The Global Market for Biobased and Biodegradable Plastics 2022-2030

0

Published March 2020 | 400 pages, 88 figures, 64 tables | Table of contents

Environmental and resource concerns  regarding the use of plastics have increased greatly in recent years. As a result, the plastics industry is pivoting towards natural and renewable solutions such as biobased and biodegradable chemicals and polymers. The use of biobased and biodegradable plastics will increase in the coming years driven by legislation, consumer demand, improved production technologies and reduced costs.

In comparison to conventional plastics, bioplastics help to avoid the use of fossil fuels as they are derived from biomass. A drive towards bioplastics helps to promote a circular economy by decoupling the manufacture of plastics from the use of predominantly fossil-derived feedstocks.

Report contents include: 

  • Review of the Biobased and Biodegradable Plastics market in 2021.
  • Outlook for 2022. 
  • In depth market analysis of biobased chemical feedstocks & biobased and Biodegradable Plastics
  • Global production capacities, market demand and trends 2019-2030.
  • In depth regional analysis of production capacities. 
  • Analysis of bio-based chemical including 11-Aminoundecanoic acid (11-AA), 1,4-Butanediol (1,4-BDO), Dodecanedioic acid (DDDA), Epichlorohydrin (ECH), Ethylene, Furan derivatives, 5-Chloromethylfurfural (5-CMF), 2,5-Furandicarboxylic acid (2,5-FDCA), Furandicarboxylic methyl ester (FDME), Isosorbide,  Itaconic acid, 5 Hydroxymethyl furfural (HMF), Lactic acid (D-LA), Lactic acid – L-lactic acid (L-LA), Lactide, Levoglucosenone, Levulinic acid, Monoethylene glycol (MEG), Monopropylene glycol (MPG), Muconic acid, Naphtha, 1,5-Pentametylenediamine (DN5), 1,3-Propanediol (1,3-PDO), Sebacic acid and Succinic acid.
  • Analysis of synthetic biopolymers market including Polylactic acid (Bio-PLA), Polyethylene terephthalate (Bio-PET), Polytrimethylene terephthalate (Bio-PTT), Polyethylene furanoate (Bio-PEF), Polyamides (Bio-PA), Poly(butylene adipate-co-terephthalate) (Bio-PBAT), Polybutylene succinate (PBS) and copolymers, Polyethylene (Bio-PE), Polypropylene (Bio-PP)
  • Analysis of naturally produced bio-based polymers including Polyhydroxyalkanoates (PHA), Polysaccharides, Microfibrillated cellulose (MFC), Cellulose nanocrystals, Cellulose nanofibers,  Protein-based bioplastics, Algal and fungal. 
  • Market segmentation analysis. 
  • Profiles of over 300 companies. Companies profiled include NatureWorks, TotalEnergies Corbion, Danimer Scientific, Novamont, Mitsubishi Chemicals, Braskem, Avantium, Borealis, Cathay, Dupont, BASF, Arkema, DuPont, BASF ,  AMSilk GmbH, Notpla, Loliware, Bolt Threads, Ecovative, Kraig Biocraft Laboratories, Spiber, Bast Fiber Technologies Inc., Kelheim Fibres GmbH, BComp, Circular Systems, Evrnu, Natural Fiber Welding, Icytos, Versalis SpA, Clariant, MetGen Oy, Praj Industries Ltd., Bloom Biorenewables SA, FP Innovations, UPM, Klabin SA, RenCom AB and many more. 

