The Global Market for Biodegradable and Compostable Packaging 2025-2035

0

cover

cover

  • Published: September 2024
  • Pages: 340
  • Tables: 48
  • Figures: 70

 

The market for biodegradable and compostable packaging is experiencing rapid growth, driven by increasing environmental awareness, stringent regulations, and shifting consumer preferences towards sustainable products. This sector has emerged as a crucial component of the global packaging industry, offering eco-friendly alternatives to traditional plastic packaging. Currently, the market is characterized by a diverse range of materials and technologies, including polylactic acid (PLA), polyhydroxyalkanoates (PHA), starch-based blends, and cellulose-derived packaging solutions. These materials are finding applications across various industries, with food packaging representing the largest segment due to growing concerns about plastic waste in the food supply chain. Major players in the packaging industry are investing heavily in research and development to improve the performance and cost-effectiveness of biodegradable materials. Simultaneously, numerous start-ups and innovative companies are entering the market with novel solutions, such as seaweed-based packaging and mycelium-derived materials. The market is witnessing a trend towards the development of compostable packaging that can break down in home composting conditions, addressing the limitations of industrial composting infrastructure. Additionally, there is a growing focus on creating multi-functional packaging that not only biodegrades but also offers enhanced shelf life for products or incorporates smart technologies.

Despite its growth, the biodegradable packaging market faces challenges, including higher production costs compared to conventional plastics, performance limitations in certain applications, and the need for proper waste management infrastructure. However, ongoing technological advancements and economies of scale are gradually addressing these issues. As the global push for sustainability intensifies, the biodegradable and compostable packaging market is expected to continue its upward trajectory. The industry is likely to see further innovations, increased adoption across various sectors, and potential consolidation as larger companies acquire promising technologies. This growth is not only reshaping the packaging industry but also contributing significantly to global efforts in reducing plastic waste and environmental pollution.

The Global Market for Biodegradable and Compostable Packaging 2025-2035 provides a thorough examination of the market landscape from 2025 to 2035, offering valuable insights for manufacturers, investors, and stakeholders in the sustainable packaging ecosystem. Report contents include: 

