The Global Market for Biobased & Biodegradable Chemicals, Materials, Polymers, Plastics, Paints & Coatings and Fuels to 2033

0

August 2022 | 1175 pages, 193 tables, 300 figures | Download table of contents

There is growing consumer demand and regulatory push for bio-based chemicals, materials, polymers, plastics, paints, coatings and fuels with high performance, good recyclability and biodegradable properties to underpin transition towards more sustainable manufacturing and products. Materials from biomass sources include bulk chemicals, platform chemicals, solvents, polymers, and biocomposites.

The many processes to convert biomass components to value-added products and fuels can be classified broadly as biochemical or thermochemical. In addition, biotechnological processes that rely mainly on plant breeding, fermentation, and conventional enzyme isolation also are used. New bio-based materials that may compete with conventional materials are emerging continually, and the opportunities to use them in existing and novel products are explored in this publication. 

Contents include:

  • In depth market analysis of bio-based chemical feedstocks, biopolymers, bioplastics, natural fibers and lignin, and bio-based coatings and paints. 
  • Global production capacities, market demand and trends.
  • Analysis of bio-based chemical including 11-Aminoundecanoic acid (11-AA), 1,4-Butanediol (1,4-BDO), Dodecanedioic acid (DDDA), Epichlorohydrin (ECH), Ethylene, Furan derivatives, 5-Chloromethylfurfural (5-CMF), 2,5-Furandicarboxylic acid (2,5-FDCA), Furandicarboxylic methyl ester (FDME), Isosorbide,  Itaconic acid, 5 Hydroxymethyl furfural (HMF), Lactic acid (D-LA), Lactic acid – L-lactic acid (L-LA), Lactide, Levoglucosenone, Levulinic acid, Monoethylene glycol (MEG), Monopropylene glycol (MPG), Muconic acid, Naphtha, 1,5-Pentametylenediamine (DN5), 1,3-Propanediol (1,3-PDO), Sebacic acid and Succinic acid.
  • Analysis of synthetic bio-polymers and bio-plastics market including Polylactic acid (Bio-PLA), Polyethylene terephthalate (Bio-PET), Polytrimethylene terephthalate (Bio-PTT), Polyethylene furanoate (Bio-PEF), Polyamides (Bio-PA), Poly(butylene adipate-co-terephthalate) (Bio-PBAT), Polybutylene succinate (PBS) and copolymers, Polyethylene (Bio-PE), Polypropylene (Bio-PP)
  • Analysis of naturally produced bio-based polymers including Polyhydroxyalkanoates (PHA), Polysaccharides, Microfibrillated cellulose (MFC), Cellulose nanocrystals, Cellulose nanofibers,  Protein-based bioplastics, Algal and fungal. 
  • Analysis of market for biofuels. 
  • Analysis of types of natural fibers including plant fibers, animal fibers including alternative leather, wool, silk fiber and down and polysaccharides. 
  • Markets for natural fibers, including composites, aerospace, automotive, construction & building, sports & leisure, textiles, consumer products and packaging.
  • Production capacities of lignin producers. 
  • In depth analysis of biorefinery lignin production. 
  • Analysis of the market for bio-based, sustainable paints and coatings. 
  • Analysis of types of bio-coatings and paints market.  Including Alkyd coatings, Polyurethane coatings, Epoxy coatings, Acrylate resins, Polylactic acid (Bio-PLA), Polyhydroxyalkanoates (PHA), Cellulose, Rosins, Biobased carbon black, Lignin, Edible coatings, Protein-based biomaterials for coatings, Alginate etc. 
  • Profiles of over 770 companies. 

 

1              EXECUTIVE SUMMARY   50

  • 1.1          Market trends   51
  • 1.2          Global production to 2030            52
  • 1.3          Main producers and global production capacities               53
    • 1.3.1      Producers           54
    • 1.3.2      By biobased and sustainable plastic type               55
    • 1.3.3      By region             59
  • 1.4          Global demand for biobased and sustainable plastics 2020-21, by market               60
  • 1.5          Impact of COVID-19 crisis on the bioplastics market and future demand        64
  • 1.6          Challenges for the biobased and sustainable plastics market         64

 

2              RESEARCH METHODOLOGY         66

 

3              THE GLOBAL PLASTICS MARKET 68

  • 3.1          Global production            68
  • 3.2          The importance of plastic              68
  • 3.3          Issues with plastics use  69

 

4              BIO-BASED CHEMICALS 70

  • 4.1          Types    70
  • 4.2          Production capacities     71
  • 4.3          Bio-based adipic acid      72
  • 4.4          11-Aminoundecanoic acid (11-AA)            72
  • 4.5          1,4-Butanediol (1,4-BDO)              72
  • 4.6          Dodecanedioic acid (DDDA)         73
  • 4.7          Epichlorohydrin (ECH)    74
  • 4.8          Ethylene              75
  • 4.9          Furfural 76
  • 4.10        5-Chloromethylfurfural (5-CMF) 77
  • 4.11        2,5-Furandicarboxylic acid (2,5-FDCA)     77
  • 4.12        Furandicarboxylic methyl ester (FDME)  78
  • 4.13        Isosorbide           78
  • 4.14        Itaconic acid       78
  • 4.15        3-Hydroxypropionic acid (3-HP) 79
  • 4.16        5 Hydroxymethyl furfural (HMF) 79
  • 4.17        Lactic acid (D-LA)             79
  • 4.18        Lactic acid – L-lactic acid (L-LA)   80
  • 4.19        Lactide  80
  • 4.20        Levoglucosenone             81
  • 4.21        Levulinic acid      82
  • 4.22        Monoethylene glycol (MEG)       82
  • 4.23        Monopropylene glycol (MPG)    83
  • 4.24        Muconic acid      84
  • 4.25        Naphtha              85
  • 4.26        Pentamethylene diisocyanate    85
  • 4.27        1,3-Propanediol (1,3-PDO)           86
  • 4.28        Sebacic acid        87
  • 4.29        Succinic acid (SA)             88

 

