The Global Market for Biobased and Biodegradable Plastics (Bioplastics)

0

Published December 2022 | 457 pages, 116 figures, 76 tables | Download Table of contents

At present, the majority of plastics are derived from petrochemicals. Most plastic packaging is used only once (single use items) and 95% of the value of the material is thus lost, with a global economic cost of US$80-$120 billion annually. The market for bioplastics will grow significantly in coming years, with production capacities exceeding 6 million tonnes by 2027. 

Bioplastics are biobased products that allow for greater product sustainability due to their biodegradability and renewability. Their use is attractive as bioplastics that biodegrade to CO2 and H2O mitigate the negative effects of standard plastic (litter and damage to aqua environments). Renewable feedstocks such as corn, sugarcane, and algae can be utilized instead of petroleum, thereby reducing global dependence on crude oil and lessening the impact on climate.

Despite growing global environmental awareness, bioplastics currently account for a very small percent of the >360 million tons of plastics produced annually, but with annual growth of 20-30%. Due to the development of advanced biopolymers and materials, reduced costs, regulations and increased consumer awareness demand is rising.

The sky rocketing price of petroleum coupled with government regulations and consumer global environmental concerns, and continued population growth is pushing the plastic industries towards sustainability. Growing government regulatory restrictions, consumers’ desire and energy conservation are some of the key factors that drive research and proudct development towards renewable resource-based polymeric biomaterials. The performance of bioplastics is also improving and range of applications expanding.

This report covers:

  • Analysis of Biobased and Biodegradable Plastics (Bioplastics) market. 
  • Global production capacities, market demand and trends 2019-2033 for Biobased and Biodegradable Plastics (Bioplastics).
  • Analysis of biobased chemicals including:
    • Bio-based adipic acid
    • 11-Aminoundecanoic acid (11-AA)
    • 1,4-Butanediol (1,4-BDO)
    • Dodecanedioic acid (DDDA)
    • Epichlorohydrin (ECH)
    • Ethylene 
    • Furfural
    • 5-Chloromethylfurfural (5-CMF)
    • 5-Hydroxymethylfurfural (HMF) 
    • 2,5-Furandicarboxylic acid (2,5-FDCA)
    • Furandicarboxylic methyl ester (FDME)
    • Isosorbide 
    • Itaconic acid
    • 3-Hydroxypropionic acid (3-HP)
    • 5 Hydroxymethyl furfural (HMF)
    • Lactic acid (D-LA) 
    • Lactic acid – L-lactic acid (L-LA)
    • Lactide
    • Levoglucosenone
    • Levulinic acid
    • Monoethylene glycol (MEG)
    • Monopropylene glycol (MPG)
    • Muconic acid
    • Naphtha
    • Pentamethylene diisocyanate
    • 1,3-Propanediol (1,3-PDO)
    • Sebacic acid
    • Succinic acid (SA)
  • Analysis of synthetic Bioplastics market including:
    • Polylactic acid (Bio-PLA)
    • Polyethylene terephthalate (Bio-PET)
    • Polytrimethylene terephthalate (Bio-PTT)
    • Polyethylene furanoate (Bio-PEF)
    • Polyamides (Bio-PA)
    • Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
    • Polybutylene succinate (PBS) and copolymers, Polyethylene (Bio-PE), Polypropylene (Bio-PP)
  • Analysis of naturally produced bio-based polymers including
    • Polyhydroxyalkanoates (PHA)
    • Polysaccharides
    • Microfibrillated cellulose (MFC)
    • Cellulose nanocrystals
    • Cellulose nanofibers,
    • Protein-based bioplastics
    • Algal and fungal based bioplastics and biopolymers. 
  • Market segmentation analysis for bioplastics. Markets analysed include rigid & flexible packaging, consumer goods, automotive, building & construction, textiles, electronics, agriculture & horticulture. 
  • Emerging technologies in synthetic and natural produced bioplastics and biopolymers. 
  • 340 company profiled including products and production capacities. Companies profiled include  NatureWorks, Total Corbion, Danimer Scientific, Novamont, Mitsubishi Chemicals, Indorama, Braskem, Avantium, Borealis, Cathay, Dupont, BASF, Arkema, DuPont, BASF, AMSilk GmbH, Notpla, Loliware, Bolt Threads, Ecovative, Bioform Technologies, Algal Bio, Kraig Biocraft Laboratories, Biotic Circular Technologies Ltd., Full Cycle Bioplastics, Stora Enso Oyj, Spiber, Traceless Materials GmbH, CJ Biomaterials, Natrify, Plastus, Humble Bee Bio and many more. 