  • Market Size and Growth Projections: Detailed forecasts of the biodegradable and compostable packaging market size and growth rate from 2025 to 2035, segmented by product type, material, end-use industry, and region.
  • Material Innovation Deep Dive: Comprehensive analysis of both synthetic and natural biobased packaging materials, including PLA, Bio-PET, PHA, starch-based blends, and emerging solutions like mycelium and seaweed-based packaging.
  • Application Landscape: Exploration of key application areas such as food packaging, consumer goods, pharmaceuticals, and e-commerce, with insights into specific requirements and growth opportunities.
  • Competitive Landscape: Profiles of leading companies and emerging players in the biodegradable packaging space, including their technologies, strategies, and market positioning. Companies profiled include 9Fiber, Inc., ADBioplastics, Advanced Biochemical (Thailand) Co., Ltd., Aeropowder Limited, AGRANA Staerke GmbH, Ahlstrom-Munksjö Oyj, Alberta Innovates/Innotech Materials, LLC, Alter Eco Pulp, Alterpacks, AmicaTerra, An Phát Bioplastics, Anellotech, Inc., Ankor Bioplastics Co., Ltd., ANPOLY, Inc., Apeel Sciences, Applied Bioplastics, Aquapak Polymers Ltd, Archer Daniel Midland Company (ADM), Arekapak GmbH, Arkema S.A, Arrow Greentech, Asahi Kasei Chemicals Corporation, Attis Innovations, llc, Avani Eco, Avantium B.V., Avient Corporation, Balrampur Chini Mills, BASF SE, Bio Fab NZ, Bio Plast Pom, Bio2Coat, Bioelements Group, Biofibre GmbH, Bioform Technologies, Biokemik, BIOLO, BioLogiQ, Inc., Biome Bioplastics, Biomass Resin Holdings Co., Ltd., BIO-FED, BIO-LUTIONS International AG, Bioplastech Ltd, BioSmart Nano, BIOTEC GmbH & Co. KG, Biovox GmbH, BlockTexx Pty Ltd., Blue Ocean Closures, Bluepha Beijing Lanjing Microbiology Technology Co., Ltd., BOBST, Borealis AG, Brightplus Oy, Business Innovation Partners Co., Ltd., Carbiolice, Carbios, Cardia Bioplastics Ltd., CARAPAC Company, Cass Materials Pty Ltd, Celanese Corporation, Cellugy, Cellutech AB (Stora Enso), Chemkey Advanced Materials Technology (Shanghai) Co., Ltd., Chemol Company (Seydel), CJ Biomaterials, Inc., Coastgrass ApS, Corumat, Inc., Cruz Foam, CuanTec Ltd., Daicel Polymer Ltd., Daio Paper Corporation, Danimer Scientific LLC, DIC Corporation, DIC Products, Inc., DKS Co. Ltd., Dow, Inc., DuFor Resins B.V., DuPont, Earthodic Pty Ltd., Ecomann Biotechnology Co., Ltd., Ecoshell, EcoSynthetix, Inc., Ecovia Renewables, Enkev, Epoch Biodesign, Eranova, Esbottle Oy, Fiberlean Technologies, Fiberwood Oy, FKuR Kunststoff GmbH, Floreon, Footprint, Fraunhofer Institute for Silicate Research ISC, Full Cycle Bioplastics LLC, Futamura Chemical Co., Ltd., Futuramat Sarl, Futurity Bio-Ventures Ltd., Genecis Bioindustries, Inc., Grabio Greentech Corporation, Granbio Technologies, GreenNano Technologies Inc., GS Alliance Co. Ltd, Guangzhou Bio-plus Materials Technology Co., Ltd., Hokuetsu Toyo Fibre Co., Ltd., Holmen Iggesund, IUV Srl, Jiangsu Jinhe Hi-Tech Co., Ltd., Jiangsu Torise Biomaterials Co., Ltd, JinHui ZhaoLang High Technology Co., Ltd., Kagzi Bottles Private Limited, Kami Shoji Company, Kaneka Corporation, Kelpi Industries Ltd., Kingfa Sci. & Tech. Co. Ltd., Klabin S.A., Lactips S.A., LAM'ON, LanzaTech, Licella, Lignin Industries, Loick Biowertstoff GmbH, LOTTE Chemical Corporation, MadeRight, MakeGrowLab, Marea, Marine Innovation Co., Ltd, Melodea Ltd., Mi Terro, Inc., Mitr Phol, Mitsubishi Chemical Corporation, Mitsubishi Polyester Film GmbH, Mitsui Chemicals, Inc., Mobius, Mondi, Multibax Public Co., Ltd., Nabaco, Inc., NatPol, Nature Coatings, Inc., NatureWorks LLC, New Zealand Natural Fibers (NZNF), Newlight Technologies, NEXE Innovations Inc., Nippon Paper Industries, Notpla, Novamont S.p.A., Novomer, Oimo, Oji Paper Company, Omya, one • five GmbH, Origin Materials, Pack2Earth, Paptic Ltd., Pivot Materials LLC, Plafco Fibertech Oy, Plantic Technologies Ltd., Plantics B.V., Poliloop, Polyferm Canada, Pond Biomaterials, Provenance Biofabrics, Inc., PT Intera Lestari Polimer, PTT MCC Biochem Co., Ltd., Qnature UG, Rengo Co., Ltd., Rise Innventia AB, Rodenburg Productie B.V., Roquette S.A., RWDC Industries, S.lab, Sappi Limited, Saudi Basic Industries Corp. (SABIC), Searo, Shellworks, Shenzhen Ecomann Biotechnology Co., Ltd., Sirmax Group, SK Chemicals Co., Ltd., Solvay SA, Spectrus Sustainable Solutions Pvt Ltd, Spero Renewables, StePAc, Stora Enso Oyj, Sufresca, Sulapac Oy, Sulzer Chemtech AG, SUPLA Bioplastics, Sway Innovation Co., Sweetwater Energy, Taghleef Industries Llc, Teal Bioworks, Inc., TemperPack® Technologies, Termotécnica, TerraVerdae BioWorks Inc, Tianjin GreenBio Materials Co., Ltd, Ticinoplast, TIPA, Toppan Printing Co., Ltd., Toraphene, TotalEnergies Corbion, Universal Bio Pack Co., Ltd., UPM Biochemicals, UPM-Kymmene Oyj, Valentis Nanotech, Vegea srl, Verso Corporation, Weidmann Fiber Technology, Woamy Oy, Woodly Ltd., Worn Again Technologies, Xampla, Yangi, Yokohama Bio Frontier, Inc., Zelfo Technology, ZeroCircle, Zhejiang Jinjiahao Green Nanomaterial Co., Ltd.
  • Sustainability Impact: Assessment of the environmental benefits and challenges associated with biodegradable and compostable packaging, including life cycle analyses and circular economy initiatives.
  • Recent developments in biodegradable packaging technology.
  • Market Drivers and Opportunities.
  • Challenges and Market Dynamics
  • Regional Analysis and Market Opportunities
  • In-depth analysis of biodegradable packaging applications across various industries:
    • Food and Beverage: Largest market segment with diverse applications from fresh produce to dairy packaging
    • Consumer Goods: Growing demand in personal care and household products
    • Pharmaceutical: Increasing use of bioplastics in medical packaging and drug delivery systems
    • E-commerce: Rising adoption of sustainable packaging solutions for online retail
  • Materials Benchmarking and Performance Analysis
  • Manufacturing and Processing Innovations
    • Improvements in extrusion and thermoforming processes
    • Novel approaches to enhance material properties
    • Scalability considerations for mass production
    • Quality control and testing methodologies
  • Investment Landscape and Market Opportunities
  • Regulatory Framework and Standards

