The Global Market for Biobased Packaging 2025-2035

0

cover

cover

  • Published: July 2024
  • Pages: 330
  • Tables: 41
  • Figures: 62

 

The biobased packaging market is experiencing rapid growth and transformation as global concerns about environmental sustainability and plastic pollution drive innovation in materials and technologies. This sector encompasses a wide range of packaging solutions derived from renewable biological resources, offering alternatives to traditional fossil fuel-based plastics.

Biobased packaging materials include synthetic bio-polymers like polylactic acid (PLA), bio-polyethylene terephthalate (Bio-PET), and polyhydroxyalkanoates (PHA), as well as natural materials such as cellulose, starch, and mycelium. These materials are increasingly being used in various applications, from flexible films and rigid containers to coatings and barrier materials.

The market is driven by several factors, including consumer demand for eco-friendly products, corporate sustainability initiatives, and government regulations aimed at reducing plastic waste. Food and beverage packaging represents a significant portion of the market, with biodegradable and compostable options gaining traction. Other key application areas include personal care products, electronics, and e-commerce packaging. As the market evolves, there is increasing focus on creating truly circular packaging solutions that can be easily recycled or composted. This includes efforts to develop monomaterial packaging and improve the end-of-life management of biobased materials. Major players in the market include both established chemical companies and innovative start-ups.

The Global Market for Biobased Packaging 2025-2035 is a comprehensive analysis of the rapidly evolving biobased and sustainable packaging industry. This in-depth report provides crucial insights into market trends, growth drivers, challenges, and opportunities in the biobased packaging sector, offering valuable information for businesses, investors, and stakeholders looking to capitalize on this expanding market. 

Report contents include: 

  • Overview of the current global packaging market and materials, highlighting the increasing importance of biobased alternatives.
  • Key market trends, exploring the factors driving recent growth in bioplastics for packaging applications.
  • Challenges faced by the biobased and sustainable packaging industry.
  • Materials innovation, active packaging solutions, and the trend towards monomaterial packaging.
  • Comparison of conventional polymer materials used in packaging with their renewable and biobased counterparts.
  • In-depth analysis of various synthetic bio-based packaging materials, including:
    • Polylactic acid (Bio-PLA)
    • Polyethylene terephthalate (Bio-PET)
    • Polytrimethylene terephthalate (Bio-PTT)
    • Polyethylene furanoate (Bio-PEF)
    • Bio-PA
    • Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
    • Polybutylene succinate (PBS) and copolymers
    • Polypropylene (Bio-PP)
  • In-depth analysis of Natural bio-based packaging materials including:
    • Polyhydroxyalkanoates (PHA)
    • Starch-based blends
    • Cellulose and its derivatives (microfibrillated cellulose, nanocellulose)
    • Protein-based bioplastics
    • Lipids and waxes
    • Seaweed-based packaging
    • Mycelium
    • Chitosan
    • Bio-naphtha
  • Production processes, applications, and market potential
  • Analysis of markets and applications for biobased packaging including:
    • Paper and board packaging
    • Food packaging (bio-based films, trays, pouches, bags, textiles, and nets)
    • Bioadhesives
    • Barrier coatings and films
    • Active and smart food packaging
    • Antimicrobial films and agents
    • Bio-based inks and dyes
    • Edible films and coatings
  • Analysis of the market for biobased films and coatings in packaging, discussing challenges, types, and applications of various bio-based coating materials such as polyurethane, acrylate resins, polylactic acid, polyhydroxyalkanoates, cellulose, lignin, and protein-based biomaterials.
  • Use of carbon capture-derived materials for packaging including the benefits of carbon utilization for plastics feedstocks, CO₂-derived polymers and plastics, and various CO2 utilization products, offering insights into this emerging field of sustainable packaging.
  • Detailed global market revenue forecasts for bio-based packaging from 2024 to 2035, segmented into flexible packaging, rigid packaging, and coatings and films. 
  • Company profiles, featuring over 200 key players in the biobased packaging industry. These profiles offer detailed information on product portfolios, technologies, market positioning, and recent developments, providing a comprehensive overview of the competitive landscape. Companies profiled include Avantium B.V., BASF SE, CJ CheilJedang, Cruz Foam, Danimer Scientific LLC, Kelpi, Lignin Industries AB, NatureWorks LLC, Novamont S.p.A., Neste, Origin Materials, Stora Enso Oyj, TotalEnergies Corbion, traceless, UPM Biochemicals, and Woodly Ltd.

