- Published: July 2024
- Pages: 2,286
- Tables: 484
- Figures: 623
The market for bio-based and sustainable materials is experiencing rapid growth and transformation, driven by increasing environmental awareness, regulatory pressures, and technological advancements. This sector encompasses a wide range of materials, including bioplastics, natural fiber composites, bio-based chemicals, sustainable construction materials, green packaging solutions, and eco-friendly textiles. Key application areas for these materials include packaging, where biodegradable films and compostable containers are gaining traction; the automotive industry, which is incorporating natural fiber composites in interior parts; construction, with a focus on insulation materials and bio-based concrete alternatives; and the textile industry, where recycled and bio-based fibers are becoming more prevalent.
Technological advancements are playing a crucial role in shaping the market. Advanced biorefinery processes, synthetic biology for creating novel biomaterials, and carbon capture and utilization in material production are some of the key trends driving innovation in this space. There's also a growing focus on circular economy approaches to material design and recycling, aiming to minimize waste and maximize resource efficiency. The market landscape is diverse, featuring large chemical and material companies diversifying into bio-based products and innovative start-ups focusing on novel biomaterials.
The Global Market for Bio-based and Sustainable Materials 2024-2035 provides an in-depth analysis of market trends, technological advancements, and growth opportunities. Report contents include:
- Analysis of biorefineries and various plant-based, waste-derived, and microbial sources for these materials.
- Analysis of key bio-based chemicals, including starch-derived products, cellulosic materials, lignin, and plant oils. Each chemical is examined in terms of its sources, production processes, applications, and market potential.
- Market for bio-based polymers and plastics including PLA, bio-PET, PHA, and cellulose-based materials, providing insights into their properties, production capacities, and market trends. Emerging materials such as mycelium-based products and algal biomaterials.
- Analysis of various types of natural fibers, their properties, and their applications in industries such as automotive, packaging, and construction. Comprehensive overview of the market dynamics, including drivers, challenges, and future prospects for natural fiber composites.
- Sustainable construction materials including hemp-based products, mycelium composites, and sustainable concrete alternatives. Analysis of technologies such as carbon capture and utilization in construction materials and the emerging field of green steel production.
- Bio-based and biodegradable packaging materials, including bio-PET, PLA, and cellulose-based packaging. Insights into market trends, regulatory landscapes, and technological innovations driving the adoption of sustainable packaging solutions.
- Sustainable textiles and apparel including bio-based fibers and innovative materials such as mycelium leather and algae-based textiles.
- Bio-based coatings and resins, adhesives and sealants, and their applications across various industries. Detailed analysis of market trends, key players, and growth projections.
- Various types of biofuels, including biodiesel, bioethanol, and advanced biofuels. Production processes, feedstock options, market dynamics, and regulatory landscapes across different regions.
- Sustainable electronics including innovative materials and manufacturing processes that aim to reduce the environmental impact of electronic devices. Bio-based printed circuit boards, sustainable semiconductors, and eco-friendly electronic components.
- Profiles of over 1,700 key players, from large chemicals and materials producers to innovative start-ups, offering insights into their strategies, product portfolios, and market positions. Companies profiled include Aduro Clean Technologies, Afyren, Again Bio, Agilyx, Alt.Leather, Alterra, Amsty, APK AG, Aquafil, Arcus, Arda Biomaterials, Avantium, Axens, BASF Chemcycling, Beyond Leather Materials ApS, BiologiQ,Biome Bioplastics, Boreal Bioproducts, Biophilica, Bpacks, Braskem, Bucha Bio, Byogy Renewables, Caphenia, Carbios, CJ CheilJedang, Clariant, DePoly, Dow, Earthodic, Eastman Chemical, Ecovative, Elemental Enzymes, Ensyn, EREMA Group GmbH, Evolved by Nature, Extracthive, ExxonMobil, FlexSea, Floreon, FORGE Hydrocarbons Corporation, Fych Technologies, Gaia Biomaterials, Garbo, Genecis Bioindustries, Ginkgo Bioworks, Global Bioenergies, Gozen Bioworks, gr3n SA, Hyundai Chemical, cytos, Ioniqa, Itero, Kelpi, Kvasir Technologies, Licella, Lignin Industries AB, LignoPure GmbH, MeduSoil, Modern Meadow, Mura Technology, MycoWorks, Natural Fiber Welding, Nium, Nordic Bioproducts Group, Notpla, Origin Materials, Pack2Earth, Paques Biomaterials, PersiSKIN, PlantSwitch, Plastic Energy, Plastogaz SA, Polybion, Polymateria, ProjectEx, PTT MCC Biochem, Pyrowave, Recyc'ELIT, RePEaT Co., Ltd., revalyu Resources GmbH, SA-Dynamics, Solugen, Sonichem, Stora Enso, Strong By Form, Sulapac, UPM Biochemicals, UBQ Materials, UNCAGED Innovations, Verde Bioresins and Xampla
- Comprehensive market size and forecast data, segmented by material type, application, and geography.
Key features of the report include:
1 RESEARCH METHODOLOGY
2 INTRODUCTION
- 2.1 Definition of Sustainable and Biobased Materials 105
- 2.2 Importance and Benefits of Biobased and Sustainable Materials 105
3 BIOBASED CHEMICALS AND INTERMEDIATES
- 3.1 BIOREFINERIES 107
- 3.2 BIO-BASED FEEDSTOCK AND LAND USE 108
- 3.3 PLANT-BASED 111
- 3.3.1 STARCH 111
- 3.3.1.1 Overview 111
- 3.3.1.2 Sources 111
- 3.3.1.3 Global production 112
- 3.3.1.4 Lysine 112
- 3.3.1.4.1 Source 113
- 3.3.1.4.2 Applications 113
- 3.3.1.4.3 Global production 113
- 3.3.1.5 Glucose 114
- 3.3.1.5.1 HMDA 115
- 3.3.1.5.1.1 Overview 115
- 3.3.1.5.1.2 Sources 116
- 3.3.1.5.1.3 Applications 116
- 3.3.1.5.1.4 Global production 116
- 3.3.1.5.2 1,5-diaminopentane (DA5) 117
- 3.3.1.5.2.1 Overview 117
- 3.3.1.5.2.2 Sources 117
- 3.3.1.5.2.3 Applications 118
- 3.3.1.5.2.4 Global production 118
- 3.3.1.5.1 HMDA 115
- 3.3.1.5.3 Sorbitol 119
- 3.3.1.5.3.1 Isosorbide 119
- 3.3.1.5.3.1.1 Overview 119
- 3.3.1.5.3.1.2 Sources 120
- 3.3.1.5.3.1.3 Applications 120
- 3.3.1.5.3.1.4 Global production 120
- 3.3.1.5.3.1 Isosorbide 119
- 3.3.1.5.4 Lactic acid 121
- 3.3.1.5.4.1 Overview 121
- 3.3.1.5.4.2 D-lactic acid 121
- 3.3.1.5.4.3 L-lactic acid 122
- 3.3.1.5.4.4 Lactide 122
- 3.3.1.5.5 Itaconic acid 124
- 3.3.1.5.5.1 Overview 124
- 3.3.1.5.5.2 Sources 124
- 3.3.1.5.5.3 Applications 125
- 3.3.1.5.5.4 Global production 125
- 3.3.1.5.6 3-HP 126
- 3.3.1.5.6.1 Overview 126
- 3.3.1.5.6.2 Sources 126
- 3.3.1.5.6.3 Applications 127
- 3.3.1.5.6.4 Global production 127
- 3.3.1.5.6.5 Acrylic acid 128
- 3.3.1.5.6.5.1 Overview 128
- 3.3.1.5.6.5.2 Applications 128
- 3.3.1.5.6.5.3 Global production 129
- 3.3.1.5.6.6 1,3-Propanediol (1,3-PDO) 130
- 3.3.1.5.6.6.1 Overview 130
- 3.3.1.5.6.6.2 Applications 130
- 3.3.1.5.6.6.3 Global production 130
- 3.3.1.5.7 Succinic Acid 131
- 3.3.1.5.7.1 Overview 131
- 3.3.1.5.7.2 Sources 131
- 3.3.1.5.7.3 Applications 132
- 3.3.1.5.7.4 Global production 132
- 3.3.1.5.7.5 1,4-Butanediol (1,4-BDO) 133
- 3.3.1.5.7.5.1 Overview 133
- 3.3.1.5.7.5.2 Applications 133
- 3.3.1.5.7.5.3 Global production 134
- 3.3.1.5.7.6 Tetrahydrofuran (THF) 135
- 3.3.1.5.7.6.1 Overview 135
- 3.3.1.5.7.6.2 Applications 135
- 3.3.1.5.7.6.3 Global production 135
- 3.3.1.5.8 Adipic acid 136
- 3.3.1.5.8.1 Overview 136
- 3.3.1.5.8.2 Applications 137
- 3.3.1.5.8.3 Caprolactame 137
- 3.3.1.5.8.3.1 Overview 137
- 3.3.1.5.8.3.2 Applications 138
- 3.3.1.5.8.3.3 Global production 138
- 3.3.1.5.9 Isobutanol 139
- 3.3.1.5.9.1 Overview 139
- 3.3.1.5.9.2 Sources 140
- 3.3.1.5.9.3 Applications 140
- 3.3.1.5.9.4 Global production 140
- 3.3.1.5.9.5 p-Xylene 141
- 3.3.1.5.9.5.1 Overview 141
- 3.3.1.5.9.5.2 Sources 141
- 3.3.1.5.9.5.3 Applications 142
- 3.3.1.5.9.5.4 Global production 142
- 3.3.1.5.9.5.5 Terephthalic acid 143
- 3.3.1.5.9.5.6 Overview 143
- 3.3.1.5.10 1,3 Proppanediol 144
- 3.3.1.5.10.1 Overview 144
- 3.3.1.5.10.2 Sources 144
- 3.3.1.5.10.3 Applications 145
- 3.3.1.5.10.4 Global production 145
- 3.3.1.5.11 Monoethylene glycol (MEG) 146
- 3.3.1.5.11.1 Overview 146
- 3.3.1.5.11.2 Sources 146
- 3.3.1.5.11.3 Applications 146
- 3.3.1.5.11.4 Global production 147
- 3.3.1.5.12 Ethanol 147
- 3.3.1.5.12.1 Overview 147
- 3.3.1.5.12.2 Sources 148
- 3.3.1.5.12.3 Applications 148
- 3.3.1.5.12.4 Global production 149
- 3.3.1.5.12.5 Ethylene 149
- 3.3.1.5.12.5.1 Overview 149
- 3.3.1.5.12.5.2 Applications 150
- 3.3.1.5.12.5.3 Global production 150
- 3.3.1.5.12.5.4 Propylene 151
- 3.3.1.5.12.5.5 Vinyl chloride 152
- 3.3.1.5.12.6 Methly methacrylate 154
- 3.3.2 SUGAR CROPS 155
- 3.3.2.1 Saccharose 155
- 3.3.2.1.1 Aniline 156
- 3.3.2.1.1.1 Overview 156
- 3.3.2.1.1.2 Applications 156
- 3.3.2.1.1.3 Global production 157
- 3.3.2.1.2 Fructose 157
- 3.3.2.1.2.1 Overview 157
- 3.3.2.1.2.2 Applications 157
- 3.3.2.1.2.3 Global production 158
- 3.3.2.1.2.4 5-Hydroxymethylfurfural (5-HMF) 158
- 3.3.2.1.2.4.1 Overview 158
- 3.3.2.1.2.4.2 Applications 159
- 3.3.2.1.2.4.3 Global production 159
- 3.3.2.1.2.5 5-Chloromethylfurfural (5-CMF) 160
- 3.3.2.1.2.5.1 Overview 160
- 3.3.2.1.2.5.2 Applications 160
- 3.3.2.1.2.5.3 Global production 161
- 3.3.2.1.2.6 Levulinic Acid 161
- 3.3.2.1.2.6.1 Overview 161
- 3.3.2.1.2.6.2 Applications 161
- 3.3.2.1.2.6.3 Global production 162
- 3.3.2.1.2.7 FDME 163
- 3.3.2.1.2.7.1 Overview 163
- 3.3.2.1.2.7.2 Applications 163
- 3.3.2.1.2.7.3 Global production 163
- 3.3.2.1.2.8 2,5-FDCA 164
- 3.3.2.1.2.8.1 Overview 164
- 3.3.2.1.2.8.2 Applications 164
- 3.3.2.1.2.8.3 Global production 165
- 3.3.2.1.1 Aniline 156
- 3.3.2.1 Saccharose 155
- 3.3.3 LIGNOCELLULOSIC BIOMASS 165
- 3.3.3.1 Levoglucosenone 165
- 3.3.3.1.1 Overview 165
- 3.3.3.1.2 Applications 165
- 3.3.3.1.3 Global production 166
- 3.3.3.2 Hemicellulose 166
- 3.3.3.2.1 Overview 166
- 3.3.3.2.2 Biochemicals from hemicellulose 167
- 3.3.3.2.3 Global production 168
- 3.3.3.2.4 Furfural 168
- 3.3.3.2.4.1 Overview 168
- 3.3.3.2.4.2 Applications 169
- 3.3.3.2.4.3 Global production 169
- 3.3.3.2.4.4 Furfuyl alcohol 170
- 3.3.3.2.4.4.1 Overview 170
- 3.3.3.2.4.4.2 Applications 170
- 3.3.3.2.4.4.3 Global production 170
- 3.3.3.3 Lignin 171
- 3.3.3.3.1 Overview 171
- 3.3.3.3.2 Sources 171
- 3.3.3.3.3 Applications 173
- 3.3.3.3.3.1 Aromatic compounds 173
- 3.3.3.3.3.1.1 Benzene, toluene and xylene 173
- 3.3.3.3.3.1.2 Phenol and phenolic resins 174
- 3.3.3.3.3.1.3 Vanillin 174
- 3.3.3.3.3.2 Polymers 175
- 3.3.3.3.3.1 Aromatic compounds 173
- 3.3.3.3.4 Global production 176
- 3.3.3.1 Levoglucosenone 165
- 3.3.4 PLANT OILS 177
- 3.3.4.1 Overview 177
- 3.3.4.2 Glycerol 177
- 3.3.4.2.1 Overview 177
- 3.3.4.2.2 Applications 178
- 3.3.4.2.3 Global production 178
- 3.3.4.2.4 MPG 178
- 3.3.4.2.4.1 Overview 179
- 3.3.4.2.4.2 Applications 179
- 3.3.4.2.4.3 Global production 180
- 3.3.4.2.5 ECH 180
- 3.3.4.2.5.1 Overview 180
- 3.3.4.2.5.2 Applications 180
- 3.3.4.2.5.3 Global production 181
- 3.3.4.3 Fatty acids 182
- 3.3.4.3.1 Overview 182
- 3.3.4.3.2 Applications 182
- 3.3.4.3.3 Global production 182
- 3.3.4.4 Castor oil 183
- 3.3.4.4.1 Overview 183
- 3.3.4.4.2 Sebacic acid 184
- 3.3.4.4.2.1 Overview 184
- 3.3.4.4.2.2 Applications 184
- 3.3.4.4.2.3 Global production 184
- 3.3.4.4.3 11-Aminoundecanoic acid (11-AA) 185
- 3.3.4.4.3.1 Overview 185
- 3.3.4.4.3.2 Applications 185
- 3.3.4.4.3.3 Global production 186
- 3.3.4.5 Dodecanedioic acid (DDDA) 187
- 3.3.4.5.1 Overview 187
- 3.3.4.5.2 Applications 187
- 3.3.4.5.3 Global production 188
- 3.3.4.6 Pentamethylene diisocyanate 188
- 3.3.4.6.1 Overview 188
- 3.3.4.6.2 Applications 189
- 3.3.4.6.3 Global production 189
- 3.3.5 NON-EDIBIBLE MILK 190
- 3.3.5.1 Casein 190
- 3.3.5.1.1 Overview 190
- 3.3.5.1.2 Applications 190
- 3.3.5.1.3 Global production 191
- 3.3.5.1 Casein 190
- 3.3.1 STARCH 111
- 3.4 WASTE 192
- 3.4.1 Food waste 192
- 3.4.1.1 Overview 192
- 3.4.1.2 Products and applications 192
- 3.4.1.2.1 Global production 193
- 3.4.2 Agricultural waste 193
- 3.4.2.1 Overview 193
- 3.4.2.2 Products and applications 194
- 3.4.2.3 Global production 194
- 3.4.3 Forestry waste 195
- 3.4.3.1 Overview 195
- 3.4.3.2 Products and applications 195
- 3.4.3.3 Global production 195
- 3.4.4 Aquaculture/fishing waste 196
- 3.4.4.1 Overview 196
- 3.4.4.2 Products and applications 196
- 3.4.4.3 Global production 197
- 3.4.5 Municipal solid waste 197
- 3.4.5.1 Overview 197
- 3.4.5.2 Products and applications 197
- 3.4.5.3 Global production 198
- 3.4.6 Industrial waste 199
- 3.4.6.1 Overview 199
- 3.4.7 Waste oils 199
- 3.4.7.1 Overview 199
- 3.4.7.2 Products and applications 199
- 3.4.7.3 Global production 200
- 3.4.1 Food waste 192
- 3.5 MICROBIAL & MINERAL SOURCES 200
- 3.5.1 Microalgae 200
- 3.5.1.1 Overview 200
- 3.5.1.2 Products and applications 200
- 3.5.1.3 Global production 201
- 3.5.2 Macroalgae 202
- 3.5.2.1 Overview 202
- 3.5.2.2 Products and applications 202
- 3.5.2.3 Global production 203
- 3.5.3 Mineral sources 203
- 3.5.3.1 Overview 203
- 3.5.3.2 Products and applications 204
- 3.5.1 Microalgae 200
- 3.6 GASEOUS 204
- 3.6.1 Biogas 205
- 3.6.1.1 Overview 205
- 3.6.1.2 Products and applications 206
- 3.6.1.3 Global production 206
- 3.6.2 Syngas 207
- 3.6.2.1 Overview 207
- 3.6.2.2 Products and applications 208
- 3.6.2.3 Global production 208
- 3.6.3 Off gases - fermentation CO2, CO 209
- 3.6.3.1 Overview 209
- 3.6.3.2 Products and applications 209
- 3.6.1 Biogas 205
- 3.7 COMPANY PROFILES 210 (126 company profiles)
4 BIOBASED POLYMERS AND PLASTICS
- 4.1 Overview 292
- 4.1.1 Drop-in bio-based plastics 292
- 4.1.2 Novel bio-based plastics 293
- 4.2 Biodegradable and compostable plastics 293
- 4.2.1 Biodegradability 294
- 4.2.2 Compostability 295
- 4.3 Types 295
- 4.4 Key market players 297
- 4.5 Synthetic biobased polymers 298
- 4.5.1 Polylactic acid (Bio-PLA) 298
- 4.5.1.1 Market analysis 298
- 4.5.1.2 Production 300
- 4.5.1.3 Producers and production capacities, current and planned 300
- 4.5.1.3.1 Lactic acid producers and production capacities 300
- 4.5.1.3.2 PLA producers and production capacities 300
- 4.5.1.3.3 Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes) 302
- 4.5.2 Polyethylene terephthalate (Bio-PET) 302
- 4.5.2.1 Market analysis 302
- 4.5.2.2 Producers and production capacities 303
- 4.5.2.3 Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes) 304
- 4.5.3 Polytrimethylene terephthalate (Bio-PTT) 304
- 4.5.3.1 Market analysis 304
- 4.5.3.2 Producers and production capacities 305
- 4.5.3.3 Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes) 305
- 4.5.4 Polyethylene furanoate (Bio-PEF) 306
- 4.5.4.1 Market analysis 306
- 4.5.4.2 Comparative properties to PET 307
- 4.5.4.3 Producers and production capacities 308
- 4.5.4.3.1 FDCA and PEF producers and production capacities 308
- 4.5.4.3.2 Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes). 309
- 4.5.5 Polyamides (Bio-PA) 309
- 4.5.5.1 Market analysis 309
- 4.5.5.2 Producers and production capacities 310
- 4.5.5.3 Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes) 311
- 4.5.6 Poly(butylene adipate-co-terephthalate) (Bio-PBAT) 311
- 4.5.6.1 Market analysis 311
- 4.5.6.2 Producers and production capacities 312
- 4.5.6.3 Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes) 313
- 4.5.7 Polybutylene succinate (PBS) and copolymers 313
- 4.5.7.1 Market analysis 314
- 4.5.7.2 Producers and production capacities 314
- 4.5.7.3 Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes) 315
- 4.5.8 Polyethylene (Bio-PE) 315
- 4.5.8.1 Market analysis 315
- 4.5.8.2 Producers and production capacities 316
- 4.5.8.3 Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes). 317
- 4.5.9 Polypropylene (Bio-PP) 317
- 4.5.9.1 Market analysis 317
- 4.5.9.2 Producers and production capacities 318
- 4.5.9.3 Polypropylene (Bio-PP) production 2019-2035 (1,000 tonnes) 318
- 4.5.1 Polylactic acid (Bio-PLA) 298
- 4.6 Natural biobased polymers 319
- 4.6.1 Polyhydroxyalkanoates (PHA) 319
- 4.6.1.1 Technology description 319
- 4.6.1.2 Types 320