 

As the world moves towards more sustainable packaging solutions, understanding the biodegradable and compostable packaging market is crucial for:

  • Packaging manufacturers looking to expand their product portfolio
  • Brand owners seeking to meet sustainability goals and consumer demands
  • Investors interested in high-growth areas of the packaging industry
  • Policy makers developing regulations for sustainable packaging
  • Researchers and material scientists working on next-generation packaging solutions

 

 

1             EXECUTIVE SUMMARY            18

  • 1.1        Global Packaging Market       18
  • 1.2        The Market for Biodegradable and Compostable Packaging          18
    • 1.2.1    By product type            19
    • 1.2.2    By end-use market     20
    • 1.2.3    By region           21
  • 1.3        Main types       23
    • 1.3.1    Cellulose acetate        23
    • 1.3.2    PLA       24
    • 1.3.3    Aliphatic-aromatic co-polyesters     26
    • 1.3.4    PHA      27
    • 1.3.5    Starch/starch blends 29
  • 1.4        Prices  30
  • 1.5        Market Trends                31
  • 1.6        Market Drivers for recent growth in Biodegradable and Compostable Packaging            33
  • 1.7        Challenges for Biodegradable and Compostable Packaging         36

 

2             BIOBASED MATERIALS IN BIODEGRADABLE AND COMPOSTABLE PACKAGING               38

  • 2.1        Materials innovation 38
  • 2.2        Active packaging         38
  • 2.3        Monomaterial packaging       38
  • 2.4        Conventional polymer materials used in packaging            39
    • 2.4.1    Polyolefins: Polypropylene and polyethylene            40
      • 2.4.1.1 Overview           40
      • 2.4.1.2 Grades               40
      • 2.4.1.3 Producers         41
    • 2.4.2    PET and other polyester polymers   42
      • 2.4.2.1 Overview           42
    • 2.4.3    Renewable and bio-based polymers for packaging             43
    • 2.4.4    Comparison of synthetic fossil-based and bio-based polymers  44
    • 2.4.5    Processes for bioplastics in packaging        45
    • 2.4.6    End-of-life treatment of bio-based and sustainable packaging   46
  • 2.5        Synthetic bio-based packaging materials   48
    • 2.5.1    Polylactic acid (Bio-PLA)        48
      • 2.5.1.1 Overview           48
      • 2.5.1.2 Properties         49
      • 2.5.1.3 Applications   49
      • 2.5.1.4 Commercial examples            52
    • 2.5.2    Polyethylene terephthalate (Bio-PET)            52
      • 2.5.2.1 Overview           52
      • 2.5.2.2 Properties         53
      • 2.5.2.3 Applications   53
      • 2.5.2.4 Advantages of Bio-PET in Packaging              53
      • 2.5.2.5 Challenges and Limitations 54
      • 2.5.2.6 Commercial examples            55
    • 2.5.3    Polytrimethylene terephthalate (Bio-PTT)   55
        • 2.5.3.1 Overview           55
        • 2.5.3.2 Production Process   56
        • 2.5.3.3 Properties         56
        • 2.5.3.4 Applications   56
        • 2.5.3.5 Advantages of Bio-PTT in Packaging               57
        • 2.5.3.6 Challenges and Limitations 57
      • 2.5.3.7 Commercial examples            58
    • 2.5.4    Polyethylene furanoate (Bio-PEF)     58
      • 2.5.4.1 Overview           58
      • 2.5.4.2 Properties         59
      • 2.5.4.3 Applications   59
      • 2.5.4.4 Advantages of Bio-PEF in Packaging              59
      • 2.5.4.5 Challenges and Limitations 60
      • 2.5.4.6 Commercial examples            60
    • 2.5.5    Bio-PA 61
      • 2.5.5.1 Overview           62
      • 2.5.5.2 Properties         62
      • 2.5.5.3 Applications in Packaging     62
      • 2.5.5.4 Advantages of Bio-PA in Packaging 63