 

The Global Market for Biobased Packaging 2025-2035 is an essential resource for:

  • Packaging manufacturers and suppliers
  • Bioplastic and biomaterial producers
  • Food and beverage companies
  • Retail and e-commerce businesses
  • Environmental consultants and sustainability professionals
  • Investors and financial analysts
  • Government agencies and policymakers
  • Research institutions and academia

 

 

1             EXECUTIVE SUMMARY            17

  • 1.1        Current global packaging market and materials     17
  • 1.2        Market trends 18
  • 1.3        Drivers for recent growth in bioplastics in packaging          19
  • 1.4        Challenges for bio-based and sustainable packaging        20

 

2             BIOBASED MATERIALS IN PACKAGING         21

  • 2.1        Materials innovation 21
  • 2.2        Active packaging         22
  • 2.3        Monomaterial packaging       22
  • 2.4        Conventional polymer materials used in packaging            23
    • 2.4.1    Polyolefins: Polypropylene and polyethylene            24
    • 2.4.2    PET and other polyester polymers   26
    • 2.4.3    Renewable and bio-based polymers for packaging             27
    • 2.4.4    Comparison of synthetic fossil-based and bio-based polymers  29
    • 2.4.5    Processes for bioplastics in packaging        29
    • 2.4.6    End-of-life treatment of bio-based and sustainable packaging   31
  • 2.5        Synthetic bio-based packaging materials   31
    • 2.5.1    Polylactic acid (Bio-PLA)        32
      • 2.5.1.1 Properties         32
      • 2.5.1.2 Applicaitons   32
    • 2.5.2    Polyethylene terephthalate (Bio-PET)            35
      • 2.5.2.1 Properties         36
      • 2.5.2.2 Applications   36
      • 2.5.2.3 Advantages of Bio-PET in Packaging              37
      • 2.5.2.4 Challenges and Limitations 37
    • 2.5.3    Polytrimethylene terephthalate (Bio-PTT)   39
      • 2.5.3.1 Production Process   39
      • 2.5.3.2 Properties         39
      • 2.5.3.3 Applications   40
      • 2.5.3.4 Advantages of Bio-PTT in Packaging               40
      • 2.5.3.5 Challenges and Limitations 40
    • 2.5.4    Polyethylene furanoate (Bio-PEF)     41
      • 2.5.4.1 Properties         41
      • 2.5.4.2 Applications   42
      • 2.5.4.3 Advantages of Bio-PEF in Packaging              42
      • 2.5.4.4 Challenges and Limitations 43
    • 2.5.5    Bio-PA 43
      • 2.5.5.1 Properties         44
      • 2.5.5.2 Applications in Packaging     44
      • 2.5.5.3 Advantages of Bio-PA in Packaging 44
      • 2.5.5.4 Challenges and Limitations 45
    • 2.5.6    Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters                45
      • 2.5.6.1 Properties         46
      • 2.5.6.2 Applications in Packaging     46
      • 2.5.6.3 Advantages of Bio-PBAT in Packaging           46
      • 2.5.6.4 Challenges and Limitations 47
    • 2.5.7    Polybutylene succinate (PBS) and copolymers       47
      • 2.5.7.1 Properties         48
      • 2.5.7.2 Applications in Packaging     48
      • 2.5.7.3 Advantages of Bio-PBS and Co-polymers in Packaging     48
      • 2.5.7.4 Challenges and Limitations 49
    • 2.5.8    Polypropylene (Bio-PP)            49
      • 2.5.8.1 Properties         50
      • 2.5.8.2 Applications in Packaging     50
      • 2.5.8.3 Advantages of Bio-PP in Packaging 50
      • 2.5.8.4 Challenges and Limitations 51
  • 2.6        Natural bio-based packaging materials       52
    • 2.6.1    Polyhydroxyalkanoates (PHA)             52
      • 2.6.1.1 Properties         52
      • 2.6.1.2 Applications in Packaging     53
      • 2.6.1.3 Advantages of PHA in Packaging      54
      • 2.6.1.4 Challenges and Limitations 55
    • 2.6.2    Starch-based blends 55
      • 2.6.2.1 Properties         56
      • 2.6.2.2 Applications in Packaging     56
      • 2.6.2.3 Advantages of Starch-Based Blends in Packaging 56
      • 2.6.2.4 Challenges and Limitations 56
    • 2.6.3    Cellulose          57
      • 2.6.3.1 Feedstocks      57
        • 2.6.3.1.1           Wood  58
        • 2.6.3.1.2           Plant    58
        • 2.6.3.1.3           Tunicate             59
        • 2.6.3.1.4           Algae   59
        • 2.6.3.1.5           Bacteria             59
      • 2.6.3.2 Microfibrillated cellulose (MFC)        60
        • 2.6.3.2.1           Properties         60
      • 2.6.3.3 Nanocellulose               61
        • 2.6.3.3.1           Cellulose nanocrystals           61
          • 2.6.3.3.1.1      Applications in packaging     62
        • 2.6.3.3.2           Cellulose nanofibers 63
          • 2.6.3.3.2.1      Applications in packaging     64
        • 2.6.3.3.3           Bacterial Nanocellulose (BNC)          71
          • 2.6.3.3.3.1      Applications in packaging     73
    • 2.6.4    Protein-based bioplastics in packaging       74
    • 2.6.5    Lipids and waxes for packaging         76
    • 2.6.6    Seaweed-based packaging  77
      • 2.6.6.1 Production       79
      • 2.6.6.2 Applications in packaging     79
      • 2.6.6.3 Producers         79
    • 2.6.7    Mycelium          80
      • 2.6.7.1 Applications in packaging     81
    • 2.6.8    Chitosan           82
      • 2.6.8.1 Applications in packaging     83
    • 2.6.9    Bio-naphtha   84
      • 2.6.9.1 Overview           84
      • 2.6.9.2 Markets and applications      84

