
cover
- Published: April 2025
- Pages: 801
- Tables: 205
- Figures: 266
Bio-based polymers are polymers produced from biological sources/renewable feedstock/biodegradable materials, offering a sustainable alternative to petroleum-based plastics. Currently representing approximately 1% of global polymer production with 4.2 million tonnes annually, bio-based polymers are projected to expand at a compound annual growth rate (CAGR) of 13-15% through 2035 – substantially outpacing the conventional polymer market's modest 2-3% growth trajectory. By 2035, this sustained growth could elevate the bio-based polymer market to approximately 25-30 million tonnes annually, capturing 4-5% of global polymer production. This expansion will be driven by accelerating transitions toward circular economy principles, tightening regulatory frameworks on conventional plastics, and technological breakthroughs improving performance-to-cost ratios across the bio-polymer spectrum.
Bio-based biodegradable polymers have established substantial production capacities, though with moderate utilization rates averaging 65%. These are expected to grow at an impressive 17% CAGR through 2029. In contrast, bio-based non-biodegradable polymers demonstrate higher utilization rates of approximately 90% but are projected to grow at a more modest 10% CAGR during the same period. This differentiation highlights the varying market dynamics and technical maturity across different bio-based polymer categories. Currently, the market is dominated by several established bio-based polymers. Cellulose acetate (CA) and epoxy resins collectively account for over half of the bio-based production volume. Other significant contributors include polyurethanes, polylactic acid, polyamides, and polytrimethylene terephthalate. Emerging polymers like polyhydroxyalkanoates (PHA), polyethylene furanoate (PEF), and casein polymers account for smaller market shares but are poised for substantial growth.
The regional distribution of production capacity reveals Asia's dominance, primarily focusing on PLA and PA production. North America follows, mainly producing PLA and PTT, while Europe primarily produces SCPC and PA. North America is expected to demonstrate the strongest regional growth at 25% CAGR, driven by expansions in PHA and PP production capacity. Market applications for bio-based polymers span numerous sectors. The fiber industry (woven and non-woven) represents the largest application segment, followed by packaging, functional applications, consumer goods, and automotive/transport. Other important but smaller segments include building and construction, electronics, and agriculture.
The growth trajectory is supported by several key market drivers. Global brands are increasingly adopting strategic agendas aligned with sustainability goals, seeking to transition toward climate-friendly solutions and circular economy principles. The concept of renewable carbon—derived from biomass, CO2 capture, and recycling—is gaining traction as an alternative to fossil carbon sources. However, significant regional differences exist in policy support and market development, with Europe potentially losing market share despite its ambitious sustainability policies. Feedstock utilization for bio-based polymers remains highly efficient, with only 0.023% of global biomass production directed toward bio-based polymers. The main feedstocks are sugars and starch obtained from high-yield crops, alongside glycerol, a by-product from biodiesel production. This efficiency translates to minimal land use impact, with just 0.013% of agricultural land indirectly supporting bio-based polymer production. Looking forward, particularly promising growth is expected for PP, PHA, and PEF.
The Global Market for Bio-Based Polymers 2025-2035 provides unparalleled insights into the rapidly evolving global bio-based polymers market, offering strategic intelligence on production capacities, market trends, and growth projections for 2025-2035. With detailed analysis of over 600 companies, innovative technologies, and emerging applications, this report serves as an essential resource for stakeholders across the sustainable materials value chain. Report contents include:
- Bio-Based Feedstocks and Intermediates: Comprehensive examination of biorefinery technologies, feedstock sustainability, land use impacts, and detailed profiles of plant-based feedstocks including:
- Starch-derived intermediates (glucose, lysine, sorbitol)
- Sugar crop derivatives (fructose, 5-HMF, 2,5-FDCA)
- Lignocellulosic biomass components (hemicellulose, lignin)
- Plant oils and non-edible milk sources
- Waste-derived feedstocks (food, agricultural, forestry, municipal)
- Microbial, mineral, and gaseous sources
- Market Analysis by Polymer Type: In-depth evaluation of 17+ commercial bio-based polymers with production data, capacity forecasts, application profiles, and competitive landscapes for:
- Synthetic bio-based polymers (PLA, PET, PTT, PEF, PA, PBAT, PBS, PE, PP)
- Natural bio-based polymers (PHAs, cellulose-based polymers, protein-based polymers)
- Emerging polymer categories (algal, fungal, chitosan-based materials)
- Natural Fibers Market: Detailed assessment of natural fiber types, manufacturing methods, properties, and market applications, including:
- Plant-based fibers (seed, bast, leaf, fruit fibers)
- Animal-based fibers (wool, silk, leather alternatives)
- Composite applications across aerospace, automotive, construction, and consumer goods
- Regional Market Analysis: Granular breakdown of production capacities, market dynamics, policy frameworks, and growth projections across:
- North America
- Europe
- Asia-Pacific (with dedicated sections on China, Japan, Thailand)
- Latin America
- End-Use Market Segments: Targeted analysis of application sectors including:
- Packaging (flexible and rigid)
- Consumer goods
- Automotive and transportation
- Building and construction
- Textiles and fibers
- Electronics
- Agriculture and horticulture
- Sustainability and Environmental Impact: Critical assessment of:
- Life cycle considerations for bio-based polymers
- Carbon footprint comparisons with fossil-based alternatives
- Land use efficiency and feedstock sustainability metrics
- Biodegradability and compostability standards
- Technology Roadmaps: Forward-looking analysis of:
- Next-generation polymer production technologies
- Integration opportunities with chemical recycling
- Novel feedstock developments
- Emerging application areas
- Company Profiles: Comprehensive profiles of 620+ companies across the bio-based polymer value chain, from feedstock suppliers to polymer producers and end-product manufacturers including ADBioplastics, AgroRenew, Archer Daniels Midland, Arkema, Avantium, BASF, BioLogiQ, Bluepha, Borealis, Braskem, Cargill, Cathay Industrial Biotech, Celanese, CelluForce, Circular Systems, CJ Biomaterials, CO2BioClean, Corn Next, Danimer Scientific, DuPont, Eastman Chemical, Ecovative Design, Emirates Biotech, Eni, Evonik, FKuR Kunststoff, FlexSea, Futerro, Genomatica, Global Bioenergies, Helian Polymers BV, Hengli Petrochemical, Huitong Biomaterials, Itaconix, Kaneka, LG Chem, Lenzing, Lygos, METabolic Explorer, MetaFLO Technologies Inc., Mitsubishi Chemical, Modern Meadow, NatureWorks, Newlight Technologies, Nordic Bioproducts, Novamont, Novozymes, Nxtlevvel, Origin Materials, Qore, Ourobio, PhyCo Technologies, Plantic Technologies, ReSource Chemical Corp., Roquette, RWDC Industries, SK Chemicals, Solvay, Spiber, Stora Enso, Sulapac, Sulzer, Teijin, TerraVerdae BioWorks, TotalEnergies Corbion, Toyota Boshoku, UPM Biochemicals, Verde Bioresins, Versalis, and many more across the entire bio-based polymer value chain from pioneering startups to established multinational corporations.
This report delivers crucial market intelligence for:
- Chemical and materials companies exploring sustainable portfolio expansion
- Packaging manufacturers navigating regulatory and consumer-driven sustainability demands
- Investors evaluating opportunities in the bio-based materials space
- Policy makers developing frameworks for the bioeconomy
- R&D leaders prioritizing innovation pathways
- Sustainability professionals benchmarking materials options
With 200+ tables and 260+ figures presenting granular data on production volumes, capacity projections, regional market shares, and application segmentation, this report provides the analytical foundation for strategic decision-making in the rapidly evolving bio-based polymer landscape.