 

 

1              EXECUTIVE SUMMARY   25

  • 1.1          Market drivers and trends in Biobased and Biodegradable Plastics (Bioplastics)              26
  • 1.2          Global production to 2033            28
  • 1.3          Main producers and global production capacities               29
    • 1.3.1      Producers           29
    • 1.3.2      By biobased and biodegradable plastics type       31
    • 1.3.3      By region             33
  • 1.4          Global demand for Biobased and Biodegradable Plastics (Bioplastics), by market               35
  • 1.5          Challenges for the Biobased and Biodegradable Plastics (Bioplastics) market   38

 

2              RESEARCH METHODOLOGY         40

 

3              THE GLOBAL PLASTICS MARKET 42

  • 3.1          Global production of plastics       42
  • 3.2          The importance of plastic              42
  • 3.3          Issues with plastics use  43
  • 3.4          Policy and regulations    43
  • 3.5          The circular economy     44
  • 3.6          Conventional polymer materials used in packaging            46
    • 3.6.1      Polyolefins: Polypropylene and polyethylene      47
    • 3.6.2      PET and other polyester polymers            49
    • 3.6.3      Renewable and bio-based polymers for packaging             49
  • 3.7          Comparison of synthetic fossil-based and bio-based polymers     51
  • 3.8          End-of-life treatment of bioplastics          51

 

4              BIO-BASED CHEMICALS AND FEEDSTOCKS             53

  • 4.1          Types    53
  • 4.2          Production capacities     54
  • 4.3          Bio-based adipic acid      55
    • 4.3.1      Applications and production       55
  • 4.4          11-Aminoundecanoic acid (11-AA)            55
    • 4.4.1      Applications and production       56
  • 4.5          1,4-Butanediol (1,4-BDO)              56
    • 4.5.1      Applications and production       57
  • 4.6          Dodecanedioic acid (DDDA)         58
    • 4.6.1      Applications and production       58
  • 4.7          Epichlorohydrin (ECH)    59
    • 4.7.1      Applications and production       59
  • 4.8          Ethylene              60
    • 4.8.1      Applications and production       60
  • 4.9          Furfural 61
    • 4.9.1      Applications and production       61
  • 4.10        5-Hydroxymethylfurfural (HMF) 62
    • 4.10.1    Applications and production       62
  • 4.11        5-Chloromethylfurfural (5-CMF) 62
    • 4.11.1    Applications and production       62
  • 4.12        2,5-Furandicarboxylic acid (2,5-FDCA)     63
    • 4.12.1    Applications and production       63
  • 4.13        Furandicarboxylic methyl ester (FDME)  63
  • 4.14        Isosorbide           64
    • 4.14.1    Applications and production       64
  • 4.15        Itaconic acid       64
    • 4.15.1    Applications and production       64
  • 4.16        3-Hydroxypropionic acid (3-HP) 65
    • 4.16.1    Applications and production       65
  • 4.17        5 Hydroxymethyl furfural (HMF) 66
    • 4.17.1    Applications and production       66
  • 4.18        Lactic acid (D-LA)             66
    • 4.18.1    Applications and production       67
  • 4.19        Lactic acid – L-lactic acid (L-LA)   67
    • 4.19.1    Applications and production       67
  • 4.20        Lactide  68
    • 4.20.1    Applications and production       68
  • 4.21        Levoglucosenone             69
    • 4.21.1    Applications and production       69
  • 4.22        Levulinic acid      70
    • 4.22.1    Applications and production       70
  • 4.23        Monoethylene glycol (MEG)       70
    • 4.23.1    Applications and production       70
  • 4.24        Monopropylene glycol (MPG)    71
    • 4.24.1    Applications and production       72
  • 4.25        Muconic acid      72
    • 4.25.1    Applications and production       73
  • 4.26        Bio-Naphtha      73
    • 4.26.1    Applications and production       73
    • 4.26.2    Production capacities     73
    • 4.26.3    Bio-naptha producers    74
  • 4.27        Pentamethylene diisocyanate    75
    • 4.27.1    Applications and production       75
  • 4.28        1,3-Propanediol (1,3-PDO)           75
    • 4.28.1    Applications and production       75
  • 4.29        Sebacic acid        76
    • 4.29.1    Applications and production       77
  • 4.30        Succinic acid (SA)             77
    • 4.30.1    Applications and production       78