- 4.6.1.2.1 PHB 322
- 4.6.1.2.2 PHBV 323
- 4.6.1.3 Synthesis and production processes 324
- 4.6.1.4 Market analysis 326
- 4.6.1.5 Commercially available PHAs 327
- 4.6.1.6 Markets for PHAs 328
- 4.6.1.6.1 Packaging 329
- 4.6.1.6.2 Cosmetics 331
- 4.6.1.6.2.1 PHA microspheres 331
- 4.6.1.6.3 Medical 331
- 4.6.1.6.3.1 Tissue engineering 331
- 4.6.1.6.3.2 Drug delivery 331
- 4.6.1.6.4 Agriculture 331
- 4.6.1.6.4.1 Mulch film 331
- 4.6.1.6.4.2 Grow bags 332
- 4.6.1.7 Producers and production capacities 332
- 4.6.2 Cellulose 333
- 4.6.2.1 Microfibrillated cellulose (MFC) 333
- 4.6.2.1.1 Market analysis 333
- 4.6.2.1.2 Producers and production capacities 334
- 4.6.2.2 Nanocellulose 335
- 4.6.2.2.1 Cellulose nanocrystals 335
- 4.6.2.2.1.1 Synthesis 335
- 4.6.2.2.1.2 Properties 337
- 4.6.2.2.1.3 Production 338
- 4.6.2.2.1.4 Applications 338
- 4.6.2.2.1.5 Market analysis 339
- 4.6.2.2.1.6 Producers and production capacities 341
- 4.6.2.2.2 Cellulose nanofibers 341
- 4.6.2.2.2.1 Applications 342
- 4.6.2.2.2.2 Market analysis 343
- 4.6.2.2.2.3 Producers and production capacities 344
- 4.6.2.2.3 Bacterial Nanocellulose (BNC) 345
- 4.6.2.2.3.1 Production 345
- 4.6.2.2.3.2 Applications 347
- 4.6.2.2.1 Cellulose nanocrystals 335
- 4.6.2.1 Microfibrillated cellulose (MFC) 333
- 4.6.3 Protein-based bioplastics 348
- 4.6.3.1 Types, applications and producers 349
- 4.6.4 Algal and fungal 350
- 4.6.4.1 Algal 350
- 4.6.4.1.1 Advantages 350
- 4.6.4.1.2 Production 351
- 4.6.4.1.3 Producers 352
- 4.6.4.2 Mycelium 352
- 4.6.4.2.1 Properties 352
- 4.6.4.2.2 Applications 353
- 4.6.4.2.3 Commercialization 354
- 4.6.4.1 Algal 350
- 4.6.5 Chitosan 355
- 4.6.5.1 Technology description 355
- 4.6.1 Polyhydroxyalkanoates (PHA) 319
- 4.7 Production by region 356
- 4.7.1 North America 357
- 4.7.2 Europe 357
- 4.7.3 Asia-Pacific 357
- 4.7.3.1 China 358
- 4.7.3.2 Japan 358
- 4.7.3.3 Thailand 358
- 4.7.3.4 Indonesia 358
- 4.7.4 Latin America 359
- 4.8 End use markets 360
- 4.8.1 Packaging 361
- 4.8.1.1 Processes for bioplastics in packaging 361
- 4.8.1.2 Applications 362
- 4.8.1.3 Flexible packaging 362
- 4.8.1.3.1 Production volumes 2019-2035 364
- 4.8.1.4 Rigid packaging 365
- 4.8.1.4.1 Production volumes 2019-2035 366
- 4.8.2 Consumer products 367
- 4.8.2.1 Applications 367
- 4.8.2.2 Production volumes 2019-2035 367
- 4.8.3 Automotive 368
- 4.8.3.1 Applications 368
- 4.8.3.2 Production volumes 2019-2035 369
- 4.8.4 Construction 369
- 4.8.4.1 Applications 369
- 4.8.4.2 Production volumes 2019-2035 370
- 4.8.5 Textiles 370
- 4.8.5.1 Apparel 371
- 4.8.5.2 Footwear 371
- 4.8.5.3 Medical textiles 372
- 4.8.5.4 Production volumes 2019-2035 373
- 4.8.6 Electronics 373
- 4.8.6.1 Applications 373
- 4.8.6.2 Production volumes 2019-2035 374
- 4.8.7 Agriculture and horticulture 374
- 4.8.7.1 Production volumes 2019-2035 375
- 4.8.1 Packaging 361
- 4.9 Lignin 376
- 4.9.1 Introduction 376
- 4.9.1.1 What is lignin? 376
- 4.9.1.1.1 Lignin structure 376
- 4.9.1.2 Types of lignin 377
- 4.9.1.2.1 Sulfur containing lignin 380
- 4.9.1.2.2 Sulfur-free lignin from biorefinery process 380
- 4.9.1.3 Properties 380
- 4.9.1.4 The lignocellulose biorefinery 382
- 4.9.1.5 Markets and applications 383
- 4.9.1.6 Challenges for using lignin 384
- 4.9.1.1 What is lignin? 376
- 4.9.2 Lignin production processes 385
- 4.9.2.1 Lignosulphonates 386
- 4.9.2.2 Kraft Lignin 387
- 4.9.2.2.1 LignoBoost process 387
- 4.9.2.2.2 LignoForce method 388
- 4.9.2.2.3 Sequential Liquid Lignin Recovery and Purification 388
- 4.9.2.2.4 A-Recovery+ 389
- 4.9.2.3 Soda lignin 390
- 4.9.2.4 Biorefinery lignin 390
- 4.9.2.4.1 Commercial and pre-commercial biorefinery lignin production facilities and processes 392
- 4.9.2.5 Organosolv lignins 394
- 4.9.2.6 Hydrolytic lignin 394
- 4.9.3 Markets for lignin 395
- 4.9.3.1 Market drivers and trends for lignin 395
- 4.9.3.2 Production capacities 396
- 4.9.3.2.1 Technical lignin availability (dry ton/y) 396
- 4.9.3.2.2 Biomass conversion (Biorefinery) 397
- 4.9.3.3 Global consumption of lignin 397
- 4.9.3.3.1 By type 398
- 4.9.3.3.2 By market 400
- 4.9.3.4 Prices 402
- 4.9.3.5 Heat and power energy 402
- 4.9.3.6 Pyrolysis and syngas 402
- 4.9.3.7 Aromatic compounds 402
- 4.9.3.7.1 Benzene, toluene and xylene 402
- 4.9.3.7.2 Phenol and phenolic resins 403
- 4.9.3.7.3 Vanillin 403
- 4.9.3.8 Plastics and polymers 404
- 4.9.1 Introduction 376
- 4.10 COMPANY PROFILES 405 (522 company profiles)
5 NATURAL FIBER PLASTICS AND COMPOSITES
- 5.1 Introduction 775
- 5.1.1 What are natural fiber materials? 775
- 5.1.2 Benefits of natural fibers over synthetic 778
- 5.1.3 Markets and applications for natural fibers 778
- 5.1.4 Commercially available natural fiber products 780
- 5.1.5 Market drivers for natural fibers 783
- 5.1.6 Market challenges 784
- 5.1.7 Wood flour as a plastic filler 785
- 5.2 Types of natural fibers in plastic composites 785
- 5.2.1 Plants 787
- 5.2.1.1 Seed fibers 787
- 5.2.1.1.1 Kapok 787
- 5.2.1.1.2 Luffa 788
- 5.2.1.2 Bast fibers 789
- 5.2.1.2.1 Jute 789
- 5.2.1.2.2 Hemp 790
- 5.2.1.2.3 Flax 792
- 5.2.1.2.4 Ramie 793
- 5.2.1.2.5 Kenaf 794
- 5.2.1.3 Leaf fibers 794
- 5.2.1.3.1 Sisal 795
- 5.2.1.3.2 Abaca 795
- 5.2.1.4 Fruit fibers 796
- 5.2.1.4.1 Coir 796
- 5.2.1.4.2 Banana 797
- 5.2.1.4.3 Pineapple 798
- 5.2.1.5 Stalk fibers from agricultural residues 799
- 5.2.1.5.1 Rice fiber 799
- 5.2.1.5.2 Corn 800
- 5.2.1.6 Cane, grasses and reed 801
- 5.2.1.6.1 Switchgrass 801
- 5.2.1.6.2 Sugarcane (agricultural residues) 802
- 5.2.1.6.3 Bamboo 803
- 5.2.1.6.4 Fresh grass (green biorefinery) 804
- 5.2.1.7 Modified natural polymers 804
- 5.2.1.7.1 Mycelium 804
- 5.2.1.7.2 Chitosan 806
- 5.2.1.7.3 Alginate 807
- 5.2.1.1 Seed fibers 787
- 5.2.2 Animal (fibrous protein) 808
- 5.2.2.1 Silk fiber 808
- 5.2.3 Wood-based natural fibers 810
- 5.2.3.1 Cellulose fibers 810
- 5.2.3.1.1 Market overview 810
- 5.2.3.1.2 Producers 810
- 5.2.3.2 Microfibrillated cellulose (MFC) 811
- 5.2.3.2.1 Market overview 811
- 5.2.3.2.2 Producers 812
- 5.2.3.3 Cellulose nanocrystals 813
- 5.2.3.3.1 Market overview 813
- 5.2.3.3.2 Producers 814
- 5.2.3.4 Cellulose nanofibers 815
- 5.2.3.4.1 Market overview 815
- 5.2.3.4.2 Producers 816
- 5.2.3.1 Cellulose fibers 810
- 5.2.1 Plants 787
- 5.3 Processing and Treatment of Natural Fibers 817
- 5.4 Interface and Compatibility of Natural Fibers with Plastic Matrices 818
- 5.4.1 Adhesion and Bonding 818
- 5.4.2 Moisture Absorption and Dimensional Stability 818
- 5.4.3 Thermal Expansion and Compatibility 819
- 5.4.4 Dispersion and Distribution 819
- 5.4.5 Matrix Selection 819
- 5.4.6 Fiber Content and Alignment 819
- 5.4.7 Manufacturing Techniques 819
- 5.5 Manufacturing processes 819
- 5.5.1 Injection molding 821
- 5.5.2 Compression moulding 822
- 5.5.3 Extrusion 823
- 5.5.4 Thermoforming 823
- 5.5.5 Thermoplastic pultrusion 824
- 5.5.6 Additive manufacturing (3D printing) 824
- 5.6 Global market for natural fibers 825
- 5.6.1 Automotive 827
- 5.6.1.1 Applications 828
- 5.6.1.2 Commercial production 828
- 5.6.1.3 SWOT analysis 831
- 5.6.2 Packaging 832
- 5.6.2.1 Applications 832
- 5.6.2.2 SWOT analysis 834
- 5.6.3 Construction 835
- 5.6.3.1 Applications 835
- 5.6.3.2 SWOT analysis 836
- 5.6.4 Appliances 837
- 5.6.4.1 Applications 837
- 5.6.4.2 SWOT analysis 838
- 5.6.5 Consumer electronics 840
- 5.6.5.1 Applications 840
- 5.6.5.2 SWOT analysis 842
- 5.6.6 Furniture 843
- 5.6.6.1 Applications 843
- 5.6.6.2 SWOT analysis 843
- 5.6.1 Automotive 827
- 5.7 Competitive landscape 844
- 5.8 Future outlook 844
- 5.9 Revenues 845
- 5.9.1 By end use market 845
- 5.9.2 By Material Type 846
- 5.9.3 By Plastic Type 847
- 5.9.4 By region 848
- 5.10 Company profiles 850 (67 company profiles)
6 SUSTAINABLE CONSTRUCTION MATERIALS
- 6.1 Market overview 919
- 6.1.1 Benefits of Sustainable Construction 919
- 6.1.2 Global Trends and Drivers 919
- 6.2 Global revenues 921
- 6.2.1 By materials type 921
- 6.2.2 By market 924
- 6.3 Types of sustainable construction materials 926
- 6.3.1 Established bio-based construction materials 926
- 6.3.2 Hemp-based Materials 928
- 6.3.2.1 Hemp Concrete (Hempcrete) 928
- 6.3.2.2 Hemp Fiberboard 928
- 6.3.2.3 Hemp Insulation 929
- 6.3.3 Mycelium-based Materials 929
- 6.3.3.1 Insulation 930
- 6.3.3.2 Structural Elements 930
- 6.3.3.3 Acoustic Panels 931
- 6.3.3.4 Decorative Elements 931
- 6.3.4 Sustainable Concrete and Cement Alternatives 931
- 6.3.4.1 Geopolymer Concrete 931
- 6.3.4.2 Recycled Aggregate Concrete 932
- 6.3.4.3 Lime-Based Materials 932
- 6.3.4.4 Self-healing concrete 933
- 6.3.4.4.1 Bioconcrete 934
- 6.3.4.4.2 Fiber concrete 935
- 6.3.4.5 Microalgae biocement 936
- 6.3.4.6 Carbon-negative concrete 938
- 6.3.4.7 Biomineral binders 938
- 6.3.5 Natural Fiber Composites 939
- 6.3.5.1 Types of Natural Fibers 939
- 6.3.5.2 Properties 939
- 6.3.5.3 Applications in Construction 939
- 6.3.6 Cellulose nanofibers 940
- 6.3.6.1 Sandwich composites 940
- 6.3.6.2 Cement additives 940
- 6.3.6.3 Pump primers 941
- 6.3.6.4 Insulation materials 941
- 6.3.6.5 Coatings and paints 942
- 6.3.6.6 3D printing materials 942
- 6.3.7 Sustainable Insulation Materials 943
- 6.3.7.1 Types of sustainable insulation materials 943
- 6.3.7.2 Aerogel Insulation 944
- 6.3.7.2.1 Silica aerogels 946
- 6.3.7.2.1.1 Properties 946
- 6.3.7.2.1.2 Thermal conductivity 947
- 6.3.7.2.1.3 Mechanical 947
- 6.3.7.2.1.4 Silica aerogel precursors 947
- 6.3.7.2.1.5 Products 948
- 6.3.7.2.1.5.1 Monoliths 948
- 6.3.7.2.1.5.2 Powder 948
- 6.3.7.2.1.5.3 Granules 949
- 6.3.7.2.1.5.4 Blankets 950
- 6.3.7.2.1.5.5 Aerogel boards 951
- 6.3.7.2.1.5.6 Aerogel renders 952
- 6.3.7.2.1.6 3D printing of aerogels 952
- 6.3.7.2.1.7 Silica aerogel from sustainable feedstocks 953
- 6.3.7.2.1.8 Silica composite aerogels 953
- 6.3.7.2.1.8.1 Organic crosslinkers 954
- 6.3.7.2.1.9 Cost of silica aerogels 954
- 6.3.7.2.1.10 Main players 954
- 6.3.7.2.2 Aerogel-like foam materials 955
- 6.3.7.2.2.1 Properties 955
- 6.3.7.2.2.2 Applications 956
- 6.3.7.2.3 Metal oxide aerogels 956
- 6.3.7.2.4 Organic aerogels 957
- 6.3.7.2.4.1 Polymer aerogels 957
- 6.3.7.2.5 Biobased and sustainable aerogels (bio-aerogels) 959
- 6.3.7.2.5.1 Cellulose aerogels 960
- 6.3.7.2.5.1.1 Cellulose nanofiber (CNF) aerogels 961
- 6.3.7.2.5.1.2 Cellulose nanocrystal aerogels 961
- 6.3.7.2.5.1.3 Bacterial nanocellulose aerogels 962
- 6.3.7.2.5.2 Lignin aerogels 962
- 6.3.7.2.5.3 Alginate aerogels 963
- 6.3.7.2.5.4 Starch aerogels 963
- 6.3.7.2.5.5 Chitosan aerogels 964
- 6.3.7.2.5.1 Cellulose aerogels 960
- 6.3.7.2.6 Carbon aerogels 964
- 6.3.7.2.6.1 Carbon nanotube aerogels 966
- 6.3.7.2.6.2 Graphene and graphite aerogels 967
- 6.3.7.2.7 Additive manufacturing (3D printing) 967
- 6.3.7.2.7.1 Carbon nitride 968
- 6.3.7.2.7.2 Gold 969
- 6.3.7.2.7.3 Cellulose 969
- 6.3.7.2.7.4 Graphene oxide 969
- 6.3.7.2.8 Hybrid aerogels 970
- 6.3.7.2.1 Silica aerogels 946
- 6.4 Carbon capture and utilization 970
- 6.4.1 Overview 970
- 6.4.2 Market structure 972
- 6.4.3 CCUS technologies in the cement industry 975
- 6.4.4 Products 977
- 6.4.4.1 Carbonated aggregates 977
- 6.4.4.2 Additives during mixing 978
- 6.4.4.3 Carbonates from natural minerals 979
- 6.4.4.4 Carbonates from waste 979
- 6.4.5 Concrete curing 980
- 6.4.6 Costs 981
- 6.4.7 Challenges 981
- 6.5 Green steel 982
- 6.5.1 Current Steelmaking processes 982
- 6.5.1.1.1 Capturing then sequestering or utilizing carbon emissions from conventional steel mills. 984
- 6.5.2 Decarbonization target and policies 985
- 6.5.2.1 EU Carbon Border Adjustment Mechanism (CBAM) 987
- 6.5.3 Advances in clean production technologies 988
- 6.5.4 Production technologies 988
- 6.5.4.1 The role of hydrogen 988
- 6.5.4.2 Comparative analysis 989
- 6.5.4.3 Hydrogen Direct Reduced Iron (DRI) 990
- 6.5.4.4 Electrolysis 992
- 6.5.4.5 Carbon Capture, Utilization and Storage (CCUS) 993
- 6.5.4.6 Biochar replacing coke 994
- 6.5.4.7 Hydrogen Blast Furnace 995
- 6.5.4.8 Renewable energy powered processes 996
- 6.5.4.9 Flash ironmaking 997
- 6.5.4.10 Hydrogen Plasma Iron Ore Reduction 998
- 6.5.4.11 Ferrous Bioprocessing 1000
- 6.5.4.12 Microwave Processing 1000
- 6.5.4.13 Additive Manufacturing 1001
- 6.5.4.14 Technology readiness level (TRL) 1001
- 6.5.5 Properties 1002
- 6.5.1 Current Steelmaking processes 982
- 6.6 Markets and applications 1004
- 6.6.1 Residential Buildings 1005
- 6.6.2 Commercial and Office Buildings 1006
- 6.6.3 Infrastructure 1008
- 6.7 Company profiles 1011 (144 company profiles)
7 BIOBASED PACKAGING MATERIALS
- 7.1 Market overview 1124
- 7.1.1 Current global packaging market and materials 1124
- 7.1.2 Market trends 1125
- 7.1.3 Drivers for recent growth in bioplastics in packaging 1126
- 7.1.4 Challenges for bio-based and sustainable packaging 1126
- 7.2 Materials 1127
- 7.2.1 Materials innovation 1127
- 7.2.2 Active packaging 1128
- 7.2.3 Monomaterial packaging 1128
- 7.2.4 Conventional polymer materials used in packaging 1129
- 7.2.4.1 Polyolefins: Polypropylene and polyethylene 1129
- 7.2.4.2 PET and other polyester polymers 1131
- 7.2.4.3 Renewable and bio-based polymers for packaging 1132
- 7.2.4.4 Comparison of synthetic fossil-based and bio-based polymers 1134
- 7.2.4.5 Processes for bioplastics in packaging 1134
- 7.2.4.6 End-of-life treatment of bio-based and sustainable packaging 1135
- 7.3 Synthetic bio-based packaging materials 1136
- 7.3.1 Polylactic acid (Bio-PLA) 1136
- 7.3.1.1 Properties 1136
- 7.3.1.2 Applicaitons 1137
- 7.3.2 Polyethylene terephthalate (Bio-PET) 1139
- 7.3.2.1 Properties 1140
- 7.3.2.2 Applications 1140
- 7.3.2.3 Advantages of Bio-PET in Packaging 1141
- 7.3.2.4 Challenges and Limitations 1141
- 7.3.3 Polytrimethylene terephthalate (Bio-PTT) 1143
- 7.3.3.1 Production Process 1143
- 7.3.3.2 Properties 1143
- 7.3.3.3 Applications 1144
- 7.3.3.4 Advantages of Bio-PTT in Packaging 1144
- 7.3.3.5 Challenges and Limitations 1144
- 7.3.4 Polyethylene furanoate (Bio-PEF) 1145
- 7.3.4.1 Properties 1145
- 7.3.4.2 Applications 1146
- 7.3.4.3 Advantages of Bio-PEF in Packaging 1146
- 7.3.4.4 Challenges and Limitations 1146
- 7.3.5 Bio-PA 1147
- 7.3.5.1 Properties 1147
- 7.3.5.2 Applications in Packaging 1148
- 7.3.5.3 Advantages of Bio-PA in Packaging 1148
- 7.3.5.4 Challenges and Limitations 1148
- 7.3.6 Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters 1149
- 7.3.6.1 Properties 1149
- 7.3.6.2 Applications in Packaging 1150
- 7.3.6.3 Advantages of Bio-PBAT in Packaging 1150
- 7.3.6.4 Challenges and Limitations 1150
- 7.3.7 Polybutylene succinate (PBS) and copolymers 1151
- 7.3.7.1 Properties 1151
- 7.3.7.2 Applications in Packaging 1151
- 7.3.7.3 Advantages of Bio-PBS and Co-polymers in Packaging 1152
- 7.3.7.4 Challenges and Limitations 1152
- 7.3.8 Polypropylene (Bio-PP) 1153
- 7.3.8.1 Properties 1153
- 7.3.8.2 Applications in Packaging 1153
- 7.3.8.3 Advantages of Bio-PP in Packaging 1154
- 7.3.8.4 Challenges and Limitations 1154
- 7.3.1 Polylactic acid (Bio-PLA) 1136
- 7.4 Natural bio-based packaging materials 1154
- 7.4.1 Polyhydroxyalkanoates (PHA) 1155
- 7.4.1.1 Properties 1155
- 7.4.1.2 Applications in Packaging 1155
- 7.4.1.3 Advantages of PHA in Packaging 1157
- 7.4.1.4 Challenges and Limitations 1157
- 7.4.2 Starch-based blends 1158
- 7.4.2.1 Properties 1158
- 7.4.2.2 Applications in Packaging 1158
- 7.4.2.3 Advantages of Starch-Based Blends in Packaging 1159
- 7.4.2.4 Challenges and Limitations 1159
- 7.4.3 Cellulose 1159
- 7.4.3.1 Feedstocks 1159
- 7.4.3.1.1 Wood 1160
- 7.4.3.1.2 Plant 1160
- 7.4.3.1.3 Tunicate 1161
- 7.4.3.1.4 Algae 1161
- 7.4.3.1.5 Bacteria 1162
- 7.4.3.2 Microfibrillated cellulose (MFC) 1163
- 7.4.3.2.1 Properties 1163
- 7.4.3.3 Nanocellulose 1164
- 7.4.3.3.1 Cellulose nanocrystals 1164
- 7.4.3.3.1.1 Applications in packaging 1164
- 7.4.3.3.2 Cellulose nanofibers 1166
- 7.4.3.3.2.1 Applications in packaging 1166
- 7.4.3.3.2.1.1 Reinforcement and barrier 1171
- 7.4.3.3.2.1.2 Biodegradable food packaging foil and films 1171
- 7.4.3.3.2.1.3 Paperboard coatings 1172
- 7.4.3.3.2.1 Applications in packaging 1166
- 7.4.3.3.3 Bacterial Nanocellulose (BNC) 1172
- 7.4.3.3.3.1 Applications in packaging 1175
- 7.4.3.3.1 Cellulose nanocrystals 1164
- 7.4.3.1 Feedstocks 1159
- 7.4.4 Protein-based bioplastics in packaging 1176
- 7.4.5 Lipids and waxes for packaging 1178
- 7.4.6 Seaweed-based packaging 1178
- 7.4.6.1 Production 1180