1 EXECUTIVE SUMMARY 44
- 1.1 Global Plastics Market and Supply 44
- 1.2 Recycling Polymers 45
- 1.3 Bio-based and Biodegradable vs. Non-biodegradable Polymers 46
- 1.4 Regional Distribution 47
- 1.5 Future Growth Prospects 48
- 1.6 Capacity Utilization Rates by Polymer Type 49
- 1.7 Next Generation Bio-based Polymers 52
- 1.8 Integration with Chemical Recycling 54
- 1.9 Novel Feedstock Sources 55
- 1.10 Investment Trends and Market Forecasts 57
- 1.11 Environmental Impact and Sustainability 61
- 1.11.1 Life Cycle Assessment of Bio-based Polymers 61
- 1.11.2 Land Use and Feedstock Sustainability 62
- 1.11.3 Carbon Footprint Comparison with Fossil-based Alternatives 63
- 1.12 Bio-based Polymers Regulations 65
2 BIO-BASED FEEDSTOCKS AND INTERMEDIATES MARKET 68
- 2.1 BIOREFINERIES 68
- 2.2 BIO-BASED FEEDSTOCK AND LAND USE 69
- 2.3 PLANT-BASED 71
- 2.3.1 STARCH 71
- 2.3.1.1 Overview 71
- 2.3.1.2 Sources 72
- 2.3.1.3 Global production 72
- 2.3.1.4 Lysine 73
- 2.3.1.4.1 Source 73
- 2.3.1.4.2 Applications 74
- 2.3.1.4.3 Global production 74
- 2.3.1.5 Glucose 75
- 2.3.1.5.1 HMDA 76
- 2.3.1.5.1.1 Overview 76
- 2.3.1.5.1.2 Sources 76
- 2.3.1.5.1.3 Applications 77
- 2.3.1.5.1.4 Global production 77
- 2.3.1.5.2 1,5-diaminopentane (DA5) 78
- 2.3.1.5.2.1 Overview 78
- 2.3.1.5.2.2 Sources 78
- 2.3.1.5.2.3 Applications 79
- 2.3.1.5.2.4 Global production 79
- 2.3.1.5.3 Sorbitol 80
- 2.3.1.5.3.1 Isosorbide 80
- 2.3.1.5.3.1.1 Overview 80
- 2.3.1.5.3.1.2 Sources 80
- 2.3.1.5.3.1.3 Applications 80
- 2.3.1.5.3.1.4 Global production 81
- 2.3.1.5.3.1 Isosorbide 80
- 2.3.1.5.4 Lactic acid 82
- 2.3.1.5.4.1 Overview 82
- 2.3.1.5.4.2 D-lactic acid 82
- 2.3.1.5.4.3 L-lactic acid 82
- 2.3.1.5.4.4 Lactide 83
- 2.3.1.5.5 Itaconic acid 84
- 2.3.1.5.5.1 Overview 84
- 2.3.1.5.5.2 Sources 85
- 2.3.1.5.5.3 Applications 85
- 2.3.1.5.5.4 Global production 85
- 2.3.1.5.6 3-HP 86
- 2.3.1.5.6.1 Overview 86
- 2.3.1.5.6.2 Sources 86
- 2.3.1.5.6.3 Applications 87
- 2.3.1.5.6.4 Global production 87
- 2.3.1.5.6.5 Acrylic acid 88
- 2.3.1.5.6.5.1 Overview 88
- 2.3.1.5.6.5.2 Applications 89
- 2.3.1.5.6.5.3 Global production 89
- 2.3.1.5.6.6 1,3-Propanediol (1,3-PDO) 90
- 2.3.1.5.6.6.1 Overview 90
- 2.3.1.5.6.6.2 Applications 90
- 2.3.1.5.6.6.3 Global production 90
- 2.3.1.5.7 Succinic Acid 91
- 2.3.1.5.7.1 Overview 91
- 2.3.1.5.7.2 Sources 91
- 2.3.1.5.7.3 Applications 92
- 2.3.1.5.7.4 Global production 92
- 2.3.1.5.7.5 1,4-Butanediol (1,4-BDO) 93
- 2.3.1.5.7.5.1 Overview 93
- 2.3.1.5.7.5.2 Applications 93
- 2.3.1.5.7.5.3 Gobal production 94
- 2.3.1.5.7.6 Tetrahydrofuran (THF) 94
- 2.3.1.5.7.6.1 Overview 94
- 2.3.1.5.7.6.2 Applications 95
- 2.3.1.5.7.6.3 Global production 95
- 2.3.1.5.8 Adipic acid 96
- 2.3.1.5.8.1 Overview 96
- 2.3.1.5.8.2 Applications 96
- 2.3.1.5.8.3 Caprolactame 97
- 2.3.1.5.8.3.1 Overview 97
- 2.3.1.5.8.3.2 Applications 97
- 2.3.1.5.8.3.3 Global production 98
- 2.3.1.5.9 Isobutanol 99
- 2.3.1.5.9.1 Overview 99
- 2.3.1.5.9.2 Sources 99
- 2.3.1.5.9.3 Applications 99
- 2.3.1.5.9.4 Global production 100
- 2.3.1.5.9.5 p-Xylene 100
- 2.3.1.5.9.5.1 Overview 100
- 2.3.1.5.9.5.2 Sources 101
- 2.3.1.5.9.5.3 Applications 101
- 2.3.1.5.9.5.4 Global production 101
- 2.3.1.5.9.5.5 Terephthalic acid 102
- 2.3.1.5.9.5.6 Overview 102
- 2.3.1.5.10 1,3 Proppanediol 103
- 2.3.1.5.10.1 Overview 103
- 2.3.1.5.10.2 Sources 103
- 2.3.1.5.10.3 Applications 104
- 2.3.1.5.10.4 Global production 104
- 2.3.1.5.11 Monoethylene glycol (MEG) 105
- 2.3.1.5.11.1 Overview 105
- 2.3.1.5.11.2 Sources 105
- 2.3.1.5.11.3 Applications 105
- 2.3.1.5.11.4 Global production 106
- 2.3.1.5.12 Ethanol 106
- 2.3.1.5.12.1 Overview 106
- 2.3.1.5.12.2 Sources 107
- 2.3.1.5.12.3 Applications 107
- 2.3.1.5.12.4 Global production 107
- 2.3.1.5.12.5 Ethylene 108
- 2.3.1.5.12.5.1 Overview 108
- 2.3.1.5.12.5.2 Applications 108
- 2.3.1.5.12.5.3 Global production 109
- 2.3.1.5.12.5.4 Propylene 109
- 2.3.1.5.12.5.5 Vinyl chloride 111
- 2.3.1.5.12.6 Methly methacrylate 112
- 2.3.1.5.1 HMDA 76
- 2.3.2 SUGAR CROPS 114
- 2.3.2.1 Saccharose 114
- 2.3.2.1.1 Aniline 114
- 2.3.2.1.1.1 Overview 114
- 2.3.2.1.1.2 Applications 114
- 2.3.2.1.1.3 Global production 115
- 2.3.2.1.2 Fructose 115
- 2.3.2.1.2.1 Overview 115
- 2.3.2.1.2.2 Applications 115
- 2.3.2.1.2.3 Global production 116
- 2.3.2.1.2.4 5-Hydroxymethylfurfural (5-HMF) 116
- 2.3.2.1.2.4.1 Overview 116
- 2.3.2.1.2.4.2 Applications 116
- 2.3.2.1.2.4.3 Global production 117
- 2.3.2.1.2.5 5-Chloromethylfurfural (5-CMF) 117
- 2.3.2.1.2.5.1 Overview 117
- 2.3.2.1.2.5.2 Applications 118
- 2.3.2.1.2.5.3 Global production 118
- 2.3.2.1.2.6 Levulinic Acid 119
- 2.3.2.1.2.6.1 Overview 119
- 2.3.2.1.2.6.2 Applications 119
- 2.3.2.1.2.6.3 Global production 120
- 2.3.2.1.2.7 FDME 120
- 2.3.2.1.2.7.1 Overview 120
- 2.3.2.1.2.7.2 Applications 120
- 2.3.2.1.2.7.3 Global production 121
- 2.3.2.1.2.8 2,5-FDCA 121
- 2.3.2.1.2.8.1 Overview 121
- 2.3.2.1.2.8.2 Applications 122
- 2.3.2.1.2.8.3 Global production 122
- 2.3.2.1.1 Aniline 114
- 2.3.2.1 Saccharose 114
- 2.3.3 LIGNOCELLULOSIC BIOMASS 123
- 2.3.3.1 Levoglucosenone 123
- 2.3.3.1.1 Overview 123
- 2.3.3.1.2 Applications 123
- 2.3.3.1.3 Global production 123
- 2.3.3.2 Hemicellulose 124
- 2.3.3.2.1 Overview 124
- 2.3.3.2.2 Biochemicals from hemicellulose 124
- 2.3.3.2.3 Global production 126
- 2.3.3.2.4 Furfural 126
- 2.3.3.2.4.1 Overview 126
- 2.3.3.2.4.2 Applications 126
- 2.3.3.2.4.3 Global production 127
- 2.3.3.2.4.4 Furfuyl alcohol 127
- 2.3.3.2.4.4.1 Overview 127
- 2.3.3.2.4.4.2 Applications 128
- 2.3.3.2.4.4.3 Global production 128
- 2.3.3.3 Lignin 129
- 2.3.3.3.1 Overview 129
- 2.3.3.3.2 Sources 129
- 2.3.3.3.3 Applications 130
- 2.3.3.3.3.1 Aromatic compounds 130
- 2.3.3.3.3.1.1 Benzene, toluene and xylene 131
- 2.3.3.3.3.1.2 Phenol and phenolic resins 131
- 2.3.3.3.3.1.3 Vanillin 132
- 2.3.3.3.3.2 Polymers 132
- 2.3.3.3.3.1 Aromatic compounds 130
- 2.3.3.3.4 Global production 134
- 2.3.3.1 Levoglucosenone 123
- 2.3.4 PLANT OILS 135
- 2.3.4.1 Overview 135
- 2.3.4.2 Glycerol 135
- 2.3.4.2.1 Overview 135
- 2.3.4.2.2 Applications 135
- 2.3.4.2.3 Global production 136
- 2.3.4.2.4 MPG 136
- 2.3.4.2.4.1 Overview 136
- 2.3.4.2.4.2 Applications 137
- 2.3.4.2.4.3 Global production 137
- 2.3.4.2.5 ECH 138
- 2.3.4.2.5.1 Overview 138
- 2.3.4.2.5.2 Applications 138
- 2.3.4.2.5.3 Global production 138
- 2.3.4.3 Fatty acids 139
- 2.3.4.3.1 Overview 139
- 2.3.4.3.2 Applications 139
- 2.3.4.3.3 Global production 140
- 2.3.4.4 Castor oil 140
- 2.3.4.4.1 Overview 140
- 2.3.4.4.2 Sebacic acid 141
- 2.3.4.4.2.1 Overview 141
- 2.3.4.4.2.2 Applications 141
- 2.3.4.4.2.3 Global production 141
- 2.3.4.4.3 11-Aminoundecanoic acid (11-AA) 142
- 2.3.4.4.3.1 Overview 142
- 2.3.4.4.3.2 Applications 142
- 2.3.4.4.3.3 Global production 143
- 2.3.4.5 Dodecanedioic acid (DDDA) 144
- 2.3.4.5.1 Overview 144
- 2.3.4.5.2 Applications 144
- 2.3.4.5.3 Global production 145
- 2.3.4.6 Pentamethylene diisocyanate 145
- 2.3.4.6.1 Overview 145
- 2.3.4.6.2 Applications 146
- 2.3.4.6.3 Global production 146
- 2.3.5 NON-EDIBIBLE MILK 147
- 2.3.5.1 Casein 147
- 2.3.5.1.1 Overview 147
- 2.3.5.1.2 Applications 147
- 2.3.5.1.3 Global production 148
- 2.3.5.1 Casein 147
- 2.3.1 STARCH 71
- 2.4 WASTE 148
- 2.4.1 Food waste 148
- 2.4.1.1 Overview 148
- 2.4.1.2 Products and applications 149
- 2.4.1.2.1 Global production 149
- 2.4.2 Agricultural waste 150
