The Global Market for Bio-based and Sustainable Packaging 2023-2033

0

Published June 2023 | 456 pages, 118 tables, 109 figures | Download table of contents

Environmental and consumer concerns have resulted in the development of bio-based and sustainable materials as alternatives to petrochemicals for packaging applications. Bio-based packaging materials are made from renewable and biodegradable raw materials, and provide novel eco-friendly alternatives to petrochemical-based plastics, especially for single-use plastic goods.

Bio-based and sustainable packaging is a major global trend, with numerous start-ups and large companies developing alternatives to single-use plastic packaging. The global plastics sector currently produces >250 million tons annually, and they are used extensively in packaging due to their low cost and weight. Over 99% of this is derived from fossil fuels, and most of it is not biodegradable. Currently, the packaging materials are largely based on glass, aluminium and tin, and fossil derived synthetic plastics. These materials possess high strength and barrier properties. However, they are unsustainable, some are fragile such as glass, and their weight adds to energy costs for shipping. Discarded plastic bags and containers have also raised issues relating to environmental pollution due to their non-biodegradable nature. Biodegradable takeaway food containers and single-use plastic bags are being used as a substitute, but only degrade completely when subjected to a harsh thermal treatment above 50 °C. 

Innovative packaging materials composed of blends or pure bio-based materials are expected to improve the sustainability of these products. Using renewable resources for the development of bio-based packaging material produces a smaller carbon footprint, reduces environmental impact, increases acceptance by consumers, maintains barrier properties and shelf-life of the packaged good, and allows for a sustainable end of life.

Report contents include:

  • An overview of global market outlook for bio-based and sustainable packaging. 
  • Materials utilized in bio-based and sustainable packaging including
    • Synthetic bio-based packaging materials.
    • Natural bio-based packaging materials.
    • Natural fibers.
    • Lignin.
    • Bio-based coatings and films.
    • Bio-based antimicrobial agents.
    • Bio-based packaging sensors. 
    • Bio-adhesives. 
    • Bio-based inks and dyes.
    • Edible films and coatings.
  • Analysis of advanced chemical recycling for packaging.
  • Analysis of packaging materials from CO2 capture. 
  • Analysis of bio-based innovation in flexible and rigid packaging, active and smart packaging, films and coatings, functional barrier technology, and mono-material packaging. 
  • Analysis of global market trends, with data from 2021, 2022, and projections of compound annual growth rates (CAGRs) through 2033. 
  • Identification of market trends, issues and forecast impacting the global bio-based and sustainable packaging market and quantification of the market based on type, application, and region. 
  • Recent advancements and innovations in the bio-based and sustainable packaging market. 
  • Comprehensive profiles of 202 companies in the market. Companies profiled include Alterpacks, Anellotech, Inc., Arekapak GmbH, Arkema S.A., Avantium, BIOLO, Biovox, BlockTexx Pty Ltd., Carbiolice, Cellugy, DuFor Resins B.V., Earthodic, Esbottle Oy, Fiberwood Oy, Full Cycle Bioplastics LLC, Futamura Chemical Co, Ltd., Futurity Bio-Ventures Ltd., Genecis Bioindustries, Huhtamaki, Kaneka Corporation, Kelpi Industries, Lactips S.A., Loliware, Marea, Mitsubishi Chemical Corporation, MakeGrowLab, New Zealand Natural Fibres, Oimo, Plafco Fibertech Oy, Shellworks, Sufresca, Sulapac, Teal Bioworks, TerraVerdae Bioworks Inc. and Tianjin GreenBio Materials.

What you will receive: 

  • Report by email (PDF)-print option also available.
  • Comprehensive Excel spreadsheet of all the data.
  • Mid-year update. 