1              EXECUTIVE SUMMARY   21

  • 1.1          Market trends   22
  • 1.2          Global production to 2030            23
  • 1.3          Main producers and global production capacities               25
    • 1.3.1      Producers           25
    • 1.3.2      By biobased and biodegradable plastic type         26
  • 1.4          Regional production       31
    • 1.4.1      North America   31
    • 1.4.2      Europe 31
    • 1.4.3      Asia-Pacific         32
      • 1.4.3.1   China     32
      • 1.4.3.2   Japan    32
      • 1.4.3.3   Thailand               33
      • 1.4.3.4   Indonesia            33
    • 1.4.4      Brazil     34
  • 1.5          Global demand for biobased and biodegradable plastics 2020-21, by market         34
  • 1.6          Impact of COVID-19 crisis on the bioplastics market and future demand  38
  • 1.7          Challenges for the biobased and biodegradable plastics market   38

 

2              RESEARCH METHODOLOGY         40

 

3              THE GLOBAL PLASTICS MARKET 42

  • 3.1          Global production            42
  • 3.2          The importance of plastic              42
  • 3.3          Issues with plastics use  43
  • 3.4          Types of Biobased and/or Biodegradable Plastics               43

 

4              THE GLOBAL MARKET FOR BIO-BASED CHEMICALS            44

  • 4.1          Types    44
  • 4.2          Production capacities     45
  • 4.3          Bio-based adipic acid      47
  • 4.4          11-Aminoundecanoic acid (11-AA)            47
  • 4.5          1,4-Butanediol (1,4-BDO)              47
  • 4.6          Dodecanedioic acid (DDDA)         48
  • 4.7          Epichlorohydrin (ECH)    49
  • 4.8          Ethylene              50
  • 4.9          Furfural 51
  • 4.10        5-Chloromethylfurfural (5-CMF) 52
  • 4.11        2,5-Furandicarboxylic acid (2,5-FDCA)     52
  • 4.12        Furandicarboxylic methyl ester (FDME)  52
  • 4.13        Isosorbide           53
  • 4.14        Itaconic acid       53
  • 4.15        3-Hydroxypropionic acid (3-HP) 53
  • 4.16        5 Hydroxymethyl furfural (HMF) 54
  • 4.17        Lactic acid (D-LA)             54
  • 4.18        Lactic acid – L-lactic acid (L-LA)   54
  • 4.19        Lactide  55
  • 4.20        Levoglucosenone             56
  • 4.21        Levulinic acid      56
  • 4.22        Monoethylene glycol (MEG)       57
  • 4.23        Monopropylene glycol (MPG)    58
  • 4.24        Muconic acid      59
  • 4.25        Naphtha              60
  • 4.26        Pentamethylene diisocyanate    60
  • 4.27        1,3-Propanediol (1,3-PDO)           61
  • 4.28        Sebacic acid        62
  • 4.29        Succinic acid (SA)             62

 