- 2.4.2.1 Overview 150
- 2.4.2.2 Products and applications 150
- 2.4.2.3 Global production 150
- 2.4.3 Forestry waste 151
- 2.4.3.1 Overview 151
- 2.4.3.2 Products and applications 151
- 2.4.3.3 Global production 151
- 2.4.4 Aquaculture/fishing waste 152
- 2.4.4.1 Overview 152
- 2.4.4.2 Products and applications 152
- 2.4.4.3 Global production 152
- 2.4.5 Municipal solid waste 153
- 2.4.5.1 Overview 153
- 2.4.5.2 Products and applications 153
- 2.4.5.3 Global production 154
- 2.4.6 Industrial waste 154
- 2.4.6.1 Overview 154
- 2.4.7 Waste oils 154
- 2.4.7.1 Overview 154
- 2.4.7.2 Products and applications 155
- 2.4.7.3 Global production 155
- 2.4.1 Food waste 148
- 2.5 MICROBIAL & MINERAL SOURCES 156
- 2.5.1 Microalgae 156
- 2.5.1.1 Overview 156
- 2.5.1.2 Products and applications 156
- 2.5.1.3 Global production 156
- 2.5.2 Macroalgae 157
- 2.5.2.1 Overview 157
- 2.5.2.2 Products and applications 157
- 2.5.2.3 Global production 158
- 2.5.3 Mineral sources 158
- 2.5.3.1 Overview 158
- 2.5.3.2 Products and applications 159
- 2.5.1 Microalgae 156
- 2.6 GASEOUS 159
- 2.6.1 Biogas 160
- 2.6.1.1 Overview 160
- 2.6.1.2 Products and applications 160
- 2.6.1.3 Global production 161
- 2.6.2 Syngas 162
- 2.6.2.1 Overview 162
- 2.6.2.2 Products and applications 163
- 2.6.2.3 Global production 163
- 2.6.3 Off gases - fermentation CO2, CO 164
- 2.6.3.1 Overview 164
- 2.6.3.2 Products and applications 164
- 2.6.1 Biogas 160
- 2.7 BIO-BASED FEEDSTOCKS AND INTERMEDIATES COMPANY PROFILES 165 (116 company profiles)
3 BIO-BASED POLYMERS 237
- 3.1 BIO-BASED OR RENEWABLE PLASTICS 237
- 3.1.1 Drop-in bio-based plastics 237
- 3.1.2 Novel bio-based plastics 238
- 3.2 BIODEGRADABLE AND COMPOSTABLE PLASTICS 239
- 3.2.1 Biodegradability 239
- 3.2.2 Compostability 240
- 3.3 TYPES 241
- 3.4 KEY MARKET PLAYERS 242
- 3.5 SYNTHETIC BIO-BASED POLYMERS 243
- 3.5.1 Aliphatic polycarbonates (APC) – cyclic and linear 244
- 3.5.1.1 Market analysis 244
- 3.5.1.2 Production 245
- 3.5.1.3 Applications 246
- 3.5.1.4 Producers 247
- 3.5.2 Polylactic acid (Bio-PLA) 248
- 3.5.2.1 Market analysis 248
- 3.5.2.2 Production 249
- 3.5.2.3 Producers and production capacities, current and planned 249
- 3.5.2.3.1 Lactic acid producers and production capacities 249
- 3.5.2.3.2 PLA producers and production capacities 250
- 3.5.2.3.3 Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes) 251
- 3.5.3 Polyethylene terephthalate (Bio-PET) 252
- 3.5.3.1 Market analysis 252
- 3.5.3.2 Producers and production capacities 253
- 3.5.3.3 Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes) 253
- 3.5.4 Polytrimethylene terephthalate (Bio-PTT) 254
- 3.5.4.1 Market analysis 254
- 3.5.4.2 Producers and production capacities 255
- 3.5.4.3 Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes) 255
- 3.5.5 Polyethylene furanoate (Bio-PEF) 255
- 3.5.5.1 Market analysis 256
- 3.5.5.2 Comparative properties to PET 257
- 3.5.5.3 Producers and production capacities 257
- 3.5.5.3.1 FDCA and PEF producers and production capacities 257
- 3.5.5.3.2 Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes). 258
- 3.5.6 Polyamides (Bio-PA) 258
- 3.5.6.1 Market analysis 259
- 3.5.6.2 Producers and production capacities 260
- 3.5.6.3 Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes) 260
- 3.5.7 Poly(butylene adipate-co-terephthalate) (Bio-PBAT) 260
- 3.5.7.1 Market analysis 261
- 3.5.7.2 Producers and production capacities 261
- 3.5.7.3 Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes) 262
- 3.5.8 Polybutylene succinate (PBS) and copolymers 262
- 3.5.8.1 Market analysis 263
- 3.5.8.2 Producers and production capacities 264
- 3.5.8.3 Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes) 264
- 3.5.9 Polyethylene (Bio-PE) 265
- 3.5.9.1 Market analysis 265
- 3.5.9.2 Producers and production capacities 265
- 3.5.9.3 Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes). 266
- 3.5.10 Polypropylene (Bio-PP) 266
- 3.5.10.1 Market analysis 266
- 3.5.10.2 Producers and production capacities 267
- 3.5.10.3 Polypropylene (Bio-PP) production 2019-2035 (1,000 tonnes) 267
- 3.5.11 Superabsorbent polymers 268
- 3.5.11.1 Market analysis 268
- 3.5.11.2 Production 269
- 3.5.11.3 Applications 270
- 3.5.11.4 Producers 271
- 3.5.1 Aliphatic polycarbonates (APC) – cyclic and linear 244
- 3.6 NATURAL BIO-BASED POLYMERS 272
- 3.6.1 Polyhydroxyalkanoates (PHA) 272
- 3.6.1.1 Technology description 272
- 3.6.1.2 Types 274
- 3.6.1.2.1 PHB 275
- 3.6.1.2.2 PHBV 276
- 3.6.1.3 Synthesis and production processes 277
- 3.6.1.4 Market analysis 279
- 3.6.1.5 Commercially available PHAs 280
- 3.6.1.6 Markets for PHAs 281
- 3.6.1.6.1 Packaging 282
- 3.6.1.6.2 Cosmetics 283
- 3.6.1.6.2.1 PHA microspheres 283
- 3.6.1.6.3 Medical 284
- 3.6.1.6.3.1 Tissue engineering 284
- 3.6.1.6.3.2 Drug delivery 284
- 3.6.1.6.4 Agriculture 284
- 3.6.1.6.4.1 Mulch film 284
- 3.6.1.6.4.2 Grow bags 285
- 3.6.1.7 Producers and production capacities 285
- 3.6.1.8 PHA production capacities 2019-2035 (1,000 tonnes) 286
- 3.6.2 Cellulose 287
- 3.6.2.1 Cellulose acetate (CA) 287
- 3.6.2.1.1 Market analysis 287
- 3.6.2.1.2 Production 288
- 3.6.2.1.3 Applications 289
- 3.6.2.1.4 Producers 290
- 3.6.2.2 Microfibrillated cellulose (MFC) 291
- 3.6.2.2.1 Market analysis 291
- 3.6.2.2.2 Producers and production capacities 292
- 3.6.2.3 Nanocellulose 292
- 3.6.2.3.1 Cellulose nanocrystals 293
- 3.6.2.3.1.1 Synthesis 293
- 3.6.2.3.1.2 Properties 295
- 3.6.2.3.1.3 Production 296
- 3.6.2.3.1.4 Applications 296
- 3.6.2.3.1.5 Market analysis 297
- 3.6.2.3.1.6 Producers and production capacities 298
- 3.6.2.3.2 Cellulose nanofibers 299
- 3.6.2.3.2.1 Applications 299
- 3.6.2.3.2.2 Market analysis 300
- 3.6.2.3.2.3 Producers and production capacities 301
- 3.6.2.3.3 Bacterial Nanocellulose (BNC) 302
- 3.6.2.3.3.1 Production 302
- 3.6.2.3.3.2 Applications 305
- 3.6.2.3.1 Cellulose nanocrystals 293
- 3.6.2.1 Cellulose acetate (CA) 287
- 3.6.3 Protein-based bio-polymers 305
- 3.6.3.1 Types, applications and producers 306
- 3.6.3.2 Casein polymers 307
- 3.6.3.2.1 Market analysis 307
- 3.6.3.2.2 Production 308
- 3.6.3.2.3 Applications 309
- 3.6.3.2.4 Producers 310
- 3.6.4 Algal and fungal 311
- 3.6.4.1 Algal 311
- 3.6.4.1.1 Advantages 311
- 3.6.4.1.2 Production 313
- 3.6.4.1.3 Producers 313
- 3.6.4.2 Mycelium 314
- 3.6.4.2.1 Properties 314
- 3.6.4.2.2 Applications 314
- 3.6.4.2.3 Commercialization 316
- 3.6.4.1 Algal 311
- 3.6.5 Chitosan 316
- 3.6.5.1 Technology description 316
- 3.6.1 Polyhydroxyalkanoates (PHA) 272
- 3.7 NATURAL FIBERS 318
- 3.7.1 Manufacturing method, matrix materials and applications of natural fibers 321
- 3.7.2 Advantages of natural fibers 322
- 3.7.3 Commercially available next-gen natural fiber products 323
- 3.7.4 Market drivers for next-gen natural fibers 326
- 3.7.5 Challenges 327
- 3.7.6 Plants (cellulose, lignocellulose) 328
- 3.7.6.1 Seed fibers 328
- 3.7.6.1.1 Cotton 328
- 3.7.6.1.1.1 Production volumes 2018-2035 328
- 3.7.6.1.2 Kapok 329
- 3.7.6.1.2.1 Production volumes 2018-2035 330
- 3.7.6.1.3 Luffa 330
- 3.7.6.1.1 Cotton 328
- 3.7.6.2 Bast fibers 331
- 3.7.6.2.1 Jute 332
- 3.7.6.2.2 Production volumes 2018-2035 333
- 3.7.6.2.2.1 Hemp 333
- 3.7.6.2.2.2 Production volumes 2018-2035 334
- 3.7.6.2.3 Flax 335
- 3.7.6.2.3.1 Production volumes 2018-2035 336
- 3.7.6.2.4 Ramie 336
- 3.7.6.2.4.1 Production volumes 2018-2035 337