 

 

1              RESEARCH METHODOLOGY         25

 

2              EXECUTIVE SUMMARY   26

  • 2.1          Current global packaging market and materials   27
  • 2.2          Market trends   28
  • 2.3          Drivers for recent growth in bioplastics in packaging         30
  • 2.4          Challenges for bio-based and sustainable packaging          30
  • 2.5          Global biobased packaging markets     32
    • 2.5.1      By end-use application  32
    • 2.5.2      Packaging type 34
      • 2.5.2.1   Rigid packaging 34
      • 2.5.2.2   Flexible packaging            35
    • 2.5.3      By geographic market    36

 

3              THE GLOBAL PLASTICS MARKET 38

  • 3.1          Global production of plastics       38
  • 3.2          The importance of plastic              40
  • 3.3          Issues with plastics use  40
  • 3.4          Policy and regulations    41
  • 3.5          The circular economy     42
  • 3.6          Recycling             44
  • 3.7          Materials innovation      44
  • 3.8          Active packaging               45
  • 3.9          Conventional polymer materials used in packaging            45
    • 3.9.1      Polyolefins: Polypropylene and polyethylene      46
    • 3.9.2      PET and other polyester polymers            49
    • 3.9.3      Renewable and bio-based polymers for packaging             49
    • 3.9.4      Comparison of synthetic fossil-based and bio-based polymers     51
    • 3.9.5      Processes for bioplastics in packaging      52
    • 3.9.6      End-of-life treatment of bio-based and sustainable packaging      53

 

4              PLASTIC PACKAGING RECYCLING               55

  • 4.1          Mechanical recycling      56
    • 4.1.1      Closed-loop mechanical recycling              57
    • 4.1.2      Open-loop mechanical recycling 57
    • 4.1.3      Polymer types, use, and recovery             57
  • 4.2          Advanced chemical recycling       58
    • 4.2.1      Main streams of plastic waste    59
    • 4.2.2      Comparison of mechanical and advanced chemical recycling         60
  • 4.3          Capacities            60
  • 4.4          Global polymer demand 2022-2040, segmented by recycling technology 64
  • 4.5          Global market by recycling process 2020-2024, metric tons           65
  • 4.6          Chemically recycled plastic products        66
  • 4.7          Market map       67
  • 4.8          Value chain         69
  • 4.9          Life Cycle Assessments (LCA) of advanced plastics recycling processes      70
  • 4.10        Pyrolysis              71
    • 4.10.1    Non-catalytic     72
    • 4.10.2    Catalytic               73
      • 4.10.2.1                Polystyrene pyrolysis     75
      • 4.10.2.2                Pyrolysis for production of bio fuel           76
      • 4.10.2.3                Used tires pyrolysis         80
        • 4.10.2.3.1             Conversion to biofuel     81
      • 4.10.2.4                Co-pyrolysis of biomass and plastic wastes           82
    • 4.10.3    SWOT analysis   83
    • 4.10.4    Companies and capacities             84
  • 4.11        Gasification        85
    • 4.11.1    Technology overview     85
      • 4.11.1.1                Syngas conversion to methanol 86
      • 4.11.1.2                Biomass gasification and syngas fermentation    91
      • 4.11.1.3                Biomass gasification and syngas thermochemical conversion        91
    • 4.11.2    SWOT analysis   92
    • 4.11.3    Companies and capacities (current and planned)               93
  • 4.12        Dissolution          94
    • 4.12.1    Technology overview     94
    • 4.12.2    SWOT analysis   95
    • 4.12.3    Companies and capacities (current and planned)               96
  • 4.13        Depolymerisation            97
    • 4.13.1    Hydrolysis           99
      • 4.13.1.1                Technology overview     99
      • 4.13.1.2                SWOT analysis   100
    • 4.13.2    Enzymolysis        101
      • 4.13.2.1                Technology overview     101
      • 4.13.2.2                SWOT analysis   102
    • 4.13.3    Methanolysis     103
      • 4.13.3.1                Technology overview     103
      • 4.13.3.2                SWOT analysis   104
    • 4.13.4    Glycolysis            105
      • 4.13.4.1                Technology overview     105
      • 4.13.4.2                SWOT analysis   106
    • 4.13.5    Aminolysis          108
      • 4.13.5.1                Technology overview     108
      • 4.13.5.2                SWOT analysis   108
    • 4.13.6    Companies and capacities (current and planned)               109
  • 4.14        Other advanced chemical recycling technologies 110
    • 4.14.1    Hydrothermal cracking   110
    • 4.14.2    Pyrolysis with in-line reforming  111
    • 4.14.3    Microwave-assisted pyrolysis     111
    • 4.14.4    Plasma pyrolysis               112
    • 4.14.5    Plasma gasification          113
    • 4.14.6    Supercritical fluids           114
    • 4.14.7    Carbon fiber recycling    114
      • 4.14.7.1                Processes            115
      • 4.14.7.2                Companies         118