5              THE GLOBAL MARKET FOR BIOPOLYMERS AND BIOPLASTICS         64

  • 5.1          Bio-based or renewable plastics 64
    • 5.1.1      Drop-in bio-based plastics            64
    • 5.1.2      Novel bio-based plastics                65
  • 5.2          Biodegradable and compostable plastics                66
    • 5.2.1      Biodegradability               66
    • 5.2.2      Compostability  67
  • 5.3          Advantages and disadvantages  67
  • 5.4          Types of Bio-based and/or Biodegradable Plastics              68
  • 5.5          Market leaders by biobased and/or biodegradable plastic types  70
  • 5.6          Regional production capacities to 2030   71
  • 5.7          SYNTHETIC BIO-BASED POLYMERS            73
    • 5.7.1      Polylactic acid (Bio-PLA) 73
      • 5.7.1.1   Market analysis 73
      • 5.7.1.2   Applications       75
      • 5.7.1.3   Producers and production capacities       76
      • 5.7.1.4   Production capacities, by country/region 2019-2030, 1,000 tons 78
    • 5.7.2      Polyethylene terephthalate (Bio-PET)     80
      • 5.7.2.1   Market analysis 80
      • 5.7.2.2   Applications       81
      • 5.7.2.3   Producers and production capacities       82
      • 5.7.2.4   Production capacities, by country/region 2019-2030, 1,000 tons 82
    • 5.7.3      Polytrimethylene terephthalate (Bio-PTT)             85
      • 5.7.3.1   Market analysis 85
      • 5.7.3.2   Applications       86
      • 5.7.3.3   Producers and production capacities       87
      • 5.7.3.4   Production capacities, by country/region 2019-2030, 1,000 tons 87
    • 5.7.4      Polyethylene furanoate (Bio-PEF)             89
      • 5.7.4.1   Market analysis 89
      • 5.7.4.2   Comparative properties to PET   90
      • 5.7.4.3   Applications       91
      • 5.7.4.4   Producers and production capacities       92
    • 5.7.5      Polyamides (Bio-PA)       92
      • 5.7.5.1   Market analysis 93
      • 5.7.5.2   Applications       94
      • 5.7.5.3   Producers and production capacities       95
      • 5.7.5.4   Production capacities, by country/region 2019-2030, 1,000 tons 95
    • 5.7.6      Poly(butylene adipate-co-terephthalate) (Bio-PBAT)        97
      • 5.7.6.1   Market analysis 97
      • 5.7.6.2   Applications       98
      • 5.7.6.3   Producers and production capacities       98
      • 5.7.6.4   Production capacities, by country/region 2019-2030, 1,000 tons 99
    • 5.7.7      Polybutylene succinate (PBS) and copolymers     101
      • 5.7.7.1   Market analysis 101
      • 5.7.7.2   Applications       102
      • 5.7.7.3   Producers and production capacities       103
      • 5.7.7.4   Production capacities, by country/region 2019-2030, 1,000 tons 103
    • 5.7.8      Polyethylene (Bio-PE)    105
      • 5.7.8.1   Market analysis 105
      • 5.7.8.2   Applications       106
      • 5.7.8.3   Producers and production capacities       107
      • 5.7.8.4   Production capacities, by country/region 2019-2030, 1,000 tons 107
    • 5.7.9      Polypropylene (Bio-PP) 109
      • 5.7.9.1   Market analysis 109
      • 5.7.9.2   Applications       109
      • 5.7.9.3   Producers and production capacities       110
      • 5.7.9.4   Production capacities, by country/region 2019-2030, 1,000 tons 111
    • 5.7.10    Starch Blends     113
      • 5.7.10.1                Market analysis 113
      • 5.7.10.2                Applications       114
      • 5.7.10.3                Producers and production capacities       115
      • 5.7.10.4                Production capacities, by country/region 2019-2030, 1,000 tons 115
  • 5.8          NATURAL BIO-BASED POLYMERS               117
    • 5.8.1      Polyhydroxyalkanoates (PHA)     118
      • 5.8.1.1   Types    120
      • 5.8.1.2   Synthesis and production processes        124
      • 5.8.1.3   Market analysis 127
      • 5.8.1.4   Commercially available PHAs      128
      • 5.8.1.5   Markets for PHAs             130
      • 5.8.1.6   Producers and production capacities       135
      • 5.8.1.7   Production capacities, by country/region 2019-2030, 1,000 tons 136
    • 5.8.2      Polysaccharides 138
      • 5.8.2.1   Microfibrillated cellulose (MFC) 138
      • 5.8.2.2   Cellulose nanocrystals    139
      • 5.8.2.3   Cellulose nanofibers       141
    • 5.8.3      Protein-based bioplastics             144
      • 5.8.3.1   Types, applications and producers            144
    • 5.8.4      Algal and fungal 146
      • 5.8.4.1   Algal      146
      • 5.8.4.2   Mycelium            149
    • 5.8.5      Chitosan              152
  • 5.9          MARKET SEGMENTATION OF BIOPLASTICS           152
    • 5.9.1      Packaging            155
    • 5.9.2      Consumer products        156
    • 5.9.3      Automotive        157
    • 5.9.4      Building & construction 158
    • 5.9.5      Textiles 159
    • 5.9.6      Electronics          160
    • 5.9.7      Agriculture and horticulture        161

 

6              BIOBASED AND BIODEGRADABLE PLASTICS COMPANY PROFILES 163 (311 company profiles)

 

7              REFERENCES       395

 