- 7.4.6.2 Applications in packaging 1180
- 7.4.6.3 Producers 1180
- 7.4.7 Mycelium 1181
- 7.4.7.1 Applications in packaging 1182
- 7.4.8 Chitosan 1183
- 7.4.8.1 Applications in packaging 1184
- 7.4.9 Bio-naphtha 1184
- 7.4.9.1 Overview 1184
- 7.4.9.2 Markets and applications 1185
- 7.4.1 Polyhydroxyalkanoates (PHA) 1155
- 7.5 Applications 1187
- 7.5.1 Paper and board packaging 1187
- 7.5.2 Food packaging 1187
- 7.5.2.1 Bio-Based films and trays 1188
- 7.5.2.2 Bio-Based pouches and bags 1188
- 7.5.2.3 Bio-Based textiles and nets 1188
- 7.5.2.4 Bioadhesives 1189
- 7.5.2.4.1 Starch 1190
- 7.5.2.4.2 Cellulose 1190
- 7.5.2.4.3 Protein-Based 1190
- 7.5.2.5 Barrier coatings and films 1191
- 7.5.2.5.1 Polysaccharides 1192
- 7.5.2.5.1.1 Chitin 1192
- 7.5.2.5.1.2 Chitosan 1192
- 7.5.2.5.1.3 Starch 1192
- 7.5.2.5.2 Poly(lactic acid) (PLA) 1192
- 7.5.2.5.3 Poly(butylene Succinate) 1192
- 7.5.2.5.4 Functional Lipid and Proteins Based Coatings 1192
- 7.5.2.5.1 Polysaccharides 1192
- 7.5.2.6 Active and Smart Food Packaging 1193
- 7.5.2.6.1 Active Materials and Packaging Systems 1193
- 7.5.2.6.2 Intelligent and Smart Food Packaging 1194
- 7.5.2.7 Antimicrobial films and agents 1195
- 7.5.2.7.1 Natural 1196
- 7.5.2.7.2 Inorganic nanoparticles 1197
- 7.5.2.7.3 Biopolymers 1197
- 7.5.2.8 Bio-based Inks and Dyes 1197
- 7.5.2.9 Edible films and coatings 1198
- 7.6 Biobased films and coatings in packaging 1200
- 7.6.1 Challenges using bio-based paints and coatings 1200
- 7.6.2 Types of bio-based coatings and films in packaging 1203
- 7.6.2.1 Polyurethane coatings 1203
- 7.6.2.1.1 Properties 1203
- 7.6.2.1.2 Bio-based polyurethane coatings 1203
- 7.6.2.1.3 Products 1204
- 7.6.2.2 Acrylate resins 1205
- 7.6.2.2.1 Properties 1205
- 7.6.2.2.2 Bio-based acrylates 1205
- 7.6.2.2.3 Products 1206
- 7.6.2.3 Polylactic acid (Bio-PLA) 1206
- 7.6.2.3.1 Properties 1208
- 7.6.2.3.2 Bio-PLA coatings and films 1208
- 7.6.2.4 Polyhydroxyalkanoates (PHA) coatings 1209
- 7.6.2.5 Cellulose coatings and films 1210
- 7.6.2.5.1 Microfibrillated cellulose (MFC) 1210
- 7.6.2.5.2 Cellulose nanofibers 1211
- 7.6.2.5.2.1 Properties 1211
- 7.6.2.5.2.2 Product developers 1212
- 7.6.2.6 Lignin coatings 1214
- 7.6.2.7 Protein-based biomaterials for coatings 1215
- 7.6.2.7.1 Plant derived proteins 1215
- 7.6.2.7.2 Animal origin proteins 1215
- 7.6.2.1 Polyurethane coatings 1203
- 7.7 Carbon capture derived materials for packaging 1216
- 7.7.1 Benefits of carbon utilization for plastics feedstocks 1217
- 7.7.2 CO₂-derived polymers and plastics 1220
- 7.7.3 CO2 utilization products 1220
- 7.8 Global biobased packaging markets 1222
- 7.8.1 Flexible packaging 1222
- 7.8.2 Rigid packaging 1225
- 7.8.3 Coatings and films 1227
- 7.9 Company profiles 1228 (207 company profiles)
8 SUSTAINABLE TEXTILES AND APPAREL
- 8.1 Types of bio-based fibres 1397
- 8.1.1 Natural fibres 1399
- 8.1.2 Main-made bio-based fibres 1400
- 8.2 Bio-based synthetics 1401
- 8.3 Recyclability of bio-based fibres 1401
- 8.4 Lyocell 1402
- 8.5 Bacterial cellulose 1403
- 8.6 Algae textiles 1403
- 8.7 Bio-based leather 1404
- 8.7.1 Properties of bio-based leathers 1407
- 8.7.1.1 Tear strength. 1407
- 8.7.1.2 Tensile strength 1408
- 8.7.1.3 Bally flexing 1408
- 8.7.2 Comparison with conventional leathers 1409
- 8.7.3 Comparative analysis of bio-based leathers 1412
- 8.7.4 Plant-based leather 1412
- 8.7.4.1 Overview 1412
- 8.7.4.2 Production processes 1413
- 8.7.4.2.1 Feedstocks 1413
- 8.7.4.2.1.1 Agriculture Residues 1413
- 8.7.4.2.1.2 Food Processing Waste 1413
- 8.7.4.2.1.3 Invasive Plants 1414
- 8.7.4.2.1.4 Culture-Grown Inputs 1414
- 8.7.4.2.2 Textile-Based 1414
- 8.7.4.2.3 Bio-Composite 1415
- 8.7.4.2.1 Feedstocks 1413
- 8.7.4.3 Products 1415
- 8.7.4.4 Market players 1416
- 8.7.5 Mycelium leather 1418
- 8.7.5.1 Overview 1418
- 8.7.5.2 Production process 1420
- 8.7.5.2.1 Growth conditions 1420
- 8.7.5.2.2 Tanning Mycelium Leather 1421
- 8.7.5.2.3 Dyeing Mycelium Leather 1421
- 8.7.5.3 Products 1422
- 8.7.5.4 Market players 1422
- 8.7.6 Microbial leather 1423
- 8.7.6.1 Overview 1423
- 8.7.6.2 Production process 1423
- 8.7.6.3 Fermentation conditions 1424
- 8.7.6.4 Harvesting 1425
- 8.7.6.5 Products 1425
- 8.7.6.6 Market players 1428
- 8.7.7 Lab grown leather 1429
- 8.7.7.1 Overview 1429
- 8.7.7.2 Production process 1429
- 8.7.7.3 Products 1430
- 8.7.7.4 Market players 1431
- 8.7.8 Protein-based leather 1431
- 8.7.8.1 Overview 1431
- 8.7.8.2 Production process 1432
- 8.7.8.3 Commercial activity 1432
- 8.7.9 Sustainable textiles coatings and dyes 1433
- 8.7.9.1 Overview 1433
- 8.7.9.1.1 Coatings 1433
- 8.7.9.1.2 Dyes 1434
- 8.7.9.1 Overview 1433
- 8.7.9.2 Commercial activity 1435
- 8.7.1 Properties of bio-based leathers 1407
- 8.8 Markets 1436
- 8.8.1 Footwear 1436
- 8.8.2 Fashion & Accessories 1437
- 8.8.3 Automotive & Transport 1438
- 8.8.4 Furniture 1438
- 8.9 Global market revenues 1440
- 8.9.1 By region 1440
- 8.9.2 By end use market 1442
- 8.10 Company profiles 1444 (67 company profiles)
9 BIOBASED COATINGS AND RESINS
- 9.1 Drop-in replacements 1499
- 9.2 Bio-based resins 1499
- 9.3 Reducing carbon footprint in industrial and protective coatings 1500
- 9.4 Market drivers 1501
- 9.5 Challenges using bio-based coatings 1501
- 9.6 Types 1502
- 9.6.1 Eco-friendly coatings technologies 1502
- 9.6.1.1 UV-cure 1503
- 9.6.1.2 Waterborne coatings 1503
- 9.6.1.3 Treatments with less or no solvents 1503
- 9.6.1.4 Hyperbranched polymers for coatings 1504
- 9.6.1.5 Powder coatings 1504
- 9.6.1.6 High solid (HS) coatings 1505
- 9.6.1.7 Use of bio-based materials in coatings 1505
- 9.6.1.7.1 Biopolymers 1505
- 9.6.1.7.2 Coatings based on agricultural waste 1506
- 9.6.1.7.3 Vegetable oils and fatty acids 1506
- 9.6.1.7.4 Proteins 1507
- 9.6.1.7.5 Cellulose 1507
- 9.6.1.7.6 Plant-Based wax coatings 1508
- 9.6.2 Barrier coatings 1509
- 9.6.2.1 Polysaccharides 1510
- 9.6.2.1.1 Chitin 1511
- 9.6.2.1.2 Chitosan 1511
- 9.6.2.1.3 Starch 1511
- 9.6.2.2 Poly(lactic acid) (PLA) 1511
- 9.6.2.3 Poly(butylene Succinate 1511
- 9.6.2.4 Functional Lipid and Proteins Based Coatings 1512
- 9.6.2.1 Polysaccharides 1510
- 9.6.3 Alkyd coatings 1512
- 9.6.3.1 Alkyd resin properties 1512
- 9.6.3.2 Bio-based alkyd coatings 1513
- 9.6.3.3 Products 1515
- 9.6.4 Polyurethane coatings 1516
- 9.6.4.1 Properties 1516
- 9.6.4.2 Bio-based polyurethane coatings 1516
- 9.6.4.2.1 Bio-based polyols 1516
- 9.6.4.2.2 Non-isocyanate polyurethane (NIPU) 1517
- 9.6.4.3 Products 1518
- 9.6.5 Epoxy coatings 1518
- 9.6.5.1 Properties 1519
- 9.6.5.2 Bio-based epoxy coatings 1519
- 9.6.5.3 Prod 1521
- 9.6.5.4 Products 1521
- 9.6.6 Acrylate resins 1521
- 9.6.6.1 Properties 1522
- 9.6.6.2 Bio-based acrylates 1522
- 9.6.6.3 Products 1522
- 9.6.7 Polylactic acid (Bio-PLA) 1523
- 9.6.7.1 Properties 1525
- 9.6.7.2 Bio-PLA coatings and films 1525
- 9.6.8 Polyhydroxyalkanoates (PHA) 1526
- 9.6.8.1 Properties 1527
- 9.6.8.2 PHA coatings 1530
- 9.6.8.3 Commercially available PHAs 1530
- 9.6.9 Cellulose 1532
- 9.6.9.1 Microfibrillated cellulose (MFC) 1537
- 9.6.9.1.1 Properties 1538
- 9.6.9.1.2 Applications in coatings 1539
- 9.6.9.2 Cellulose nanofibers 1540
- 9.6.9.2.1 Properties 1540
- 9.6.9.2.2 Applications in coatings 1542
- 9.6.9.3 Cellulose nanocrystals 1545
- 9.6.9.4 Bacterial Nanocellulose (BNC) 1547
- 9.6.9.1 Microfibrillated cellulose (MFC) 1537
- 9.6.10 Rosins 1548
- 9.6.11 Bio-based carbon black 1548
- 9.6.11.1 Lignin-based 1548
- 9.6.11.2 Algae-based 1549
- 9.6.12 Lignin coatings 1549
- 9.6.13 Edible films and coatings 1549
- 9.6.14 Antimicrobial films and agents 1551
- 9.6.14.1 Natural 1552
- 9.6.14.2 Inorganic nanoparticles 1553
- 9.6.14.3 Biopolymers 1553
- 9.6.15 Nanocoatings 1553
- 9.6.16 Protein-based biomaterials for coatings 1555
- 9.6.16.1 Plant derived proteins 1555
- 9.6.16.2 Animal origin proteins 1555
- 9.6.17 Algal coatings 1556
- 9.6.18 Polypeptides 1559
- 9.6.19 Global market revenues 1560
- 9.6.1 Eco-friendly coatings technologies 1502
- 9.7 Company profiles 1562 (168 company profiles)
10 BIOFUELS
- 10.1 Comparison to fossil fuels 1700
- 10.2 Role in the circular economy 1700
- 10.3 Market drivers 1701
- 10.4 Market challenges 1702
- 10.5 Liquid biofuels market 1702
- 10.5.1 Liquid biofuel production and consumption (in thousands of m3), 2000-2022 1702
- 10.5.2 Liquid biofuels market 2020-2035, by type and production. 1704
- 10.6 The global biofuels market 1706
- 10.6.1 Diesel substitutes and alternatives 1707
- 10.6.2 Gasoline substitutes and alternatives 1708
- 10.7 SWOT analysis: Biofuels market 1709
- 10.8 Comparison of biofuel costs 2023, by type 1710
- 10.9 Types 1711
- 10.9.1 Solid Biofuels 1711
- 10.9.2 Liquid Biofuels 1712
- 10.9.3 Gaseous Biofuels 1712
- 10.9.4 Conventional Biofuels 1713
- 10.9.5 Advanced Biofuels 1713
- 10.10 Feedstocks 1714
- 10.10.1 First-generation (1-G) 1716
- 10.10.2 Second-generation (2-G) 1717
- 10.10.2.1 Lignocellulosic wastes and residues 1718
- 10.10.2.2 Biorefinery lignin 1719
- 10.10.3 Third-generation (3-G) 1723
- 10.10.3.1 Algal biofuels 1723
- 10.10.3.1.1 Properties 1724
- 10.10.3.1.2 Advantages 1724
- 10.10.3.1 Algal biofuels 1723
- 10.10.4 Fourth-generation (4-G) 1725
- 10.10.5 Advantages and disadvantages, by generation 1726
- 10.10.6 Energy crops 1727
- 10.10.6.1 Feedstocks 1727
- 10.10.6.2 SWOT analysis 1727
- 10.10.7 Agricultural residues 1728
- 10.10.7.1 Feedstocks 1728
- 10.10.7.2 SWOT analysis 1729
- 10.10.8 Manure, sewage sludge and organic waste 1730
- 10.10.8.1 Processing pathways 1730
- 10.10.8.2 SWOT analysis 1731
- 10.10.9 Forestry and wood waste 1732
- 10.10.9.1 Feedstocks 1732
- 10.10.9.2 SWOT analysis 1732
- 10.10.10 Feedstock costs 1733
- 10.11 Hydrocarbon biofuels 1734
- 10.11.1 Biodiesel 1734
- 10.11.1.1 Biodiesel by generation 1735
- 10.11.1.2 SWOT analysis 1736
- 10.11.1.3 Production of biodiesel and other biofuels 1738
- 10.11.1.3.1 Pyrolysis of biomass 1738
- 10.11.1.3.2 Vegetable oil transesterification 1741
- 10.11.1.3.3 Vegetable oil hydrogenation (HVO) 1742
- 10.11.1.3.3.1 Production process 1742
- 10.11.1.3.4 Biodiesel from tall oil 1743
- 10.11.1.3.5 Fischer-Tropsch BioDiesel 1744
- 10.11.1.3.6 Hydrothermal liquefaction of biomass 1745
- 10.11.1.3.7 CO2 capture and Fischer-Tropsch (FT) 1746
- 10.11.1.3.8 Dymethyl ether (DME) 1746
- 10.11.1.4 Prices 1747
- 10.11.1.5 Global production and consumption 1748
- 10.11.2 Renewable diesel 1750
- 10.11.2.1 Production 1750
- 10.11.2.2 SWOT analysis 1751
- 10.11.2.3 Global consumption 1752
- 10.11.2.4 Prices 1754
- 10.11.3 Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel) 1755
- 10.11.3.1 Description 1755
- 10.11.3.2 SWOT analysis 1755
- 10.11.3.3 Global production and consumption 1756
- 10.11.3.4 Production pathways 1756
- 10.11.3.5 Prices 1758
- 10.11.3.6 Bio-aviation fuel production capacities 1759
- 10.11.3.7 Market challenges 1759
- 10.11.3.8 Global consumption 1760
- 10.11.4 Bio-naphtha 1761
- 10.11.4.1 Overview 1761
- 10.11.4.2 SWOT analysis 1762
- 10.11.4.3 Markets and applications 1763
- 10.11.4.4 Prices 1764
- 10.11.4.5 Production capacities, by producer, current and planned 1765
- 10.11.4.6 Production capacities, total (tonnes), historical, current and planned 1766
- 10.11.1 Biodiesel 1734
- 10.12 Alcohol fuels 1767
- 10.12.1 Biomethanol 1767
- 10.12.1.1 SWOT analysis 1767
- 10.12.1.2 Methanol-to gasoline technology 1768
- 10.12.1.2.1 Production processes 1769
- 10.12.1.2.1.1 Anaerobic digestion 1770
- 10.12.1.2.1.2 Biomass gasification 1770
- 10.12.1.2.1.3 Power to Methane 1771
- 10.12.1.2.1 Production processes 1769
- 10.12.2 Ethanol 1772
- 10.12.2.1 Technology description 1772
- 10.12.2.2 1G Bio-Ethanol 1772
- 10.12.2.3 SWOT analysis 1773
- 10.12.2.4 Ethanol to jet fuel technology 1774
- 10.12.2.5 Methanol from pulp & paper production 1774
- 10.12.2.6 Sulfite spent liquor fermentation 1775
- 10.12.2.7 Gasification 1775
- 10.12.2.7.1 Biomass gasification and syngas fermentation 1775
- 10.12.2.7.2 Biomass gasification and syngas thermochemical conversion 1776
- 10.12.2.8 CO2 capture and alcohol synthesis 1776
- 10.12.2.9 Biomass hydrolysis and fermentation 1776
- 10.12.2.9.1 Separate hydrolysis and fermentation 1776
- 10.12.2.9.2 Simultaneous saccharification and fermentation (SSF) 1777
- 10.12.2.9.3 Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF) 1777
- 10.12.2.9.4 Simultaneous saccharification and co-fermentation (SSCF) 1778
- 10.12.2.9.5 Direct conversion (consolidated bioprocessing) (CBP) 1778
- 10.12.2.10 Global ethanol consumption 1779
- 10.12.3 Biobutanol 1780
- 10.12.3.1 Production 1782
- 10.12.3.2 Prices 1782
- 10.12.1 Biomethanol 1767
- 10.13 Biomass-based Gas 1782
- 10.13.1 Feedstocks 1784
- 10.13.1.1 Biomethane 1784
- 10.13.1.2 Production pathways 1786
- 10.13.1.2.1 Landfill gas recovery 1786
- 10.13.1.2.2 Anaerobic digestion 1787
- 10.13.1.2.3 Thermal gasification 1788
- 10.13.1.3 SWOT analysis 1788
- 10.13.1.4 Global production 1789
- 10.13.1.5 Prices 1789
- 10.13.1.5.1 Raw Biogas 1789
- 10.13.1.5.2 Upgraded Biomethane 1790
- 10.13.1.6 Bio-LNG 1790
- 10.13.1.6.1 Markets 1790
- 10.13.1.6.1.1 Trucks 1790
- 10.13.1.6.1.2 Marine 1790
- 10.13.1.6.2 Production 1790
- 10.13.1.6.3 Plants 1791
- 10.13.1.6.1 Markets 1790
- 10.13.1.7 bio-CNG (compressed natural gas derived from biogas) 1791
- 10.13.1.8 Carbon capture from biogas 1792
- 10.13.2 Biosyngas 1793
- 10.13.2.1 Production 1793
- 10.13.2.2 Prices 1794
- 10.13.3 Biohydrogen 1794
- 10.13.3.1 Description 1794
- 10.13.3.2 SWOT analysis 1795
- 10.13.3.3 Production of biohydrogen from biomass 1796
- 10.13.3.3.1 Biological Conversion Routes 1796
- 10.13.3.3.1.1 Bio-photochemical Reaction 1796
- 10.13.3.3.1.2 Fermentation and Anaerobic Digestion 1797
- 10.13.3.3.2 Thermochemical conversion routes 1797
- 10.13.3.3.2.1 Biomass Gasification 1797
- 10.13.3.3.2.2 Biomass Pyrolysis 1797
- 10.13.3.3.2.3 Biomethane Reforming 1798
- 10.13.3.3.1 Biological Conversion Routes 1796
- 10.13.3.4 Applications 1798
- 10.13.3.5 Prices 1799
- 10.13.4 Biochar in biogas production 1799
- 10.13.5 Bio-DME 1800
- 10.13.1 Feedstocks 1784
- 10.14 Chemical recycling for biofuels 1800
- 10.14.1 Plastic pyrolysis 1800
- 10.14.2 Used tires pyrolysis 1801
- 10.14.2.1 Conversion to biofuel 1802
- 10.14.3 Co-pyrolysis of biomass and plastic wastes 1804
- 10.14.4 Gasification 1804
- 10.14.4.1 Syngas conversion to methanol 1805
- 10.14.4.2 Biomass gasification and syngas fermentation 1809
- 10.14.4.3 Biomass gasification and syngas thermochemical conversion 1809
- 10.14.5 Hydrothermal cracking 1809
- 10.14.6 SWOT analysis 1810
- 10.15 Electrofuels (E-fuels, power-to-gas/liquids/fuels) 1811
- 10.15.1 Introduction 1811
- 10.15.2 Benefits of e-fuels 1814
- 10.15.3 Feedstocks 1815
- 10.15.3.1 Hydrogen electrolysis 1815
- 10.15.3.2 CO2 capture 1815
- 10.15.4 SWOT analysis 1816
- 10.15.5 Production 1817
- 10.15.5.1 eFuel production facilities, current and planned 1819
- 10.15.6 Electrolysers 1820
- 10.15.6.1 Commercial alkaline electrolyser cells (AECs) 1821
- 10.15.6.2 PEM electrolysers (PEMEC) 1821
- 10.15.6.3 High-temperature solid oxide electrolyser cells (SOECs) 1821
- 10.15.7 Prices 1821
- 10.15.8 Market challenges 1824
- 10.15.9 Companies 1825
- 10.16 Algae-derived biofuels 1826
- 10.16.1 Technology description 1826
- 10.16.2 Conversion pathways 1826
- 10.16.3 SWOT analysis 1827
- 10.16.4 Production 1828
- 10.16.5 Market challenges 1829
- 10.16.6 Prices 1829
- 10.16.7 Producers 1830
- 10.17 Green Ammonia 1830
- 10.17.1 Production 1830
- 10.17.1.1 Decarbonisation of ammonia production 1832
- 10.17.1.2 Green ammonia projects 1833
- 10.17.2 Green ammonia synthesis methods 1833
- 10.17.2.1 Haber-Bosch process 1833
- 10.17.2.2 Biological nitrogen fixation 1834
- 10.17.2.3 Electrochemical production 1835
- 10.17.2.4 Chemical looping processes 1835
- 10.17.3 SWOT analysis 1835
- 10.17.4 Blue ammonia 1836
- 10.17.4.1 Blue ammonia projects 1836
- 10.17.5 Markets and applications 1837
- 10.17.5.1 Chemical energy storage 1837
- 10.17.5.1.1 Ammonia fuel cells 1837
- 10.17.5.2 Marine fuel 1837
- 10.17.5.1 Chemical energy storage 1837
- 10.17.6 Prices 1839
- 10.17.7 Estimated market demand 1841
- 10.17.8 Companies and projects 1841
- 10.17.1 Production 1830
- 10.18 Biofuels from carbon capture 1842
- 10.18.1 Overview 1843
- 10.18.2 CO2 capture from point sources 1845
- 10.18.3 Production routes 1846
- 10.18.4 SWOT analysis 1847