 

5              BIOPLASTICS AND BIOPOLYMERS IN PACKAGING 119

  • 5.1          Bio-based or renewable plastics 119
    • 5.1.1      Drop-in bio-based plastics            120
    • 5.1.2      Novel bio-based plastics                121
  • 5.2          Biodegradable and compostable plastics                122
    • 5.2.1      Biodegradability               122
    • 5.2.2      Compostability  123
  • 5.3          Advantages and disadvantages  124
  • 5.4          Types of Bio-based and/or Biodegradable Plastics              125
  • 5.5          Applications       127
    • 5.5.1      Paper and board packaging          127
    • 5.5.2      Food packaging 127
      • 5.5.2.1   Bio-Based films and trays              128
      • 5.5.2.2   Bio-Based pouches and bags       129
      • 5.5.2.3   Bio-Based textiles and nets          129
      • 5.5.2.4   Bioadhesives     130
        • 5.5.2.4.1               Starch   130
        • 5.5.2.4.2               Cellulose              131
        • 5.5.2.4.3               Protein-Based   131
      • 5.5.2.5   Barrier coatings and films             131
        • 5.5.2.5.1               Polysaccharides 133
          • 5.5.2.5.1.1           Chitin    133
          • 5.5.2.5.1.2           Chitosan              133
          • 5.5.2.5.1.3           Starch   133
        • 5.5.2.5.2               Poly(lactic acid) (PLA)     134
        • 5.5.2.5.3               Poly(butylene Succinate)              134
        • 5.5.2.5.4               Functional Lipid and Proteins Based Coatings       134
      • 5.5.2.6   Active and Smart Food Packaging              134
        • 5.5.2.6.1               Active Materials and Packaging Systems 134
        • 5.5.2.6.2               Intelligent and Smart Food Packaging      135
      • 5.5.2.7   Antimicrobial films and agents   137
        • 5.5.2.7.1               Natural 138
        • 5.5.2.7.2               Inorganic nanoparticles 139
        • 5.5.2.7.3               Biopolymers       139
      • 5.5.2.8   Bio-based Inks and Dyes                140
      • 5.5.2.9   Edible films and coatings               140
  • 5.6          Synthetic bio-based packaging materials 142
    • 5.6.1      Polylactic acid (Bio-PLA) 142
      • 5.6.1.1   Market analysis 143
      • 5.6.1.2   Producers and production capacities, current and planned            145
        • 5.6.1.2.1               Lactic acid producers and production capacities  145
        • 5.6.1.2.2               LA producers and production capacities 145
    • 5.6.2      Polyethylene terephthalate (Bio-PET)     147
      • 5.6.2.1   Market analysis 147
      • 5.6.2.2   Producers and production capacities       148
    • 5.6.3      Polytrimethylene terephthalate (Bio-PTT)             149
      • 5.6.3.1   Market analysis 149
      • 5.6.3.2   Producers and production capacities       149
    • 5.6.4      Polyethylene furanoate (Bio-PEF)             150
      • 5.6.4.1   Market analysis 150
      • 5.6.4.2   Comparative properties to PET   151
      • 5.6.4.3   Producers and production capacities       152
        • 5.6.4.3.1               FDCA and PEF producers and production capacities           152
    • 5.6.5      Polyamides (Bio-PA)       153
      • 5.6.5.1   Market analysis 153
      • 5.6.5.2   Producers and production capacities       154
    • 5.6.6      Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters       155
      • 5.6.6.1   Market analysis 155
      • 5.6.6.2   Producers and production capacities       156
    • 5.6.7      Polybutylene succinate (PBS) and copolymers     156
      • 5.6.7.1   Market analysis 157
      • 5.6.7.2   Producers and production capacities       158
    • 5.6.8      Polyethylene furanoate (Bio-PEF)             158
      • 5.6.8.1   Market analysis 159
      • 5.6.8.2   Comparative properties to PET   160
      • 5.6.8.3   Producers and production capacities       160
        • 5.6.8.3.1               FDCA and PEF producers and production capacities           160
        • 5.6.8.3.2               Polyethylene furanoate (Bio-PEF) production capacities 2019-2033 (1,000 tons). 162
    • 5.6.9      Polyethylene (Bio-PE)    163
      • 5.6.9.1   Market analysis 163
      • 5.6.9.2   Producers and production capacities       164
    • 5.6.10    Polypropylene (Bio-PP) 164
      • 5.6.10.1                Market analysis 164
      • 5.6.10.2                Producers and production capacities       165
  • 5.7          Natural bio-based packaging materials    166
    • 5.7.1      Polyhydroxyalkanoates (PHA)     166
      • 5.7.1.1   Technology description 166
      • 5.7.1.2   Types    168
        • 5.7.1.2.1               PHB        170
        • 5.7.1.2.2               PHBV     171
      • 5.7.1.3   Synthesis and production processes        172
      • 5.7.1.4   Market analysis 175
      • 5.7.1.5   Commercially available PHAs      177
      • 5.7.1.6   PHAS in packaging           178
      • 5.7.1.7   PHA production capacities 2019-2033 (1,000 tons)            182
    • 5.7.2      Starch-based blends       183
      • 5.7.2.1   Properties           183
      • 5.7.2.2   Applications in packaging              183
    • 5.7.3      Cellulose              183
      • 5.7.3.1   Feedstocks         185
        • 5.7.3.1.1               Wood    186
        • 5.7.3.1.2               Plant      186
        • 5.7.3.1.3               Tunicate               187
        • 5.7.3.1.4               Algae     187
        • 5.7.3.1.5               Bacteria                188
      • 5.7.3.2   Microfibrillated cellulose (MFC) 189
        • 5.7.3.2.1               Properties           189
      • 5.7.3.3   Nanocellulose   190
        • 5.7.3.3.1               Cellulose nanocrystals    190
          • 5.7.3.3.1.1           Applications in packaging              190
        • 5.7.3.3.2               Cellulose nanofibers       192
          • 5.7.3.3.2.1           Applications in packaging              192
          • 5.7.3.3.2.1.1        Reinforcement and barrier           198
          • 5.7.3.3.2.1.2        Biodegradable food packaging foil and films         198
          • 5.7.3.3.2.1.3        Paperboard coatings       198
        • 5.7.3.3.3               Bacterial Nanocellulose (BNC)    199
          • 5.7.3.3.3.1           Applications in packaging              201
    • 5.7.4      Protein-based bioplastics in packaging    203
    • 5.7.5      Lipids and waxes for packaging   205
    • 5.7.6      Seaweed-based packaging           205
      • 5.7.6.1   Production          207
      • 5.7.6.2   Applications in packaging              207
      • 5.7.6.3   Producers           208
    • 5.7.7      Mycelium            208
      • 5.7.7.1   Applications in packaging              209
    • 5.7.8      Chitosan              210
      • 5.7.8.1   Applications in packaging              211
    • 5.7.9      Bio-naphtha       212
      • 5.7.9.1   Overview            212
    • 5.7.9.2   Markets and applications              213
  • 5.8          Natural fibers    215
    • 5.8.1      Manufacturing method, matrix materials and applications of natural fibers            218
    • 5.8.2      Commercially available natural fiber products     220
    • 5.8.3      Applications in packaging              223
  • 5.9          Lignin    225
    • 5.9.1      Types of lignin    225
    • 5.9.2      Properties           228
    • 5.9.3      Applications in packaging              230