5              BIOPOLYMERS AND BIOPLASTICS              89

  • 5.1          Bio-based or renewable plastics 89
    • 5.1.1      Drop-in bio-based plastics            89
    • 5.1.2      Novel bio-based plastics                90
  • 5.2          Biodegradable and compostable plastics                91
    • 5.2.1      Biodegradability               91
    • 5.2.2      Compostability  92
  • 5.3          Advantages and disadvantages  92
  • 5.4          Types of Bio-based and/or Biodegradable Plastics              93
  • 5.5          Market leaders by biobased and/or biodegradable plastic types  95
  • 5.6          Regional/country production capacities, by main types   96
    • 5.6.1      Bio-based Polyethylene (Bio-PE) production capacities, by country             98
    • 5.6.2      Bio-based Polyethylene terephthalate (Bio-PET) production capacities, by country              99
    • 5.6.3      Bio-based polyamides (Bio-PA) production capacities, by country               100
    • 5.6.4      Bio-based Polypropylene (Bio-PP) production capacities, by country          101
    • 5.6.5      Bio-based Polytrimethylene terephthalate (Bio-PTT) production capacities, by country     102
    • 5.6.6      Bio-based Poly(butylene adipate-co-terephthalate) (PBAT) production capacities, by country         103
    • 5.6.7      Bio-based Polybutylene succinate (PBS) production capacities, by country              104
    • 5.6.8      Bio-based Polylactic acid (PLA) production capacities, by country 105
    • 5.6.9      Polyhydroxyalkanoates (PHA) production capacities, by country  106
    • 5.6.10    Starch blends production capacities, by country 107
  • 5.7          SYNTHETIC BIO-BASED POLYMERS            108
    • 5.7.1      Polylactic acid (Bio-PLA) 108
      • 5.7.1.1   Market analysis 108
      • 5.7.1.2   Producers           110
    • 5.7.2      Polyethylene terephthalate (Bio-PET)     112
      • 5.7.2.1   Market analysis 112
      • 5.7.2.2   Producers           113
    • 5.7.3      Polytrimethylene terephthalate (Bio-PTT)             114
      • 5.7.3.1   Market analysis 114
      • 5.7.3.2   Producers           114
    • 5.7.4      Polyethylene furanoate (Bio-PEF)             114
      • 5.7.4.1   Market analysis 115
      • 5.7.4.2   Comparative properties to PET   116
      • 5.7.4.3   Producers           117
    • 5.7.5      Polyamides (Bio-PA)       117
      • 5.7.5.1   Market analysis 118
      • 5.7.5.2   Producers           119
    • 5.7.6      Poly(butylene adipate-co-terephthalate) (Bio-PBAT)        119
      • 5.7.6.1   Market analysis 119
      • 5.7.6.2   Producers           120
    • 5.7.7      Polybutylene succinate (PBS) and copolymers     121
      • 5.7.7.1   Market analysis 121
      • 5.7.7.2   Producers           122
    • 5.7.8      Polyethylene (Bio-PE)    122
      • 5.7.8.1   Market analysis 122
      • 5.7.8.2   Producers           123
    • 5.7.9      Polypropylene (Bio-PP) 123
      • 5.7.9.1   Market analysis 123
      • 5.7.9.2   Producers           124
  • 5.8          NATURAL BIO-BASED POLYMERS               125
    • 5.8.1      Polyhydroxyalkanoates (PHA)     125
      • 5.8.1.1   Types    127
      • 5.8.1.2   Synthesis and production processes        131
      • 5.8.1.3   Market analysis 134
      • 5.8.1.4   Commercially available PHAs      135
      • 5.8.1.5   Markets for PHAs             136
      • 5.8.1.6   Producers           141
    • 5.8.2      Polysaccharides 142
      • 5.8.2.1   Microfibrillated cellulose (MFC) 142
      • 5.8.2.2   Cellulose nanocrystals    144
      • 5.8.2.3   Cellulose nanofibers       146
    • 5.8.3      Protein-based bioplastics             148
      • 5.8.3.1   Types, applications and producers            149
    • 5.8.4      Algal and fungal 150
      • 5.8.4.1   Algal      150
      • 5.8.4.2   Mycelium            153
    • 5.8.5      Chitosan              156
    • 5.8.6      Microplastics alternatives             156
  • 5.9          PRODUCTION OF BIOBASED AND SUSTAINABLE PLASTICS, BY REGION      157
    • 5.9.1      North America   158
    • 5.9.2      Europe 159
    • 5.9.3      Asia-Pacific         159
      • 5.9.3.1   China     159
      • 5.9.3.2   Japan    160
      • 5.9.3.3   Thailand               160
      • 5.9.3.4   Indonesia            160
    • 5.9.4      Latin America    161
  • 5.10        MARKET SEGMENTATION OF BIOPLASTICS           162
    • 5.10.1    Packaging            164
    • 5.10.2    Consumer products        166
    • 5.10.3    Automotive        167
    • 5.10.4    Building & construction 167
    • 5.10.5    Textiles 168
    • 5.10.6    Electronics          169
    • 5.10.7    Agriculture and horticulture        170
  • 5.11        BIO-BASED CHEMICALS, BIOPOLYMERS AND BIOPLASTICS COMPANY PROFILES    173 (318 company profiles)

 

6              NATURAL FIBERS              419

  • 6.1          Manufacturing method, matrix materials and applications of natural fibers            420
  • 6.2          Advantages of natural fibers       421
  • 6.3          Plants (cellulose, lignocellulose) 422
    • 6.3.1      Seed fibers         422
      • 6.3.1.1   Cotton  422
      • 6.3.1.2   Kapok   423
      • 6.3.1.3   Luffa      424
    • 6.3.2      Bast fibers           425
      • 6.3.2.1   Jute       426
      • 6.3.2.2   Hemp    427
      • 6.3.2.3   Flax        429
      • 6.3.2.4   Ramie   431
      • 6.3.2.5   Kenaf    432
    • 6.3.3      Leaf fibers           434
      • 6.3.3.1   Sisal       434
      • 6.3.3.2   Abaca    435
    • 6.3.4      Fruit fibers          437
      • 6.3.4.1   Coir        437
      • 6.3.4.2   Banana 438
      • 6.3.4.3   Pineapple            440
    • 6.3.5      Stalk fibers from agricultural residues     441
      • 6.3.5.1   Rice fiber             441
      • 6.3.5.2   Corn      441
    • 6.3.6      Cane, grasses and reed  442
      • 6.3.6.1   Switch grass       442
      • 6.3.6.2   Sugarcane (agricultural residues)              443
      • 6.3.6.3   Bamboo               444
      • 6.3.6.4   Fresh grass (green biorefinery)  445
    • 6.3.7      Modified natural polymers          445
      • 6.3.7.1   Mycelium            445
      • 6.3.7.2   Chitosan              448
      • 6.3.7.3   Alginate               448
  • 6.4          Animal (fibrous protein) 449
    • 6.4.1      Wool     449
      • 6.4.1.1   Alternative wool materials           450
      • 6.4.1.2   Producers           450
    • 6.4.2      Silk fiber              451
      • 6.4.2.1   Alternative silk materials               451
    • 6.4.3      Leather 452
      • 6.4.3.1   Alternative leather materials       452
    • 6.4.4      Down    453
      • 6.4.4.1   Alternative down materials          453
  • 6.5          MARKETS FOR NATURAL FIBERS 454
    • 6.5.1      Composites        454
    • 6.5.2      Applications       454
    • 6.5.3      Natural fiber injection moulding compounds       456
      • 6.5.3.1   Properties           456
      • 6.5.3.2   Applications       456
    • 6.5.4      Non-woven natural fiber mat composites              457
      • 6.5.4.1   Automotive        457
      • 6.5.4.2   Applications       457
    • 6.5.5      Aligned natural fiber-reinforced composites        458
    • 6.5.6      Natural fiber biobased polymer compounds         458
    • 6.5.7      Natural fiber biobased polymer non-woven mats              459
      • 6.5.7.1   Flax        459
      • 6.5.7.2   Kenaf    459
    • 6.5.8      Natural fiber thermoset bioresin composites       460
    • 6.5.9      Aerospace          460
      • 6.5.9.1   Market overview             460
    • 6.5.10    Automotive        461
      • 6.5.10.1                Market overview             461
      • 6.5.10.2                Applications of natural fibers      465
    • 6.5.11    Building/construction     466
      • 6.5.11.1                Market overview             466
      • 6.5.11.2                Applications of natural fibers      466
    • 6.5.12    Sports and leisure            467
      • 6.5.12.1                Market overview             467
    • 6.5.13    Textiles 468
      • 6.5.13.1                Market overview             468
      • 6.5.13.2                Consumer apparel           469
      • 6.5.13.3                Geotextiles        469
    • 6.5.14    Packaging            470
      • 6.5.14.1                Market overview             471
  • 6.6          NATURAL FIBERS GLOBAL PRODUCTION 472
    • 6.6.1      Overall global fibers market        472
    • 6.6.2      Plant-based fiber production      474
    • 6.6.3      Animal-based natural fiber production   475
  • 6.7          NATURAL FIBER COMPANY PROFILES      476 (137 company profiles)