- 10.18.5 Direct air capture (DAC) 1847
- 10.18.5.1 Description 1847
- 10.18.5.2 Deployment 1849
- 10.18.5.3 Point source carbon capture versus Direct Air Capture 1850
- 10.18.5.4 Technologies 1850
- 10.18.5.4.1 Solid sorbents 1852
- 10.18.5.4.2 Liquid sorbents 1853
- 10.18.5.4.3 Liquid solvents 1854
- 10.18.5.4.4 Airflow equipment integration 1855
- 10.18.5.4.5 Passive Direct Air Capture (PDAC) 1855
- 10.18.5.4.6 Direct conversion 1855
- 10.18.5.4.7 Co-product generation 1856
- 10.18.5.4.8 Low Temperature DAC 1856
- 10.18.5.4.9 Regeneration methods 1856
- 10.18.5.5 Commercialization and plants 1857
- 10.18.5.6 Metal-organic frameworks (MOFs) in DAC 1857
- 10.18.5.7 DAC plants and projects-current and planned 1858
- 10.18.5.8 Markets for DAC 1863
- 10.18.5.9 Costs 1864
- 10.18.5.10 Challenges 1869
- 10.18.5.11 Players and production 1869
- 10.18.6 Carbon utilization for biofuels 1870
- 10.18.6.1 Production routes 1874
- 10.18.6.1.1 Electrolyzers 1874
- 10.18.6.1.2 Low-carbon hydrogen 1875
- 10.18.6.2 Products & applications 1876
- 10.18.6.2.1 Vehicles 1876
- 10.18.6.2.2 Shipping 1876
- 10.18.6.2.3 Aviation 1877
- 10.18.6.2.4 Costs 1878
- 10.18.6.2.5 Ethanol 1878
- 10.18.6.2.6 Methanol 1878
- 10.18.6.2.7 Sustainable Aviation Fuel 1882
- 10.18.6.2.8 Methane 1882
- 10.18.6.2.9 Algae based biofuels 1884
- 10.18.6.2.10 CO₂-fuels from solar 1884
- 10.18.6.3 Challenges 1886
- 10.18.6.4 SWOT analysis 1887
- 10.18.6.5 Companies 1888
- 10.18.6.1 Production routes 1874
- 10.19 Bio-oils (pyrolysis oils) 1890
- 10.19.1 Description 1890
- 10.19.1.1 Advantages of bio-oils 1890
- 10.19.2 Production 1892
- 10.19.2.1 Fast Pyrolysis 1892
- 10.19.2.2 Costs of production 1892
- 10.19.2.3 Upgrading 1892
- 10.19.3 SWOT analysis 1894
- 10.19.4 Applications 1894
- 10.19.5 Bio-oil producers 1895
- 10.19.6 Prices 1896
- 10.19.1 Description 1890
- 10.20 Refuse Derived Fuels (RDF) 1896
- 10.20.1 Overview 1896
- 10.20.2 Production 1897
- 10.20.2.1 Production process 1897
- 10.20.2.2 Mechanical biological treatment 1897
- 10.20.3 Markets 1898
- 10.21 Company profiles 1899 (211 company profiles)
11 SUSTAINABLE ELECTRONICS
- 11.1 Overview 2049
- 11.1.1 Green electronics manufacturing 2049
- 11.1.2 Drivers for sustainable electronics 2050
- 11.1.3 Environmental Impacts of Electronics Manufacturing 2051
- 11.1.3.1 E-Waste Generation 2051
- 11.1.3.2 Carbon Emissions 2052
- 11.1.3.3 Resource Utilization 2052
- 11.1.3.4 Waste Minimization 2053
- 11.1.3.5 Supply Chain Impacts 2054
- 11.1.4 New opportunities from sustainable electronics 2054
- 11.1.5 Regulations 2055
- 11.1.5.1 Certifications 2056
- 11.1.6 Powering sustainable electronics (Bio-based batteries) 2056
- 11.1.7 Bioplastics in injection moulded electronics parts 2057
- 11.2 Green electronics manufacturing 2057
- 11.2.1 Conventional electronics manufacturing 2057
- 11.2.2 Benefits of Green Electronics manufacturing 2058
- 11.2.3 Challenges in adopting Green Electronics manufacturing 2059
- 11.2.4 Approaches 2060
- 11.2.4.1 Closed-Loop Manufacturing 2060
- 11.2.4.2 Digital Manufacturing 2061
- 11.2.4.2.1 Advanced robotics & automation 2061
- 11.2.4.2.2 AI & machine learning analytics 2061
- 11.2.4.2.3 Internet of Things (IoT) 2061
- 11.2.4.2.4 Additive manufacturing 2062
- 11.2.4.2.5 Virtual prototyping 2062
- 11.2.4.2.6 Blockchain-enabled supply chain traceability 2062
- 11.2.4.3 Renewable Energy Usage 2062
- 11.2.4.4 Energy Efficiency 2064
- 11.2.4.5 Materials Efficiency 2064
- 11.2.4.6 Sustainable Chemistry 2065
- 11.2.4.7 Recycled Materials 2065
- 11.2.4.7.1 Advanced chemical recycling 2066
- 11.2.4.8 Bio-Based Materials 2069
- 11.2.5 Greening the Supply Chain 2071
- 11.2.5.1 Key focus areas 2072
- 11.2.5.2 Sustainability activities from major electronics brands 2074
- 11.2.5.3 Key challenges 2075
- 11.2.5.4 Use of digital technologies 2075
- 11.2.6 Sustainable Printed Circuit Board (PCB) manufacturing 2076
- 11.2.6.1 Conventional PCB manufacturing 2076
- 11.2.6.2 Trends in PCBs 2077
- 11.2.6.2.1 High-Speed PCBs 2078
- 11.2.6.2.2 Flexible PCBs 2078
- 11.2.6.2.3 3D Printed PCBs 2079
- 11.2.6.2.4 Sustainable PCBs 2080
- 11.2.6.3 Reconciling sustainability with performance 2080
- 11.2.6.4 Sustainable supply chains 2081
- 11.2.6.5 Sustainability in PCB manufacturing 2082
- 11.2.6.5.1 Sustainable cleaning of PCBs 2083
- 11.2.6.6 Design of PCBs for sustainability 2084
- 11.2.6.6.1 Rigid 2085
- 11.2.6.6.2 Flexible 2086
- 11.2.6.6.3 Additive manufacturing 2086
- 11.2.6.6.4 In-mold elctronics (IME) 2088
- 11.2.6.7 Materials 2088
- 11.2.6.7.1 Metal cores 2088
- 11.2.6.7.2 Recycled laminates 2088
- 11.2.6.7.3 Conductive inks 2089
- 11.2.6.7.4 Green and lead-free solder 2091
- 11.2.6.7.5 Biodegradable substrates 2092
- 11.2.6.7.5.1 Bacterial Cellulose 2092
- 11.2.6.7.5.2 Mycelium 2093
- 11.2.6.7.5.3 Lignin 2095
- 11.2.6.7.5.4 Cellulose Nanofibers 2097
- 11.2.6.7.5.5 Soy Protein 2099
- 11.2.6.7.5.6 Algae 2099
- 11.2.6.7.5.7 PHAs 2100
- 11.2.6.7.6 Biobased inks 2101
- 11.2.6.8 Substrates 2101
- 11.2.6.8.1 Halogen-free FR4 2101
- 11.2.6.8.1.1 FR4 limitations 2101
- 11.2.6.8.1.2 FR4 alternatives 2103
- 11.2.6.8.1.3 Bio-Polyimide 2103
- 11.2.6.8.2 Metal-core PCBs 2105
- 11.2.6.8.3 Biobased PCBs 2105
- 11.2.6.8.3.1 Flexible (bio) polyimide PCBs 2106
- 11.2.6.8.3.2 Recent commercial activity 2107
- 11.2.6.8.4 Paper-based PCBs 2108
- 11.2.6.8.5 PCBs without solder mask 2108
- 11.2.6.8.6 Thinner dielectrics 2108
- 11.2.6.8.7 Recycled plastic substrates 2108
- 11.2.6.8.8 Flexible substrates 2109
- 11.2.6.8.1 Halogen-free FR4 2101
- 11.2.6.9 Sustainable patterning and metallization in electronics manufacturing 2109
- 11.2.6.9.1 Introduction 2109
- 11.2.6.9.2 Issues with sustainability 2109
- 11.2.6.9.3 Regeneration and reuse of etching chemicals 2110
- 11.2.6.9.4 Transition from Wet to Dry phase patterning 2111
- 11.2.6.9.5 Print-and-plate 2111
- 11.2.6.9.6 Approaches 2112
- 11.2.6.9.6.1 Direct Printed Electronics 2112
- 11.2.6.9.6.2 Photonic Sintering 2113
- 11.2.6.9.6.3 Biometallization 2114
- 11.2.6.9.6.4 Plating Resist Alternatives 2114
- 11.2.6.9.6.5 Laser-Induced Forward Transfer 2115
- 11.2.6.9.6.6 Electrohydrodynamic Printing 2117
- 11.2.6.9.6.7 Electrically conductive adhesives (ECAs 2118
- 11.2.6.9.6.8 Green electroless plating 2119
- 11.2.6.9.6.9 Smart Masking 2120
- 11.2.6.9.6.10 Component Integration 2120
- 11.2.6.9.6.11 Bio-inspired material deposition 2120
- 11.2.6.9.6.12 Multi-material jetting 2121
- 11.2.6.9.6.13 Vacuumless deposition 2122
- 11.2.6.9.6.14 Upcycling waste streams 2122
- 11.2.6.10 Sustainable attachment and integration of components 2123
- 11.2.6.10.1 Conventional component attachment materials 2123
- 11.2.6.10.2 Materials 2124
- 11.2.6.10.2.1 Conductive adhesives 2124
- 11.2.6.10.2.2 Biodegradable adhesives 2124
- 11.2.6.10.2.3 Magnets 2124
- 11.2.6.10.2.4 Bio-based solders 2125
- 11.2.6.10.2.5 Bio-derived solders 2125
- 11.2.6.10.2.6 Recycled plastics 2125
- 11.2.6.10.2.7 Nano adhesives 2126
- 11.2.6.10.2.8 Shape memory polymers 2126
- 11.2.6.10.2.9 Photo-reversible polymers 2127
- 11.2.6.10.2.10 Conductive biopolymers 2128
- 11.2.6.10.3 Processes 2128
- 11.2.6.10.3.1 Traditional thermal processing methods 2129
- 11.2.6.10.3.2 Low temperature solder 2129
- 11.2.6.10.3.3 Reflow soldering 2132
- 11.2.6.10.3.4 Induction soldering 2132
- 11.2.6.10.3.5 UV curing 2133
- 11.2.6.10.3.6 Near-infrared (NIR) radiation curing 2133
- 11.2.6.10.3.7 Photonic sintering/curing 2134
- 11.2.6.10.3.8 Hybrid integration 2134
- 11.2.7 Sustainable integrated circuits 2135
- 11.2.7.1 IC manufacturing 2135
- 11.2.7.2 Sustainable IC manufacturing 2135
- 11.2.7.3 Wafer production 2136
- 11.2.7.3.1 Silicon 2136
- 11.2.7.3.2 Gallium nitride ICs 2137
- 11.2.7.3.3 Flexible ICs 2137
- 11.2.7.3.4 Fully printed organic ICs 2138
- 11.2.7.4 Oxidation methods 2138
- 11.2.7.4.1 Sustainable oxidation 2138
- 11.2.7.4.2 Metal oxides 2139
- 11.2.7.4.3 Recycling 2140
- 11.2.7.4.4 Thin gate oxide layers 2140
- 11.2.7.5 Patterning and doping 2141
- 11.2.7.5.1 Processes 2141
- 11.2.7.5.1.1 Wet etching 2141
- 11.2.7.5.1.2 Dry plasma etching 2141
- 11.2.7.5.1.3 Lift-off patterning 2142
- 11.2.7.5.1.4 Surface doping 2142
- 11.2.7.5.1 Processes 2141
- 11.2.7.6 Metallization 2143
- 11.2.7.6.1 Evaporation 2143
- 11.2.7.6.2 Plating 2143
- 11.2.7.6.3 Printing 2144
- 11.2.7.6.3.1 Printed metal gates for organic thin film transistors 2144
- 11.2.7.6.4 Physical vapour deposition (PVD) 2144
- 11.2.8 End of life 2145
- 11.2.8.1 Hazardous waste 2145
- 11.2.8.2 Emissions 2146
- 11.2.8.3 Water Usage 2147
- 11.2.8.4 Recycling 2147
- 11.2.8.4.1 Mechanical recycling 2148
- 11.2.8.4.2 Electro-Mechanical Separation 2149
- 11.2.8.4.3 Chemical Recycling 2149
- 11.2.8.5 Electrochemical Processes 2150
- 11.2.8.5.1 Thermal Recycling 2150
- 11.2.8.6 Green Certification 2151
- 11.3 Global market 2151
- 11.3.1 Global PCB manufacturing industry 2151
- 11.3.1.1 PCB revenues 2151
- 11.3.2 Sustainable PCBs 2153
- 11.3.3 Sustainable ICs 2155
- 11.3.1 Global PCB manufacturing industry 2151
- 11.4 Company profiles 2157 (45 company profiles)
12 BIOBASED ADHESIVES AND SEALANTS
- 12.1 Overview 2203
- 12.1.1 Biobased Epoxy Adhesives 2203
- 12.1.2 Bioobased Polyurethane Adhesives 2204
- 12.1.3 Other Biobased Adhesives and Sealants 2204
- 12.2 Types 2205
- 12.2.1 Cellulose-Based 2205
- 12.2.2 Starch-Based 2206
- 12.2.3 Lignin-Based 2206
- 12.2.4 Vegetable Oils 2207
- 12.2.5 Protein-Based 2207
- 12.2.6 Tannin-Based 2208
- 12.2.7 Algae-based 2208
- 12.2.8 Chitosan-based 2209
- 12.2.9 Natural Rubber-based 2210
- 12.2.10 Silkworm Silk-based 2211
- 12.2.11 Mussel Protein-based 2211
- 12.2.12 Soy-based Foam 2212
- 12.3 Global revenues 2213
- 12.3.1 By types 2213
- 12.3.2 By market 2215
- 12.4 Company profiles 2217 (15 company profiles)
13 REFERENCES 2229
List of Tables
- Table 1. Plant-based feedstocks and biochemicals produced. 108
- Table 2. Waste-based feedstocks and biochemicals produced. 109
- Table 3. Microbial and mineral-based feedstocks and biochemicals produced. 110
- Table 4. Common starch sources that can be used as feedstocks for producing biochemicals. 111
- Table 5. Common lysine sources that can be used as feedstocks for producing biochemicals. 113
- Table 6. Applications of lysine as a feedstock for biochemicals. 113
- Table 7. HDMA sources that can be used as feedstocks for producing biochemicals. 116
- Table 8. Applications of bio-based HDMA. 116
- Table 9. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5). 118
- Table 10. Applications of DN5. 118
- Table 11. Biobased feedstocks for isosorbide. 120
- Table 12. Applications of bio-based isosorbide. 120
- Table 13. Lactide applications. 123
- Table 14. Biobased feedstock sources for itaconic acid. 124
- Table 15. Applications of bio-based itaconic acid. 125
- Table 16. Biobased feedstock sources for 3-HP. 127
- Table 17. Applications of 3-HP. 127
- Table 18. Applications of bio-based acrylic acid. 129
- Table 19. Applications of bio-based 1,3-Propanediol (1,3-PDO). 130
- Table 20. Biobased feedstock sources for Succinic acid. 132
- Table 21. Applications of succinic acid. 132
- Table 22. Applications of bio-based 1,4-Butanediol (BDO). 133
- Table 23. Applications of bio-based Tetrahydrofuran (THF). 135
- Table 24. Applications of bio-based adipic acid. 137
- Table 25. Applications of bio-based caprolactam. 138
- Table 26. Biobased feedstock sources for isobutanol. 140
- Table 27. Applications of bio-based isobutanol. 140
- Table 28. Biobased feedstock sources for p-Xylene. 141
- Table 29. Applications of bio-based p-Xylene. 142
- Table 30. Applications of bio-based Terephthalic acid (TPA). 143
- Table 31. Biobased feedstock sources for 1,3 Proppanediol. 144
- Table 32. Applications of bio-based 1,3 Proppanediol. 145
- Table 33. Biobased feedstock sources for MEG. 146
- Table 34. Applications of bio-based MEG. 146
- Table 35. Biobased MEG producers capacities. 147
- Table 36. Biobased feedstock sources for ethanol. 148
- Table 37. Applications of bio-based ethanol. 148
- Table 38. Applications of bio-based ethylene. 150
- Table 39. Applications of bio-based propylene. 151
- Table 40. Applications of bio-based vinyl chloride. 152
- Table 41. Applications of bio-based Methly methacrylate. 154
- Table 42. Applications of bio-based aniline. 156
- Table 43. Applications of biobased fructose. 157
- Table 44. Applications of bio-based 5-Hydroxymethylfurfural (5-HMF). 159
- Table 45. Applications of 5-(Chloromethyl)furfural (CMF). 160
- Table 46. Applications of Levulinic acid. 162
- Table 47. Markets and applications for bio-based FDME. 163
- Table 48. Applications of FDCA. 164
- Table 49. Markets and applications for bio-based levoglucosenone. 166
- Table 50. Biochemicals derived from hemicellulose 167
- Table 51. Markets and applications for bio-based hemicellulose 167
- Table 52. Markets and applications for bio-based furfuryl alcohol. 170
- Table 53. Commercial and pre-commercial biorefinery lignin production facilities and processes 171
- Table 54. Lignin aromatic compound products. 173
- Table 55. Prices of benzene, toluene, xylene and their derivatives. 173
- Table 56. Lignin products in polymeric materials. 175
- Table 57. Application of lignin in plastics and composites. 175
- Table 58. Markets and applications for bio-based glycerol. 178
- Table 59. Markets and applications for Bio-based MPG. 179
- Table 60. Markets and applications: Bio-based ECH. 181
- Table 61. Mineral source products and applications. 204
- Table 62. Type of biodegradation. 294
- Table 63. Advantages and disadvantages of biobased plastics compared to conventional plastics. 295
- Table 64. Types of Bio-based and/or Biodegradable Plastics, applications. 295
- Table 65. Key market players by Bio-based and/or Biodegradable Plastic types. 297
- Table 66. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications. 298
- Table 67. Lactic acid producers and production capacities. 300
- Table 68. PLA producers and production capacities. 300
- Table 69. Planned PLA capacity expansions in China. 301
- Table 70. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications. 303
- Table 71. Bio-based Polyethylene terephthalate (PET) producers and production capacities, 303
- Table 72. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications. 304
- Table 73. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers. 305
- Table 74. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications. 306
- Table 75. PEF vs. PET. 307
- Table 76. FDCA and PEF producers. 308
- Table 77. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications. 309
- Table 78. Leading Bio-PA producers production capacities. 310
- Table 79. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications. 311
- Table 80. Leading PBAT producers, production capacities and brands. 312
- Table 81. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications. 314
- Table 82. Leading PBS producers and production capacities. 314
- Table 83. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications. 315
- Table 84. Leading Bio-PE producers. 316
- Table 85. Bio-PP market analysis- manufacture, advantages, disadvantages and applications. 317
- Table 86. Leading Bio-PP producers and capacities. 318
- Table 87.Types of PHAs and properties. 321
- Table 88. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 323
- Table 89. Polyhydroxyalkanoate (PHA) extraction methods. 325
- Table 90. Polyhydroxyalkanoates (PHA) market analysis. 326
- Table 91. Commercially available PHAs. 327
- Table 92. Markets and applications for PHAs. 328
- Table 93. Applications, advantages and disadvantages of PHAs in packaging. 329
- Table 94. Polyhydroxyalkanoates (PHA) producers. 332
- Table 95. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications. 333
- Table 96. Leading MFC producers and capacities. 334
- Table 97. Synthesis methods for cellulose nanocrystals (CNC). 336
- Table 98. CNC sources, size and yield. 336
- Table 99. CNC properties. 337
- Table 100. Mechanical properties of CNC and other reinforcement materials. 337
- Table 101. Applications of nanocrystalline cellulose (NCC). 339
- Table 102. Cellulose nanocrystals analysis. 339
- Table 103: Cellulose nanocrystal production capacities and production process, by producer. 341
- Table 104. Applications of cellulose nanofibers (CNF). 342