      • 2.5.5.5 Challenges and Limitations 63
      • 2.5.5.6 Commercial examples            63
    • 2.5.6    Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters                64
      • 2.5.6.1 Overview           65
      • 2.5.6.2 Properties         65
      • 2.5.6.3 Applications in Packaging     65
      • 2.5.6.4 Advantages of Bio-PBAT in Packaging           66
      • 2.5.6.5 Challenges and Limitations 66
      • 2.5.6.6 Commercial examples            66
    • 2.5.7    Polybutylene succinate (PBS) and copolymers       68
      • 2.5.7.1 Overview           68
      • 2.5.7.2 Properties         68
      • 2.5.7.3 Applications in Packaging     69
      • 2.5.7.4 Advantages of Bio-PBS and Co-polymers in Packaging     69
      • 2.5.7.5 Challenges and Limitations 69
      • 2.5.7.6 Commercial examples            70
    • 2.5.8    Polypropylene (Bio-PP)            70
      • 2.5.8.1 Overview           71
      • 2.5.8.2 Properties         71
      • 2.5.8.3 Applications in Packaging     71
      • 2.5.8.4 Advantages of Bio-PP in Packaging 71
      • 2.5.8.5 Challenges and Limitations 72
      • 2.5.8.6 Commercial examples            72
  • 2.6        Natural bio-based packaging materials       73
    • 2.6.1    Polyhydroxyalkanoates (PHA)             73
      • 2.6.1.1 Properties         74
      • 2.6.1.2 Applications in Packaging     74
      • 2.6.1.3 Advantages of PHA in Packaging      75
      • 2.6.1.4 Challenges and Limitations 76
      • 2.6.1.5 Commercial examples            76
    • 2.6.2    Starch-based blends 77
      • 2.6.2.1 Overview           77
      • 2.6.2.2 Properties         77
      • 2.6.2.3 Applications in Packaging     78
      • 2.6.2.4 Advantages of Starch-Based Blends in Packaging 78
      • 2.6.2.5 Challenges and Limitations 78
      • 2.6.2.6 Commercial examples            78
    • 2.6.3    Cellulose          80
      • 2.6.3.1 Feedstocks      80
        • 2.6.3.1.1           Wood  80
        • 2.6.3.1.2           Plant    81
        • 2.6.3.1.3           Tunicate             81
        • 2.6.3.1.4           Algae   81
        • 2.6.3.1.5           Bacteria             82
      • 2.6.3.2 Microfibrillated cellulose (MFC)        83
        • 2.6.3.2.1           Properties         83
      • 2.6.3.3 Nanocellulose               84
        • 2.6.3.3.1           Cellulose nanocrystals           84
          • 2.6.3.3.1.1      Applications in packaging     84
        • 2.6.3.3.2           Cellulose nanofibers 85
          • 2.6.3.3.2.1      Applications in packaging     86
        • 2.6.3.3.3           Bacterial Nanocellulose (BNC)          92
          • 2.6.3.3.3.1      Applications in packaging     94
      • 2.6.3.4 Commercial examples            95
    • 2.6.4    Protein-based bioplastics in packaging       97
      • 2.6.4.1 Feedstocks      97
      • 2.6.4.2 Commercial examples            99
    • 2.6.5    Lipids and waxes for packaging         100
      • 2.6.5.1 Overview           101
      • 2.6.5.2 Commercial examples            101
    • 2.6.6    Seaweed-based packaging  102
      • 2.6.6.1 Overview           102
      • 2.6.6.2 Production       104
      • 2.6.6.3 Applications in packaging     104
      • 2.6.6.4 Producers         104
    • 2.6.7    Mycelium          105
      • 2.6.7.1 Overview           105
      • 2.6.7.2 Applications in packaging     106
      • 2.6.7.3 Commercial examples            107
    • 2.6.8    Chitosan           109
      • 2.6.8.1 Overview           109
      • 2.6.8.2 Applications in packaging     110
      • 2.6.8.3 Commercial examples            110
    • 2.6.9    Bio-naphtha   112
      • 2.6.9.1 Overview           112
      • 2.6.9.2 Markets and applications      113
      • 2.6.9.3 Commercial examples            114