 

7              LIGNIN 620

  • 7.1          INTRODUCTION 620
    • 7.1.1      What is lignin?   620
      • 7.1.1.1   Lignin structure 621
    • 7.1.2      Types of lignin    622
      • 7.1.2.1   Sulfur containing lignin  625
      • 7.1.2.2   Sulfur-free lignin from biorefinery process            625
    • 7.1.3      Properties           625
    • 7.1.4      The lignocellulose biorefinery     628
    • 7.1.5      Markets and applications              629
    • 7.1.6      Challenges for using lignin            630
  • 7.2          LIGNIN PRODUCTON PROCESSES              630
    • 7.2.1      Lignosulphonates            632
    • 7.2.2      Kraft Lignin          633
      • 7.2.2.1   LignoBoost process         633
      • 7.2.2.2   LignoForce method         634
      • 7.2.2.3   Sequential Liquid Lignin Recovery and Purification             634
      • 7.2.2.4   A-Recovery+      635
    • 7.2.3      Soda lignin          636
    • 7.2.4      Biorefinery lignin              637
      • 7.2.4.1   Commercial and pre-commercial biorefinery lignin production facilities and  processes    638
    • 7.2.5      Organosolv lignins            640
    • 7.2.6      Hydrolytic lignin                641
  • 7.3          MARKETS FOR LIGNIN    641
    • 7.3.1      Market drivers and trends for lignin         642
    • 7.3.2      Production capacities     643
      • 7.3.2.1   Technical lignin availability (dry ton/y)    643
      • 7.3.2.2   Biomass conversion (Biorefinery)             643
    • 7.3.3      Estimated consumption of lignin                644
    • 7.3.4      Prices    645
    • 7.3.5      Heat and power energy 646
    • 7.3.6      Pyrolysis and syngas       646
    • 7.3.7      Aromatic compounds     646
      • 7.3.7.1   Benzene, toluene and xylene      646
      • 7.3.7.2   Phenol and phenolic resins          647
      • 7.3.7.3   Vanillin 648
    • 7.3.8      Plastics and polymers     648
    • 7.3.9      Hydrogels            649
    • 7.3.10    Carbon materials              650
      • 7.3.10.1                Carbon black      650
      • 7.3.10.2                Activated carbons            650
      • 7.3.10.3                Carbon fiber       651
    • 7.3.11    Concrete             652
    • 7.3.12    Rubber 653
    • 7.3.13    Biofuels 653
    • 7.3.14    Bitumen and Asphalt      653
    • 7.3.15    Oil and gas          654
    • 7.3.16    Energy storage  655
      • 7.3.16.1                Supercapacitors 655
      • 7.3.16.2                Anodes for lithium-ion batteries 655
      • 7.3.16.3                Gel electrolytes for lithium-ion batteries                656
      • 7.3.16.4                Binders for lithium-ion batteries 656
      • 7.3.16.5                Cathodes for lithium-ion batteries            656
      • 7.3.16.6                Sodium-ion batteries      657
    • 7.3.17    Binders, emulsifiers and dispersants        657
    • 7.3.18    Chelating agents              659
    • 7.3.19    Ceramics              660
    • 7.3.20    Automotive interiors      660
    • 7.3.21    Fire retardants  661
    • 7.3.22    Antioxidants      661
    • 7.3.23    Lubricants           661
    • 7.3.24    Dust control       662
  • 7.4          COMPANY PROFILES       663 (71 company profiles)

 

8              BIOBASED AND RENEWABLE FUELS          733

  • 8.1          BIOFUELS            733
    • 8.1.1      The biofuels market        733
    • 8.1.2      Types    734
      • 8.1.2.1   Solid Biofuels     734
      • 8.1.2.2   Liquid Biofuels  734
      • 8.1.2.3   Gaseous Biofuels             735
      • 8.1.2.4   Conventional Biofuels    735
      • 8.1.2.5   Advanced Biofuels           735
    • 8.1.3      Feedstocks         736
      • 8.1.3.1   First-Generation Feedstocks       737
      • 8.1.3.2   Second-Generation Feedstocks 738
      • 8.1.3.3   Third-Generation Feedstocks     744
      • 8.1.3.4   Fourth-Generation Feedstocks  746
      • 8.1.3.5   Market demand               748
    • 8.1.4      Bioethanol          749
    • 8.1.5      Bio-jet (bio-aviation) fuels            750
      • 8.1.5.1   Description         750
      • 8.1.5.2   Global market   751
      • 8.1.5.3   Production pathways     752
      • 8.1.5.4   Costs     754
      • 8.1.5.5   Biojet fuel production capacities                755
      • 8.1.5.6   Challenges          755
    • 8.1.6      Biomass-based diesel     756
      • 8.1.6.1   Biodiesel              756
      • 8.1.6.2   Renewable diesel            759
    • 8.1.7      Syngas  761
    • 8.1.8      Biogas and biomethane 762
      • 8.1.8.1   Feedstocks         764
    • 8.1.9      Biobutanol          765
      • 8.1.9.1   Production          766
  • 8.2          ELECTROFUELS (E-FUELS)             767
    • 8.2.1      Introduction       767
      • 8.2.1.1   Benefits of e-fuels           770
    • 8.2.2      Feedstocks         770
      • 8.2.2.1   Hydrogen electrolysis     771
      • 8.2.2.2   CO2 capture       771
    • 8.2.3      Production          772
    • 8.2.4      Electrolysers      774
      • 8.2.4.1   Commercial alkaline electrolyser cells (AECs)       775
      • 8.2.4.2   PEM electrolysers (PEMEC)         775
      • 8.2.4.3   High-temperature solid oxide electrolyser cells (SOECs)  776
    • 8.2.5      Direct Air Capture (DAC)               776
      • 8.2.5.1   Technologies     776
      • 8.2.5.2   Markets for DAC               778
      • 8.2.5.3   Costs     778
      • 8.2.5.4   Challenges          780
      • 8.2.5.5   Companies and production          780
      • 8.2.5.6   CO2 capture from point sources 782
    • 8.2.6      Costs     782
    • 8.2.7      Market challenges           785
    • 8.2.8      Companies         785
  • 8.3          GREEN AMMONIA           787
    • 8.3.1      Production          787
      • 8.3.1.1   Decarbonisation of ammonia production               789
      • 8.3.1.2   Green ammonia projects              790
    • 8.3.2      Green ammonia synthesis methods         790
      • 8.3.2.1   Haber-Bosch process      790
      • 8.3.2.2   Biological nitrogen fixation          791
      • 8.3.2.3   Electrochemical production         792
      • 8.3.2.4   Chemical looping processes        792
    • 8.3.3      Blue ammonia   792
      • 8.3.3.1   Blue ammonia projects  792
    • 8.3.4      Markets and applications              793
      • 8.3.4.1   Chemical energy storage              793
      • 8.3.4.2   Marine fuel         794
    • 8.3.5      Costs     796
    • 8.3.6      Estimated market demand           798
    • 8.3.7      Companies and projects 798
  • 8.4          COMPANY PROFILES       800 (114 company profiles)