- Table 105. Cellulose nanofibers market analysis. 343
- Table 106. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes. 344
- Table 107. Applications of bacterial nanocellulose (BNC). 347
- Table 108. Types of protein based-bioplastics, applications and companies. 349
- Table 109. Types of algal and fungal based-bioplastics, applications and companies. 350
- Table 110. Overview of alginate-description, properties, application and market size. 350
- Table 111. Companies developing algal-based bioplastics. 352
- Table 112. Overview of mycelium fibers-description, properties, drawbacks and applications. 352
- Table 113. Companies developing mycelium-based bioplastics. 354
- Table 114. Overview of chitosan-description, properties, drawbacks and applications. 355
- Table 115. Global production of bioplastics in 2019-2035, by region, 1,000 tonnes. 356
- Table 116. Biobased and sustainable plastics producers in North America. 357
- Table 117. Biobased and sustainable plastics producers in Europe. 357
- Table 118. Biobased and sustainable plastics producers in Asia-Pacific. 358
- Table 119. Biobased and sustainable plastics producers in Latin America. 359
- Table 120. Processes for bioplastics in packaging. 361
- Table 121. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging. 362
- Table 122. Typical applications for bioplastics in flexible packaging. 363
- Table 123. Typical applications for bioplastics in rigid packaging. 365
- Table 124. Technical lignin types and applications. 378
- Table 125. Classification of technical lignins. 380
- Table 126. Lignin content of selected biomass. 380
- Table 127. Properties of lignins and their applications. 381
- Table 128. Example markets and applications for lignin. 383
- Table 129. Processes for lignin production. 385
- Table 130. Biorefinery feedstocks. 391
- Table 131. Comparison of pulping and biorefinery lignins. 391
- Table 132. Commercial and pre-commercial biorefinery lignin production facilities and processes 392
- Table 133. Market drivers and trends for lignin. 396
- Table 134. Production capacities of technical lignin producers. 396
- Table 135. Production capacities of biorefinery lignin producers. 397
- Table 136. Estimated consumption of lignin, by type, 2019-2035 (000 MT). 398
- Table 137. Estimated consumption of lignin, by market, 2019-2034 (000 MT). 400
- Table 138. Prices of benzene, toluene, xylene and their derivatives. 403
- Table 139. Application of lignin in plastics and polymers. 404
- Table 140. Lactips plastic pellets. 589
- Table 141. Oji Holdings CNF products. 654
- Table 142. Types of natural fibers. 775
- Table 143. Markets and applications for natural fibers. 778
- Table 144. Commercially available natural fiber products. 780
- Table 145. Market drivers for natural fibers. 783
- Table 146. Typical properties of natural fibers. 786
- Table 147. Overview of kapok fibers-description, properties, drawbacks and applications. 787
- Table 148. Overview of luffa fibers-description, properties, drawbacks and applications. 788
- Table 149. Overview of jute fibers-description, properties, drawbacks and applications. 790
- Table 150. Overview of hemp fibers-description, properties, drawbacks and applications. 791
- Table 151. Overview of flax fibers-description, properties, drawbacks and applications. 792
- Table 152. Overview of ramie fibers-description, properties, drawbacks and applications. 793
- Table 153. Overview of kenaf fibers-description, properties, drawbacks and applications. 794
- Table 154. Overview of sisal fibers-description, properties, drawbacks and applications. 795
- Table 155. Overview of abaca fibers-description, properties, drawbacks and applications. 796
- Table 156. Overview of coir fibers-description, properties, drawbacks and applications. 797
- Table 157. Overview of banana fibers-description, properties, drawbacks and applications. 798
- Table 158. Overview of pineapple fibers-description, properties, drawbacks and applications. 798
- Table 159. Overview of rice fibers-description, properties, drawbacks and applications. 800
- Table 160. Overview of corn fibers-description, properties, drawbacks and applications. 800
- Table 161. Overview of switch grass fibers-description, properties and applications. 801
- Table 162. Overview of sugarcane fibers-description, properties, drawbacks and application and market size. 802
- Table 163. Overview of bamboo fibers-description, properties, drawbacks and applications. 803
- Table 164. Overview of mycelium fibers-description, properties, drawbacks and applications. 805
- Table 165. Overview of chitosan fibers-description, properties, drawbacks and applications. 807
- Table 166. Overview of alginate-description, properties, application and market size. 808
- Table 167. Overview of silk fibers-description, properties, application and market size. 809
- Table 168. Next-gen silk producers. 810
- Table 169. Companies developing cellulose fibers for application in plastic composites. 811
- Table 170. Microfibrillated cellulose (MFC) market analysis. 812
- Table 171. Leading MFC producers and capacities. 812
- Table 172. Cellulose nanocrystals market overview. 813
- Table 173. Cellulose nanocrystal production capacities and production process, by producer. 814
- Table 174. Cellulose nanofibers market analysis. 815
- Table 175. CNF production capacities and production process, by producer, in metric tons. 816
- Table 176. Processing and treatment methods for natural fibers used in plastic composites. 817
- Table 177. Application, manufacturing method, and matrix materials of natural fibers. 819
- Table 178. Properties of natural fiber-bio-based polymer compounds. 821
- Table 179. Typical properties of short natural fiber-thermoplastic composites. 821
- Table 180. Properties of non-woven natural fiber mat composites. 823
- Table 181. Applications of natural fibers in plastics. 825
- Table 182. Applications of natural fibers in the automotive industry. 828
- Table 183. Natural fiber-reinforced polymer composite in the automotive market. 829
- Table 184. Applications of natural fibers in packaging. 832
- Table 185. Applications of natural fibers in construction. 835
- Table 186. Applications of natural fibers in the appliances market. 837
- Table 187. Applications of natural fibers in the consumer electronics market. 840
- Table 188. Global market for natural fiber based plastics, 2018-2035, by end use sector (Billion USD). 845
- Table 189. Global market for natural fiber based plastics, 2018-2035, by material type (Billion USD). 846
- Table 190. Global market for natural fiber based plastics, 2018-2035, by plastic type (Billion USD). 847
- Table 191. Global market for natural fiber based plastics, 2018-2035, by region (Billion USD). 848
- Table 192. Granbio Nanocellulose Processes. 883
- Table 193. Oji Holdings CNF products. 901
- Table 194. Global trends and drivers in sustainable construction materials. 919
- Table 195. Global revenues in sustainable construction materials, by materials type, 2020-2035 (millions USD). 921
- Table 196. Global revenues in sustainable construction materials, by market, 2020-2035 (millions USD). 924
- Table 197. Established bio-based construction materials. 927
- Table 198. Types of self-healing concrete. 934
- Table 199. General properties and value of aerogels. 945
- Table 200. Key properties of silica aerogels. 947
- Table 201. Chemical precursors used to synthesize silica aerogels. 947
- Table 202. Commercially available aerogel-enhanced blankets. 951
- Table 203. Main manufacturers of silica aerogels and product offerings. 954
- Table 204. Typical structural properties of metal oxide aerogels. 956
- Table 205. Polymer aerogels companies. 958
- Table 206. Types of biobased aerogels. 959
- Table 207. Carbon aerogel companies. 966
- Table 208. Conversion pathway for CO2-derived building materials. 971
- Table 209. Carbon capture technologies and projects in the cement sector 975
- Table 210. Carbonation of recycled concrete companies. 980
- Table 211. Current and projected costs for some key CO2 utilization applications in the construction industry. 981
- Table 212. Market challenges for CO2 utilization in construction materials. 981
- Table 213. Global Decarbonization Targets and Policies related to Green Steel. 985
- Table 214. Estimated cost for iron and steel industry under the Carbon Border Adjustment Mechanism (CBAM). 987
- Table 215. Hydrogen-based steelmaking technologies. 989
- Table 216. Comparison of green steel production technologies. 989
- Table 217. Advantages and disadvantages of each potential hydrogen carrier. 991
- Table 218. CCUS in green steel production. 993
- Table 219. Biochar in steel and metal. 995
- Table 220. Hydrogen blast furnace schematic. 996
- Table 221. Applications of microwave processing in green steelmaking. 1000
- Table 222. Applications of additive manufacturing (AM) in steelmaking. 1001
- Table 223. Technology readiness level (TRL) for key green steel production technologies. 1001
- Table 224. Properties of Green steels. 1002
- Table 225. Applications of green steel in the construction industry. 1003
- Table 226. Market trends in bio-based and sustainable packaging 1125
- Table 227. Drivers for recent growth in the bioplastics and biopolymers markets. 1126
- Table 228. Challenges for bio-based and sustainable packaging. 1126
- Table 229. Types of bio-based plastics and fossil-fuel-based plastics 1129
- Table 230. Comparison of synthetic fossil-based and bio-based polymers. 1134
- Table 231. Processes for bioplastics in packaging. 1135
- Table 232. PLA properties for packaging applications. 1136
- Table 233. Applications, advantages and disadvantages of PHAs in packaging. 1156
- Table 234. Major polymers found in the extracellular covering of different algae. 1162
- Table 235. Market overview for cellulose microfibers (microfibrillated cellulose) in paperboard and packaging-market age, key benefits, applications and producers. 1163
- Table 236. Applications of nanocrystalline cellulose (CNC). 1165
- Table 237. Market overview for cellulose nanofibers in packaging. 1167
- Table 238. Types of protein based-bioplastics, applications and companies. 1176
- Table 239. Overview of alginate-description, properties, application and market size. 1179
- Table 240. Companies developing algal-based bioplastics. 1180
- Table 241. Overview of mycelium fibers-description, properties, drawbacks and applications. 1181
- Table 242. Overview of chitosan-description, properties, drawbacks and applications. 1184
- Table 243. Bio-based naphtha markets and applications. 1185
- Table 244. Bio-naphtha market value chain. 1186
- Table 245. Pros and cons of different type of food packaging materials. 1187
- Table 246. Active Biodegradable Films films and their food applications. 1194
- Table 247. Intelligent Biodegradable Films. 1194
- Table 248. Edible films and coatings market summary. 1198
- Table 249. Summary of barrier films and coatings for packaging. 1201
- Table 250. Types of polyols. 1203
- Table 251. Polyol producers. 1204
- Table 252. Bio-based polyurethane coating products. 1204
- Table 253. Bio-based acrylate resin products. 1206
- Table 254. Polylactic acid (PLA) market analysis. 1206
- Table 255. Commercially available PHAs. 1209
- Table 256. Market overview for cellulose nanofibers in paints and coatings. 1211
- Table 257. Companies developing cellulose nanofibers products in paints and coatings. 1212
- Table 258. Types of protein based-biomaterials, applications and companies. 1216
- Table 259. CO2 utilization and removal pathways. 1218
- Table 260. CO2 utilization products developed by chemical and plastic producers. 1220
- Table 261. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging. 1222
- Table 262. Typical applications for bioplastics in flexible packaging. 1223
- Table 263. Typical applications for bioplastics in rigid packaging. 1225
- Table 264. Market revenues for bio-based coatings, 2018-2035 (billions USD), high estimate. 1227
- Table 265. Lactips plastic pellets. 1325
- Table 266. Oji Holdings CNF products. 1349
- Table 267. Properties and applications of the main natural fibres 1399
- Table 268. Types of sustainable alternative leathers. 1406
- Table 269. Properties of bio-based leathers. 1407
- Table 270. Comparison with conventional leathers. 1409
- Table 271. Price of commercially available sustainable alternative leather products. 1411
- Table 272. Comparative analysis of sustainable alternative leathers. 1412
- Table 273. Key processing steps involved in transforming plant fibers into leather materials. 1413
- Table 274. Current and emerging plant-based leather products. 1415
- Table 275. Companies developing plant-based leather products. 1416
- Table 276. Overview of mycelium-description, properties, drawbacks and applications. 1418
- Table 277. Companies developing mycelium-based leather products. 1422
- Table 278. Types of microbial-derived leather alternative. 1425
- Table 279. Companies developing microbial leather products. 1428
- Table 280. Companies developing plant-based leather products. 1431
- Table 281. Types of protein-based leather alternatives. 1431
- Table 282. Companies developing protein based leather. 1433
- Table 283. Companies developing sustainable coatings and dyes for leather - 1435
- Table 284. Markets and applications for bio-based textiles and leather. 1436
- Table 285. Applications of biobased leather in furniture and upholstery. 1439
- Table 286. Global revenues for bio-based textiles by type, 2018-2035 (millions USD). 1440
- Table 287. Global revenues for bio-based and sustainable textiles by end use market, 2018-2035 (millions USD). 1442
- Table 288. Market drivers and trends in bio-based and sustainable coatings. 1501
- Table 289. Example envinronmentally friendly coatings, advantages and disadvantages. 1502
- Table 290. Plant Waxes. 1508
- Table 291. Types of alkyd resins and properties. 1513
- Table 292. Market summary for bio-based alkyd coatings-raw materials, advantages, disadvantages, applications and producers. 1514
- Table 293. Bio-based alkyd coating products. 1515
- Table 294. Types of polyols. 1516
- Table 295. Polyol producers. 1517
- Table 296. Bio-based polyurethane coating products. 1518
- Table 297. Market summary for bio-based epoxy resins. 1519
- Table 298. Bio-based polyurethane coating products. 1521
- Table 299. Bio-based acrylate resin products. 1522
- Table 300. Polylactic acid (PLA) market analysis. 1523
- Table 301. PLA producers and production capacities. 1524
- Table 302. Polyhydroxyalkanoates (PHA) market analysis. 1526
- Table 303.Types of PHAs and properties. 1529
- Table 304. Polyhydroxyalkanoates (PHA) producers. 1530
- Table 305. Commercially available PHAs. 1531
- Table 306. Properties of micro/nanocellulose, by type. 1534
- Table 307: Types of nanocellulose. 1536
- Table 308. Microfibrillated Cellulose (MFC) production capacities in metric tons and production process, by producer, metric tons. 1538
- Table 309. Commercially available Microfibrillated Cellulose products. 1539
- Table 310. Market overview for cellulose nanofibers in paints and coatings. 1540
- Table 311. Market assessment for cellulose nanofibers in paints and coatings-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global paints and coatings OEMs. 1542
- Table 312. Companies developing CNF products in paints and coatings, applications targeted and stage of commercialization. 1544
- Table 313. CNC properties. 1545
- Table 314: Cellulose nanocrystal capacities (by type, wet or dry) and production process, by producer, metric tonnes. 1547
- Table 315. Applications of bacterial nanocellulose (BNC). 1547
- Table 316. Edible films and coatings market summary. 1550
- Table 317. Types of protein based-biomaterials, applications and companies. 1556
- Table 318. Overview of algal coatings-description, properties, application and market size. 1557
- Table 319. Companies developing algal-based plastics. 1559
- Table 320. Market revenues for bio-based coatings by market, 2018-2035 (billions USD), conservative estimate. 1560
- Table 321. Lactips plastic pellets. 1635
- Table 322. Oji Holdings CNF products. 1659
- Table 323. Market drivers for biofuels. 1701
- Table 324. Market challenges for biofuels. 1702