 

6              BIO-BASED FILMS AND COATINGS IN PACKAGING              232

  • 6.1          Challenges using bio-based paints and coatings   233
  • 6.2          Types of bio-based coatings and films in packaging            236
    • 6.2.1      Polyurethane coatings   236
      • 6.2.1.1   Properties           236
      • 6.2.1.2   Bio-based polyurethane coatings              236
      • 6.2.1.3   Products              237
    • 6.2.2      Acrylate resins   238
      • 6.2.2.1   Properties           238
      • 6.2.2.2   Bio-based acrylates         239
      • 6.2.2.3   Products              239
    • 6.2.3      Polylactic acid (Bio-PLA) 240
      • 6.2.3.1   Properties           241
      • 6.2.3.2   Bio-PLA coatings and films            242
    • 6.2.4      Polyhydroxyalkanoates (PHA) coatings   242
    • 6.2.5      Cellulose coatings and films         244
    • 6.2.5.1   Microfibrillated cellulose (MFC) 244
    • 6.2.5.2   Cellulose nanofibers       245
    • 6.2.5.2.1               Properties           245
    • 6.2.5.2.2               Product developers        247
    • 6.2.6   Lignin coatings  249
    • 6.2.7     Protein-based biomaterials for coatings 250
      • 6.2.7.1   Plant derived proteins   250
      • 6.2.7.2   Animal origin proteins   250