- 3.7.6.2.5 Kenaf 338
- 3.7.6.2.5.1 Production volumes 2018-2035 339
- 3.7.6.3 Leaf fibers 339
- 3.7.6.3.1 Sisal 339
- 3.7.6.3.1.1 Production volumes 2018-2035 340
- 3.7.6.3.2 Abaca 340
- 3.7.6.3.2.1 Production volumes 2018-2035 341
- 3.7.6.3.1 Sisal 339
- 3.7.6.4 Fruit fibers 342
- 3.7.6.4.1 Coir 342
- 3.7.6.4.1.1 Production volumes 2018-2035 342
- 3.7.6.4.2 Banana 343
- 3.7.6.4.2.1 Production volumes 2018-2035 344
- 3.7.6.4.3 Pineapple 344
- 3.7.6.4.1 Coir 342
- 3.7.6.5 Stalk fibers from agricultural residues 346
- 3.7.6.5.1 Rice fiber 346
- 3.7.6.5.2 Corn 347
- 3.7.6.6 Cane, grasses and reed 347
- 3.7.6.6.1 Switch grass 347
- 3.7.6.6.2 Sugarcane (agricultural residues) 348
- 3.7.6.6.3 Bamboo 349
- 3.7.6.6.3.1 Production volumes 2018-2035 349
- 3.7.6.6.4 Fresh grass (green biorefinery) 350
- 3.7.6.1 Seed fibers 328
- 3.7.7 Animal (fibrous protein) 350
- 3.7.7.1 Wool 350
- 3.7.7.1.1 Alternative wool materials 351
- 3.7.7.1.2 Producers 351
- 3.7.7.2 Silk fiber 351
- 3.7.7.2.1 Alternative silk materials 352
- 3.7.7.2.1.1 Producers 352
- 3.7.7.2.1 Alternative silk materials 352
- 3.7.7.3 Leather 352
- 3.7.7.3.1 Alternative leather materials 353
- 3.7.7.3.1.1 Producers 353
- 3.7.7.3.1 Alternative leather materials 353
- 3.7.7.4 Fur 354
- 3.7.7.4.1 Producers 354
- 3.7.7.5 Down 355
- 3.7.7.5.1 Alternative down materials 355
- 3.7.7.5.1.1 Producers 355
- 3.7.7.5.1 Alternative down materials 355
- 3.7.7.1 Wool 350
- 3.7.8 Markets for natural fibers 355
- 3.7.8.1 Composites 355
- 3.7.8.2 Applications 356
- 3.7.8.3 Natural fiber injection moulding compounds 357
- 3.7.8.3.1 Properties 357
- 3.7.8.3.2 Applications 357
- 3.7.8.4 Non-woven natural fiber mat composites 358
- 3.7.8.4.1 Automotive 358
- 3.7.8.4.2 Applications 358
- 3.7.8.5 Aligned natural fiber-reinforced composites 358
- 3.7.8.6 Natural fiber biobased polymer compounds 359
- 3.7.8.7 Natural fiber biobased polymer non-woven mats 360
- 3.7.8.7.1 Flax 360
- 3.7.8.7.2 Kenaf 360
- 3.7.8.8 Natural fiber thermoset bioresin composites 360
- 3.7.8.9 Aerospace 360
- 3.7.8.9.1 Market overview 360
- 3.7.8.10 Automotive 361
- 3.7.8.10.1 Market overview 361
- 3.7.8.10.2 Applications of natural fibers 365
- 3.7.8.11 Building/construction 365
- 3.7.8.11.1 Market overview 365
- 3.7.8.11.2 Applications of natural fibers 366
- 3.7.8.12 Sports and leisure 367
- 3.7.8.12.1 Market overview 367
- 3.7.8.13 Textiles 368
- 3.7.8.13.1 Market overview 368
- 3.7.8.13.2 Consumer apparel 369
- 3.7.8.13.3 Geotextiles 369
- 3.7.8.14 Packaging 370
- 3.7.8.14.1 Market overview 370
- 3.7.9 Global production of natural fibers 372
- 3.7.9.1 Overall global fibers market 372
- 3.7.9.2 Plant-based fiber production 374
- 3.7.9.3 Animal-based natural fiber production 375
- 3.8 LIGNIN 376
- 3.8.1 Introduction 376
- 3.8.1.1 What is lignin? 376
- 3.8.1.1.1 Lignin structure 376
- 3.8.1.2 Types of lignin 377
- 3.8.1.2.1 Sulfur containing lignin 379
- 3.8.1.2.2 Sulfur-free lignin from biorefinery process 380
- 3.8.1.3 Properties 380
- 3.8.1.4 The lignocellulose biorefinery 382
- 3.8.1.5 Markets and applications 383
- 3.8.1.6 Challenges for using lignin 384
- 3.8.1.1 What is lignin? 376
- 3.8.2 Lignin production processes 385
- 3.8.2.1 Lignosulphonates 386
- 3.8.2.2 Kraft Lignin 386
- 3.8.2.2.1 LignoBoost process 387
- 3.8.2.2.2 LignoForce method 387
- 3.8.2.2.3 Sequential Liquid Lignin Recovery and Purification 388
- 3.8.2.2.4 A-Recovery+ 389
- 3.8.2.3 Soda lignin 389
- 3.8.2.4 Biorefinery lignin 390
- 3.8.2.4.1 Commercial and pre-commercial biorefinery lignin production facilities and processes 391
- 3.8.2.5 Organosolv lignins 393
- 3.8.2.6 Hydrolytic lignin 393
- 3.8.3 Markets for lignin 394
- 3.8.3.1 Market drivers and trends for lignin 394
- 3.8.3.2 Production capacities 395
- 3.8.3.2.1 Technical lignin availability (dry ton/y) 395
- 3.8.3.2.2 Biomass conversion (Biorefinery) 396
- 3.8.3.3 Estimated consumption of lignin 396
- 3.8.3.4 Prices 397
- 3.8.3.5 Heat and power energy 398
- 3.8.3.6 Pyrolysis and syngas 398
- 3.8.3.7 Aromatic compounds 398
- 3.8.3.7.1 Benzene, toluene and xylene 398
- 3.8.3.7.2 Phenol and phenolic resins 399
- 3.8.3.7.3 Vanillin 399
- 3.8.3.8 Plastics and polymers 399
- 3.8.1 Introduction 376
- 3.9 END USE MARKETS FOR BIO-BASED POLYMERS 400
- 3.9.1 Packaging (Flexible and Rigid) 402
- 3.9.1.1 Processes for bioplastics in packaging 402
- 3.9.1.2 Applications 403
- 3.9.1.3 Flexible packaging 403
- 3.9.1.3.1 Production volumes 2019-2035 405
- 3.9.1.4 Rigid packaging 405
- 3.9.1.4.1 Production volumes 2019-2035 407
- 3.9.2 Consumer Goods 408
- 3.9.2.1 Applications 408
- 3.9.2.2 Production volumes 2019-2035 408
- 3.9.3 Automotive 409
- 3.9.3.1 Applications 409
- 3.9.3.2 Production volumes 2019-2035 410
- 3.9.4 Building and Construction 410
- 3.9.4.1 Applications 410
- 3.9.4.2 Production volumes 2019-2035 411
- 3.9.5 Textiles and Fibers 411
- 3.9.5.1 Apparel 412
- 3.9.5.2 Footwear 412
- 3.9.5.3 Medical textiles 413
- 3.9.5.4 Production volumes 2019-2035 414
- 3.9.6 Electronics 414
- 3.9.6.1 Applications 414
- 3.9.6.2 Production volumes 2019-2035 415
- 3.9.7 Agriculture and Horticulture 415
- 3.9.7.1 Production volumes 2019-2035 416
- 3.9.8 Production of Biopolymers, by region 417
- 3.9.8.1 North America 418
- 3.9.8.2 Europe 419
- 3.9.8.3 Asia-Pacific 420
- 3.9.8.3.1 China 421
- 3.9.8.3.2 Japan 422
- 3.9.8.3.3 Thailand 422
- 3.9.8.3.4 Indonesia 422
- 3.9.8.4 Latin America 423
- 3.9.1 Packaging (Flexible and Rigid) 402
- 3.10 BIO-BASED POLYMERS COMPANY PROFILES 426 (520 company profiles)
4 RESEARCH METHODOLOGY 790
5 REFERENCES 791
List of Tables
- Table 1. Bio-based and Biodegradable vs. Non-biodegradable Polymers. 46
- Table 2. Capacity Utilization Rates by Polymer Type. 51
- Table 3. Next Generation Bio-based Polymers. 52
- Table 4. Novel Feedstock Sources 55
- Table 5. Global bio-based polymers market, by type 2020-2025 (revenues). 57
- Table 6. Global bio-based polymers market, by type 2020-2025 (metric tonnes). 58
- Table 7. Life Cycle Assessment of Bio-based Polymers. 61
- Table 8. Carbon Footprint Comparison with Fossil-based Alternatives 63
- Table 9. Plant-based feedstocks and biochemicals produced. 69
- Table 10. Waste-based feedstocks and biochemicals produced. 70
- Table 11. Microbial and mineral-based feedstocks and biochemicals produced. 71
- Table 12. Common starch sources that can be used as feedstocks for producing biochemicals. 72
- Table 13. Common lysine sources that can be used as feedstocks for producing biochemicals. 73
- Table 14. Applications of lysine as a feedstock for biochemicals. 73
- Table 15. HDMA sources that can be used as feedstocks for producing biochemicals. 76
- Table 16. Applications of bio-based HDMA. 76
- Table 17. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5). 78
- Table 18. Applications of DN5. 78
- Table 19. Biobased feedstocks for isosorbide. 80
- Table 20. Applications of bio-based isosorbide. 80
- Table 21. Lactide applications. 83
- Table 22. Biobased feedstock sources for itaconic acid. 84
- Table 23. Applications of bio-based itaconic acid. 84
- Table 24. Biobased feedstock sources for 3-HP. 86
- Table 25. Applications of 3-HP. 86
- Table 26. Applications of bio-based acrylic acid. 88
- Table 27. Applications of bio-based 1,3-Propanediol (1,3-PDO). 89
- Table 28. Biobased feedstock sources for Succinic acid. 90
- Table 29. Applications of succinic acid. 91