List of Tables

  • Table 1. Market drivers and trends in biobased and biodegradable plastics.           22
  • Table 2. Global production capacities of biobased and biodegradable plastics 2018-2030, in 1,000 tons.   23
  • Table 3. Global production capacities, by producers.        25
  • Table 4. Global production capacities of biobased and biodegradable plastics 2019-2030, by type, in 1,000 tons.  26
  • Table 5. Biobased and biodegradable plastics producers in North America.             31
  • Table 6. Biobased and biodegradable plastics producers in Europe.           32
  • Table 7. Biobased and biodegradable plastics producers in Asia-Pacific.   33
  • Table 8. Biobased and biodegradable plastics producers in Latin America.               34
  • Table 9. Issues related to the use of plastics.        43
  • Table 10.Types of Biobased and/or Biodegradable Plastics-Biobased carbon content, biodegradability certification, feedstock, main producers and cost per kg.          43
  • Table 11. List of Bio-based chemicals.      44
  • Table 12. Biobased MEG producers capacities.    57
  • Table 13. Type of biodegradation.            67
  • Table 14. Advantages and disadvantages of biobased plastics compared to conventional plastics. 67
  • Table 15. Types of Bio-based and/or Biodegradable Plastics, applications.               68
  • Table 16. Market leader by Bio-based and/or Biodegradable Plastic types.             70
  • Table 17. Regional capacities, 1,000 tons, 2019-2030, all types.   71
  • Table 18. Polylactic acid (PLA) market analysis.    73
  • Table 19. Lactic acid producers and production capacities.             76
  • Table 20. PLA producers and production capacities.          76
  • Table 21. Planned PLA capacity expansions in China.         77
  • Table 22. Bio-based Polyethylene terephthalate (Bio-PET) market analysis.            80
  • Table 23. Bio-based Polyethylene terephthalate (PET) producers.              82
  • Table 24. Polytrimethylene terephthalate (PTT) market analysis. 85
  • Table 25. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.   87
  • Table 26. Polyethylene furanoate (PEF) market analysis. 89
  • Table 27. PEF vs. PET.     90
  • Table 28. FDCA and PEF producers.          92
  • Table 29. Bio-based polyamides (Bio-PA) market analysis.              93
  • Table 30. Leading Bio-PA producers production capacities.            95
  • Table 31. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis.            97
  • Table 32. Leading PBAT producers, production capacities and brands.      98
  • Table 33. Bio-PBS market analysis.            101
  • Table 34. Leading PBS producers and production capacities.          103
  • Table 35. Bio-based Polyethylene (Bio-PE) market analysis.           105
  • Table 36. Leading Bio-PE producers.        107
  • Table 37. Bio-PP market analysis.              109
  • Table 38. Leading Bio-PP producers and capacities.           110
  • Table 39. Starch blends market analysis. 113
  • Table 40. Leading starch blends producers and capacities.              115
  • Table 41.Types of PHAs and properties. 122
  • Table 42. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 123
  • Table 43. Polyhydroxyalkanoate (PHA) extraction methods.          126
  • Table 44. Polyhydroxyalkanoates (PHA) market analysis. 127
  • Table 45. Commercially available PHAs.  129
  • Table 46. Markets and applications for PHAs.       130
  • Table 47. Applications, advantages and disadvantages of PHAs in packaging.         132
  • Table 48. Polyhydroxyalkanoates (PHA) producers and production capacities.       135
  • Table 49. Microfibrillated cellulose (MFC) market analysis.            138
  • Table 50. Leading MFC producers and capacities.               139
  • Table 51. Cellulose nanocrystals analysis.               139
  • Table 52: Cellulose nanocrystal production capacities and production process, by producer.          140
  • Table 53. Cellulose nanofibers market analysis.   141
  • Table 54. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes.    143
  • Table 55. Types of protein based-bioplastics, applications and companies.             144
  • Table 56. Types of algal and fungal based-bioplastics, applications and companies.             146
  • Table 57. Overview of alginate-description, properties, application and market size.          146
  • Table 58. Companies developing algal-based bioplastics. 148
  • Table 59. Overview of mycelium fibers-description, properties, drawbacks and applications.          149
  • Table 60. Companies developing mycelium-based bioplastics.      151
  • Table 61. Overview of chitosan-description, properties, drawbacks and applications.         152
  • Table 62. Granbio Nanocellulose Processes.         256
  • Table 63. Lactips plastic pellets. 284
  • Table 64. Oji Holdings CNF products.       329