 

7              CARBON CAPTURE DERIVED MATERIALS FOR PACKAGING              252

  • 7.1          Benefits of carbon utilization for plastics feedstocks         253
  • 7.2          CO₂-derived polymers and plastics            255
    • 7.2.1      CO2 utilization products                256

 

8              GLOBAL PRODUCTION OF BIO-BASED AND SUSTAINABLE PACKAGING      258

  • 8.1          Flexible packaging            258
  • 8.2          Rigid packaging 261
  • 8.3          Coatings and films            263

 

9              COMPANY PROFILES       265 (200 bio-based packaging company profiles)

 

10           REFERENCES       439

 

List of Tables

  • Table 1. Market trends in bio-based and sustainable packaging    28
  • Table 2. Drivers for recent growth in the bioplastics and biopolymers markets.    30
  • Table 3. Challenges for bio-based and sustainable packaging.       30
  • Table 4. Global bioplastics packaging by end-use application, 2023–2033 (‘000 tonnes).   32
  • Table 5. Global bioplastic packaging by geographic market, 2023–2033 (‘000 tonnes).      36
  • Table 6. Traditional plastic materials used in packaging.  39
  • Table 7. Issues related to the use of plastics.        40
  • Table 8. Types of bio-based plastics and fossil-fuel-based plastics               45
  • Table 9. Comparison of synthetic fossil-based and bio-based polymers.   51
  • Table 10. Processes for bioplastics in packaging. 52
  • Table 11. Overview of the recycling technologies.              56
  • Table 12. Polymer types, use, and recovery.         57
  • Table 13. Composition of plastic waste streams. 59
  • Table 14. Comparison of mechanical and advanced chemical recycling.    60
  • Table 15. Advanced plastics recycling capacities, by technology. 60
  • Table 16. Example chemically recycled plastic products.  66
  • Table 17. Life Cycle Assessments (LCA) of Advanced Chemical Recycling Processes.            70
  • Table 18. Summary of non-catalytic pyrolysis technologies.           72
  • Table 19. Summary of catalytic pyrolysis technologies.    73
  • Table 20. Summary of pyrolysis technique under different operating conditions. 77
  • Table 21. Biomass materials and their bio-oil yield.            78
  • Table 22. Biofuel production cost from the biomass pyrolysis process.      79
  • Table 23. Pyrolysis companies and plant capacities, current and planned.               84
  • Table 24. Summary of gasification technologies. 85
  • Table 25. Advanced recycling (Gasification) companies.  93
  • Table 26. Summary of dissolution technologies. 94
  • Table 27. Advanced recycling (Dissolution) companies     96
  • Table 28. Depolymerisation processes for PET, PU, PC and PA, products and yields.            98
  • Table 29. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        99
  • Table 30. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        101
  • Table 31. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        103
  • Table 32. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        105
  • Table 33. Summary of aminolysis technologies.  108
  • Table 34. Advanced recycling (Depolymerisation) companies and capacities (current and planned).            109
  • Table 35. Overview of hydrothermal cracking for advanced chemical recycling.     110
  • Table 36. Overview of Pyrolysis with in-line reforming for advanced chemical recycling.    111
  • Table 37. Overview of microwave-assisted pyrolysis for advanced chemical recycling.        111
  • Table 38. Overview of plasma pyrolysis for advanced chemical recycling. 112
  • Table 39. Overview of plasma gasification for advanced chemical recycling.            113
  • Table 40. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages.   115
  • Table 41. Retention rate of tensile properties of recovered carbon fibres by different recycling processes.              117
  • Table 42. Recycled carbon fiber producers, technology and capacity.         118
  • Table 43. Types of bio-based packaging materials and price/kg.   119
  • Table 44. Type of biodegradation.            123
  • Table 45. Advantages and disadvantages of bio-based plastics compared to conventional plastics.               124
  • Table 46. Types of Bio-based and/or Biodegradable Plastics, applications.               125
  • Table 47. Pros and cons of different type of food packaging materials.      128
  • Table 48. Active Biodegradable Films films and their food applications.    136
  • Table 49. Intelligent Biodegradable Films.              136
  • Table 50. Edible films and coatings market summary.       141
  • Table 51. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.               143
  • Table 52. Lactic acid producers and production capacities.             145
  • Table 53. PLA producers and production capacities.          145
  • Table 54. Planned PLA capacity expansions in China.         146