 

5              BIOPLASTICS AND BIOPOLYMERS              79

  • 5.1          Bio-based or renewable plastics 79
    • 5.1.1      Drop-in bio-based plastics            79
    • 5.1.2      Novel bio-based plastics                80
  • 5.2          Biodegradable and compostable plastics                81
    • 5.2.1      Biodegradability               81
    • 5.2.2      Compostability  82
  • 5.3          Advantages and disadvantages  83
  • 5.4          Types of Bio-based and/or Biodegradable Plastics              83
  • 5.5          Market leaders by biobased and/or biodegradable plastic types  85
  • 5.6          Regional/country production capacities, by main types   86
    • 5.6.1      Bio-based Polyethylene (Bio-PE) production capacities, by country             88
    • 5.6.2      Bio-based Polyethylene terephthalate (Bio-PET) production capacities, by country              89
    • 5.6.3      Bio-based polyamides (Bio-PA) production capacities, by country               90
    • 5.6.4      Bio-based Polypropylene (Bio-PP) production capacities, by country          91
    • 5.6.5      Bio-based Polytrimethylene terephthalate (Bio-PTT) production capacities, by country     92
    • 5.6.6      Bio-based Poly(butylene adipate-co-terephthalate) (PBAT) production capacities, by country         93
    • 5.6.7      Bio-based Polybutylene succinate (PBS) production capacities, by country              94
    • 5.6.8      Bio-based Polylactic acid (PLA) production capacities, by country 95
    • 5.6.9      Polyhydroxyalkanoates (PHA) production capacities, by country  96
    • 5.6.10    Starch blends production capacities, by country 97
  • 5.7          SYNTHETIC BIO-BASED POLYMERS            98
    • 5.7.1      Polylactic acid (Bio-PLA) 98
      • 5.7.1.1   Market analysis 98
      • 5.7.1.2   Production          100
    • 5.7.1.3   Producers and production capacities, current and planned            100
      • 5.7.1.3.1               Lactic acid producers and production capacities  100
      • 5.7.1.3.2               PLA producers and production capacities               100
      • 5.7.1.3.3               Polylactic acid (Bio-PLA) production capacities 2019-2033 (1,000 tons)     102
    • 5.7.2      Polyethylene terephthalate (Bio-PET)     103
      • 5.7.2.1   Market analysis 103
      • 5.7.2.2   Producers and production capacities       104
      • 5.7.2.3   Polyethylene terephthalate (Bio-PET) production capacities 2019-2033 (1,000 tons)          105
    • 5.7.3      Polytrimethylene terephthalate (Bio-PTT)             105
      • 5.7.3.1   Market analysis 105
      • 5.7.3.2   Producers and production capacities       106
      • 5.7.3.3   Polytrimethylene terephthalate (PTT) production capacities 2019-2033 (1,000 tons)          107
    • 5.7.4      Polyethylene furanoate (Bio-PEF)             107
      • 5.7.4.1   Market analysis 108
      • 5.7.4.2   Comparative properties to PET   109
    • 5.7.4.3   Producers and production capacities       109
      • 5.7.4.3.1               FDCA and PEF producers and production capacities           109
      • 5.7.4.3.2               Polyethylene furanoate (Bio-PEF) production capacities 2019-2033 (1,000 tons). 111
    • 5.7.5      Polyamides (Bio-PA)       111
      • 5.7.5.1   Market analysis 112
      • 5.7.5.2   Producers and production capacities       113
      • 5.7.5.3   Polyamides (Bio-PA) production capacities 2019-2033 (1,000 tons)            113
    • 5.7.6      Poly(butylene adipate-co-terephthalate) (Bio-PBAT)        114
      • 5.7.6.1   Market analysis 114
      • 5.7.6.2   Producers and production capacities       114
      • 5.7.6.3   Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production capacities 2019-2033 (1,000 tons)             115
    • 5.7.7      Polybutylene succinate (PBS) and copolymers     116
      • 5.7.7.1   Market analysis 116
      • 5.7.7.2   Producers and production capacities       117
      • 5.7.7.3   Polybutylene succinate (PBS) production capacities 2019-2033 (1,000 tons)           117
    • 5.7.8      Polyethylene (Bio-PE)    118
      • 5.7.8.1   Market analysis 118
      • 5.7.8.2   Producers and production capacities       119
      • 5.7.8.3   Polyethylene (Bio-PE) production capacities 2019-2033 (1,000 tons).        119
    • 5.7.9      Polypropylene (Bio-PP) 120
      • 5.7.9.1   Market analysis 120
      • 5.7.9.2   Producers and production capacities       120
      • 5.7.9.3   Polypropylene (Bio-PP) production capacities 2019-2033 (1,000 tons)      121
  • 5.8          NATURAL BIO-BASED POLYMERS               122
    • 5.8.1      Polyhydroxyalkanoates (PHA)     122