 

3             MARKETS AND APPLICATIONS           87

  • 3.1        Paper and board packaging 87
  • 3.2        Food packaging           87
    • 3.2.1    Bio-Based films and trays      88
    • 3.2.2    Bio-Based pouches and bags             89
    • 3.2.3    Bio-Based textiles and nets  89
    • 3.2.4    Bioadhesives 89
      • 3.2.4.1 Starch 90
      • 3.2.4.2 Cellulose          91
      • 3.2.4.3 Protein-Based               91
    • 3.2.5    Barrier coatings and films     91
      • 3.2.5.1 Polysaccharides          92
        • 3.2.5.1.1           Chitin  93
        • 3.2.5.1.2           Chitosan           93
        • 3.2.5.1.3           Starch 93
      • 3.2.5.2 Poly(lactic acid) (PLA)              93
      • 3.2.5.3 Poly(butylene Succinate)       93
      • 3.2.5.4 Functional Lipid and Proteins Based Coatings        93
    • 3.2.6    Active and Smart Food Packaging   94
      • 3.2.6.1 Active Materials and Packaging Systems    94
      • 3.2.6.2 Intelligent and Smart Food Packaging           95
    • 3.2.7    Antimicrobial films and agents          96
      • 3.2.7.1 Natural               97
      • 3.2.7.2 Inorganic nanoparticles          98
      • 3.2.7.3 Biopolymers   98
    • 3.2.8    Bio-based Inks and Dyes        99
    • 3.2.9    Edible films and coatings       99
  • 3.3        Biobased films and coatings in packaging 102
    • 3.3.1    Challenges using bio-based paints and coatings   102
    • 3.3.2    Types of bio-based coatings and films in packaging           105
      • 3.3.2.1 Polyurethane coatings             105
        • 3.3.2.1.1           Properties         105
        • 3.3.2.1.2           Bio-based polyurethane coatings     105
        • 3.3.2.1.3           Products           106
      • 3.3.2.2 Acrylate resins              107
        • 3.3.2.2.1           Properties         107
        • 3.3.2.2.2           Bio-based acrylates  108
        • 3.3.2.2.3           Products           108
      • 3.3.2.3 Polylactic acid (Bio-PLA)        109
        • 3.3.2.3.1           Properties         110
        • 3.3.2.3.2           Bio-PLA coatings and films  111
    • 3.3.2.4 Polyhydroxyalkanoates (PHA) coatings         111
    • 3.3.2.5 Cellulose coatings and films               113
      • 3.3.2.5.1           Microfibrillated cellulose (MFC)        113
      • 3.3.2.5.2           Cellulose nanofibers 114
        • 3.3.2.5.2.1      Properties         114
      • 3.3.2.5.2.2      Product developers    115
    • 3.3.2.6 Lignin coatings              118
    • 3.3.2.7 Protein-based biomaterials for coatings      118
      • 3.3.2.7.1           Plant derived proteins              118
      • 3.3.2.7.2           Animal origin proteins              119
  • 3.4        Carbon capture derived materials for packaging   120
    • 3.4.1    Benefits of carbon utilization for plastics feedstocks         121
    • 3.4.2    CO₂-derived polymers and plastics 123
    • 3.4.3    CO2 utilization products        124