  • Table 55. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications.              147
  • Table 56. Bio-based Polyethylene terephthalate (PET) producers and production capacities,           148
  • Table 57. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications.       149
  • Table 58. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.   149
  • Table 59. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.                150
  • Table 60. PEF vs. PET.     151
  • Table 61. FDCA and PEF producers.          152
  • Table 62. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications.                153
  • Table 63. Leading Bio-PA producers production capacities.            154
  • Table 64. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications.              155
  • Table 65. Leading PBAT producers, production capacities and brands.      156
  • Table 66. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications.       157
  • Table 67. Leading PBS producers and production capacities.          158
  • Table 68. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.                159
  • Table 69. PEF vs. PET.     160
  • Table 70. FDCA and PEF producers.          161
  • Table 71. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.                163
  • Table 72. Leading Bio-PE producers.        164
  • Table 73. Bio-PP market analysis- manufacture, advantages, disadvantages and applications.        164
  • Table 74. Leading Bio-PP producers and capacities.           165
  • Table 75.Types of PHAs and properties. 169
  • Table 76. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 171
  • Table 77. Polyhydroxyalkanoate (PHA) extraction methods.          174
  • Table 78. Polyhydroxyalkanoates (PHA) market analysis. 175
  • Table 79. Commercially available PHAs.  177
  • Table 80. Markets and applications for PHAs.       178
  • Table 81. Applications, advantages and disadvantages of PHAs in packaging.         180
  • Table 82. Length and diameter of nanocellulose and MFC.             183
  • Table 83. Major polymers found in the extracellular covering of different algae.  188
  • Table 84. Market overview for cellulose microfibers (microfibrillated cellulose) in paperboard and packaging-market age, key benefits, applications and producers.    189
  • Table 85. Applications of nanocrystalline cellulose (NCC).               191
  • Table 86. Market overview for cellulose nanofibers in packaging.                193
  • Table 87. Types of protein based-bioplastics, applications and companies.             203
  • Table 88. Overview of alginate-description, properties, application and market size.          206
  • Table 89. Companies developing algal-based bioplastics. 208
  • Table 90. Overview of mycelium fibers-description, properties, drawbacks and applications.          208
  • Table 91. Overview of chitosan-description, properties, drawbacks and applications.         211
  • Table 92. Bio-based naphtha markets and applications.   213
  • Table 93. Bio-naphtha market value chain.            213
  • Table 94. Types of next-gen natural fibers.            215
  • Table 95. Application, manufacturing method, and matrix materials of natural fibers.        218
  • Table 96. Commercially available next-gen natural fiber products.              220
  • Table 97. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use.    223
  • Table 98. Technical lignin types and applications.               226
  • Table 99. Lignin content of selected biomass.      228
  • Table 100. Properties of lignins and their applications.     229
  • Table 101. Summary of barrier films and coatings for packaging. 234
  • Table 102. Types of polyols.         236
  • Table 103. Polyol producers.       237
  • Table 104. Bio-based polyurethane coating products.      238
  • Table 105. Bio-based acrylate resin products.      239
  • Table 106. Polylactic acid (PLA) market analysis. 240
  • Table 107. Commercially available PHAs.               243
  • Table 108. Market overview for cellulose nanofibers in paints and coatings.           245
  • Table 109. Companies developing cellulose nanofibers products in paints and coatings.   247
  • Table 110. Types of protein based-biomaterials, applications and companies.       251
  • Table 111. CO2 utilization and removal pathways.             253
  • Table 112. CO2 utilization products developed by chemical and plastic producers.              256
  • Table 113. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.           258
  • Table 114. Typical applications for bioplastics in flexible packaging.           259
  • Table 115. Typical applications for bioplastics in rigid packaging. 261
  • Table 116. Market revenues for bio-based coatings, 2018-2033 (billions USD), high estimate.        264
  • Table 117. Lactips plastic pellets.              366
  • Table 118. Oji Holdings CNF products.     391