      • 5.8.1.1   Technology description 122
      • 5.8.1.2   Types    124
        • 5.8.1.2.1               PHB        126
        • 5.8.1.2.2               PHBV     126
      • 5.8.1.3   Synthesis and production processes        128
      • 5.8.1.4   Market analysis 131
      • 5.8.1.5   Commercially available PHAs      132
      • 5.8.1.6   Markets for PHAs             133
        • 5.8.1.6.1               Packaging            134
        • 5.8.1.6.2               Cosmetics           136
          • 5.8.1.6.2.1           PHA microspheres           136
        • 5.8.1.6.3               Medical 136
          • 5.8.1.6.3.1           Tissue engineering          136
          • 5.8.1.6.3.2           Drug delivery     137
        • 5.8.1.6.4               Agriculture          137
          • 5.8.1.6.4.1           Mulch film           137
        • 5.8.1.6.4.2           Grow bags           137
      • 5.8.1.7   Producers and production capacities       138
      • 5.8.1.8   PHA production capacities 2019-2033 (1,000 tons)            139
    • 5.8.2      Polysaccharides 140
      • 5.8.2.1   Microfibrillated cellulose (MFC) 140
        • 5.8.2.1.1               Market analysis 140
        • 5.8.2.1.2               Producers and production capacities       141
    • 5.8.2.2   Nanocellulose   141
      • 5.8.2.2.1               Cellulose nanocrystals    141
        • 5.8.2.2.1.1           Synthesis             142
        • 5.8.2.2.1.2           Properties           144
        • 5.8.2.2.1.3           Production          145
        • 5.8.2.2.1.4           Applications       145
        • 5.8.2.2.1.5           Market analysis 146
        • 5.8.2.2.1.6           Producers and production capacities       148
      • 5.8.2.2.2               Cellulose nanofibers       148
        • 5.8.2.2.2.1           Applications       149
        • 5.8.2.2.2.2           Market analysis 150
        • 5.8.2.2.2.3           Producers and production capacities       151
      • 5.8.2.2.3               Bacterial Nanocellulose (BNC)    152
        • 5.8.2.2.3.1           Production          152
        • 5.8.2.2.3.2           Applications       155
    • 5.8.3      Protein-based bioplastics             156
      • 5.8.3.1   Types, applications and producers            157
    • 5.8.4      Algal and fungal 158
      • 5.8.4.1   Algal      158
        • 5.8.4.1.1               Advantages        158
        • 5.8.4.1.2               Production          160
        • 5.8.4.1.3               Producers           160
      • 5.8.4.2   Mycelium            161
        • 5.8.4.2.1               Properties           161
        • 5.8.4.2.2               Applications       162
        • 5.8.4.2.3               Commercialization           163
    • 5.8.5      Chitosan              164
      • 5.8.5.1   Technology description 164
  • 5.9          PRODUCTION OF BIOBASED AND SUSTAINABLE PLASTICS, BY REGION      165
    • 5.9.1      North America   166
    • 5.9.2      Europe 166
    • 5.9.3      Asia-Pacific         167
      • 5.9.3.1   China     167
      • 5.9.3.2   Japan    167
      • 5.9.3.3   Thailand               168
      • 5.9.3.4   Indonesia            168
    • 5.9.4      Latin America    169
  • 5.10        MARKET SEGMENTATION OF BIOPLASTICS           170
    • 5.10.1    Packaging            171
      • 5.10.1.1                Processes for bioplastics in packaging      171
      • 5.10.1.2                Applications       172
      • 5.10.1.3                Flexible packaging            172
        • 5.10.1.3.1             Production volumes 2019-2033   175
      • 5.10.1.4                Rigid packaging 176
        • 5.10.1.4.1             Production volumes 2019-2033   177
    • 5.10.2    Consumer products        179
      • 5.10.2.1                Applications       179
    • 5.10.3    Automotive        180
      • 5.10.3.1                Applications       180
      • 5.10.3.2                Production capacities     180
    • 5.10.4    Building & construction 181
      • 5.10.4.1                Applications       181
      • 5.10.4.2                Production capacities     181
    • 5.10.5    Textiles 182
      • 5.10.5.1                Apparel 182
      • 5.10.5.2                Footwear            183
      • 5.10.5.3                Medical textiles 185
      • 5.10.5.4                Production capacities     185
    • 5.10.6    Electronics          186
      • 5.10.6.1                Applications       186
      • 5.10.6.2                Production capacities     186
    • 5.10.7    Agriculture and horticulture        187
      • 5.10.7.1                Production capacities     188