 

3             MARKETS AND APPLICATIONS           116

  • 3.1        Paper and board packaging 116
  • 3.2        Food packaging           118
    • 3.2.1    Bio-Based films and trays      118
    • 3.2.2    Bio-Based pouches and bags             119
    • 3.2.3    Bio-Based textiles and nets  119
    • 3.2.4    Bioadhesives 119
      • 3.2.4.1 Starch 120
      • 3.2.4.2 Cellulose          120
      • 3.2.4.3 Protein-Based               121
    • 3.2.5    Barrier coatings and films     121
      • 3.2.5.1 Polysaccharides          122
        • 3.2.5.1.1           Chitin  122
        • 3.2.5.1.2           Chitosan           122
        • 3.2.5.1.3           Starch 122
      • 3.2.5.2 Poly(lactic acid) (PLA)              123
      • 3.2.5.3 Poly(butylene Succinate)       123
      • 3.2.5.4 Functional Lipid and Proteins Based Coatings        123
    • 3.2.6    Active and Smart Food Packaging   124
      • 3.2.6.1 Active Materials and Packaging Systems    124
      • 3.2.6.2 Intelligent and Smart Food Packaging           125
    • 3.2.7    Antimicrobial films and agents          126
      • 3.2.7.1 Natural               127
      • 3.2.7.2 Inorganic nanoparticles          127
      • 3.2.7.3 Biopolymers   128
    • 3.2.8    Bio-based Inks and Dyes        128
    • 3.2.9    Edible films and coatings       129
      • 3.2.9.1 Overview           129
      • 3.2.9.2 Commercial examples            131
  • 3.3        Biobased films and coatings in packaging 132
    • 3.3.1    Overview           132
    • 3.3.2    Challenges using bio-based paints and coatings   132
    • 3.3.3    Types of bio-based coatings and films in packaging           135
      • 3.3.3.1 Polyurethane coatings             135
        • 3.3.3.1.1           Properties         135
        • 3.3.3.1.2           Bio-based polyurethane coatings     135
        • 3.3.3.1.3           Products           136
      • 3.3.3.2 Acrylate resins              137
        • 3.3.3.2.1           Properties         137
        • 3.3.3.2.2           Bio-based acrylates  137
        • 3.3.3.2.3           Products           138
      • 3.3.3.3 Polylactic acid (Bio-PLA)        138
        • 3.3.3.3.1           Properties         140
        • 3.3.3.3.2           Bio-PLA coatings and films  140
      • 3.3.3.4 Polyhydroxyalkanoates (PHA) coatings         140
      • 3.3.3.5 Cellulose coatings and films               142
        • 3.3.3.5.1           Microfibrillated cellulose (MFC)        142
        • 3.3.3.5.2           Cellulose nanofibers 142
          • 3.3.3.5.2.1      Properties         142
          • 3.3.3.5.2.2      Product developers    144
      • 3.3.3.6 Lignin coatings              146
      • 3.3.3.7 Protein-based biomaterials for coatings      146
        • 3.3.3.7.1           Plant derived proteins              146
        • 3.3.3.7.2           Animal origin proteins              147
  • 3.4        Carbon capture derived materials for packaging   148
    • 3.4.1    Benefits of carbon utilization for plastics feedstocks         149
    • 3.4.2    CO₂-derived polymers and plastics 151
    • 3.4.3    CO2 utilization products        152

 

4             GLOBAL MARKET FOR BIODEGRADABLE AND COMPOSTABLE PACKAGING (Tonnes) 154

  • 4.1        Total     154
    • 4.1.1    By product type            154
    • 4.1.2    By end-use market     155
    • 4.1.3    By region           156
  • 4.2        Flexible packaging     157
  • 4.3        Rigid packaging            159
  • 4.4        Coatings and films     162

 

5             COMPANY PROFILES                164 (213 company profiles)

 

6             RESEARCH METHODOLOGY              328

 

7             REFERENCES 329

 