 

9              BIO-BASED PAINTS AND COATINGS          892

  • 9.1          The global paints and coatings market    892
  • 9.2          Bio-based paints and coatings     892
  • 9.3          Challenges using bio-based paints and coatings   893
  • 9.4          Types of bio-based coatings and materials             894
    • 9.4.1      Alkyd coatings   894
      • 9.4.1.1   Alkyd resin properties    894
      • 9.4.1.2   Biobased alkyd coatings 895
      • 9.4.1.3   Products              896
    • 9.4.2      Polyurethane coatings   897
      • 9.4.2.1   Properties           897
      • 9.4.2.2   Biobased polyurethane coatings 898
      • 9.4.2.3   Products              899
    • 9.4.3      Epoxy coatings  900
      • 9.4.3.1   Properties           900
      • 9.4.3.2   Biobased epoxy coatings               901
      • 9.4.3.3   Products              902
    • 9.4.4      Acrylate resins   903
      • 9.4.4.1   Properties           903
      • 9.4.4.2   Biobased acrylates           904
      • 9.4.4.3   Products              904
    • 9.4.5      Polylactic acid (Bio-PLA) 905
      • 9.4.5.1   Properties           907
      • 9.4.5.2   Bio-PLA coatings and films            908
    • 9.4.6      Polyhydroxyalkanoates (PHA)     908
      • 9.4.6.1   Properties           910
      • 9.4.6.2   PHA coatings      912
      • 9.4.6.3   Commercially available PHAs      913
    • 9.4.7      Cellulose              915
      • 9.4.7.1   Microfibrillated cellulose (MFC) 921
      • 9.4.7.2   Cellulose nanofibers       923
      • 9.4.7.3   Cellulose nanocrystals    927
      • 9.4.7.4   Bacterial Nanocellulose (BNC)    929
    • 9.4.8      Rosins   929
    • 9.4.9      Biobased carbon black   930
      • 9.4.9.1   Lignin-based      930
      • 9.4.9.2   Algae-based       930
    • 9.4.10    Lignin    930
      • 9.4.10.1                Application in coatings   931
    • 9.4.11    Edible coatings  931
    • 9.4.12    Protein-based biomaterials for coatings 933
      • 9.4.12.1                Plant derived proteins   933
      • 9.4.12.2                Animal origin proteins   933
    • 9.4.13    Alginate               935
  • 9.5          Market for bio-based paints and coatings              937
    • 9.5.1      Global market revenues to 2031, total    937
    • 9.5.2      Global market revenues to 2031, by market         938
  • 9.6          Company profiles             942 (130 companies)

 

10           REFERENCES       1063

 