 

List of Figures

  • Figure 1. Global packaging market by material type.         28
  • Figure 2. Global bioplastics packaging by end-use application, 2023–2033 (‘000 tonnes). 33
  • Figure 3. Bioplastics for rigid packaging by bioplastic material type, 2019–2033 (‘000 tonnes).      34
  • Figure 4. Bioplastics for flexible packaging by bioplastic material type, 2019–2033 (‘000 tonnes). 35
  • Figure 5. Global bioplastic packaging by geographic market, 2023–2033 (‘000 tonnes).     37
  • Figure 6. Global plastics production 1950-2021, millions of metric tons.   38
  • Figure 7. The circular plastic economy.   43
  • Figure 8. Routes for synthesizing polymers from fossil-based and bio-based resources.    50
  • Figure 9. PHA bioplastic packaging products.        53
  • Figure 10. Current management systems for waste plastics.          55
  • Figure 11. Global polymer demand 2022-2040, segmented by technology, million metric tons.     64
  • Figure 12. Global demand by recycling process, 2020-2040, million metric tons.   65
  • Figure 13. Market map for advanced recycling.   68
  • Figure 14. Value chain for advanced plastics recycling market.     69
  • Figure 15. Schematic layout of a pyrolysis plant. 71
  • Figure 16. Waste plastic production pathways to (A) diesel and (B) gasoline           76
  • Figure 17. Schematic for Pyrolysis of Scrap Tires. 81
  • Figure 18. Used tires conversion process.              82
  • Figure 19. SWOT analysis-pyrolysis for advanced recycling.            83
  • Figure 20. Total syngas market by product in MM Nm³/h of Syngas, 2021.               87
  • Figure 21. Overview of biogas utilization.               88
  • Figure 22. Biogas and biomethane pathways.      90
  • Figure 23. SWOT analysis-gasification for advanced recycling.       92
  • Figure 24. SWOT analysis-dissoluton for advanced recycling.         95
  • Figure 25. Products obtained through the different solvolysis pathways of PET, PU, and PA.            97
  • Figure 26. SWOT analysis-Hydrolysis for advanced chemical recycling.      100
  • Figure 27. SWOT analysis-Enzymolysis for advanced chemical recycling.   102
  • Figure 28. SWOT analysis-Methanolysis for advanced chemical recycling. 104
  • Figure 29. SWOT analysis-Glycolysis for advanced chemical recycling.       106
  • Figure 30. SWOT analysis-Aminolysis for advanced chemical recycling.     108
  • Figure 31.  Coca-Cola PlantBottle®.           121
  • Figure 32. Interrelationship between conventional, bio-based and biodegradable plastics.              121
  • Figure 33. Schematic of an ideal cycle of bio-based material to be used for packaging applications.              122
  • Figure 34. Types of bio-based materials used for antimicrobial food packaging application.             138
  • Figure 35. Production capacities of Polyethylene furanoate (PEF) to 2025.               152
  • Figure 36. Production capacities of Polyethylene furanoate (PEF) to 2025.               161
  • Figure 37. Polyethylene furanoate (Bio-PEF) production capacities 2019-2033 (1,000 tons).            162
  • Figure 38. PHA family.    169
  • Figure 39. PHA production capacities 2019-2033 (1,000 tons).     182
  • Figure 40. Schematic diagram of partial molecular structure of cellulose chain with numbering for carbon atoms and n= number of cellobiose repeating unit. 184
  • Figure 41. Scale of cellulose materials.    185
  • Figure 42. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms.                186
  • Figure 43. Biosynthesis of (a) wood cellulose (b) tunicate cellulose and (c) BC.       187
  • Figure 44. Cellulose microfibrils and nanofibrils. 189
  • Figure 45. TEM image of cellulose nanocrystals. 190
  • Figure 46. CNC slurry.     191
  • Figure 47. CNF gel.           192
  • Figure 48. Bacterial nanocellulose shapes              201
  • Figure 49. BLOOM masterbatch from Algix.           207
  • Figure 50. Typical structure of mycelium-based foam.     209
  • Figure 51. Commercial mycelium composite construction materials.          210
  • Figure 52. Types of natural fibers.             218