 

4             GLOBAL MARKET REVENUES FOR BIOBASED PACKAGING           127

  • 4.1        Flexible packaging     127
  • 4.2        Rigid packaging            130
  • 4.3        Coatings and films     132

 

5             COMPANY PROFILES                134 (210 company profiles)

 

6             RESEARCH METHODOLOGY              315

 

7             REFERENCES 316

 

List of Tables

  • Table 1. Market trends in bio-based and sustainable packaging 18
  • Table 2. Drivers for recent growth in the bioplastics and biopolymers markets.                19
  • Table 3. Challenges for bio-based and sustainable packaging.   20
  • Table 4. Types of bio-based plastics and fossil-fuel-based plastics          23
  • Table 5. Comparison of synthetic fossil-based and bio-based polymers.             29
  • Table 6. Processes for bioplastics in packaging.    30
  • Table 7. PLA properties for packaging applications.            32
  • Table 8. Applications, advantages and disadvantages of PHAs in packaging.    53
  • Table 9. Major polymers found in the extracellular covering of different algae.  59
  • Table 10. Market overview for cellulose microfibers (microfibrillated cellulose) in paperboard and packaging-market age, key benefits, applications and producers.            60
  • Table 11. Applications of nanocrystalline cellulose (CNC).            62
  • Table 12. Market overview for cellulose nanofibers in packaging.              64
  • Table 13. Types of protein based-bioplastics, applications and companies.      75
  • Table 14. Overview of alginate-description, properties, application and market size.   78
  • Table 15. Companies developing algal-based bioplastics.             79
  • Table 16. Overview of mycelium fibers-description, properties, drawbacks and applications.               80
  • Table 17. Overview of chitosan-description, properties, drawbacks and applications.                83
  • Table 18. Bio-based naphtha markets and applications. 84
  • Table 19. Bio-naphtha market value chain.               85
  • Table 20. Pros and cons of different type of food packaging materials.   88
  • Table 21. Active Biodegradable Films films and their food applications.               95
  • Table 22. Intelligent Biodegradable Films.  96
  • Table 23. Edible films and coatings market summary.       100
  • Table 24. Summary of barrier films and coatings for packaging. 103
  • Table 25. Types of polyols.    105
  • Table 26. Polyol producers.  106
  • Table 27. Bio-based polyurethane coating products.          107
  • Table 28. Bio-based acrylate resin products.           108
  • Table 29. Polylactic acid (PLA) market analysis.    109
  • Table 30. Commercially available PHAs.     112
  • Table 31. Market overview for cellulose nanofibers in paints and coatings.         114
  • Table 32. Companies developing cellulose nanofibers products in paints and coatings.           115
  • Table 33. Types of protein based-biomaterials, applications and companies.   119
  • Table 34. CO2 utilization and removal pathways.  122
  • Table 35. CO2 utilization products developed by chemical and plastic producers.        124
  • Table 36. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.   127
  • Table 37. Typical applications for bioplastics in flexible packaging.         128
  • Table 38. Typical applications for bioplastics in rigid packaging. 130
  • Table 39. Market revenues for bio-based coatings, 2018-2035 (billions USD), high estimate. 133
  • Table 40. Lactips plastic pellets.       237
  • Table 41. Oji Holdings CNF products.            264

 