List of Tables

  • Table 1. Market drivers and trends in biobased and sustainable plastics.  51
  • Table 2. Global production capacities of biobased and sustainable plastics 2018-2030, in 1,000 tons.          52
  • Table 3. Global production capacities, by producers.        54
  • Table 4. Global production capacities of biobased and sustainable plastics 2019-2030, by type, in 1,000 tons.        55
  • Table 5. Global production capacities of biobased and sustainable plastics 2019-2025, by region, tons.      59
  • Table 6. Issues related to the use of plastics.        69
  • Table 7. List of Bio-based chemicals.        70
  • Table 8. Biobased MEG producers capacities.       82
  • Table 9. Type of biodegradation.               92
  • Table 10. Advantages and disadvantages of biobased plastics compared to conventional plastics. 92
  • Table 11. Types of Bio-based and/or Biodegradable Plastics, applications.               93
  • Table 12. Market leader by Bio-based and/or Biodegradable Plastic types.             95
  • Table 13. Bioplastics regional production capacities to 2030, 1,000 tons, 2019-2030.           96
  • Table 14. Polylactic acid (PLA) market analysis.    108
  • Table 15. Lactic acid producers and production capacities.             110
  • Table 16. PLA producers and production capacities.          110
  • Table 17. Planned PLA capacity expansions in China.         111
  • Table 18. Bio-based Polyethylene terephthalate (Bio-PET) market analysis.            112
  • Table 19. Bio-based Polyethylene terephthalate (PET) producers.              113
  • Table 20. Polytrimethylene terephthalate (PTT) market analysis. 114
  • Table 21. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.   114
  • Table 22. Polyethylene furanoate (PEF) market analysis. 115
  • Table 23. PEF vs. PET.     116
  • Table 24. FDCA and PEF producers.          117
  • Table 25. Bio-based polyamides (Bio-PA) market analysis.              118
  • Table 26. Leading Bio-PA producers production capacities.            119
  • Table 27. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis.            119
  • Table 28. Leading PBAT producers, production capacities and brands.      120
  • Table 29. Bio-PBS market analysis.            121
  • Table 30. Leading PBS producers and production capacities.          122
  • Table 31. Bio-based Polyethylene (Bio-PE) market analysis.           122
  • Table 32. Leading Bio-PE producers.        123
  • Table 33. Bio-PP market analysis.              123
  • Table 34. Leading Bio-PP producers and capacities.           124
  • Table 35.Types of PHAs and properties. 128
  • Table 36. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 130
  • Table 37. Polyhydroxyalkanoate (PHA) extraction methods.          132
  • Table 38. Polyhydroxyalkanoates (PHA) market analysis. 134
  • Table 39. Commercially available PHAs.  135
  • Table 40. Markets and applications for PHAs.       137
  • Table 41. Applications, advantages and disadvantages of PHAs in packaging.         138
  • Table 42. Polyhydroxyalkanoates (PHA) producers.           141
  • Table 43. Microfibrillated cellulose (MFC) market analysis.            142
  • Table 44. Leading MFC producers and capacities.               143
  • Table 45. Cellulose nanocrystals analysis.               144
  • Table 46: Cellulose nanocrystal production capacities and production process, by producer.          145
  • Table 47. Cellulose nanofibers market analysis.   146
  • Table 48. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes.    147
  • Table 49. Types of protein based-bioplastics, applications and companies.             149
  • Table 50. Types of algal and fungal based-bioplastics, applications and companies.             150
  • Table 51. Overview of alginate-description, properties, application and market size.          151
  • Table 52. Companies developing algal-based bioplastics. 152
  • Table 53. Overview of mycelium fibers-description, properties, drawbacks and applications.          153
  • Table 54. Companies developing mycelium-based bioplastics.      155
  • Table 55. Overview of chitosan-description, properties, drawbacks and applications.         156
  • Table 56. Global production capacities of biobased and sustainable plastics in 2019-2025, by region, tons.              157
  • Table 57. Biobased and sustainable plastics producers in North America. 158
  • Table 58. Biobased and sustainable plastics producers in Europe.               159
  • Table 59. Biobased and sustainable plastics producers in Asia-Pacific.       160
  • Table 60. Biobased and sustainable plastics producers in Latin America.  161
  • Table 61. Granbio Nanocellulose Processes.         271
  • Table 62. Lactips plastic pellets. 302
  • Table 63. Oji Holdings CNF products.       349
  • Table 64. Application, manufacturing method, and matrix materials of natural fibers.        420
  • Table 65. Typical properties of natural fibers.      421
  • Table 66. Overview of cotton fibers-description, properties, drawbacks and applications. 422
  • Table 67. Overview of kapok fibers-description, properties, drawbacks and applications. 423
  • Table 68. Overview of luffa fibers-description, properties, drawbacks and applications.    424
  • Table 69. Overview of jute fibers-description, properties, drawbacks and applications.     426
  • Table 70. Overview of hemp fibers-description, properties, drawbacks and applications.  427
  • Table 71. Overview of flax fibers-description, properties, drawbacks and applications.      429
  • Table 72. Overview of ramie fibers- description, properties, drawbacks and applications. 431
  • Table 73. Overview of kenaf fibers-description, properties, drawbacks and applications.  432
  • Table 74. Overview of sisal leaf fibers-description, properties, drawbacks and applications.            434
  • Table 75. Overview of abaca fibers-description, properties, drawbacks and applications.  435
  • Table 76. Overview of coir fibers-description, properties, drawbacks and applications.      437
  • Table 77. Overview of banana fibers-description, properties, drawbacks and applications.               438
  • Table 78. Overview of pineapple fibers-description, properties, drawbacks and applications.         440
  • Table 79. Overview of rice fibers-description, properties, drawbacks and applications.      441
  • Table 80. Overview of corn fibers-description, properties, drawbacks and applications.    441
  • Table 81. Overview of switch grass fibers-description, properties and applications.             442
  • Table 82. Overview of sugarcane fibers-description, properties, drawbacks and application and market size.           443
  • Table 83. Overview of bamboo fibers-description, properties, drawbacks and applications.             444
  • Table 84. Overview of mycelium fibers-description, properties, drawbacks and applications.          447
  • Table 85. Overview of chitosan fibers-description, properties, drawbacks and applications.            448
  • Table 86. Overview of alginate-description, properties, application and market size.          448
  • Table 87. Overview of wool fibers-description, properties, drawbacks and applications.   449
  • Table 88. Alternative wool materials producers. 450
  • Table 89. Overview of silk fibers-description, properties, application and market size.       451
  • Table 90. Alternative silk materials producers.    452
  • Table 91. Alternative leather materials producers.            452
  • Table 92. Alternative down materials producers. 453
  • Table 93. Applications of natural fiber composites.           454
  • Table 94. Typical properties of short natural fiber-thermoplastic composites.       456
  • Table 95. Properties of non-woven natural fiber mat composites.               457
  • Table 96. Properties of aligned natural fiber composites. 458
  • Table 97. Properties of natural fiber-bio-based polymer compounds.       459
  • Table 98. Properties of natural fiber-bio-based polymer non-woven mats.             459
  • Table 99. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use.   460
  • Table 100. Natural fiber-reinforced polymer composite in the automotive market.             462
  • Table 101. Natural fibers in the aerospace sector- market drivers, applications and challenges for NF use. 463
  • Table 102. Applications of natural fibers in the automotive industry.         465
  • Table 103. Natural fibers in the building/construction sector- market drivers, applications and challenges for NF use.                466
  • Table 104. Applications of natural fibers in the building/construction sector.         466
  • Table 105. Natural fibers in the sports and leisure sector-market drivers, applications and challenges for NF use.  467
  • Table 106. Natural fibers in the textiles sector- market drivers, applications and challenges for NF use.     468
  • Table 107. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use. 471
  • Table 108. Oji Holdings CNF products.     579
  • Table 109. Technical lignin types and applications.             623
  • Table 110. Classification of technical lignins.         625
  • Table 111. Lignin content of selected biomass.   626
  • Table 112. Properties of lignins and their applications.     627
  • Table 113. Example markets and applications for lignin.  629
  • Table 114. Processes for lignin production.           631
  • Table 115. Biorefinery feedstocks.           637
  • Table 116. Comparison of pulping and biorefinery lignins.              637
  • Table 117. Commercial and pre-commercial biorefinery lignin production facilities and  processes              638
  • Table 118. Market drivers and trends for lignin.  642
  • Table 120. Production capacities of technical lignin producers.    643
  • Table 121. Production capacities of biorefinery lignin producers. 643
  • Table 122. Estimated consumption of lignin, 2019-2031 (000 MT).             644
  • Table 123. Prices of benzene, toluene, xylene and their derivatives.          646
  • Table 124. Application of lignin in plastics and polymers. 648
  • Table 125. Lignin-derived anodes in lithium batteries.     655
  • Table 126. Application of lignin in binders, emulsifiers and dispersants.   657
  • Table 127. Categories and examples of solid biofuel.        734
  • Table 128. Comparison of biofuels and e-fuels to fossil and electricity.      735
  • Table 129. Biorefinery feedstocks.           736
  • Table 130. Feedstock conversion pathways.         737
  • Table 131. First-Generation Feedstocks. 737
  • Table 132.  Lignocellulosic ethanol plants and capacities.                738
  • Table 133. Comparison of pulping and biorefinery lignins.              740
  • Table 134. Commercial and pre-commercial biorefinery lignin production facilities and  processes              741
  • Table 135. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol. 742
  • Table 136. Properties of microalgae and macroalgae.       744
  • Table 137. Yield of algae and other biodiesel crops.           745
  • Table 138. Advantages and disadvantages of biofuels, by generation.       746
  • Table 139. Advantages and disadvantages of biojet fuel  751
  • Table 140. Production pathways for bio-jet fuel. 752
  • Table 141. Current and announced biojet fuel facilities and capacities.     755
  • Table 142, Biodiesel production techniques.        756
  • Table 143. Biodiesel by generation.         757
  • Table 144. Biogas feedstocks.     764
  • Table 145. Applications of e-fuels, by type.           768
  • Table 146. Overview of e-fuels. 769
  • Table 147. Benefits of e-fuels.    770
  • Table 148. Main characteristics of different electrolyzer technologies.     774
  • Table 149. Advantages and disadvantages of DAC.             776
  • Table 150. DAC companies and technologies.      778
  • Table 151. Markets for DAC.        778
  • Table 152. Cost estimates of DAC.             779
  • Table 153. Challenges for DAC technology.           780
  • Table 154. DAC technology developers and production.  780
  • Table 155. Market challenges for e-fuels.              785
  • Table 156. E-fuels companies.    785
  • Table 157. Green ammonia projects (current and planned).          790
  • Table 158. Blue ammonia projects.          792
  • Table 159. Ammonia fuel cell technologies.          793
  • Table 160. Market overview of green ammonia in marine fuel.    794
  • Table 161. Summary of marine alternative fuels. 795
  • Table 162. Estimated costs for different types of ammonia.           797
  • Table 163. Main players in green ammonia.          798
  • Table 164. Granbio Nanocellulose Processes.      839
  • Table 165. Types of alkyd resins and properties. 894
  • Table 166. Market summary for biobased alkyd coatings-raw materials, advantages, disadvantages, applications and producers.          896
  • Table 167. Biobased alkyd coating products.        896
  • Table 168. Types of polyols.         898
  • Table 169. Polyol producers.       899
  • Table 170. Biobased polyurethane coating products.        899
  • Table 171. Market summary for biobased epoxy resins.  901
  • Table 172. Biobased polyurethane coating products.        902
  • Table 173. Biobased acrylate resin products.        904
  • Table 174. Polylactic acid (PLA) market analysis. 905
  • Table 175. PLA producers and production capacities.        906
  • Table 176. Polyhydroxyalkanoates (PHA) market analysis.              909
  • Table 177.Types of PHAs and properties.               911
  • Table 178. Polyhydroxyalkanoates (PHA) producers.        913
  • Table 179. Commercially available PHAs.               914
  • Table 180. Properties of micro/nanocellulose, by type.    917
  • Table 181. Types of nanocellulose.           920
  • Table 182: MFC production capacities (by type, wet or dry) and production process, by producer, metric tonnes. 922
  • Table 183. Market overview for cellulose nanofibers in paints and coatings.           923
  • Table 184. Companies developing cellulose nanofibers products in paints and coatings.   925
  • Table 185. CNC properties.          927
  • Table 186: Cellulose nanocrystal capacities (by type, wet or dry) and production process, by producer, metric tonnes.                928
  • Table 187. Edible coatings market summary.       932
  • Table 188. Types of protein based-biomaterials, applications and companies.       934
  • Table 189. Overview of alginate-description, properties, application and market size.        935
  • Table 190. Global market revenues for biobased paints and coatings, 2018-2031 (billions USD).    937
  • Table 191. Market revenues for biobased paints and coatings, 2018-2031 (billions USD), conservative estimate.   938
  • Table 192. Market revenues for biobased paints and coatings, 2018-2031 (billions USD), high estimate.    940
  • Table 193. Oji Holdings CNF products.     1027