 

List of Figures

  • Figure 1. Total global production capacities for biobased and biodegradable plastics, all types, 000 tons.  22
  • Figure 2. Global production capacities of bioplastics 2018-2030, in 1,000 tons by biodegradable/non-biodegradable types.   24
  • Figure 3. Global production capacities of biobased and biodegradable plastics in 2019-2030, by type, in 1,000 tons.                29
  • Figure 4. Global production capacities of bioplastics in 2019-2025, by type.           29
  • Figure 5. Global production capacities of bioplastics in 2030, by type.       30
  • Figure 6. Current and future applications of biobased and biodegradable plastics.               35
  • Figure 7. Global demand for biobased and biodegradable plastics by end user market, 2020.          36
  • Figure 8. Global production capacities for biobased and biodegradable plastics by end user market 2019-2030, tons.                38
  • Figure 9. Challenges for the biobased and biodegradable plastics market.               38
  • Figure 10. Global plastics production 1950-2018, millions of tons.              42
  • Figure 11. Bio-based chemicals production capacities, 2018-2025.               46
  • Figure 12. 1,4-Butanediol (BDO) production capacities, 2018-2025 (tonnes).         48
  • Figure 13. Dodecanedioic acid (DDDA) production capacities, 2018-2025 (tonnes).             49
  • Figure 14. Epichlorohydrin production capacities, 2018-2025 (tonnes).    50
  • Figure 15. Ethylene production capacities, 2018-2025 (tonnes).  51
  • Figure 16. L-lactic acid (L-LA) production capacities, 2018-2025 (tonnes). 55
  • Figure 17. Lactide production capacities, 2018-2025 (tonnes).     56
  • Figure 18. Bio-MEG producers capacities.              58
  • Figure 19. Bio-MPG production capacities, 2018-2025.      59
  • Figure 20. Naphtha production capacities, 2018-2025 (tonnes).  60
  • Figure 21. 1,3-Propanediol (1,3-PDO) production capacities, 2018-2025 (tonnes). 61
  • Figure 22. Sebacic acid production capacities, 2018-2025 (tonnes).           62
  • Figure 23.  Coca-Cola PlantBottle®.           65
  • Figure 24. Interrelationship between conventional, bio-based and biodegradable plastics.              65
  • Figure 25. Regional capacities, 1,000 tons, 2019-2030, all types of bioplastics.       73
  • Figure 26. Production capacities for Bio-based Polylactic acid (PLA), by country/region 2019-2030, 1,000 tons        80
  • Figure 27. Production capacities for Bio-based Polyethylene terephthalate (Bio-PET), by country/region 2019-2030, 1,000 tons           84
  • Figure 28. Production capacities for Bio-based Polytrimethylene terephthalate (Bio-PTT), by country/region 2019-2030, 1,000 tons              89
  • Figure 29. Production capacities of Polyethylene furanoate (PEF) to 2025.               92
  • Figure 30. Production capacities for Bio-based polyamides (Bio-PA), by country/region 2019-2030, 1,000 tons       97
  • Figure 31. Production capacities for Bio-based Poly(butylene adipate-co-terephthalate) (PBAT), by country/region 2019-2030, 1,000 tons   101
  • Figure 32. Production capacities for Bio-based Polybutylene succinate (PBS), by country/region 2019-2030, 1,000 tons                105
  • Figure 33. Production capacities for Bio-based Polyethylene (Bio-PE), by country/region 2019-2030, 1,000 tons.   109
  • Figure 34. Production capacities for Bio-based Polypropylene (Bio-PP), by country/region 2019-2030, 1,000 tons 113
  • Figure 35. Production capacities for starch blends, by country/region 2019-2030, 1,000 tons         117
  • Figure 36. PHA pellets.   119
  • Figure 37. PHA family.    121
  • Figure 38. Yarn spun from PHA. 129
  • Figure 39. Production capacities for PHA, by country/region 2019-2030, 1,000 tons.          138
  • Figure 40. BLOOM masterbatch from Algix.           147
  • Figure 41. Typical structure of mycelium-based foam.     150