- Table 325. Liquid biofuels market 2020-2035, by type and production. 1704
- Table 326. Comparison of biofuels. 1705
- Table 327. Comparison of biofuel costs (USD/liter) 2023, by type. 1710
- Table 328. Categories and examples of solid biofuel. 1711
- Table 329. Comparison of biofuels and e-fuels to fossil and electricity. 1713
- Table 330. Classification of biomass feedstock. 1714
- Table 331. Biorefinery feedstocks. 1715
- Table 332. Feedstock conversion pathways. 1715
- Table 333. First-Generation Feedstocks. 1716
- Table 334. Lignocellulosic ethanol plants and capacities. 1718
- Table 335. Comparison of pulping and biorefinery lignins. 1719
- Table 336. Commercial and pre-commercial biorefinery lignin production facilities and processes 1720
- Table 337. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol. 1721
- Table 338. Properties of microalgae and macroalgae. 1724
- Table 339. Yield of algae and other biodiesel crops. 1725
- Table 340. Advantages and disadvantages of biofuels, by generation. 1726
- Table 341. Biodiesel by generation. 1735
- Table 342. Biodiesel production techniques. 1738
- Table 343. Summary of pyrolysis technique under different operating conditions. 1739
- Table 344. Biomass materials and their bio-oil yield. 1740
- Table 345. Biofuel production cost from the biomass pyrolysis process. 1740
- Table 346. Properties of vegetable oils in comparison to diesel. 1742
- Table 347. Main producers of HVO and capacities. 1743
- Table 348. Example commercial Development of BtL processes. 1744
- Table 349. Pilot or demo projects for biomass to liquid (BtL) processes. 1745
- Table 350. Global biodiesel consumption, 2010-2035 (M litres/year). 1749
- Table 351. Global renewable diesel consumption, 2010-2035 (M litres/year). 1753
- Table 352. Renewable diesel price ranges. 1754
- Table 353. Advantages and disadvantages of Bio-aviation fuel. 1755
- Table 354. Production pathways for Bio-aviation fuel. 1757
- Table 355. Current and announced Bio-aviation fuel facilities and capacities. 1759
- Table 356. Global bio-jet fuel consumption 2019-2035 (Million litres/year). 1760
- Table 357. Bio-based naphtha markets and applications. 1763
- Table 358. Bio-naphtha market value chain. 1763
- Table 359. Bio-naphtha pricing against petroleum-derived naphtha and related fuel products. 1765
- Table 360. Bio-based Naphtha production capacities, by producer. 1765
- Table 361. Comparison of biogas, biomethane and natural gas. 1770
- Table 362. Processes in bioethanol production. 1777
- Table 363. Microorganisms used in CBP for ethanol production from biomass lignocellulosic. 1778
- Table 364. Ethanol consumption 2010-2035 (million litres). 1779
- Table 365. Biogas feedstocks. 1784
- Table 366. Existing and planned bio-LNG production plants. 1791
- Table 367. Methods for capturing carbon dioxide from biogas. 1792
- Table 368. Comparison of different Bio-H2 production pathways. 1796
- Table 369. Markets and applications for biohydrogen. 1798
- Table 370. Summary of gasification technologies. 1804
- Table 371. Overview of hydrothermal cracking for advanced chemical recycling. 1809
- Table 372. Applications of e-fuels, by type. 1813
- Table 373. Overview of e-fuels. 1814
- Table 374. Benefits of e-fuels. 1814
- Table 375. eFuel production facilities, current and planned. 1819
- Table 376. Main characteristics of different electrolyzer technologies. 1820
- Table 377. Market challenges for e-fuels. 1824
- Table 378. E-fuels companies. 1825
- Table 379. Algae-derived biofuel producers. 1830
- Table 380. Green ammonia projects (current and planned). 1833
- Table 381. Blue ammonia projects. 1836
- Table 382. Ammonia fuel cell technologies. 1837
- Table 383. Market overview of green ammonia in marine fuel. 1838
- Table 384. Summary of marine alternative fuels. 1839
- Table 385. Estimated costs for different types of ammonia. 1840
- Table 386. Main players in green ammonia. 1841
- Table 387. Market overview for CO2 derived fuels. 1843
- Table 388. Point source examples. 1846
- Table 389. Advantages and disadvantages of DAC. 1849
- Table 390. Companies developing airflow equipment integration with DAC. 1855
- Table 391. Companies developing Passive Direct Air Capture (PDAC) technologies. 1855
- Table 392. Companies developing regeneration methods for DAC technologies. 1856
- Table 393. DAC companies and technologies. 1857
- Table 394. DAC technology developers and production. 1859
- Table 395. DAC projects in development. 1862
- Table 396. Markets for DAC. 1864
- Table 397. Costs summary for DAC. 1864
- Table 398. Cost estimates of DAC. 1867
- Table 399. Challenges for DAC technology. 1869
- Table 400. DAC companies and technologies. 1869
- Table 401. Market overview for CO2 derived fuels. 1871
- Table 402. Main production routes and processes for manufacturing fuels from captured carbon dioxide. 1874
- Table 403. CO₂-derived fuels projects. 1875
- Table 404. Thermochemical methods to produce methanol from CO2. 1879
- Table 405. pilot plants for CO2-to-methanol conversion. 1882
- Table 406. Microalgae products and prices. 1884
- Table 407. Main Solar-Driven CO2 Conversion Approaches. 1886
- Table 408. Market challenges for CO2 derived fuels. 1886
- Table 409. Companies in CO2-derived fuel products. 1888
- Table 410. Typical composition and physicochemical properties reported for bio-oils and heavy petroleum-derived oils. 1891
- Table 411. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil. 1891
- Table 412. Main techniques used to upgrade bio-oil into higher-quality fuels. 1893
- Table 413. Markets and applications for bio-oil. 1894
- Table 414. Bio-oil producers. 1895
- Table 415. Key resource recovery technologies 1897
- Table 416. Markets and end uses for refuse-derived fuels (RDF). 1898
- Table 417. Granbio Nanocellulose Processes. 1963
- Table 418. Key factors driving adoption of green electronics. 2051
- Table 419. Key circular economy strategies for electronics. 2053
- Table 420. Regulations pertaining to green electronics. 2055
- Table 421. Companies developing bio-based batteries for application in sustainable electronics. 2056
- Table 422. Benefits of Green Electronics Manufacturing 2058
- Table 423. Challenges in adopting Green Electronics manufacturing. 2059
- Table 424. Major chipmakers' renewable energy road maps. 2063
- Table 425. Energy efficiency in sustainable electronics manufacturing. 2064
- Table 426. Composition of plastic waste streams. 2067
- Table 427. Comparison of mechanical and advanced chemical recycling. 2067
- Table 428. Example chemically recycled plastic products. 2068
- Table 429. Bio-based and non-toxic materials in sustainable electronics. 2069
- Table 430. Key focus areas for enabling greener and ethically responsible electronics supply chains. 2072
- Table 431. Sustainability programs and disclosure from major electronics brands. 2074
- Table 432. PCB manufacturing process. 2077
- Table 433. Challenges in PCB manufacturing. 2077
- Table 434. 3D PCB manufacturing. 2080
- Table 435. Comparison of some sustainable PCB alternatives against conventional options in terms of key performance factors. 2081
- Table 436. Sustainable PCB supply chain. 2082
- Table 437. Key areas where the PCB industry can improve sustainability. 2082
- Table 438. Improving sustainability of PCB design. 2084
- Table 439. PCB design options for sustainability. 2085
- Table 440. Sustainability benefits and challenges associated with 3D printing. 2087
- Table 441. Conductive ink producers. 2090
- Table 442. Green and lead-free solder companies. 2091
- Table 443. Biodegradable substrates for PCBs. 2092
- Table 444. Overview of mycelium fibers-description, properties, drawbacks and applications. 2093
- Table 445. Application of lignin in composites. 2095
- Table 446. Properties of lignins and their applications. 2095
- Table 447. Properties of flexible electronics‐cellulose nanofiber film (nanopaper). 2097
- Table 448. Companies developing cellulose nanofibers for electronics. 2098
- Table 449. Commercially available PHAs. 2100
- Table 450. Main limitations of the FR4 material system used for manufacturing printed circuit boards (PCBs). 2102
- Table 451. Halogen-free FR4 companies. 2104
- Table 452. Properties of biobased PCBs. 2105
- Table 453. Applications of flexible (bio) polyimide PCBs. 2107
- Table 454. Main patterning and metallization steps in PCB fabrication and sustainable options. 2109
- Table 455. Sustainability issues with conventional metallization processes. 2110
- Table 456. Benefits of print-and-plate. 2111
- Table 457. Sustainable alternative options to standard plating resists used in printed circuit board (PCB) fabrication. 2114
- Table 458. Applications for laser induced forward transfer 2116
- Table 459. Copper versus silver inks in laser-induced forward transfer (LIFT) for electronics fabrication. 2116
- Table 460. Approaches for in-situ oxidation prevention. 2117
- Table 461. Market readiness and maturity of different lead-free solders and electrically conductive adhesives (ECAs) for electronics manufacturing. 2119
- Table 462. Advantages of green electroless plating. 2119
- Table 463. Comparison of component attachment materials. 2123
- Table 464. Comparison between sustainable and conventional component attachment materials for printed circuit boards 2124
- Table 465. Comparison between the SMAs and SMPs. 2126
- Table 466. Comparison of conductive biopolymers versus conventional materials for printed circuit board fabrication. 2128
- Table 467. Comparison of curing and reflow processes used for attaching components in electronics assembly. 2128
- Table 468. Low temperature solder alloys. 2130
- Table 469. Thermally sensitive substrate materials. 2130
- Table 470. Limitations of existing IC production. 2135
- Table 471. Strategies for improving sustainability in integrated circuit (IC) manufacturing. 2135
- Table 472. Comparison of oxidation methods and level of sustainability. 2139
- Table 473. Stage of commercialization for oxides. 2139
- Table 474. Alternative doping techniques. 2142
- Table 475. Metal content mg / Kg in Printed Circuit Boards (PCBs) from waste desktop computers. 2148
- Table 476. Chemical recycling methods for handling electronic waste. 2149
- Table 477. Electrochemical processes for recycling metals from electronic waste 2150
- Table 478. Thermal recycling processes for electronic waste. 2150
- Table 479. Global PCB revenues 2018-2035 (billions USD), by substrate types. 2152
- Table 480. Global sustainable PCB revenues 2018-2035, by type (millions USD). 2153
- Table 481. Global sustainable ICs revenues 2018-2035, by type (millions USD). 2156
- Table 482. Oji Holdings CNF products. 2187
- Table 483. Global market revenues for bio-based adhesives & sealants, by types, 2018-2035 (millions USD). 2213
- Table 484. Global market revenues for bio-based adhesives & sealants, by market, 2018-2035 (millions USD). 2215
List of Figures
- Figure 1. Schematic of biorefinery processes. 107
- Figure 2. Global production of starch for biobased chemicals and intermediates, 2018-2035 (million metric tonnes). 112
- Figure 3. Global production of biobased lysine, 2018-2035 (metric tonnes). 114
- Figure 4. Global glucose production for bio-based chemicals and intermediates 2018-2035 (million metric tonnes). 115
- Figure 5. Global production volumes of bio-HMDA, 2018 to 2035 in metric tonnes. 117
- Figure 6. Global production of bio-based DN5, 2018-2035 (metric tonnes). 119
- Figure 7. Global production of bio-based isosorbide, 2018-2035 (metric tonnes). 121
- Figure 8. L-lactic acid (L-LA) production, 2018-2035 (metric tonnes). 122
- Figure 9. Global lactide production, 2018-2035 (metric tonnes). 124
- Figure 10. Global production of bio-itaconic acid, 2018-2035 (metric tonnes). 126
- Figure 11. Global production of 3-HP, 2018-2035 (metric tonnes). 128
- Figure 12. Global production of bio-based acrylic acid, 2018-2035 (metric tonnes). 129
- Figure 13. Global production of bio-based 1,3-Propanediol (1,3-PDO), 2018-2035 (metric tonnes). 131
- Figure 14. Global production of bio-based Succinic acid, 2018-2035 (metric tonnes). 133
- Figure 15. Global production of 1,4-Butanediol (BDO), 2018-2035 (metric tonnes). 134
- Figure 16. Global production of bio-based tetrahydrofuran (THF), 2018-2035 (metric tonnes). 136
- Figure 17. Overview of Toray process. 137
- Figure 18. Global production of bio-based caprolactam, 2018-2035 (metric tonnes). 139
- Figure 19. Global production of bio-based isobutanol, 2018-2035 (metric tonnes). 141
- Figure 20. Global production of bio-based p-xylene, 2018-2035 (metric tonnes). 143
- Figure 21. Global production of biobased terephthalic acid (TPA), 2018-2035 (metric tonnes). 144
- Figure 22. Global production of biobased 1,3 Proppanediol, 2018-2035 (metric tonnes). 145
- Figure 23. Global production of biobased MEG, 2018-2035 (metric tonnes). 147
- Figure 24. Global production of biobased ethanol, 2018-2035 (million metric tonnes). 149
- Figure 25. Global production of biobased ethylene, 2018-2035 (million metric tonnes). 150
- Figure 26. Global production of biobased propylene, 2018-2035 (metric tonnes). 152
- Figure 27. Global production of biobased vinyl chloride, 2018-2035 (metric tonnes). 153
- Figure 28. Global production of bio-based Methly methacrylate, 2018-2035 (metric tonnes). 155
- Figure 29. Global production of biobased aniline, 2018-2035 (metric tonnes). 157
- Figure 30. Global production of biobased fructose, 2018-2035 (metric tonnes). 158
- Figure 31. Global production of biobased 5-Hydroxymethylfurfural (5-HMF), 2018-2035 (metric tonnes). 159
- Figure 32. Global production of biobased 5-(Chloromethyl)furfural (CMF), 2018-2035 (metric tonnes). 161
- Figure 33. Global production of biobased Levulinic acid, 2018-2035 (metric tonnes). 162
- Figure 34. Global production of biobased FDME, 2018-2035 (metric tonnes). 164
- Figure 35. Global production of biobased Furan-2,5-dicarboxylic acid (FDCA), 2018-2035 (metric tonnes). 165
- Figure 36. Global production projections for bio-based levoglucosenone from 2018 to 2035 in metric tonnes: 166
- Figure 37. Global production of hemicellulose, 2018-2035 (metric tonnes). 168
- Figure 38. Global production of biobased furfural, 2018-2035 (metric tonnes). 169
- Figure 39. Global production of biobased furfuryl alcohol, 2018-2035 (metric tonnes). 171
- Figure 40. Schematic of WISA plywood home. 174
- Figure 41. Global production of biobased lignin, 2018-2035 (metric tonnes). 176
- Figure 42. Global production of biobased glycerol, 2018-2035 (metric tonnes). 178
- Figure 43. Global production of Bio-MPG, 2018-2035 (metric tonnes). 180
- Figure 44. Global production of biobased ECH, 2018-2035 (metric tonnes). 181
- Figure 45. Global production of biobased fatty acids, 2018-2035 (million metric tonnes). 183
- Figure 46. Global production of biobased sebacic acid, 2018-2035 (metric tonnes). 185
- Figure 47. Global production of biobased 11-Aminoundecanoic acid (11-AA), 2018-2035 (metric tonnes). 186
- Figure 48. Global production of biobased Dodecanedioic acid (DDDA), 2018-2035 (metric tonnes). 188
- Figure 49. Global production of biobased Pentamethylene diisocyanate, 2018-2035 (metric tonnes). 189
- Figure 50. Global production of biobased casein, 2018-2035 (metric tonnes). 191
- Figure 51. Global production of food waste for biochemicals, 2018-2035 (million metric tonnes). 193
- Figure 52. Global production of agricultural waste for biochemicals, 2018-2035 (million metric tonnes). 194
- Figure 53. Global production of forestry waste for biochemicals, 2018-2035 (million metric tonnes). 196
- Figure 54. Global production of aquaculture/fishing waste for biochemicals, 2018-2035 (million metric tonnes). 197
- Figure 55. Global production of municipal solid waste for biochemicals, 2018-2035 (million metric tonnes). 198
- Figure 56. Global production of waste oils for biochemicals, 2018-2035 (million metric tonnes). 200
- Figure 57. Global microalgae production, 2018-2035 (million metric tonnes). 201
- Figure 58. Global macroalgae production, 2018-2035 (million metric tonnes). 203
- Figure 59. Global production of biogas, 2018-2035 (billion m3). 206
- Figure 60. Global production of syngas, 2018-2035 (billion m3). 208