 

List of Figures

  • Figure 1. Total global production capacities for biobased and sustainable plastics, all types, 000 tons.        51
  • Figure 2. Global production capacities of bioplastics 2018-2030, in 1,000 tons by biodegradable/non-biodegradable types.   53
  • Figure 3. Global production capacities of biobased and sustainable plastics in 2019-2030, by type, in 1,000 tons.  57
  • Figure 4. Global production capacities of bioplastics in 2019-2025, by type.           57
  • Figure 5. Global production capacities of bioplastics in 2030, by type.       58
  • Figure 6. Global production capacities of biobased and sustainable plastics 2020. 59
  • Figure 7. Global production capacities of biobased and sustainable plastics 2025. 60
  • Figure 8. Current and future applications of biobased and sustainable plastics.     61
  • Figure 9. Global demand for biobased and sustainable plastics by end user market, 2020.                62
  • Figure 10. Global production capacities for biobased and sustainable plastics by end user market 2019-2030, tons.                64
  • Figure 11. Challenges for the biobased and sustainable plastics market.   64
  • Figure 12. Global plastics production 1950-2018, millions of tons.              68
  • Figure 13. Bio-based chemicals production capacities, 2018-2025.               72
  • Figure 14. 1,4-Butanediol (BDO) production capacities, 2018-2025 (tonnes).         73
  • Figure 15. Dodecanedioic acid (DDDA) production capacities, 2018-2025 (tonnes).             74
  • Figure 16. Epichlorohydrin production capacities, 2018-2025 (tonnes).    75
  • Figure 17. Ethylene production capacities, 2018-2025 (tonnes).  76
  • Figure 18. L-lactic acid (L-LA) production capacities, 2018-2025 (tonnes). 80
  • Figure 19. Lactide production capacities, 2018-2025 (tonnes).     81
  • Figure 20. Bio-MEG producers capacities.              83
  • Figure 21. Bio-MPG production capacities, 2018-2025.      84
  • Figure 22. Naphtha production capacities, 2018-2025 (tonnes).  85
  • Figure 23. 1,3-Propanediol (1,3-PDO) production capacities, 2018-2025 (tonnes). 86
  • Figure 24. Sebacic acid production capacities, 2018-2025 (tonnes).           87
  • Figure 25.  Coca-Cola PlantBottle®.           90
  • Figure 26. Interrelationship between conventional, bio-based and biodegradable plastics.              91
  • Figure 27. Bioplastics regional production capacities to 2030, 1,000 tons, 2019-2030.         98
  • Figure 28. Bio-based Polyethylene (Bio-PE), 1,000 tons, 2019-2030.            98
  • Figure 29. Bio-based Polyethylene terephthalate (Bio-PET) production capacities, 1,000 tons, 2019-2030   100
  • Figure 30. Bio-based polyamides (Bio-PA) production capacities, 1,000 tons, 2019-2030.   101
  • Figure 31. Bio-based Polypropylene (Bio-PP) production capacities, 1,000 tons, 2019-2030.             102
  • Figure 32. Bio-based Polytrimethylene terephthalate (Bio-PTT) production capacities, 1,000 tons, 2019-2030.         103
  • Figure 33. Bio-based Poly(butylene adipate-co-terephthalate) (PBAT) production capacities, 1,000 tons, 2019-2030.                104
  • Figure 34. Bio-based Polybutylene succinate (PBS) production capacities, 1,000 tons, 2019-2030.  104
  • Figure 35. Bio-based Polylactic acid (PLA) production capacities, 1,000 tons, 2019-2030.    106
  • Figure 36. PHA production capacities, 1,000 tons, 2019-2030.        107
  • Figure 37. Starch blends production capacities, 1,000 tons, 2019-2030.     107
  • Figure 38. Production capacities of Polyethylene furanoate (PEF) to 2025.               117
  • Figure 39. PHA family.    128
  • Figure 40. BLOOM masterbatch from Algix.           152
  • Figure 41. Typical structure of mycelium-based foam.     154
  • Figure 42. Commercial mycelium composite construction materials.          155
  • Figure 43. Global production capacities of biobased and sustainable plastics 2020.              158
  • Figure 44. Global production capacities of biobased and sustainable plastics 2025.              158
  • Figure 45. Global production capacities for biobased and sustainable plastics by end user market 2019, 1,000 tons.                162
  • Figure 46. Global production capacities for biobased and sustainable plastics by end user market 2020, 1,000 tons.                163
  • Figure 47. Global production capacities for biobased and sustainable plastics by end user market 2030      164
  • Figure 48. PHA bioplastics products.        165
  • Figure 49. Global production capacities for biobased and sustainable plastics in packaging 2019-2030, in 1,000 tons.                166
  • Figure 50. Global production capacities for biobased and sustainable plastics in consumer products 2019-2030, in 1,000 tons.         166
  • Figure 51. Global production capacities for biobased and sustainable plastics in automotive 2019-2030, in 1,000 tons.                167
  • Figure 52. Global production capacities for biobased and sustainable plastics in building and construction 2019-2030, in 1,000 tons.     168
  • Figure 53. Global production capacities for biobased and sustainable plastics in textiles 2019-2030, in 1,000 tons.                169
  • Figure 54. Global production capacities for biobased and sustainable plastics in electronics 2019-2030, in 1,000 tons.                170
  • Figure 55. Biodegradable mulch films.     171
  • Figure 56. Global production capacities for biobased and sustainable plastics in agriculture 2019-2030, in 1,000 tons.                172
  • Figure 57. Algiknit yarn. 178
  • Figure 58. Bio-PA rear bumper stay.         194
  • Figure 59. formicobio™ technology.         226
  • Figure 60. nanoforest-S. 228
  • Figure 61. nanoforest-PDP.         228
  • Figure 62. nanoforest-MB.           229
  • Figure 63. CuanSave film.             235
  • Figure 64. ELLEX products.           238
  • Figure 65. CNF-reinforced PP compounds.            239
  • Figure 66. Kirekira! toilet wipes. 239
  • Figure 67. Mushroom leather.    251
  • Figure 68. Cellulose Nanofiber (CNF) composite with polyethylene (PE).  264
  • Figure 69. PHA production process.         266
  • Figure 70. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.                274
  • Figure 71. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer). 277
  • Figure 72. CNF gel.           283
  • Figure 73. Block nanocellulose material. 283
  • Figure 74. CNF products developed by Hokuetsu.              284
  • Figure 75. Made of Air's HexChar panels.               311
  • Figure 76. IPA synthesis method.              319
  • Figure 77. MOGU-Wave panels. 321
  • Figure 78. Reishi.              325
  • Figure 79. Nippon Paper Industries’ adult diapers.             339
  • Figure 80. Compostable water pod.         341
  • Figure 81. CNF clear sheets.        349
  • Figure 82. Oji Holdings CNF polycarbonate product.          351
  • Figure 83. Manufacturing process for STARCEL.   372
  • Figure 84. Lyocell process.           382
  • Figure 85. Spider silk production.              386