List of Figures

  • Figure 1. Global packaging market by material type.           17
  • Figure 2. Routes for synthesizing polymers from fossil-based and bio-based resources.           27
  • Figure 3. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms.      57
  • Figure 4. Biosynthesis of (a) wood cellulose (b) tunicate cellulose and (c) BC.  58
  • Figure 5. Cellulose microfibrils and nanofibrils.     59
  • Figure 6. TEM image of cellulose nanocrystals.      60
  • Figure 7. CNC slurry. 61
  • Figure 8. CNF gel.        63
  • Figure 9. Bacterial nanocellulose shapes   71
  • Figure 10. BLOOM masterbatch from Algix.               77
  • Figure 11. Typical structure of mycelium-based foam.      80
  • Figure 12. Commercial mycelium composite construction materials.    81
  • Figure 13. Types of bio-based materials used for antimicrobial food packaging application.  96
  • Figure 14. Schematic of gas barrier properties of nanoclay film. 102
  • Figure 15. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test.               116
  • Figure 16. Applications for CO2.       120
  • Figure 17. Life cycle of CO2-derived products and services.          122
  • Figure 18.  Conversion pathways for CO2-derived polymeric materials  123
  • Figure 19. Bioplastics for flexible packaging by bioplastic material type, 2019–2035 (‘000 tonnes).   128
  • Figure 20. Bioplastics for rigid packaging by bioplastic material type, 2019–2035 (‘000 tonnes).         130
  • Figure 21. Market revenues for bio-based coatings, 2018-2035 (billions USD), conservative estimate.                131
  • Figure 22. Pluumo.     135
  • Figure 23. Anpoly cellulose nanofiber hydrogel.     143
  • Figure 24. MEDICELLU™.         144
  • Figure 25. Asahi Kasei CNF fabric sheet.     151
  • Figure 26. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.          152
  • Figure 27. CNF nonwoven fabric.      153
  • Figure 28. Passionfruit wrapped in Xgo Circular packaging.           158
  • Figure 29. BIOLO e-commerce mailer bag made from PHA.           164
  • Figure 30. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc.          165
  • Figure 31. Fiber-based screw cap.   174
  • Figure 32. CJ CheilJedang's biodegradable PHA-based wrapper for shipping products.              186
  • Figure 33. CuanSave film.     190
  • Figure 34. ELLEX products.   192
  • Figure 35. CNF-reinforced PP compounds.               192
  • Figure 36. Kirekira! toilet wipes.         193
  • Figure 37. Rheocrysta spray.                197
  • Figure 38. DKS CNF products.            197
  • Figure 39. Photograph (a) and micrograph (b) of mineral/ MFC composite showing the high viscosity and fibrillar structure.        209
  • Figure 40. PHA production process.               214
  • Figure 41. AVAPTM process. 219
  • Figure 42. GreenPower+™ process.  219
  • Figure 43. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.               222
  • Figure 44. CNF gel.     224
  • Figure 45. Block nanocellulose material.    224
  • Figure 46. CNF products developed by Hokuetsu.                225
  • Figure 47. Kami Shoji CNF products.              231
  • Figure 48. IPA synthesis method.      249
  • Figure 49. Compostable water pod.               259
  • Figure 50. XCNF.          275
  • Figure 51: Innventia AB movable nanocellulose demo plant.        276
  • Figure 52. Shellworks packaging containers.           281
  • Figure 53. Thales packaging incorporating Fibrease.           288
  • Figure 54. Sulapac cosmetics containers. 290
  • Figure 55.  Sulzer equipment for PLA polymerization processing.              291
  • Figure 56. Silver / CNF composite dispersions.      299
  • Figure 57. CNF/nanosilver powder.  299
  • Figure 58. Corbion FDCA production process.        301
  • Figure 59. UPM biorefinery process.               303
  • Figure 60. Vegea production process.           306
  • Figure 61. Worn Again products.       310
  • Figure 62. S-CNF in powder form.    312

 

 

 

The Global Market for Biobased Packaging 2025-2035
The Global Market for Biobased Packaging 2025-2035
PDF download/by email.

The Global Market for Biobased Packaging 2025-2035
The Global Market for Biobased Packaging 2025-2035
PDF and print edition (including delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.