- Table 30. Applications of bio-based 1,4-Butanediol (BDO). 92
- Table 31. Applications of bio-based Tetrahydrofuran (THF). 94
- Table 32. Applications of bio-based adipic acid. 95
- Table 33. Applications of bio-based caprolactam. 96
- Table 34. Biobased feedstock sources for isobutanol. 98
- Table 35. Applications of bio-based isobutanol. 98
- Table 36. Biobased feedstock sources for p-Xylene. 100
- Table 37. Applications of bio-based p-Xylene. 100
- Table 38. Applications of bio-based Terephthalic acid (TPA). 101
- Table 39. Biobased feedstock sources for 1,3 Proppanediol. 102
- Table 40. Applications of bio-based 1,3 Proppanediol. 103
- Table 41. Biobased feedstock sources for MEG. 104
- Table 42. Applications of bio-based MEG. 104
- Table 43. Biobased MEG producers capacities. 105
- Table 44. Biobased feedstock sources for ethanol. 106
- Table 45. Applications of bio-based ethanol. 106
- Table 46. Applications of bio-based ethylene. 107
- Table 47. Applications of bio-based propylene. 108
- Table 48. Applications of bio-based vinyl chloride. 110
- Table 49. Applications of bio-based Methly methacrylate. 111
- Table 50. Applications of bio-based aniline. 113
- Table 51. Applications of biobased fructose. 114
- Table 52. Applications of bio-based 5-Hydroxymethylfurfural (5-HMF). 116
- Table 53. Applications of 5-(Chloromethyl)furfural (CMF). 117
- Table 54. Applications of Levulinic acid. 118
- Table 55. Markets and applications for bio-based FDME. 119
- Table 56. Applications of FDCA. 121
- Table 57. Markets and applications for bio-based levoglucosenone. 122
- Table 58. Biochemicals derived from hemicellulose 123
- Table 59. Markets and applications for bio-based hemicellulose 124
- Table 60. Markets and applications for bio-based furfuryl alcohol. 127
- Table 61. Commercial and pre-commercial biorefinery lignin production facilities and processes 128
- Table 62. Lignin aromatic compound products. 129
- Table 63. Prices of benzene, toluene, xylene and their derivatives. 130
- Table 64. Lignin products in polymeric materials. 131
- Table 65. Application of lignin in plastics and composites. 132
- Table 66. Markets and applications for bio-based glycerol. 134
- Table 67. Markets and applications for Bio-based MPG. 136
- Table 68. Markets and applications: Bio-based ECH. 137
- Table 69. Mineral source products and applications. 158
- Table 70. Type of biodegradation. 239
- Table 71. Advantages and disadvantages of biobased plastics compared to conventional plastics. 239
- Table 72. Types of Bio-based and/or Biodegradable Plastics, applications. 240
- Table 73. Key market players by Bio-based and/or Biodegradable Plastic types. 242
- Table 74. Aliphatic polycarbonates (APC) – cyclic and linear production 2019-2035 (1,000 tonnes) 244
- Table 75. Aliphatic polycarbonates (APC) – cyclic and linear Applications. 245
- Table 76. Aliphatic polycarbonates (APC) producers. 246
- Table 77. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications. 247
- Table 78. Lactic acid producers and production capacities. 248
- Table 79. PLA producers and production capacities. 249
- Table 80. Planned PLA capacity expansions in China. 249
- Table 81. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications. 251
- Table 82. Bio-based Polyethylene terephthalate (PET) producers and production capacities, 252
- Table 83. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications. 253
- Table 84. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers. 254
- Table 85. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications. 255
- Table 86. PEF vs. PET. 256
- Table 87. FDCA and PEF producers. 256
- Table 88. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications. 258
- Table 89. Leading Bio-PA producers production capacities. 259
- Table 90. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications. 260
- Table 91. Leading PBAT producers, production capacities and brands. 260
- Table 92. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications. 262
- Table 93. Leading PBS producers and production capacities. 263
- Table 94. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications. 264
- Table 95. Leading Bio-PE producers. 264
- Table 96. Bio-PP market analysis- manufacture, advantages, disadvantages and applications. 265
- Table 97. Leading Bio-PP producers and capacities. 266
- Table 98. Superabsorbent polymers production 2019-2035 (1,000 tonnes) 268
- Table 99. Superabsorbent polymers Applications. 269
- Table 100. Superabsorbent polymers producers. 270
- Table 101.Types of PHAs and properties. 274
- Table 102. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 275
- Table 103. Polyhydroxyalkanoate (PHA) extraction methods. 277
- Table 104. Polyhydroxyalkanoates (PHA) market analysis. 278
- Table 105. Commercially available PHAs. 279
- Table 106. Markets and applications for PHAs. 280
- Table 107. Applications, advantages and disadvantages of PHAs in packaging. 281
- Table 108. Polyhydroxyalkanoates (PHA) producers. 284
- Table 109. Cellulose acetate (CA) production 2019-2035 (1,000 tonnes) 288
- Table 110. Cellulose acetate (CA) applications. 288
- Table 111. Cellulose acetate (CA) producers. 289
- Table 112. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications. 290
- Table 113. Leading MFC producers and capacities. 291
- Table 114. Synthesis methods for cellulose nanocrystals (CNC). 292
- Table 115. CNC sources, size and yield. 293
- Table 116. CNC properties. 294
- Table 117. Mechanical properties of CNC and other reinforcement materials. 294
- Table 118. Applications of nanocrystalline cellulose (NCC). 296
- Table 119. Cellulose nanocrystals analysis. 296
- Table 120: Cellulose nanocrystal production capacities and production process, by producer. 297
- Table 121. Applications of cellulose nanofibers (CNF). 298
- Table 122. Cellulose nanofibers market analysis. 299
- Table 123. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes. 300
- Table 124. Applications of bacterial nanocellulose (BNC). 304
- Table 125. Types of protein based-bioplastics, applications and companies. 305
- Table 126. Casein polymers production 2019-2035 (1,000 tonnes) 308
- Table 127. Casein polymers applications. 308
- Table 128. Casein polymers producers. 309
- Table 129. Types of algal and fungal based-bioplastics, applications and companies. 310
- Table 130. Overview of alginate-description, properties, application and market size. 311
- Table 131. Companies developing algal-based bioplastics. 312
- Table 132. Overview of mycelium fibers-description, properties, drawbacks and applications. 313
- Table 133. Companies developing mycelium-based bioplastics. 315
- Table 134. Overview of chitosan-description, properties, drawbacks and applications. 315
- Table 135. Types of next-gen natural fibers. 317
- Table 136. Application, manufacturing method, and matrix materials of natural fibers. 320
- Table 137. Typical properties of natural fibers. 321
- Table 138. Commercially available next-gen natural fiber products. 322
- Table 139. Market drivers for natural fibers. 325
- Table 140. Overview of cotton fibers-description, properties, drawbacks and applications. 327
- Table 141. Overview of kapok fibers-description, properties, drawbacks and applications. 328