  • Figure 53. Absolut natural based fiber bottle cap.              220
  • Figure 54. Adidas algae-ink tees.               220
  • Figure 55. Carlsberg natural fiber beer bottle.     220
  • Figure 56. Miratex watch bands. 221
  • Figure 57. Adidas Made with Nature Ultraboost 22.           221
  • Figure 58. PUMA RE:SUEDE sneaker        221
  • Figure 59. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins.                226
  • Figure 60. Applications of lignin in packaging.      230
  • Figure 61. Paints and coatings industry by market segmentation 2019-2020.          232
  • Figure 62. Schematic of gas barrier properties of nanoclay film.   234
  • Figure 63. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test.        249
  • Figure 64. Applications for CO2. 252
  • Figure 65. Life cycle of CO2-derived products and services.            255
  • Figure 66.  Conversion pathways for CO2-derived polymeric materials      256
  • Figure 67. Bioplastics for flexible packaging by bioplastic material type, 2019–2033 (‘000 tonnes).              260
  • Figure 68. Bioplastics for rigid packaging by bioplastic material type, 2019–2033 (‘000 tonnes).    262
  • Figure 69. Market revenues for bio-based coatings, 2018-2033 (billions USD), conservative estimate.        263
  • Figure 70. Pluumo.          267
  • Figure 71. Anpoly cellulose nanofiber hydrogel.  276
  • Figure 72. MEDICELLU™.               276
  • Figure 73. Asahi Kasei CNF fabric sheet. 284
  • Figure 74. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.              284
  • Figure 75. CNF nonwoven fabric.               285
  • Figure 76. Passionfruit wrapped in Xgo Circular packaging.             292
  • Figure 77. BIOLO e-commerce mailer bag made from PHA.            296
  • Figure 78. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc. 297
  • Figure 79. Fiber-based screw cap.             306
  • Figure 80. CuanSave film.             320
  • Figure 81. ELLEX products.           322
  • Figure 82. CNF-reinforced PP compounds.            323
  • Figure 83. Kirekira! toilet wipes. 323
  • Figure 84. Rheocrysta spray.       327
  • Figure 85. DKS CNF products.      328
  • Figure 86. Photograph (a) and micrograph (b) of mineral/ MFC composite showing the high viscosity and fibrillar structure.            339
  • Figure 87. PHA production process.         344
  • Figure 88. AVAPTM process.       348
  • Figure 89. GreenPower+™ process.          349
  • Figure 90. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.                351
  • Figure 91. CNF gel.           353
  • Figure 92. Block nanocellulose material. 354
  • Figure 93. CNF products developed by Hokuetsu.              354
  • Figure 94. Kami Shoji CNF products.         360
  • Figure 95. IPA synthesis method.              376
  • Figure 96. Compostable water pod.         386
  • Figure 97. XCNF.               401
  • Figure 98: Innventia AB movable nanocellulose demo plant.         402
  • Figure 99. Shellworks packaging containers.         407
  • Figure 100. Thales packaging incorporating Fibrease.       414
  • Figure 101. Sulapac cosmetics containers.             416
  • Figure 102.  Sulzer equipment for PLA polymerization processing.              417
  • Figure 103. Silver / CNF composite dispersions.  424
  • Figure 104. CNF/nanosilver powder.       424
  • Figure 105. Corbion FDCA production process.    425
  • Figure 106. UPM biorefinery process.     427
  • Figure 107. Vegea production process.   431
  • Figure 108. Worn Again products.             434
  • Figure 109. S-CNF in powder form.           435

 

 

The Global Market for Bio-based and Sustainable Packaging 2023-2033
The Global Market for Bio-based and Sustainable Packaging 2023-2033
PDF download/by email.

The Global Market for Bio-based and Sustainable Packaging 2023-2033
The Global Market for Bio-based and Sustainable Packaging 2023-2033
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal. 

To purchase by invoice (bank transfer) or in an alternative currency please contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.