  • Figure 86. Sulapac cosmetics containers.               389
  • Figure 87.  Sulzer equipment for PLA polymerization processing. 390
  • Figure 88. Teijin bioplastic film for door handles.               396
  • Figure 89. Corbion FDCA production process.      403
  • Figure 90. Visolis’ Hybrid Bio-Thermocatalytic Process.    411
  • Figure 91. Types of natural fibers.             419
  • Figure 92. Cotton production volume 2018-2030 (Million MT).     423
  • Figure 93. Kapok production volume 2018-2030 (MT).     424
  • Figure 94.  Luffa cylindrica fiber. 425
  • Figure 95. Jute production volume 2018-2030 (Million MT).          427
  • Figure 96. Hemp fiber production volume 2018-2030 (Million MT).            429
  • Figure 97. Flax fiber production volume 2018-2030 (MT).               430
  • Figure 98. Ramie fiber production volume 2018-2030 (MT).          432
  • Figure 99. Kenaf fiber production volume 2018-2030 (MT).           433
  • Figure 100. Sisal fiber production volume 2018-2030 (MT).           435
  • Figure 101. Abaca fiber production volume 2018-2030 (MT).        436
  • Figure 102. Coir fiber production volume 2018-2030 (MILLION MT).          438
  • Figure 103. Banana fiber production volume 2018-2030 (MT).     439
  • Figure 104. Pineapple fiber.         440
  • Figure 105. Bamboo fiber production volume 2018-2030 (MILLION MT). 445
  • Figure 106. Typical structure of mycelium-based foam.   446
  • Figure 107. Commercial mycelium composite construction materials.       447
  • Figure 108. BLOOM masterbatch from Algix.        449
  • Figure 109. Hemp fibers combined with PP in car door panel.       460
  • Figure 110. Car door produced from Hemp fiber.               461
  • Figure 111. Mercedes-Benz components containing natural fibers.            462
  • Figure 112. AlgiKicks sneaker, made with the Algiknit biopolymer gel.       469
  • Figure 113. Coir mats for erosion control.              470
  • Figure 114. Global fiber production in 2019, by fiber type, million MT and %.        472
  • Figure 115. Global fiber production (million MT) to 2020-2030.     474
  • Figure 116. Plant-based fiber production 2018-2030, by fiber type, MT.   475
  • Figure 117. Animal based fiber production 2018-2030, by fiber type, million MT. 475
  • Figure 118. Pluumo.        479
  • Figure 119. Algiknit yarn.              482
  • Figure 120. Amadou leather shoes.          483
  • Figure 121. Anpoly cellulose nanofiber hydrogel.               485
  • Figure 122. MEDICELLU™.            486
  • Figure 123. Asahi Kasei CNF fabric sheet.               488
  • Figure 124. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.            488
  • Figure 125. CNF nonwoven fabric.            489
  • Figure 126. Roof frame made of natural fiber.     492
  • Figure 127. Beyond Leather Materials product.   495
  • Figure 128. Natural fibres racing seat.     498
  • Figure 129. Cellugy materials.     504
  • Figure 130. nanoforest-S.             507
  • Figure 131. nanoforest-PDP.       507
  • Figure 132. nanoforest-MB.        508
  • Figure 133. Celish.           510
  • Figure 134. Trunk lid incorporating CNF. 511
  • Figure 135. ELLEX products.         513
  • Figure 136. CNF-reinforced PP compounds.          513
  • Figure 137. Kirekira! toilet wipes.              514
  • Figure 138. Color CNF.   515
  • Figure 139. Rheocrysta spray.     518
  • Figure 140. DKS CNF products.   519
  • Figure 141. Mushroom leather. 523
  • Figure 142. CNF based on citrus peel.      524
  • Figure 143. Citrus cellulose nanofiber.    524
  • Figure 144. Filler Bank CNC products.      527
  • Figure 145. Fibers on kapok tree and after processing.     528
  • Figure 146. Cellulose Nanofiber (CNF) composite with polyethylene (PE). 530
  • Figure 147. CNF products from Furukawa Electric.              531
  • Figure 148. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.            536
  • Figure 149. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer).              537
  • Figure 150. CNF gel.        540
  • Figure 151. Block nanocellulose material.              540
  • Figure 152. CNF products developed by Hokuetsu.            541
  • Figure 153. Marine leather products.      542
  • Figure 154. Dual Graft System.   545
  • Figure 155. Engine cover utilizing Kao CNF composite resins.        546
  • Figure 156. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).           546
  • Figure 157. Kami Shoji CNF products.      547
  • Figure 158. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side).     549
  • Figure 159. BioFlex process.        554
  • Figure 160. Chitin nanofiber product.      558
  • Figure 161. Marusumi Paper cellulose nanofiber products.            559
  • Figure 162. FibriMa cellulose nanofiber powder. 560
  • Figure 163. Cellulomix production process.           561
  • Figure 164. Nanobase versus conventional products.       562
  • Figure 165. MOGU-Wave panels.              565
  • Figure 166. CNF slurries.                566
  • Figure 167. Range of CNF products.          566
  • Figure 168. Reishi.           568
  • Figure 169. Nippon Paper Industries’ adult diapers.          575
  • Figure 170. Leather made from leaves.   576
  • Figure 171. Nike shoe with beLEAF™.      576
  • Figure 172. CNF clear sheets.      579
  • Figure 173. Oji Holdings CNF polycarbonate product.       580
  • Figure 174. XCNF.            586
  • Figure 175. CNF insulation flat plates.     588
  • Figure 176. Manufacturing process for STARCEL. 591
  • Figure 177. Lyocell process.         594
  • Figure 178. North Face Spiber Moon Parka.          595
  • Figure 179. Spider silk production.            597
  • Figure 180. 2 wt.% CNF suspension.       599
  • Figure 181. BiNFi-s Dry Powder. 599
  • Figure 182. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.          600
  • Figure 183. Silk nanofiber (right) and cocoon of raw material.       600
  • Figure 184. Sulapac cosmetics containers.             602
  • Figure 185. Comparison of weight reduction effect using CNF.     607
  • Figure 186. CNF resin products. 609
  • Figure 187. Vegea production process.   611
  • Figure 188. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.     613
  • Figure 189. Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film.        614
  • Figure 190. Worn Again products.             616
  • Figure 191. Zelfo Technology GmbH CNF production process.       618
  • Figure 192. High purity lignin.     621
  • Figure 193. Lignocellulose architecture. 622
  • Figure 194. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins.                623
  • Figure 195. The lignocellulose biorefinery.            628
  • Figure 196. LignoBoost process. 634
  • Figure 197. LignoForce system for lignin recovery from black liquor.          634
  • Figure 198. Sequential liquid-lignin recovery and purification (SLPR) system.         635
  • Figure 199. A-Recovery+ chemical recovery concept.       636
  • Figure 200.  Schematic of a biorefinery for production of carriers and chemicals. 638
  • Figure 201. Organosolv lignin.     640
  • Figure 202. Hydrolytic lignin powder.      641
  • Figure 203. Estimated consumption of lignin, 2019-2031 (000 MT).            645
  • Figure 204. Schematic of WISA plywood home.   648
  • Figure 205. Lignin based activated carbon.            650
  • Figure 206. Lignin/celluose precursor.     652
  • Figure 207. ANDRITZ Lignin Recovery process.    666
  • Figure 208. DAWN Technology Process. 669
  • Figure 209. BALI™ technology.   673
  • Figure 210. Pressurized Hot Water Extraction.     675
  • Figure 211. sunliquid® production process.           679
  • Figure 212. Domsjö process.       680
  • Figure 213.  TMP-Bio Process.    683
  • Figure 214. Flow chart of the lignocellulose biorefinery pilot plant in Leuna.          684
  • Figure 215. AVAPTM process.     689
  • Figure 216. GreenPower+™ process.       690
  • Figure 217. BioFlex process.        697
  • Figure 218. LX Process.  699
  • Figure 219. METNIN™ Lignin refining technology.              702
  • Figure 220. Enfinity cellulosic ethanol technology process.            708
  • Figure 221: Plantrose process.    713
  • Figure 222. Hansa lignin.               717
  • Figure 223. UPM biorefinery process.     726
  • Figure 224. The Proesa® Process.              728
  • Figure 225. Goldilocks process and applications. 730
  • Figure 226.  Schematic of a biorefinery for production of carriers and chemicals. 741
  • Figure 227. Hydrolytic lignin powder.      744
  • Figure 228. Liquid biofuel production and consumption (in thousands of m3), 2000-2021.                748
  • Figure 229. Distribution of global liquid biofuel production in 2021.            749
  • Figure 230. Ethanol consumption 2010-2027 (million litres).         750
  • Figure 231. Global bio-jet fuel consumption 2010-2027 (M litres/year).   752
  • Figure 232. Global biodiesel consumption, 2010-2027 (M litres/year).      759
  • Figure 233. Global renewable diesel consumption, 2010-2027 (M litres/year).      761
  • Figure 234. Total syngas market by product in MM Nm³/h of Syngas, 2021.             762
  • Figure 235. Biogas and biomethane pathways.   764
  • Figure 236. Properties of petrol and biobutanol. 765
  • Figure 237. Biobutanol production route.              766
  • Figure 238. Process steps in the production of electrofuels.          767
  • Figure 239. Mapping storage technologies according to performance characteristics.        768
  • Figure 240. Production process for green hydrogen.         771
  • Figure 241. E-liquids production routes. 772
  • Figure 242. Fischer-Tropsch liquid e-fuel products.            773
  • Figure 243. Resources required for liquid e-fuel production.         773
  • Figure 244. Schematic of Climeworks DAC system.            777
  • Figure 245. Levelized cost and fuel-switching CO2 prices of e-fuels.           783
  • Figure 246. Cost breakdown for e-fuels. 784
  • Figure 247. Classification and process technology according to carbon emission in ammonia production.  787
  • Figure 248. Green ammonia production and use.               789
  • Figure 249. Schematic of the Haber Bosch ammonia synthesis reaction.  791
  • Figure 250. Schematic of hydrogen production via steam methane reformation. 791
  • Figure 251. Estimated production cost of green ammonia.             797
  • Figure 252. Projected annual ammonia production, million tons. 798
  • Figure 253. ANDRITZ Lignin Recovery process.    803
  • Figure 254. FBPO process             814
  • Figure 255. Direct Air Capture Process.   817
  • Figure 256. CRI process. 818
  • Figure 257. Domsjö process.       826
  • Figure 258. FuelPositive system. 834
  • Figure 259. Infinitree swing method.       845
  • Figure 260. Enfinity cellulosic ethanol technology process.            864
  • Figure 261: Plantrose process.    869
  • Figure 262. The Velocys process.               884
  • Figure 263. Goldilocks process and applications. 887
  • Figure 264. Paints and coatings industry by market segmentation 2019-2020.        892
  • Figure 265. PHA family. 911
  • Figure 266: Schematic diagram of partial molecular structure of cellulose chain with numbering for carbon atoms and n= number of cellobiose repeating unit. 915
  • Figure 267: Scale of cellulose materials.  917
  • Figure 268. Nanocellulose preparation methods and resulting materials. 917
  • Figure 269: Relationship between different kinds of nanocelluloses.         920
  • Figure 270. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test.     927
  • Figure 271: CNC slurry.  928
  • Figure 272. High purity lignin.     931
  • Figure 273. BLOOM masterbatch from Algix.        936
  • Figure 274. Global market revenues for biobased paints and coatings, 2018-2031 (billions USD).  938
  • Figure 275. Market revenues for biobased paints and coatings, 2018-2031 (billions USD), conservative estimate. 939
  • Figure 276. Market revenues for biobased paints and coatings, 2018-2031 (billions USD), high      941
  • Figure 277. Dulux Better Living Air Clean Biobased.           943
  • Figure 278: NCCTM Process.        965
  • Figure 279: CNC produced at Tech Futures’ pilot plant; cloudy suspension (1 wt.%), gel-like (10 wt.%), flake-like crystals, and very fine powder. Product advantages include:         965
  • Figure 280. Cellugy materials.     967
  • Figure 281. EcoLine® 3690 (left) vs Solvent-Based Competitor Coating (right).       971
  • Figure 282. Rheocrysta spray.     977
  • Figure 283. DKS CNF products.   978
  • Figure 284. Domsjö process.       979
  • Figure 285. CNF gel.        995
  • Figure 286. Block nanocellulose material.              995
  • Figure 287. CNF products developed by Hokuetsu.            996
  • Figure 288. BioFlex process.        1009
  • Figure 289. Marusumi Paper cellulose nanofiber products.            1012
  • Figure 290: Fluorene cellulose ® powder.              1031
  • Figure 291. XCNF.            1036
  • Figure 292. Spider silk production.            1045
  • Figure 293. CNF dispersion and powder from Starlite.      1047
  • Figure 294. 2 wt.% CNF suspension.       1051
  • Figure 295. BiNFi-s Dry Powder. 1051
  • Figure 296. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.          1052
  • Figure 297. Silk nanofiber (right) and cocoon of raw material.       1052
  • Figure 298. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.     1057
  • Figure 299. Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film.        1058
  • Figure 300. Bioalkyd products.   1062

 

 

 

 

The Global Market for Biobased & Biodegradable Chemicals, Materials, Polymers, Plastics, Paints, Coatings and Fuels 2022
The Global Market for Biobased & Biodegradable Chemicals, Materials, Polymers, Plastics, Paints, Coatings and Fuels 2022
PDF download/by email.

Payment methods: Visa, Mastercard, American Express, Alipay, Paypal. 

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com

[mpdl-file-link file_id=9381]