- Table 142. Overview of luffa fibers-description, properties, drawbacks and applications. 329
- Table 143. Overview of jute fibers-description, properties, drawbacks and applications. 331
- Table 144. Overview of hemp fibers-description, properties, drawbacks and applications. 332
- Table 145. Overview of flax fibers-description, properties, drawbacks and applications. 334
- Table 146. Overview of ramie fibers- description, properties, drawbacks and applications. 335
- Table 147. Overview of kenaf fibers-description, properties, drawbacks and applications. 337
- Table 148. Overview of sisal leaf fibers-description, properties, drawbacks and applications. 338
- Table 149. Overview of abaca fibers-description, properties, drawbacks and applications. 339
- Table 150. Overview of coir fibers-description, properties, drawbacks and applications. 341
- Table 151. Overview of banana fibers-description, properties, drawbacks and applications. 342
- Table 152. Overview of pineapple fibers-description, properties, drawbacks and applications. 343
- Table 153. Overview of rice fibers-description, properties, drawbacks and applications. 345
- Table 154. Overview of corn fibers-description, properties, drawbacks and applications. 346
- Table 155. Overview of switch grass fibers-description, properties and applications. 346
- Table 156. Overview of sugarcane fibers-description, properties, drawbacks and application and market size. 347
- Table 157. Overview of bamboo fibers-description, properties, drawbacks and applications. 348
- Table 158. Overview of wool fibers-description, properties, drawbacks and applications. 349
- Table 159. Alternative wool materials producers. 350
- Table 160. Overview of silk fibers-description, properties, application and market size. 350
- Table 161. Alternative silk materials producers. 351
- Table 162. Alternative leather materials producers. 352
- Table 163. Next-gen fur producers. 353
- Table 164. Alternative down materials producers. 354
- Table 165. Applications of natural fiber composites. 355
- Table 166. Typical properties of short natural fiber-thermoplastic composites. 356
- Table 167. Properties of non-woven natural fiber mat composites. 357
- Table 168. Properties of aligned natural fiber composites. 358
- Table 169. Properties of natural fiber-bio-based polymer compounds. 358
- Table 170. Properties of natural fiber-bio-based polymer non-woven mats. 359
- Table 171. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use. 360
- Table 172. Natural fiber-reinforced polymer composite in the automotive market. 361
- Table 173. Natural fibers in the aerospace sector- market drivers, applications and challenges for NF use. 362
- Table 174. Applications of natural fibers in the automotive industry. 364
- Table 175. Natural fibers in the building/construction sector- market drivers, applications and challenges for NF use. 365
- Table 176. Applications of natural fibers in the building/construction sector. 365
- Table 177. Natural fibers in the sports and leisure sector-market drivers, applications and challenges for NF use. 367
- Table 178. Natural fibers in the textiles sector- market drivers, applications and challenges for NF use. 367
- Table 179. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use. 369
- Table 180. Technical lignin types and applications. 377
- Table 181. Classification of technical lignins. 379
- Table 182. Lignin content of selected biomass. 379
- Table 183. Properties of lignins and their applications. 380
- Table 184. Example markets and applications for lignin. 382
- Table 185. Processes for lignin production. 384
- Table 186. Biorefinery feedstocks. 389
- Table 187. Comparison of pulping and biorefinery lignins. 389
- Table 188. Commercial and pre-commercial biorefinery lignin production facilities and processes 390
- Table 189. Market drivers and trends for lignin. 394
- Table 190. Production capacities of technical lignin producers. 394
- Table 191. Production capacities of biorefinery lignin producers. 395
- Table 192. Estimated consumption of lignin, 2019-2035 (000 MT). 395
- Table 193. Prices of benzene, toluene, xylene and their derivatives. 397
- Table 194. Application of lignin in plastics and polymers. 398
- Table 195. Processes for bioplastics in packaging. 401
- Table 196. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging. 402
- Table 197. Typical applications for bioplastics in flexible packaging. 403
- Table 198. Typical applications for bioplastics in rigid packaging. 405
- Table 199. Global production capacities of biobased and sustainable plastics in 2019-2035, by region, 1,000 tonnes. 416
- Table 200. Biobased and sustainable plastics producers in North America. 417
- Table 201. Biobased and sustainable plastics producers in Europe. 418
- Table 202. Biobased and sustainable plastics producers in Asia-Pacific. 421
- Table 203. Biobased and sustainable plastics producers in Latin America. 422
- Table 204. Lactips plastic pellets. 606
- Table 205. Oji Holdings CNF products. 671
List of Figures
- Figure 1. Global bio-based polymers market, by type 2020-2025 (revenues). 58
- Figure 2. Global bio-based polymers market, by type 2020-2025 (metric tonnes). 59
- Figure 3. Schematic of biorefinery processes. 68
- Figure 4. Global production of starch for biobased chemicals and intermediates, 2018-2035 (million metric tonnes). 72
- Figure 5. Global production of biobased lysine, 2018-2035 (metric tonnes). 74
- Figure 6. Global glucose production for bio-based chemicals and intermediates 2018-2035 (million metric tonnes). 75
- Figure 7. Global production volumes of bio-HMDA, 2018 to 2035 in metric tonnes. 77
- Figure 8. Global production of bio-based DN5, 2018-2035 (metric tonnes). 79
- Figure 9. Global production of bio-based isosorbide, 2018-2035 (metric tonnes). 81
- Figure 10. L-lactic acid (L-LA) production, 2018-2035 (metric tonnes). 82
- Figure 11. Global lactide production, 2018-2035 (metric tonnes). 83
- Figure 12. Global production of bio-itaconic acid, 2018-2035 (metric tonnes). 85
- Figure 13. Global production of 3-HP, 2018-2035 (metric tonnes). 87
- Figure 14. Global production of bio-based acrylic acid, 2018-2035 (metric tonnes). 88
- Figure 15. Global production of bio-based 1,3-Propanediol (1,3-PDO), 2018-2035 (metric tonnes). 90
- Figure 16. Global production of bio-based Succinic acid, 2018-2035 (metric tonnes). 92
- Figure 17. Global production of 1,4-Butanediol (BDO), 2018-2035 (metric tonnes). 93
- Figure 18. Global production of bio-based tetrahydrofuran (THF), 2018-2035 (metric tonnes). 95
- Figure 19. Overview of Toray process. 95
- Figure 20. Global production of bio-based caprolactam, 2018-2035 (metric tonnes). 97
- Figure 21. Global production of bio-based isobutanol, 2018-2035 (metric tonnes). 99
- Figure 22. Global production of bio-based p-xylene, 2018-2035 (metric tonnes). 101
- Figure 23. Global production of biobased terephthalic acid (TPA), 2018-2035 (metric tonnes). 102
- Figure 24. Global production of biobased 1,3 Proppanediol, 2018-2035 (metric tonnes). 104
- Figure 25. Global production of biobased MEG, 2018-2035 (metric tonnes). 105
- Figure 26. Global production of biobased ethanol, 2018-2035 (million metric tonnes). 107
- Figure 27. Global production of biobased ethylene, 2018-2035 (million metric tonnes). 108