- Figure 61. formicobio™ technology. 228
- Figure 62. Domsjö process. 232
- Figure 63. TMP-Bio Process. 238
- Figure 64. Lignin gel. 259
- Figure 65. BioFlex process. 262
- Figure 66. LX Process. 264
- Figure 67. METNIN™ Lignin refining technology. 267
- Figure 68. Enfinity cellulosic ethanol technology process. 273
- Figure 69. Precision Photosynthesis™ technology. 275
- Figure 70. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 277
- Figure 71. UPM biorefinery process. 287
- Figure 72. The Proesa® Process. 288
- Figure 73. Goldilocks process and applications. 289
- Figure 74. Coca-Cola PlantBottle®. 293
- Figure 75. Interrelationship between conventional, bio-based and biodegradable plastics. 293
- Figure 76. Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes). 302
- Figure 77. Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes) 304
- Figure 78. Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes). 306
- Figure 79. Production capacities of Polyethylene furanoate (PEF) to 2025. 308
- Figure 80. Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes). 309
- Figure 81. Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes). 311
- Figure 82. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes). 313
- Figure 83. Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes). 315
- Figure 84. Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes). 317
- Figure 85. Polypropylene (Bio-PP) production capacities 2019-2035 (1,000 tonnes). 318
- Figure 86. PHA family. 321
- Figure 87. TEM image of cellulose nanocrystals. 335
- Figure 88. CNC preparation. 335
- Figure 89. Extracting CNC from trees. 336
- Figure 90. CNC slurry. 338
- Figure 91. CNF gel. 341
- Figure 92. Bacterial nanocellulose shapes 346
- Figure 93. BLOOM masterbatch from Algix. 351
- Figure 94. Typical structure of mycelium-based foam. 353
- Figure 95. Commercial mycelium composite construction materials. 354
- Figure 96. Global production capacities for bioplastics by region 2019-2035, 1,000 tonnes. 356
- Figure 97. Global production capacities for bioplastics by end user market 2019-2035, 1,000 tonnes. 360
- Figure 98. PHA bioplastics products. 362
- Figure 99. The global market for biobased and biodegradable plastics for flexible packaging 2019–2033 (‘000 tonnes). 364
- Figure 100. Production volumes for bioplastics for rigid packaging, 2019–2033 (‘000 tonnes). 366
- Figure 101. Global production for biobased and biodegradable plastics in consumer products 2019-2035, in 1,000 tonnes. 367
- Figure 102. Global production capacities for biobased and biodegradable plastics in automotive 2019-2035, in 1,000 tonnes. 369
- Figure 103. Global production volumes for biobased and biodegradable plastics in building and construction 2019-2035, in 1,000 tonnes. 370
- Figure 104. Global production volumes for biobased and biodegradable plastics in textiles 2019-2035, in 1,000 tonnes. 373
- Figure 105. Global production volumes for biobased and biodegradable plastics in electronics 2019-2035, in 1,000 tonnes. 374
- Figure 106. Biodegradable mulch films. 375
- Figure 107. Global production volulmes for biobased and biodegradable plastics in agriculture 2019-2035, in 1,000 tonnes. 375
- Figure 108. High purity lignin. 376
- Figure 109. Lignocellulose architecture. 377
- Figure 110. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins. 378
- Figure 111. The lignocellulose biorefinery. 383
- Figure 112. LignoBoost process. 387
- Figure 113. LignoForce system for lignin recovery from black liquor. 388
- Figure 114. Sequential liquid-lignin recovery and purification (SLPR) system. 389
- Figure 115. A-Recovery+ chemical recovery concept. 390
- Figure 116. Schematic of a biorefinery for production of carriers and chemicals. 392
- Figure 117. Organosolv lignin. 394
- Figure 118. Hydrolytic lignin powder. 395
- Figure 119. Estimated consumption of lignin, by type, 2019-2035 (000 MT). 399
- Figure 120. Estimated consumption of lignin, by market, 2019-2035 (000 MT). 401
- Figure 121. Pluumo. 408
- Figure 122. ANDRITZ Lignin Recovery process. 417
- Figure 123. Anpoly cellulose nanofiber hydrogel. 419
- Figure 124. MEDICELLU™. 419
- Figure 125. Asahi Kasei CNF fabric sheet. 428
- Figure 126. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric. 428
- Figure 127. CNF nonwoven fabric. 429
- Figure 128. Roof frame made of natural fiber. 438
- Figure 129. Beyond Leather Materials product. 441
- Figure 130. BIOLO e-commerce mailer bag made from PHA. 447
- Figure 131. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc. 448
- Figure 132. Fiber-based screw cap. 460
- Figure 133. formicobio™ technology. 479
- Figure 134. nanoforest-S. 481
- Figure 135. nanoforest-PDP. 481
- Figure 136. nanoforest-MB. 482
- Figure 137. sunliquid® production process. 489
- Figure 138. CuanSave film. 492
- Figure 139. Celish. 493
- Figure 140. Trunk lid incorporating CNF. 495
- Figure 141. ELLEX products. 496
- Figure 142. CNF-reinforced PP compounds. 497
- Figure 143. Kirekira! toilet wipes. 497
- Figure 144. Color CNF. 498
- Figure 145. Rheocrysta spray. 504
- Figure 146. DKS CNF products. 504
- Figure 147. Domsjö process. 506
- Figure 148. Mushroom leather. 515
- Figure 149. CNF based on citrus peel. 517
- Figure 150. Citrus cellulose nanofiber. 517
- Figure 151. Filler Bank CNC products. 528
- Figure 152. Fibers on kapok tree and after processing. 530
- Figure 153. TMP-Bio Process. 533
- Figure 154. Flow chart of the lignocellulose biorefinery pilot plant in Leuna. 534
- Figure 155. Water-repellent cellulose. 536
- Figure 156. Cellulose Nanofiber (CNF) composite with polyethylene (PE). 537
- Figure 157. PHA production process. 538
- Figure 158. CNF products from Furukawa Electric. 539
- Figure 159. AVAPTM process. 549
- Figure 160. GreenPower+™ process. 549
- Figure 161. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials. 551
- Figure 162. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer). 553
- Figure 163. CNF gel. 560
- Figure 164. Block nanocellulose material. 560
- Figure 165. CNF products developed by Hokuetsu. 561
- Figure 166. Marine leather products. 564
- Figure 167. Inner Mettle Milk products. 567
- Figure 168. Kami Shoji CNF products. 578
- Figure 169. Dual Graft System. 580
- Figure 170. Engine cover utilizing Kao CNF composite resins. 581
- Figure 171. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended). 582
- Figure 172. Kel Labs yarn. 582
- Figure 173. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side). 586
- Figure 174. Lignin gel. 594
- Figure 175. BioFlex process. 598
- Figure 176. Nike Algae Ink graphic tee. 599
- Figure 177. LX Process. 603
- Figure 178. Made of Air's HexChar panels. 605
- Figure 179. TransLeather. 607
- Figure 180. Chitin nanofiber product. 611
- Figure 181. Marusumi Paper cellulose nanofiber products. 612
- Figure 182. FibriMa cellulose nanofiber powder. 613
- Figure 183. METNIN™ Lignin refining technology. 617
- Figure 184. IPA synthesis method. 620
- Figure 185. MOGU-Wave panels. 623
- Figure 186. CNF slurries. 624
- Figure 187. Range of CNF products. 624
- Figure 188. Reishi. 628
- Figure 189. Compostable water pod. 644
- Figure 190. Leather made from leaves. 645
- Figure 191. Nike shoe with beLEAF™. 645
- Figure 192. CNF clear sheets. 654
- Figure 193. Oji Holdings CNF polycarbonate product. 656
- Figure 194. Enfinity cellulosic ethanol technology process. 669
- Figure 195. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 673
- Figure 196. XCNF. 680
- Figure 197: Plantrose process. 681
- Figure 198. LOVR hemp leather. 684
- Figure 199. CNF insulation flat plates. 686
- Figure 200. Hansa lignin. 692
- Figure 201. Manufacturing process for STARCEL. 696
- Figure 202. Manufacturing process for STARCEL. 700
- Figure 203. 3D printed cellulose shoe. 707
- Figure 204. Lyocell process. 710
- Figure 205. North Face Spiber Moon Parka. 714
- Figure 206. PANGAIA LAB NXT GEN Hoodie. 715
- Figure 207. Spider silk production. 716
- Figure 208. Stora Enso lignin battery materials. 720
- Figure 209. 2 wt.% CNF suspension. 721
- Figure 210. BiNFi-s Dry Powder. 722
- Figure 211. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet. 722
- Figure 212. Silk nanofiber (right) and cocoon of raw material. 723
- Figure 213. Sulapac cosmetics containers. 724
- Figure 214. Sulzer equipment for PLA polymerization processing. 725
- Figure 215. Solid Novolac Type lignin modified phenolic resins. 726
- Figure 216. Teijin bioplastic film for door handles. 735
- Figure 217. Corbion FDCA production process. 742
- Figure 218. Comparison of weight reduction effect using CNF. 743
- Figure 219. CNF resin products. 747
- Figure 220. UPM biorefinery process. 749
- Figure 221. Vegea production process. 753
- Figure 222. The Proesa® Process. 755
- Figure 223. Goldilocks process and applications. 756
- Figure 224. Visolis’ Hybrid Bio-Thermocatalytic Process. 759
- Figure 225. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test. 761
- Figure 226. Worn Again products. 766
- Figure 227. Zelfo Technology GmbH CNF production process. 770
- Figure 228. Absolut natural based fiber bottle cap. 780
- Figure 229. Adidas algae-ink tees. 780
- Figure 230. Carlsberg natural fiber beer bottle. 781
- Figure 231. Miratex watch bands. 781
- Figure 232. Adidas Made with Nature Ultraboost 22. 781
- Figure 233. PUMA RE:SUEDE sneaker 782
- Figure 234. Types of natural fibers. 786
- Figure 235. Luffa cylindrica fiber. 789
- Figure 236. Pineapple fiber. 799
- Figure 237. Typical structure of mycelium-based foam. 805
- Figure 238. Commercial mycelium composite construction materials. 805
- Figure 239. SEM image of microfibrillated cellulose. 811
- Figure 240. Hemp fibers combined with PP in car door panel. 824
- Figure 241. Car door produced from Hemp fiber. 827
- Figure 242. Natural fiber composites in the BMW M4 GT4 racing car. 829
- Figure 243. Mercedes-Benz components containing natural fibers. 829
- Figure 244. SWOT analysis: natural fibers in the automotive market. 831
- Figure 245. SWOT analysis: natural fibers in the packaging market. 835
- Figure 246. SWOT analysis: natural fibers in the appliances market. 837
- Figure 247. SWOT analysis: natural fibers in the appliances market. 839
- Figure 248. SWOT analysis: natural fibers in the consumer electronics market. 843
- Figure 249. SWOT analysis: natural fibers in the furniture market. 844
- Figure 250. Global market for natural fiber based plastics, 2018-2035, by market (Billion USD). 846
- Figure 251. Global market for natural fiber based plastics, 2018-2035, by material type (Billion USD). 847
- Figure 252. Global market for natural fiber based plastics, 2018-2035, by plastic type (Billion USD). 848
- Figure 253. Global market for natural fiber based plastics, 2018-2035, by region (Billion USD). 849
- Figure 254. Asahi Kasei CNF fabric sheet. 854
- Figure 255. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric. 854
- Figure 256. CNF nonwoven fabric. 855
- Figure 257. Roof frame made of natural fiber. 857
- Figure 258.Tras Rei chair incorporating ampliTex fibers. 860
- Figure 259. Natural fibres racing seat. 860
- Figure 260. Porche Cayman GT4 Clubsport incorporating BComp flax fibers. 860
- Figure 261. Fiber-based screw cap. 864
- Figure 262. Cellugy materials. 869
- Figure 263. CuanSave film. 872
- Figure 264. Trunk lid incorporating CNF. 873
- Figure 265. ELLEX products. 874
- Figure 266. CNF-reinforced PP compounds. 875
- Figure 267. Kirekira! toilet wipes. 875
- Figure 268. DKS CNF products. 878
- Figure 269. Cellulose Nanofiber (CNF) composite with polyethylene (PE). 881
- Figure 270. CNF products from Furukawa Electric. 882
- Figure 271. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials. 885
- Figure 272. CNF gel. 887
- Figure 273. Block nanocellulose material. 887
- Figure 274. CNF products developed by Hokuetsu. 888
- Figure 275. Dual Graft System. 889
- Figure 276. Engine cover utilizing Kao CNF composite resins. 890
- Figure 277. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended). 890
- Figure 278. Cellulomix production process. 894
- Figure 279. Nanobase versus conventional products. 894
- Figure 280. MOGU-Wave panels. 896
- Figure 281. CNF clear sheets. 901
- Figure 282. Oji Holdings CNF polycarbonate product. 902
- Figure 283. A vacuum cleaner part made of cellulose fiber (left) and the assembled vacuum cleaner. 903
- Figure 284. XCNF. 906
- Figure 285. Manufacturing process for STARCEL. 908
- Figure 286. 2 wt.% CNF suspension. 910
- Figure 287. Sulapac cosmetics containers. 912
- Figure 288. Comparison of weight reduction effect using CNF. 915
- Figure 289. CNF resin products. 916
- Figure 290. Global revenues in sustainable construction materials, by materials type, 2020-2035 (millions USD). 923
- Figure 291. Global revenues in sustainable construction materials, by market, 2020-2035 (millions USD). 925
- Figure 292. Luum Temple, constructed from Bamboo. 926
- Figure 293. Typical structure of mycelium-based foam. 930
- Figure 294. Commercial mycelium composite construction materials. 930
- Figure 295. Self-healing concrete test study with cracked concrete (left) and self-healed concrete after 28 days (right). 933
- Figure 296. Self-healing bacteria crack filler for concrete. 935
- Figure 297. Self-healing bio concrete. 935
- Figure 298. Microalgae based biocement masonry bloc. 937
- Figure 299. Classification of aerogels. 944
- Figure 300. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner. 946
- Figure 301. Monolithic aerogel. 948
- Figure 302. Aerogel granules. 949
- Figure 303. Internal aerogel granule applications. 950
- Figure 304. 3D printed aerogels. 953
- Figure 305. Lignin-based aerogels. 962
- Figure 306. Fabrication routes for starch-based aerogels. 964
- Figure 307. Graphene aerogel. 967
- Figure 308. Schematic of CCUS in cement sector. 972
- Figure 309. Carbon8 Systems’ ACT process. 977
- Figure 310. CO2 utilization in the Carbon Cure process. 978
- Figure 311. Share of (a) production, (b) energy consumption and (c) CO2 emissions from different steel making routes. 983
- Figure 312. Transition to hydrogen-based production. 984
- Figure 313. CO2 emissions from steelmaking (tCO2/ton crude steel). 985
- Figure 314. CO2 emissions of different process routes for liquid steel. 987
- Figure 315. Hydrogen Direct Reduced Iron (DRI) process. 991
- Figure 316. Molten oxide electrolysis process. 993
- Figure 317. Steelmaking with CCS. 994
- Figure 318. Flash ironmaking process. 998
- Figure 319. Hydrogen Plasma Iron Ore Reduction process. 999
- Figure 320. Aizawa self-healing concrete. 1012
- Figure 321. ArcelorMittal decarbonization strategy. 1022
- Figure 322. Thermal Conductivity Performance of ArmaGel HT. 1024
- Figure 323. SLENTEX® roll (piece). 1027
- Figure 324. Biozeroc Biocement. 1031
- Figure 325. Carbon Re’s DeltaZero dashboard. 1043
- Figure 326. Neustark modular plant. 1083
- Figure 327. HIP AERO paint. 1090
- Figure 328. Sunthru Aerogel pane. 1099
- Figure 329. Quartzene®. 1101
- Figure 330. Schematic of HyREX technology. 1107
- Figure 331. EAF Quantum. 1109
- Figure 332. CNF insulation flat plates. 1111
- Figure 333. Global packaging market by material type. 1124
- Figure 334. Routes for synthesizing polymers from fossil-based and bio-based resources. 1133
- Figure 335. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms. 1160
- Figure 336. Biosynthesis of (a) wood cellulose (b) tunicate cellulose and (c) BC. 1161
- Figure 337. Cellulose microfibrils and nanofibrils. 1163
- Figure 338. TEM image of cellulose nanocrystals. 1164
- Figure 339. CNC slurry. 1165
- Figure 340. CNF gel. 1166
- Figure 341. Bacterial nanocellulose shapes 1174
- Figure 342. BLOOM masterbatch from Algix. 1179
- Figure 343. Typical structure of mycelium-based foam. 1182
- Figure 344. Commercial mycelium composite construction materials. 1183
- Figure 345. Types of bio-based materials used for antimicrobial food packaging application. 1196
- Figure 346. Schematic of gas barrier properties of nanoclay film. 1201
- Figure 347. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test. 1214
- Figure 348. Applications for CO2. 1217
- Figure 349. Life cycle of CO2-derived products and services. 1219
- Figure 350. Conversion pathways for CO2-derived polymeric materials 1220