 

6              COMPANY PROFILES       189 (340 companies)

 

7              REFERENCES       448

 

List of Tables

  • Table 1. Market trends and drivers in biobased and biodegradable plastics (bioplastics).  26
  • Table 2. Global production capacities of biobased and biodegradable plastics 2018-2033, in 1,000 tons.   28
  • Table 3. Global production capacities for biobased and biodegradable plastics (bioplastics), by producers.               29
  • Table 4. Global production capacities of biobased and biodegradable plastics (bioplastics) 2019-2033, by type, in 1,000 tons.      31
  • Table 5. Issues related to the use of plastics.        43
  • Table 6. Types of biobased and biodegradable plastics (bioplastics).          46
  • Table 7. Comparison of synthetic fossil-based and bio-based polymers.   51
  • Table 8. List of Bio-based chemicals.        53
  • Table 9. Lactide applications.      68
  • Table 10. Biobased MEG producers capacities.    70
  • Table 11. Type of biodegradation.            82
  • Table 12. Advantages and disadvantages of biobased plastics compared to conventional plastics. 83
  • Table 13. Types of Bio-based and/or Biodegradable Plastics, applications.               83
  • Table 14. Market leader by Bio-based and/or Biodegradable Plastic types.             85
  • Table 15. Bioplastics regional production capacities, 1,000 tons, 2019-2033.           86
  • Table 16. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.               98
  • Table 17. Lactic acid producers and production capacities.             100
  • Table 18. PLA producers and production capacities.          100
  • Table 19. Planned PLA capacity expansions in China.         101
  • Table 20. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications.              103
  • Table 21. Bio-based Polyethylene terephthalate (PET) producers and production capacities,           104
  • Table 22. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications.       105
  • Table 23. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.   106
  • Table 24. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.                108
  • Table 25. PEF vs. PET.     109
  • Table 26. FDCA and PEF producers.          110
  • Table 27. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications.                112
  • Table 28. Leading Bio-PA producers production capacities.            113
  • Table 29. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications.              114
  • Table 30. Leading PBAT producers, production capacities and brands.      114
  • Table 31. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications.       116
  • Table 32. Leading PBS producers and production capacities.          117
  • Table 33. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.                118
  • Table 34. Leading Bio-PE producers.        119
  • Table 35. Bio-PP market analysis- manufacture, advantages, disadvantages and applications.        120
  • Table 36. Leading Bio-PP producers and capacities.           120
  • Table 37.Types of PHAs and properties. 125
  • Table 38. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 127
  • Table 39. Polyhydroxyalkanoate (PHA) extraction methods.          129
  • Table 40. Polyhydroxyalkanoates (PHA) market analysis. 131
  • Table 41. Commercially available PHAs.  132
  • Table 42. Markets and applications for PHAs.       133
  • Table 43. Applications, advantages and disadvantages of PHAs in packaging.         135
  • Table 44. Polyhydroxyalkanoates (PHA) producers.           138
  • Table 45. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications.                140
  • Table 46. Leading MFC producers and capacities.               141
  • Table 47. Synthesis methods for cellulose nanocrystals (CNC).     142
  • Table 48. CNC sources, size and yield.      143
  • Table 49. CNC properties.             144
  • Table 50. Mechanical properties of CNC and other reinforcement materials.         144
  • Table 51. Applications of nanocrystalline cellulose (NCC).               146
  • Table 52. Cellulose nanocrystals analysis.               146
  • Table 53: Cellulose nanocrystal production capacities and production process, by producer.          148
  • Table 54. Applications of cellulose nanofibers (CNF).        149
  • Table 55. Cellulose nanofibers market analysis.   150
  • Table 56. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes.    151
  • Table 57. Applications of bacterial nanocellulose (BNC). 155
  • Table 58. Types of protein based-bioplastics, applications and companies.             157
  • Table 59. Types of algal and fungal based-bioplastics, applications and companies.             158
  • Table 60. Overview of alginate-description, properties, application and market size.          159
  • Table 61. Companies developing algal-based bioplastics. 160
  • Table 62. Overview of mycelium fibers-description, properties, drawbacks and applications.          161
  • Table 63. Companies developing mycelium-based bioplastics.      163
  • Table 64. Overview of chitosan-description, properties, drawbacks and applications.         164
  • Table 65. Global production capacities of biobased and sustainable plastics in 2019-2033, by region, tons.              165
  • Table 66. Biobased and sustainable plastics producers in North America. 166
  • Table 67. Biobased and sustainable plastics producers in Europe.               167
  • Table 68. Biobased and sustainable plastics producers in Asia-Pacific.       168
  • Table 69. Biobased and sustainable plastics producers in Latin America.  169
  • Table 70. Processes for bioplastics in packaging. 171
  • Table 71. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.                173
  • Table 72. Typical applications for bioplastics in flexible packaging.              173
  • Table 73. Typical applications for bioplastics in rigid packaging.   176
  • Table 74. Granbio Nanocellulose Processes.         294
  • Table 75. Lactips plastic pellets. 326
  • Table 76. Oji Holdings CNF products.       374
  •  

List of Figures

  • Figure 1. Total global production capacities for biobased and biodegradable plastics, all types, 000 tons.  26
  • Figure 2. Global production capacities of biobased and biodegradable plastics (bioplastics) 2018-2033, in 1,000 tons by biodegradable/non-biodegradable types.             29
  • Figure 3. Global production capacities of biobased and biodegradable plastics (bioplastics) in 2019-2033, by type, in 1,000 tons.         32
  • Figure 4. Global production capacities of biobased and biodegradable plastics (bioplastics) 2019-2033, by region, tonnes. 34
  • Figure 5. Current and future applications of biobased and biodegradable plastics (bioplastics).      35
  • Figure 6. Global demand for biobased and biodegradable plastics (bioplastics) by end user market, 2021  36
  • Figure 7. Global production capacities for biobased and biodegradable plastics (bioplastics) by end user market 2019-2033, tons.         38
  • Figure 8. Challenges for the biobased and biodegradable plastics (bioplastics) market.      38
  • Figure 9. Global plastics production 1950-2020, millions of tons. 42
  • Figure 10. The circular plastic economy. 45
  • Figure 11. Routes for synthesizing polymers from fossil-based and bio-based resources.  50
  • Figure 12. Bio-based chemicals and feedstocks production capacities, 2018-2033.                54
  • Figure 13. Overview of Toray process. Overview of process           55
  • Figure 14. Production capacities for 11-Aminoundecanoic acid (11-AA).   56
  • Figure 15. 1,4-Butanediol (BDO) production capacities, 2018-2033 (tonnes).         57
  • Figure 16. Dodecanedioic acid (DDDA) production capacities, 2018-2033 (tonnes).             58
  • Figure 17. Epichlorohydrin production capacities, 2018-2033 (tonnes).    60
  • Figure 18. Ethylene production capacities, 2018-2033 (tonnes).  61
  • Figure 19. Potential industrial uses of 3-hydroxypropanoic acid.  66
  • Figure 20. L-lactic acid (L-LA) production capacities, 2018-2033 (tonnes). 67
  • Figure 21. Lactide production capacities, 2018-2033 (tonnes).     69
  • Figure 22. Bio-MEG production capacities, 2018-2033.      71
  • Figure 23. Bio-MPG production capacities, 2018-2033 (tonnes).  72
  • Figure 24. Biobased naphtha production capacities, 2018-2033 (tonnes). 74
  • Figure 25. Bio-naptha producers and production capacities.          74
  • Figure 26. 1,3-Propanediol (1,3-PDO) production capacities, 2018-2033 (tonnes). 76
  • Figure 27. Sebacic acid production capacities, 2018-2033 (tonnes).           77
  • Figure 28.  Coca-Cola PlantBottle®.           80
  • Figure 29. Interrelationship between conventional, bio-based and biodegradable plastics.              81
  • Figure 30. Bioplastics regional production capacities, 1,000 tons, 2019-2033.         88
  • Figure 31. Bio-based Polyethylene (Bio-PE), 1,000 tons, 2019-2033.            88
  • Figure 32. Bio-based Polyethylene terephthalate (Bio-PET) production capacities, 1,000 tons, 2019-2033   89
  • Figure 33. Bio-based polyamides (Bio-PA) production capacities, 1,000 tons, 2019-2033.   90
  • Figure 34. Bio-based Polypropylene (Bio-PP) production capacities, 1,000 tons, 2019-2033.             91
  • Figure 35. Bio-based Polytrimethylene terephthalate (Bio-PTT) production capacities, 1,000 tons, 2019-2033.         92
  • Figure 36. Bio-based Poly(butylene adipate-co-terephthalate) (PBAT) production capacities, 1,000 tons, 2019-2033.                93
  • Figure 37. Bio-based Polybutylene succinate (PBS) production capacities, 1,000 tons, 2019-2033.  94
  • Figure 38. Bio-based Polylactic acid (PLA) production capacities, 1,000 tons, 2019-2033.    95
  • Figure 39. PHA production capacities, 1,000 tons, 2019-2033.        96
  • Figure 40. Starch blends production capacities, 1,000 tons, 2019-2033.     97
  • Figure 41. Polylactic acid (Bio-PLA) production capacities 2019-2033 (1,000 tons).              102
  • Figure 42. Polyethylene terephthalate (Bio-PET) production capacities 2019-2033 (1,000 tons)     105
  • Figure 43. Polytrimethylene terephthalate (PTT) production capacities 2019-2033 (1,000 tons).   107
  • Figure 44. Production capacities of Polyethylene furanoate (PEF) to 2025.               110
  • Figure 45. Polyethylene furanoate (Bio-PEF) production capacities 2019-2033 (1,000 tons).            111
  • Figure 46. Polyamides (Bio-PA) production capacities 2019-2033 (1,000 tons).      113
  • Figure 47. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production capacities 2019-2033 (1,000 tons).       115
  • Figure 48. Polybutylene succinate (PBS) production capacities 2019-2033 (1,000 tons).    118
  • Figure 49. Polyethylene (Bio-PE) production capacities 2019-2033 (1,000 tons).   119
  • Figure 50. Polypropylene (Bio-PP) production capacities 2019-2033 (1,000 tons). 121
  • Figure 51. PHA family.    125
  • Figure 52. PHA production capacities 2019-2033 (1,000 tons).     139
  • Figure 53. TEM image of cellulose nanocrystals. 142
  • Figure 54. CNC preparation.        142
  • Figure 55. Extracting CNC from trees.      143
  • Figure 56. CNC slurry.     145
  • Figure 57. CNF gel.           148
  • Figure 58. Bacterial nanocellulose shapes              154
  • Figure 59. BLOOM masterbatch from Algix.           159
  • Figure 60. Typical structure of mycelium-based foam.     162
  • Figure 61. Commercial mycelium composite construction materials.          163
  • Figure 62. Global production capacities of biobased and sustainable plastics 2020.              165
  • Figure 63. Global production capacities of biobased and sustainable plastics 2025.              166
  • Figure 64. Global production capacities for biobased and sustainable plastics by end user market 2019-2033, 1,000 tons.      170
  • Figure 65. PHA bioplastics products.        172
  • Figure 66. Bioplastics for flexible packaging by bioplastic material type, 2019–2033 (‘000 tonnes).              175
  • Figure 67. Bioplastics for rigid packaging by bioplastic material type, 2019–2033 (‘000 tonnes).    177
  • Figure 68. Global bioplastic packaging by geographic market, 2023–2033 (‘000 tonnes).  178
  • Figure 69. Global production capacities for biobased and sustainable plastics in consumer products 2019-2033, in 1,000 tons.         179
  • Figure 70. Global production capacities for biobased and sustainable plastics in automotive 2019-2033, in 1,000 tons.                180
  • Figure 71. Global production capacities for biobased and sustainable plastics in building and construction 2019-2033, in 1,000 tons.     181