- Figure 28. Global production of biobased propylene, 2018-2035 (metric tonnes). 109
- Figure 29. Global production of biobased vinyl chloride, 2018-2035 (metric tonnes). 111
- Figure 30. Global production of bio-based Methly methacrylate, 2018-2035 (metric tonnes). 112
- Figure 31. Global production of biobased aniline, 2018-2035 (metric tonnes). 114
- Figure 32. Global production of biobased fructose, 2018-2035 (metric tonnes). 115
- Figure 33. Global production of biobased 5-Hydroxymethylfurfural (5-HMF), 2018-2035 (metric tonnes). 116
- Figure 34. Global production of biobased 5-(Chloromethyl)furfural (CMF), 2018-2035 (metric tonnes). 117
- Figure 35. Global production of biobased Levulinic acid, 2018-2035 (metric tonnes). 119
- Figure 36. Global production of biobased FDME, 2018-2035 (metric tonnes). 120
- Figure 37. Global production of biobased Furan-2,5-dicarboxylic acid (FDCA), 2018-2035 (metric tonnes). 121
- Figure 38. Global production projections for bio-based levoglucosenone from 2018 to 2035 in metric tonnes. 123
- Figure 39. Global production of hemicellulose, 2018-2035 (metric tonnes). 125
- Figure 40. Global production of biobased furfural, 2018-2035 (metric tonnes). 126
- Figure 41. Global production of biobased furfuryl alcohol, 2018-2035 (metric tonnes). 127
- Figure 42. Schematic of WISA plywood home. 131
- Figure 43. Global production of biobased lignin, 2018-2035 (metric tonnes). 133
- Figure 44. Global production of biobased glycerol, 2018-2035 (metric tonnes). 135
- Figure 45. Global production of Bio-MPG, 2018-2035 (metric tonnes). 136
- Figure 46. Global production of biobased ECH, 2018-2035 (metric tonnes). 138
- Figure 47. Global production of biobased fatty acids, 2018-2035 (million metric tonnes). 139
- Figure 48. Global production of biobased sebacic acid, 2018-2035 (metric tonnes). 141
- Figure 49. Global production of biobased 11-Aminoundecanoic acid (11-AA), 2018-2035 (metric tonnes). 142
- Figure 50. Global production of biobased Dodecanedioic acid (DDDA), 2018-2035 (metric tonnes). 144
- Figure 51. Global production of biobased Pentamethylene diisocyanate, 2018-2035 (metric tonnes). 145
- Figure 52. Global production of biobased casein, 2018-2035 (metric tonnes). 147
- Figure 53. Global production of food waste for biochemicals, 2018-2035 (million metric tonnes). 148
- Figure 54. Global production of agricultural waste for biochemicals, 2018-2035 (million metric tonnes). 150
- Figure 55. Global production of forestry waste for biochemicals, 2018-2035 (million metric tonnes). 151
- Figure 56. Global production of aquaculture/fishing waste for biochemicals, 2018-2035 (million metric tonnes). 152
- Figure 57. Global production of municipal solid waste for biochemicals, 2018-2035 (million metric tonnes). 153
- Figure 58. Global production of waste oils for biochemicals, 2018-2035 (million metric tonnes). 154
- Figure 59. Global microalgae production, 2018-2035 (million metric tonnes). 155
- Figure 60. Global macroalgae production, 2018-2035 (million metric tonnes). 157
- Figure 61. Global production of biogas, 2018-2035 (billion m3). 160
- Figure 62. Global production of syngas, 2018-2035 (billion m3). 162
- Figure 63. formicobio™ technology. 180
- Figure 64. Domsjö process. 184
- Figure 65. TMP-Bio Process. 189
- Figure 66. Lignin gel. 207
- Figure 67. BioFlex process. 209
- Figure 68. LX Process. 211
- Figure 69. METNIN™ Lignin refining technology. 214
- Figure 70. Enfinity cellulosic ethanol technology process. 220
- Figure 71. Precision Photosynthesis™ technology. 222
- Figure 72. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 223
- Figure 73. UPM biorefinery process. 232
- Figure 74. The Proesa® Process. 233
- Figure 75. Goldilocks process and applications. 235
- Figure 76. Coca-Cola PlantBottle®. 237
- Figure 77. Interrelationship between conventional, bio-based and biodegradable plastics. 238
- Figure 78. Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes). 251
- Figure 79. Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes) 253
- Figure 80. Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes). 254
- Figure 81. Production capacities of Polyethylene furanoate (PEF) to 2025. 257
- Figure 82. Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes). 257
- Figure 83. Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes). 259
- Figure 84. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes). 261
- Figure 85. Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes). 263
- Figure 86. Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes). 265
- Figure 87. Polypropylene (Bio-PP) production capacities 2019-2035 (1,000 tonnes). 266
- Figure 88. PHA family. 273
- Figure 89. PHA production capacities 2019-2035 (1,000 tonnes). 285
- Figure 90. TEM image of cellulose nanocrystals. 292
- Figure 91. CNC preparation. 292
- Figure 92. Extracting CNC from trees. 293
- Figure 93. CNC slurry. 295
- Figure 94. CNF gel. 298
- Figure 95. Bacterial nanocellulose shapes 303
- Figure 96. BLOOM masterbatch from Algix. 312
- Figure 97. Typical structure of mycelium-based foam. 314
- Figure 98. Commercial mycelium composite construction materials. 314
- Figure 99. Types of natural fibers. 320
- Figure 100. Absolut natural based fiber bottle cap. 322
- Figure 101. Adidas algae-ink tees. 322
- Figure 102. Carlsberg natural fiber beer bottle. 323
- Figure 103. Miratex watch bands. 323
- Figure 104. Adidas Made with Nature Ultraboost 22. 323
- Figure 105. PUMA RE:SUEDE sneaker 324
- Figure 106. Cotton production volume 2018-2035 (Million MT). 328
- Figure 107. Kapok production volume 2018-2035 (MT). 329
- Figure 108. Luffa cylindrica fiber. 330
- Figure 109. Jute production volume 2018-2035 (Million MT). 332
- Figure 110. Hemp fiber production volume 2018-2035 ( MT). 334
- Figure 111. Flax fiber production volume 2018-2035 (MT). 335
- Figure 112. Ramie fiber production volume 2018-2035 (MT). 337
- Figure 113. Kenaf fiber production volume 2018-2035 (MT). 338
- Figure 114. Sisal fiber production volume 2018-2035 (MT). 339
- Figure 115. Abaca fiber production volume 2018-2035 (MT). 340
- Figure 116. Coir fiber production volume 2018-2035 (MILLION MT). 342
- Figure 117. Banana fiber production volume 2018-2035 (MT). 343
- Figure 118. Pineapple fiber. 344
- Figure 119. A bag made with pineapple biomaterial from the H&M Conscious Collection 2019. 345
- Figure 120. Bamboo fiber production volume 2018-2035 (MILLION MT). 349
- Figure 121. Conceptual landscape of next-gen leather materials. 352
- Figure 122. Hemp fibers combined with PP in car door panel. 359
- Figure 123. Car door produced from Hemp fiber. 361
- Figure 124. Mercedes-Benz components containing natural fibers. 361
- Figure 125. AlgiKicks sneaker, made with the Algiknit biopolymer gel. 368
- Figure 126. Coir mats for erosion control. 369
- Figure 127. Global fiber production in 2024, by fiber type, million MT and %. 371
- Figure 128. Global fiber production (million MT) to 2020-2035. 372
- Figure 129. Plant-based fiber production 2018-2035, by fiber type, MT. 373
- Figure 130. Animal based fiber production 2018-2035, by fiber type, million MT. 374
- Figure 131. High purity lignin. 375
- Figure 132. Lignocellulose architecture. 376
- Figure 133. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins. 377
- Figure 134. The lignocellulose biorefinery. 382
- Figure 135. LignoBoost process. 386
- Figure 136. LignoForce system for lignin recovery from black liquor. 387
- Figure 137. Sequential liquid-lignin recovery and purification (SLPR) system. 387
- Figure 138. A-Recovery+ chemical recovery concept. 388
- Figure 139. Schematic of a biorefinery for production of carriers and chemicals. 390
- Figure 140. Organosolv lignin. 392
- Figure 141. Hydrolytic lignin powder. 393
- Figure 142. Estimated consumption of lignin, 2019-2035 (000 MT). 396
- Figure 143. Global production capacities for bioplastics by end user market 2019-2035, 1,000 tonnes. 400
- Figure 144. PHA bioplastics products. 402
- Figure 145. The global market for bio-based polymers for flexible packaging 2019–2033 (1,000 tonnes). 404
- Figure 146. Production volumes for bio-based polymers for rigid packaging, 2019–2033 (1,000 tonnes). 406
- Figure 147. Global production for bio-based polymers in consumer goods 2019-2035, in 1,000 tonnes. 408
- Figure 148. Global production capacities for bio-based polymers in automotive 2019-2035, in 1,000 tonnes. 409
- Figure 149. Global production volumes for bio-based polymers in building and construction 2019-2035, in 1,000 tonnes. 410
- Figure 150. Global production volumes for bio-based polymers in textiles and fibers 2019-2035, in 1,000 tonnes. 413
- Figure 151. Global production volumes for bio-based polymers in electronics 2019-2035, in 1,000 tonnes. 414
- Figure 152. Biodegradable mulch films. 415
- Figure 153. Global production volumes for bio-based polymers in agriculture 2019-2035, in 1,000 tonnes. 415
- Figure 154. Global production capacities for bioplastics by end user market 2019-2035, 1,000 tonnes. 416
- Figure 155. Production volumes for bio-based polymers in North America by type 2019-2035, in 1,000 tonnes. 418
- Figure 156. Production volumes for bio-based polymers in Europe by type 2019-2035, in 1,000 tonnes. 419
- Figure 157. Production volumes for bio-based polymers in China by type 2019-2035, in 1,000 tonnes. 420
- Figure 158. Production volumes for bio-based polymers in Japan by type 2019-2035, in 1,000 tonnes. 421
- Figure 159. Production volumes for bio-based polymers in Latin America by type 2019-2035, in 1,000 tonnes. 423
- Figure 160. Pluumo. 428
- Figure 161. ANDRITZ Lignin Recovery process. 437
- Figure 162. Anpoly cellulose nanofiber hydrogel. 438
- Figure 163. MEDICELLU™. 439
- Figure 164. Asahi Kasei CNF fabric sheet. 447
- Figure 165. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric. 447
- Figure 166. CNF nonwoven fabric. 448
- Figure 167. Roof frame made of natural fiber. 457
- Figure 168. Beyond Leather Materials product. 460
- Figure 169. BIOLO e-commerce mailer bag made from PHA. 466
- Figure 170. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc. 467
- Figure 171. Fiber-based screw cap. 478
- Figure 172. formicobio™ technology. 496
- Figure 173. nanoforest-S. 498
- Figure 174. nanoforest-PDP. 498
- Figure 175. nanoforest-MB. 499
- Figure 176. sunliquid® production process. 507
- Figure 177. CuanSave film. 509
- Figure 178. Celish. 511
- Figure 179. Trunk lid incorporating CNF. 512
- Figure 180. ELLEX products. 514
- Figure 181. CNF-reinforced PP compounds. 514
- Figure 182. Kirekira! toilet wipes. 515
- Figure 183. Color CNF. 516
- Figure 184. Rheocrysta spray. 521
- Figure 185. DKS CNF products. 521
- Figure 186. Domsjö process. 523
- Figure 187. Mushroom leather. 532
- Figure 188. CNF based on citrus peel. 533
- Figure 189. Citrus cellulose nanofiber. 533
- Figure 190. Filler Bank CNC products. 545
- Figure 191. Fibers on kapok tree and after processing. 547
- Figure 192. TMP-Bio Process. 549
- Figure 193. Flow chart of the lignocellulose biorefinery pilot plant in Leuna. 550
- Figure 194. Water-repellent cellulose. 552
- Figure 195. Cellulose Nanofiber (CNF) composite with polyethylene (PE). 553
- Figure 196. PHA production process. 554
- Figure 197. CNF products from Furukawa Electric. 555
- Figure 198. AVAPTM process. 565
- Figure 199. GreenPower+™ process. 565
- Figure 200. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials. 568
- Figure 201. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer). 570
- Figure 202. CNF gel. 577
- Figure 203. Block nanocellulose material. 577
- Figure 204. CNF products developed by Hokuetsu. 577
- Figure 205. Marine leather products. 581
- Figure 206. Inner Mettle Milk products. 584
- Figure 207. Kami Shoji CNF products. 595
- Figure 208. Dual Graft System. 597
- Figure 209. Engine cover utilizing Kao CNF composite resins. 598
- Figure 210. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended). 598
- Figure 211. Kel Labs yarn. 599
- Figure 212. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side). 604
- Figure 213. Lignin gel. 611
- Figure 214. BioFlex process. 615
- Figure 215. Nike Algae Ink graphic tee. 616
- Figure 216. LX Process. 619
- Figure 217. Made of Air's HexChar panels. 622
- Figure 218. TransLeather. 623
- Figure 219. Chitin nanofiber product. 627
- Figure 220. Marusumi Paper cellulose nanofiber products. 629
- Figure 221. FibriMa cellulose nanofiber powder. 629
- Figure 222. METNIN™ Lignin refining technology. 634
- Figure 223. IPA synthesis method. 638
- Figure 224. MOGU-Wave panels. 640
- Figure 225. CNF slurries. 641
- Figure 226. Range of CNF products. 641
- Figure 227. Reishi. 645
- Figure 228. Compostable water pod. 661
- Figure 229. Leather made from leaves. 661
- Figure 230. Nike shoe with beLEAF™. 662
- Figure 231. CNF clear sheets. 671
- Figure 232. Oji Holdings CNF polycarbonate product. 672
- Figure 233. Enfinity cellulosic ethanol technology process. 685
- Figure 234. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 689
- Figure 235. XCNF. 696
- Figure 236: Plantrose process. 697
- Figure 237. LOVR hemp leather. 700
- Figure 238. CNF insulation flat plates. 702
- Figure 239. Hansa lignin. 708
- Figure 240. Manufacturing process for STARCEL. 712
- Figure 241. Manufacturing process for STARCEL. 716
- Figure 242. 3D printed cellulose shoe. 723
- Figure 243. Lyocell process. 726
- Figure 244. North Face Spiber Moon Parka. 730
- Figure 245. PANGAIA LAB NXT GEN Hoodie. 730
- Figure 246. Spider silk production. 731
- Figure 247. Stora Enso lignin battery materials. 736
- Figure 248. 2 wt.% CNF suspension. 736
- Figure 249. BiNFi-s Dry Powder. 737
- Figure 250. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet. 737
- Figure 251. Silk nanofiber (right) and cocoon of raw material. 738
- Figure 252. Sulapac cosmetics containers. 739
- Figure 253. Sulzer equipment for PLA polymerization processing. 740
- Figure 254. Solid Novolac Type lignin modified phenolic resins. 741
- Figure 255. Teijin bioplastic film for door handles. 750
- Figure 256. Corbion FDCA production process. 756
- Figure 257. Comparison of weight reduction effect using CNF. 758
- Figure 258. CNF resin products. 761
- Figure 259. UPM biorefinery process. 763
- Figure 260. Vegea production process. 767
- Figure 261. The Proesa® Process. 769
- Figure 262. Goldilocks process and applications. 770
- Figure 263. Visolis’ Hybrid Bio-Thermocatalytic Process. 773
- Figure 264. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test. 775
- Figure 265. Worn Again products. 780
- Figure 266. Zelfo Technology GmbH CNF production process. 784
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com