- Figure 351. Bioplastics for flexible packaging by bioplastic material type, 2019–2035 (‘000 tonnes). 1224
- Figure 352. Bioplastics for rigid packaging by bioplastic material type, 2019–2035 (‘000 tonnes). 1226
- Figure 353. Market revenues for bio-based coatings, 2018-2035 (billions USD), conservative estimate. 1227
- Figure 354. Pluumo. 1231
- Figure 355. Anpoly cellulose nanofiber hydrogel. 1238
- Figure 356. MEDICELLU™. 1238
- Figure 357. Asahi Kasei CNF fabric sheet. 1245
- Figure 358. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric. 1246
- Figure 359. CNF nonwoven fabric. 1247
- Figure 360. Passionfruit wrapped in Xgo Circular packaging. 1252
- Figure 361. BIOLO e-commerce mailer bag made from PHA. 1257
- Figure 362. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc. 1258
- Figure 363. Fiber-based screw cap. 1267
- Figure 364. CuanSave film. 1280
- Figure 365. ELLEX products. 1282
- Figure 366. CNF-reinforced PP compounds. 1283
- Figure 367. Kirekira! toilet wipes. 1283
- Figure 368. Rheocrysta spray. 1287
- Figure 369. DKS CNF products. 1287
- Figure 370. Photograph (a) and micrograph (b) of mineral/ MFC composite showing the high viscosity and fibrillar structure. 1298
- Figure 371. PHA production process. 1303
- Figure 372. AVAPTM process. 1307
- Figure 373. GreenPower+™ process. 1308
- Figure 374. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials. 1310
- Figure 375. CNF gel. 1312
- Figure 376. Block nanocellulose material. 1313
- Figure 377. CNF products developed by Hokuetsu. 1313
- Figure 378. Kami Shoji CNF products. 1319
- Figure 379. IPA synthesis method. 1336
- Figure 380. Compostable water pod. 1344
- Figure 381. XCNF. 1360
- Figure 382: Innventia AB movable nanocellulose demo plant. 1361
- Figure 383. Shellworks packaging containers. 1365
- Figure 384. Thales packaging incorporating Fibrease. 1371
- Figure 385. Sulapac cosmetics containers. 1373
- Figure 386. Sulzer equipment for PLA polymerization processing. 1374
- Figure 387. Silver / CNF composite dispersions. 1380
- Figure 388. CNF/nanosilver powder. 1381
- Figure 389. Corbion FDCA production process. 1382
- Figure 390. UPM biorefinery process. 1384
- Figure 391. Vegea production process. 1387
- Figure 392. Worn Again products. 1391
- Figure 393. S-CNF in powder form. 1393
- Figure 394. AlgiKicks sneaker, made with the Algiknit biopolymer gel. 1404
- Figure 395. Conceptual landscape of next-gen leather materials. 1405
- Figure 396. Typical structure of mycelium-based foam. 1419
- Figure 397. Hermès bag made of MycoWorks' mycelium leather. 1422
- Figure 398. Ganni blazer made from bacterial cellulose. 1427
- Figure 399. Bou Bag by GANNI and Modern Synthesis. 1428
- Figure 400. Global revenues for bio-based textiles by type, 2018-2035 (millions USD). 1441
- Figure 401. Global revenues for bio-based and sustainable textiles by end use market, 2018-2035 (millions USD). 1443
- Figure 402. Beyond Leather Materials product. 1449
- Figure 403. Treekind. 1451
- Figure 404. Examples of Stella McCartney and Adidas products made using leather alternative Mylo. 1453
- Figure 405. Mushroom leather. 1456
- Figure 406. Ecovative Design Forager Hides. 1457
- Figure 407. LUNA® leather. 1462
- Figure 408. TransLeather. 1465
- Figure 409. Reishi. 1471
- Figure 410. AirCarbon Pellets and AirCarbon Leather. 1475
- Figure 411. Leather made from leaves. 1479
- Figure 412. Nike shoe with beLEAF™. 1480
- Figure 413. Persiskin leather. 1483
- Figure 414. LOVR hemp leather. 1487
- Figure 415. North Face Spiber Moon Parka. 1490
- Figure 416. PANGAIA LAB NXT GEN Hoodie. 1491
- Figure 417. Ultrasuede headrest covers. 1493
- Figure 418. Vegea production process. 1495
- Figure 419. Schematic of production of powder coatings. 1504
- Figure 420. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms. 1507
- Figure 421. PHA family. 1529
- Figure 422: Schematic diagram of partial molecular structure of cellulose chain with numbering for carbon atoms and n= number of cellobiose repeating unit. 1533
- Figure 423: Scale of cellulose materials. 1533
- Figure 424. Nanocellulose preparation methods and resulting materials. 1534
- Figure 425: Relationship between different kinds of nanocelluloses. 1536
- Figure 426. SEM image of microfibrillated cellulose. 1538
- Figure 427. Applications of cellulose nanofibers in paints and coatings. 1542
- Figure 428: CNC slurry. 1546
- Figure 429. Types of bio-based materials used for antimicrobial food packaging application. 1552
- Figure 430. BLOOM masterbatch from Algix. 1558
- Figure 431. Market revenues for bio-based coatings by market, 2018-2035 (billions USD), conservative estimate. 1561
- Figure 432. Dulux Better Living Air Clean Bio-based. 1564
- Figure 433. NCCTM Process. 1588
- Figure 434. CNC produced at Tech Futures’ pilot plant; cloudy suspension (1 wt.%), gel-like (10 wt.%), flake-like crystals, and very fine powder. Product advantages include: 1589
- Figure 435. Cellugy materials. 1590
- Figure 436. EcoLine® 3690 (left) vs Solvent-Based Competitor Coating (right). 1595
- Figure 437. Rheocrysta spray. 1601
- Figure 438. DKS CNF products. 1602
- Figure 439. Domsjö process. 1603
- Figure 440. CNF gel. 1622
- Figure 441. Block nanocellulose material. 1622
- Figure 442. CNF products developed by Hokuetsu. 1623
- Figure 443. VIVAPUR® MCC Spheres. 1628
- Figure 444. BioFlex process. 1639
- Figure 445. Marusumi Paper cellulose nanofiber products. 1642
- Figure 446. Melodea CNC barrier coating packaging. 1644
- Figure 447. Fluorene cellulose ® powder. 1663
- Figure 448. XCNF. 1671
- Figure 449. Plantrose process. 1672
- Figure 450. Spider silk production. 1682
- Figure 451. CNF dispersion and powder from Starlite. 1684
- Figure 452. 2 wt.% CNF suspension. 1687
- Figure 453. BiNFi-s Dry Powder. 1688
- Figure 454. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet. 1688
- Figure 455. Silk nanofiber (right) and cocoon of raw material. 1689
- Figure 456. traceless® hooks. 1692
- Figure 457. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test. 1694
- Figure 458. Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film. 1695
- Figure 459. Bioalkyd products. 1699
- Figure 460. Liquid biofuel production and consumption (in thousands of m3), 2000-2022. 1703
- Figure 461. Distribution of global liquid biofuel production in 2023. 1704
- Figure 462. Diesel and gasoline alternatives and blends. 1708
- Figure 463. SWOT analysis for biofuels. 1710
- Figure 464. Schematic of a biorefinery for production of carriers and chemicals. 1720
- Figure 465. Hydrolytic lignin powder. 1723
- Figure 466. SWOT analysis for energy crops in biofuels. 1728
- Figure 467. SWOT analysis for agricultural residues in biofuels. 1730
- Figure 468. SWOT analysis for Manure, sewage sludge and organic waste in biofuels. 1732
- Figure 469. SWOT analysis for forestry and wood waste in biofuels. 1733
- Figure 470. Range of biomass cost by feedstock type. 1734
- Figure 471. Regional production of biodiesel (billion litres). 1735
- Figure 472. SWOT analysis for biodiesel. 1737
- Figure 473. Flow chart for biodiesel production. 1741
- Figure 474. Biodiesel (B20) average prices, current and historical, USD/litre. 1747
- Figure 475. Global biodiesel consumption, 2010-2035 (M litres/year). 1749
- Figure 476. SWOT analysis for renewable iesel. 1752
- Figure 477. Global renewable diesel consumption, 2010-2035 (M litres/year). 1753
- Figure 478. SWOT analysis for Bio-aviation fuel. 1756
- Figure 479. Global bio-jet fuel consumption to 2019-2035 (Million litres/year). 1760
- Figure 480. SWOT analysis for bio-naphtha. 1763
- Figure 481. Bio-based naphtha production capacities, 2018-2035 (tonnes). 1766
- Figure 482. SWOT analysis biomethanol. 1768
- Figure 483. Renewable Methanol Production Processes from Different Feedstocks. 1769
- Figure 484. Production of biomethane through anaerobic digestion and upgrading. 1770
- Figure 485. Production of biomethane through biomass gasification and methanation. 1771
- Figure 486. Production of biomethane through the Power to methane process. 1771
- Figure 487. SWOT analysis for ethanol. 1773
- Figure 488. Ethanol consumption 2010-2035 (million litres). 1779
- Figure 489. Properties of petrol and biobutanol. 1781
- Figure 490. Biobutanol production route. 1781
- Figure 491. Biogas and biomethane pathways. 1783
- Figure 492. Overview of biogas utilization. 1785
- Figure 493. Biogas and biomethane pathways. 1786
- Figure 494. Schematic overview of anaerobic digestion process for biomethane production. 1787
- Figure 495. Schematic overview of biomass gasification for biomethane production. 1788
- Figure 496. SWOT analysis for biogas. 1789
- Figure 497. Total syngas market by product in MM Nm³/h of Syngas, 2021. 1793
- Figure 498. SWOT analysis for biohydrogen. 1796
- Figure 499. Waste plastic production pathways to (A) diesel and (B) gasoline 1801
- Figure 500. Schematic for Pyrolysis of Scrap Tires. 1802
- Figure 501. Used tires conversion process. 1803
- Figure 502. Total syngas market by product in MM Nm³/h of Syngas, 2021. 1805
- Figure 503. Overview of biogas utilization. 1807
- Figure 504. Biogas and biomethane pathways. 1808
- Figure 505. SWOT analysis for chemical recycling of biofuels. 1811
- Figure 506. Process steps in the production of electrofuels. 1812
- Figure 507. Mapping storage technologies according to performance characteristics. 1813
- Figure 508. Production process for green hydrogen. 1815
- Figure 509. SWOT analysis for E-fuels. 1816
- Figure 510. E-liquids production routes. 1817
- Figure 511. Fischer-Tropsch liquid e-fuel products. 1818
- Figure 512. Resources required for liquid e-fuel production. 1818
- Figure 513. Levelized cost and fuel-switching CO2 prices of e-fuels. 1822
- Figure 514. Cost breakdown for e-fuels. 1824
- Figure 515. Pathways for algal biomass conversion to biofuels. 1826
- Figure 516. SWOT analysis for algae-derived biofuels. 1827
- Figure 517. Algal biomass conversion process for biofuel production. 1828
- Figure 518. Classification and process technology according to carbon emission in ammonia production. 1831
- Figure 519. Green ammonia production and use. 1832
- Figure 520. Schematic of the Haber Bosch ammonia synthesis reaction. 1834
- Figure 521. Schematic of hydrogen production via steam methane reformation. 1834
- Figure 522. SWOT analysis for green ammonia. 1836
- Figure 523. Estimated production cost of green ammonia. 1840
- Figure 524. Projected annual ammonia production, million tons. 1841
- Figure 525. CO2 capture and separation technology. 1843
- Figure 526. Conversion route for CO2-derived fuels and chemical intermediates. 1844
- Figure 527. Conversion pathways for CO2-derived methane, methanol and diesel. 1845
- Figure 528. SWOT analysis for biofuels from carbon capture. 1847
- Figure 529. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse. 1848
- Figure 530. Global CO2 capture from biomass and DAC in the Net Zero Scenario. 1849
- Figure 531. DAC technologies. 1851
- Figure 532. Schematic of Climeworks DAC system. 1852
- Figure 533. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland. 1853
- Figure 534. Flow diagram for solid sorbent DAC. 1853
- Figure 535. Direct air capture based on high temperature liquid sorbent by Carbon Engineering. 1854
- Figure 536. Global capacity of direct air capture facilities. 1858
- Figure 537. Global map of DAC and CCS plants. 1863
- Figure 538. Schematic of costs of DAC technologies. 1866
- Figure 539. DAC cost breakdown and comparison. 1866
- Figure 540. Operating costs of generic liquid and solid-based DAC systems. 1868
- Figure 541. Conversion route for CO2-derived fuels and chemical intermediates. 1873
- Figure 542. Conversion pathways for CO2-derived methane, methanol and diesel. 1874
- Figure 543. CO2 feedstock for the production of e-methanol. 1881
- Figure 544. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2. 1885
- Figure 545. SWOT analysis: CO2 utilization in fuels. 1887
- Figure 546. Audi synthetic fuels. 1888
- Figure 547. Bio-oil upgrading/fractionation techniques. 1893
- Figure 548. SWOT analysis for bio-oils. 1894
- Figure 549. ANDRITZ Lignin Recovery process. 1905
- Figure 550. ChemCyclingTM prototypes. 1911
- Figure 551. ChemCycling circle by BASF. 1912
- Figure 552. FBPO process 1923
- Figure 553. Direct Air Capture Process. 1927
- Figure 554. CRI process. 1929
- Figure 555. Cassandra Oil process. 1932
- Figure 556. Colyser process. 1939
- Figure 557. ECFORM electrolysis reactor schematic. 1944
- Figure 558. Dioxycle modular electrolyzer. 1945
- Figure 559. Domsjö process. 1946
- Figure 560. FuelPositive system. 1957
- Figure 561. INERATEC unit. 1973
- Figure 562. Infinitree swing method. 1974
- Figure 563. Audi/Krajete unit. 1980
- Figure 564. Enfinity cellulosic ethanol technology process. 2007
- Figure 565: Plantrose process. 2014
- Figure 566. Sunfire process for Blue Crude production. 2030
- Figure 567. Takavator. 2033
- Figure 568. O12 Reactor. 2037
- Figure 569. Sunglasses with lenses made from CO2-derived materials. 2037
- Figure 570. CO2 made car part. 2037
- Figure 571. The Velocys process. 2040
- Figure 572. Goldilocks process and applications. 2043
- Figure 573. The Proesa® Process. 2044
- Figure 574. Closed-loop manufacturing. 2060
- Figure 575. Sustainable supply chain for electronics. 2072
- Figure 576. Flexible PCB. 2079
- Figure 577. Vapor degreasing. 2083
- Figure 578. Multi-layered PCB. 2085
- Figure 579. 3D printed PCB. 2087
- Figure 580. In-mold electronics prototype devices and products. 2088
- Figure 581. Silver nanocomposite ink after sintering and resin bonding of discrete electronic components. 2089
- Figure 582. Typical structure of mycelium-based foam. 2094
- Figure 583. Flexible electronic substrate made from CNF. 2098
- Figure 584. CNF composite. 2098
- Figure 585. Oji CNF transparent sheets. 2099
- Figure 586. Electronic components using cellulose nanofibers as insulating materials. 2099
- Figure 587. BLOOM masterbatch from Algix. 2100
- Figure 588. Dell's Concept Luna laptop. 2107
- Figure 589. Direct-write, precision dispensing, and 3D printing platform for 3D printed electronics. 2113
- Figure 590. 3D printed circuit boards from Nano Dimension. 2113
- Figure 591. Photonic sintering. 2114
- Figure 592. Laser-induced forward transfer (LIFT). 2116
- Figure 593. Material jetting 3d printing. 2121
- Figure 594. Material jetting 3d printing product. 2122
- Figure 595. The molecular mechanism of the shape memory effect under different stimuli. 2127
- Figure 596. Supercooled Soldering™ Technology. 2131
- Figure 597. Reflow soldering schematic. 2132
- Figure 598. Schematic diagram of induction heating reflow. 2133
- Figure 599. Fully-printed organic thin-film transistors and circuitry on one-micron-thick polymer films. 2138
- Figure 600. Types of PCBs after dismantling waste computers and monitors. 2147
- Figure 601. Global PCB revenues 2018-2035 (billions USD), by substrate types. 2153
- Figure 602. Global sustainable PCB revenues 2018-2035, by type (millions USD). 2155
- Figure 603. Global sustainable ICs revenues 2018-2035, by type (millions USD). 2156
- Figure 604. Piezotech® FC. 2162
- Figure 605. PowerCoat® paper. 2163
- Figure 606. BeFC® biofuel cell and digital platform. 2164
- Figure 607. DPP-360 machine. 2167
- Figure 608. P-Flex® Flexible Circuit. 2169
- Figure 609. Fairphone 4. 2171
- Figure 610. In2tec’s fully recyclable flexible circuit board assembly. 2176
- Figure 611. C.L.A.D. system. 2178
- Figure 612. Soluboard immersed in water. 2180
- Figure 613. Infineon PCB before and after immersion. 2180
- Figure 614. Nano OPS Nanoscale wafer printing system. 2183
- Figure 615. Stora Enso lignin battery materials. 2194
- Figure 616. 3D printed electronics. 2196
- Figure 617. Tactotek IME device. 2197
- Figure 618. TactoTek® IMSE® SiP - System In Package. 2198
- Figure 619. Verde Bio-based resins. 2201
- Figure 620. Global market revenues for bio-based adhesives & sealants, by types, 2018-2035 (millions USD). 2214
- Figure 621. Global market revenues for bio-based adhesives & sealants, by market, 2018-2035 (millions USD). 2216
- Figure 622. sunliquid® production process. 2221
- Figure 623. Spider silk production. 2226
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer.
To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.