  • Figure 42. Commercial mycelium composite construction materials.          151
  • Figure 43. Global production capacities for biobased and biodegradable plastics by end user market 2019, 1,000 tons.                153
  • Figure 44. Global production capacities for biobased and biodegradable plastics by end user market 2020, 1,000 tons.                154
  • Figure 45. Global production capacities for biobased and biodegradable plastics by end user market 2030                155
  • Figure 46. PHA bioplastics products.        155
  • Figure 47. Global production capacities for biobased and biodegradable plastics in packaging 2019-2030, in 1,000 tons.                156
  • Figure 48. Global production capacities for biobased and biodegradable plastics in consumer products 2019-2030, in 1,000 tons.         157
  • Figure 49. Global production capacities for biobased and biodegradable plastics in automotive 2019-2030, in 1,000 tons.      158
  • Figure 50. Global production capacities for biobased and biodegradable plastics in building and construction 2019-2030, in 1,000 tons.        159
  • Figure 51. Global production capacities for biobased and biodegradable plastics in textiles 2019-2030, in 1,000 tons.                160
  • Figure 52. Global production capacities for biobased and biodegradable plastics in electronics 2019-2030, in 1,000 tons.      161
  • Figure 53. Biodegradable mulch films.     162
  • Figure 54. Global production capacities for biobased and biodegradable plastics in agriculture 2019-2030, in 1,000 tons.      162
  • Figure 55. Algiknit yarn. 167
  • Figure 56. Bio-PA rear bumper stay.         183
  • Figure 57. formicobio™ technology.         213
  • Figure 58. nanoforest-S. 215
  • Figure 59. nanoforest-PDP.         215
  • Figure 60. nanoforest-MB.           216
  • Figure 61. CuanSave film.             221
  • Figure 62. ELLEX products.           224
  • Figure 63. CNF-reinforced PP compounds.            224
  • Figure 64. Kirekira! toilet wipes. 225
  • Figure 65. Mushroom leather.    236
  • Figure 66. Cellulose Nanofiber (CNF) composite with polyethylene (PE).  249
  • Figure 67. PHA production process.         250
  • Figure 68. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.                258
  • Figure 69. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer). 261
  • Figure 70. CNF gel.           267
  • Figure 71. Block nanocellulose material. 267
  • Figure 72. CNF products developed by Hokuetsu.              268
  • Figure 73. Made of Air's HexChar panels.               294
  • Figure 74. IPA synthesis method.              301
  • Figure 75. MOGU-Wave panels. 302
  • Figure 76. Reishi.              306
  • Figure 77. Nippon Paper Industries’ adult diapers.             319
  • Figure 78. Compostable water pod.         321
  • Figure 79. CNF clear sheets.        329
  • Figure 80. Oji Holdings CNF polycarbonate product.          330
  • Figure 81. Manufacturing process for STARCEL.   350
  • Figure 82. Lyocell process.           360
  • Figure 83. Spider silk production.              364
  • Figure 84. Sulapac cosmetics containers.               366
  • Figure 85.  Sulzer equipment for PLA polymerization processing. 367
  • Figure 86. Teijin bioplastic film for door handles.               374
  • Figure 87. Corbion FDCA production process.      381
  • Figure 88. Visolis’ Hybrid Bio-Thermocatalytic Process.    388

 

       

The Global Market for Biobased and Biodegradable Plastics 2022-2030
The Global Market for Biobased and Biodegradable Plastics 2022-2030
PDF download.

The Global Market for Biobased and Biodegradable Plastics 2022-2030
The Global Market for Biobased and Biodegradable Plastics 2022-2030
Print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Alipay, Paypal. 

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com 

[mpdl-file-link file_id=9397]