List of Tables

  • Table 1. Global biodegradable and compostable packaging by product type, 2023-2035 (1,000 tonnes).                18
  • Table 2. Global biodegradable and compostable packaging by end-use market, 2023-2035 (1,000 tonnes).             20
  • Table 3. Global biodegradable and compostable packaging by region, 2023-2035 (1,000 tonnes).    21
  • Table 4. Average annual prices by bioplastic type, 2024 (US$ per kg).     29
  • Table 5. Market trends in bio-based and sustainable packaging 31
  • Table 6. Drivers for recent growth in the Biodegradable and Compostable Packaging market.               33
  • Table 7. Challenges for Biodegradable and Compostable Packaging.     36
  • Table 8. Types of bio-based plastics and fossil-fuel-based plastics          39
  • Table 9. Comparison of synthetic fossil-based and bio-based polymers.             45
  • Table 10. Processes for bioplastics in packaging. 46
  • Table 11. PLA properties for packaging applications.         49
  • Table 12. Applications, advantages and disadvantages of PHAs in packaging. 74
  • Table 13. Major polymers found in the extracellular covering of different algae.               82
  • Table 14. Market overview for cellulose microfibers (microfibrillated cellulose) in paperboard and packaging-market age, key benefits, applications and producers.            83
  • Table 15. Applications of nanocrystalline cellulose (CNC).            85
  • Table 16. Market overview for cellulose nanofibers in packaging.              87
  • Table 17. Types of protein based-bioplastics, applications and companies.      98
  • Table 18. Overview of alginate-description, properties, application and market size.   103
  • Table 19. Companies developing algal-based bioplastics.             105
  • Table 20. Overview of mycelium fibers-description, properties, drawbacks and applications.               105
  • Table 21. Overview of chitosan-description, properties, drawbacks and applications.                109
  • Table 22. Bio-based naphtha markets and applications. 113
  • Table 23. Bio-naphtha market value chain.               113
  • Table 24. Pros and cons of different type of food packaging materials.   118
  • Table 25. Active Biodegradable Films films and their food applications.               125
  • Table 26. Intelligent Biodegradable Films.  125
  • Table 27. Edible films and coatings market summary.       129
  • Table 28. Summary of barrier films and coatings for packaging. 133
  • Table 29. Types of polyols.    135
  • Table 30. Polyol producers.  136
  • Table 31. Bio-based polyurethane coating products.          136
  • Table 32. Bio-based acrylate resin products.           138
  • Table 33. Polylactic acid (PLA) market analysis.    138
  • Table 34. Commercially available PHAs.     141
  • Table 35. Market overview for cellulose nanofibers in paints and coatings.         143
  • Table 36. Companies developing cellulose nanofibers products in paints and coatings.           144
  • Table 37. Types of protein based-biomaterials, applications and companies.   147
  • Table 38. CO2 utilization and removal pathways.  149
  • Table 39. CO2 utilization products developed by chemical and plastic producers.        152
  • Table 40. Global biodegradable and compostable packaging by product type, 2023-2035 (1,000 tonnes).             154
  • Table 41. Global biodegradable and compostable packaging by end-use market, 2023-2035 (1,000 tonnes).             155
  • Table 42. Global biodegradable and compostable packaging by region, 2023-2035 (1,000 tonnes).  156
  • Table 43. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.   157
  • Table 44. Typical applications for bioplastics in flexible packaging.         158
  • Table 45. Typical applications for bioplastics in rigid packaging. 160
  • Table 46. Market revenues for bio-based coatings, 2018-2035 (billions USD), high estimate. 163
  • Table 47. Lactips plastic pellets.       258
  • Table 48. Oji Holdings CNF products.            282

 