  • Figure 72. AlgiKicks sneaker, made with the Algiknit biopolymer gel.         183
  • Figure 73. Reebok's [REE]GROW running shoes. 183
  • Figure 74. Camper Runner K21.  184
  • Figure 75. Global production capacities for biobased and sustainable plastics in textiles 2019-2033, in 1,000 tons.                185
  • Figure 76. Global production capacities for biobased and sustainable plastics in electronics 2019-2033, in 1,000 tons.                186
  • Figure 77. Biodegradable mulch films.     187
  • Figure 78. Global production capacities for biobased and sustainable plastics in agriculture 2019-2033, in 1,000 tons.                188
  • Figure 79. Algiknit yarn. 194
  • Figure 80. Bio-PA rear bumper stay.         211
  • Figure 81. BIOLO e-commerce mailer bag made from PHA.            218
  • Figure 82. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc. 220
  • Figure 83. formicobio™ technology.         246
  • Figure 84. nanoforest-S. 248
  • Figure 85. nanoforest-PDP.         249
  • Figure 86. nanoforest-MB.           249
  • Figure 87. CuanSave film.             257
  • Figure 88. ELLEX products.           259
  • Figure 89. CNF-reinforced PP compounds.            260
  • Figure 90. Kirekira! toilet wipes. 260
  • Figure 91. Mushroom leather.    272
  • Figure 92. Cellulose Nanofiber (CNF) composite with polyethylene (PE).  286
  • Figure 93. PHA production process.         288
  • Figure 94. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.                297
  • Figure 95. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer). 300
  • Figure 96. CNF gel.           305
  • Figure 97. Block nanocellulose material. 306
  • Figure 98. CNF products developed by Hokuetsu.              306
  • Figure 99. Made of Air's HexChar panels.               335
  • Figure 100. TransLeather.             336
  • Figure 101. IPA synthesis method.            344
  • Figure 102. MOGU-Wave panels.              346
  • Figure 103. Reishi.           351
  • Figure 104. Nippon Paper Industries’ adult diapers.          364
  • Figure 105. Compostable water pod.       366
  • Figure 106. CNF clear sheets.      374
  • Figure 107. Oji Holdings CNF polycarbonate product.       376
  • Figure 108. Manufacturing process for STARCEL. 399
  • Figure 109. Lyocell process.         409
  • Figure 110. Spider silk production.            413
  • Figure 111. Sulapac cosmetics containers.             416
  • Figure 112.  Sulzer equipment for PLA polymerization processing.              417
  • Figure 113. Teijin bioplastic film for door handles.             424
  • Figure 114. Corbion FDCA production process.    433
  • Figure 115. traceless® hooks.      434
  • Figure 116. Visolis’ Hybrid Bio-Thermocatalytic Process. 441

 

 

 

The Global Market for Biobased and Biodegradable Plastics (Bioplastics)
The Global Market for Biobased and Biodegradable Plastics (Bioplastics)
PDF download.

The Global Market for Biobased and Biodegradable Plastics (Bioplastics)
The Global Market for Biobased and Biodegradable Plastics (Bioplastics)
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal. 

To purchase by invoice (bank transfer) or in an alternative currency please contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.