbatch from Algix.            2100
  • Figure 588. Dell's Concept Luna laptop.      2107
  • Figure 589.  Direct-write, precision dispensing, and 3D printing platform for 3D printed electronics. 2113
  • Figure 590. 3D printed circuit boards from Nano Dimension.       2113
  • Figure 591. Photonic sintering.          2114
  • Figure 592. Laser-induced forward transfer (LIFT).               2116
  • Figure 593. Material jetting 3d printing.        2121
  • Figure 594. Material jetting 3d printing product.     2122
  • Figure 595. The molecular mechanism of the shape memory effect under different stimuli.   2127
  • Figure 596. Supercooled Soldering™ Technology.  2131
  • Figure 597. Reflow soldering schematic.     2132
  • Figure 598. Schematic diagram of induction heating reflow.          2133
  • Figure 599. Fully-printed organic thin-film transistors and circuitry on one-micron-thick polymer films.                2138
  • Figure 600. Types of PCBs after dismantling waste computers and monitors.   2147
  • Figure 601. Global PCB revenues 2018-2035 (billions USD), by substrate types.              2153
  • Figure 602. Global sustainable PCB revenues 2018-2035, by type (millions USD).         2155
  • Figure 603. Global sustainable ICs revenues 2018-2035, by type (millions USD).           2156
  • Figure 604. Piezotech® FC.    2162
  • Figure 605. PowerCoat® paper.          2163
  • Figure 606. BeFC® biofuel cell and digital platform.             2164
  • Figure 607. DPP-360 machine.           2167
  • Figure 608. P-Flex® Flexible Circuit. 2169
  • Figure 609. Fairphone 4.         2171
  • Figure 610. In2tec’s fully recyclable flexible circuit board assembly.       2176
  •  Figure 611. C.L.A.D. system.              2178
  • Figure 612. Soluboard immersed in water. 2180
  • Figure 613. Infineon PCB before and after immersion.       2180
  • Figure 614. Nano OPS Nanoscale wafer printing system. 2183
  • Figure 615. Stora Enso lignin battery materials.      2194
  • Figure 616. 3D printed electronics.  2196
  • Figure 617. Tactotek IME device.       2197
  • Figure 618. TactoTek® IMSE® SiP - System In Package.       2198
  • Figure 619. Verde Bio-based resins.               2201
  • Figure 620. Global market revenues for bio-based adhesives & sealants, by types,  2018-2035 (millions USD).  2214
  • Figure 621. Global market revenues for bio-based adhesives & sealants, by market,  2018-2035 (millions USD).             2216
  • Figure 622. sunliquid® production process.              2221
  • Figure 623. Spider silk production.  2226

 

 

 

 

 

 

 

 

 

 

 

The Global Market for Bio-based and Sustainable Materials 2024-2035
The Global Market for Bio-based and Sustainable Materials 2024-2035
PDF download/by email.

 

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.