List of Figures

  • Figure 1. Global packaging market by material type.           18
  • Figure 2. Global biodegradable and compostable packaging by product type, 2023-2035 (1,000 tonnes).                19
  • Figure 3. Global biodegradable and compostable packaging by end-use market, 2023-2035 (1,000 tonnes).             21
  • Figure 4. Global biodegradable and compostable packaging by region, 2023-2035 (1,000 tonnes).   22
  • Figure 5. Average annual prices by bioplastic type, 2024 (US$ per kg).   30
  • Figure 6. Routes for synthesizing polymers from fossil-based and bio-based resources.           44
  • Figure 7. LDPE film versus PLA, 2019–24 (USD/tonne).     49
  • Figure 8. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms.      80
  • Figure 9. Biosynthesis of (a) wood cellulose (b) tunicate cellulose and (c) BC.  81
  • Figure 10. Cellulose microfibrils and nanofibrils.  83
  • Figure 11. TEM image of cellulose nanocrystals.   84
  • Figure 12. CNC slurry.              85
  • Figure 13. CNF gel.     86
  • Figure 14. Bacterial nanocellulose shapes 93
  • Figure 15. BLOOM masterbatch from Algix.               104
  • Figure 16. Typical structure of mycelium-based foam.      106
  • Figure 17. Commercial mycelium composite construction materials.    107
  • Figure 18. Types of bio-based materials used for antimicrobial food packaging application.  127
  • Figure 19. Schematic of gas barrier properties of nanoclay film. 133
  • Figure 20. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test.               146
  • Figure 21. Applications for CO2.       149
  • Figure 22. Life cycle of CO2-derived products and services.          151
  • Figure 23.  Conversion pathways for CO2-derived polymeric materials  152
  • Figure 24. Global biodegradable and compostable packaging by product type, 2023-2035 (1,000 tonnes).             155
  • Figure 25. Global biodegradable and compostable packaging by end-use market, 2023-2035 (1,000 tonnes).             156
  • Figure 26. Global biodegradable and compostable packaging by region, 2023-2035 (1,000 tonnes). 156
  • Figure 27. Bioplastics for flexible packaging by bioplastic material type, 2019–2035 (‘000 tonnes).   159
  • Figure 28. Bioplastics for rigid packaging by bioplastic material type, 2019–2035 (‘000 tonnes).         161
  • Figure 29. Market revenues for bio-based coatings, 2018-2035 (billions USD), conservative estimate.                162
  • Figure 30. Pluumo.     166
  • Figure 31. Anpoly cellulose nanofiber hydrogel.     173
  • Figure 32. MEDICELLU™.         174
  • Figure 33. Asahi Kasei CNF fabric sheet.     180
  • Figure 34. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.          181
  • Figure 35. CNF nonwoven fabric.      182
  • Figure 36. Passionfruit wrapped in Xgo Circular packaging.           187
  • Figure 37. BIOLO e-commerce mailer bag made from PHA.           192
  • Figure 38. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc.          193
  • Figure 39. Fiber-based screw cap.   202
  • Figure 40. CJ CheilJedang's biodegradable PHA-based wrapper for shipping products.              212
  • Figure 41. CuanSave film.     215
  • Figure 42. ELLEX products.   217
  • Figure 43. CNF-reinforced PP compounds.               218
  • Figure 44. Kirekira! toilet wipes.         218
  • Figure 45. Rheocrysta spray.                222
  • Figure 46. DKS CNF products.            222
  • Figure 47. Photograph (a) and micrograph (b) of mineral/ MFC composite showing the high viscosity and fibrillar structure.        232
  • Figure 48. PHA production process.               237
  • Figure 49. AVAPTM process. 241
  • Figure 50. GreenPower+™ process.  241
  • Figure 51. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.               244
  • Figure 52. CNF gel.     246
  • Figure 53. Block nanocellulose material.    246
  • Figure 54. CNF products developed by Hokuetsu.                247
  • Figure 55. Kami Shoji CNF products.              252
  • Figure 56. IPA synthesis method.      268
  • Figure 57. Compostable water pod.               277
  • Figure 58. XCNF.          292
  • Figure 59: Innventia AB movable nanocellulose demo plant.        293
  • Figure 60. Shellworks packaging containers.           297
  • Figure 61. Thales packaging incorporating Fibrease.           303
  • Figure 62. Sulapac cosmetics containers. 305
  • Figure 63.  Sulzer equipment for PLA polymerization processing.              306
  • Figure 64. Silver / CNF composite dispersions.      313
  • Figure 65. CNF/nanosilver powder.  313
  • Figure 66. Corbion FDCA production process.        315
  • Figure 67. UPM biorefinery process.               317
  • Figure 68. Vegea production process.           320
  • Figure 69. Worn Again products.       323
  • Figure 70. S-CNF in powder form.    325

 

 

 

The Global Market for Biodegradable and Compostable Packaging 2025-2035
The Global Market for Biodegradable and Compostable Packaging 2025-2035
PDF download/by email.

The Global Market for Biodegradable and Compostable Packaging 2025-2035
The Global Market for Biodegradable and Compostable Packaging 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart.