The Global Market for Bioenergy 2023-2033

0

Published June 2023 | 430 pages, 85 tables, 113 figures | Download table of contents

Bioenergy, a form of renewable energy derived from different sources of biomass, is viewed as a key pathway to net zero.  Biomass is a promising alternative source for producing clean and sustainable energy and products, because of its communal availability, relatively lower price, and zero harmful emissions. Biomass originates from microbes and vegetation and is generally classified into agriculture biomass, forestry biomass, crops, wood-based biomass, municipal and industrial waste, food waste, animal and human-generated waste. Biomass can be transformed into biofuels through biological and thermal conversion approaches, such as pyrolysis, gasification, and combustion. Bioenergy technologies are fully commercial, proven at scale, and can deliver the full range of energy services: power, heat and transport fuel.

The Global Market for Bioenergy 2023-2033 is an essential resource for anyone involved in the energy and sustainability industries. The report provides extensive proprietary data on producers, production, demand, applications, market share, and pricing. 

Report contents include:

  • Markets drivers, trends and challenges. 
  • Bioenergy demand and consumption, historical and forecast to 2033. 
  • Prices for bioenergy, by type 2020-2023. 
  • Analysis of feedstocks including prices. 
  • Market analysis including key players, end use markets, production processes, costs, production capacities, market demand for bioenergy. 
  • Market segmentation analysis including:
    • Biodiesel.
    • Renewable diesel.
    • Bio-aviation oil.
    • Bio-naphtha.
    • Biomethanol.
    • Bioethanol.
    • Biobutanol.
    • Biogas/biomethane.
    • Biosyngas.
    • Bio-Hydrogen.
    • Electrofuels.
    • Algal biofuels.
    • Green ammonia.
    • Bio-oils.
    • Waste lubricant oils. 
    • Chemical recycling for biofuels.
    • Biofuels from carbon capture. 
    • Refuse-Derived Fuels. 
    • Wood chip and pellet biofuels. 
  • Production and synthesis methods.
  • Bioenergy industry developments and investments 2020-2023.
  • Profiles of 206 corporations, companies and start-ups. Companies profiled include Algenol, Apeiron Bioenergy, Biogasclean A/S, BTG Bioliquids, Byogy Renewables, Ductor, Enerkem, ENGIE, Euglena Co., Ltd.,  Firefly Green Fuels, FORGE Hydrocarbons Corporation, Fulcrum Bioenergy, Genecis Bioindustries, Gevo, Graforce Hydro GmbH, Hy2Gen AG, HydGene Renewables, Infinium Electrofuels, Kvasir Technologies, Mercurius Biorefining, Obeo Biogas, Opera Bioscience, Primary Ocean, Reverion, Steeper Energy,  SunFire GmbH, Vertus Energy and Viridos, Inc.

 

 

1              RESEARCH METHODOLOGY         21

 

2              WHAT IS BIOENERGY?    24

 

3              BIOENERGY INDUSTRY DEVELOPMENTS 2020-2023            27

 

4              THE GLOBAL BIOENERGY MARKET            34

  • 4.1          Market drivers  34
  • 4.2          Market challenges           35
  • 4.3          Bioenergy markets          36
    • 4.3.1      Heat      36
    • 4.3.2      Transport            36
    • 4.3.3      Power   38
  • 4.4          Diesel substitutes and alternatives           38
  • 4.5          Gasoline substitutes and alternatives      39
  • 4.6          Global biofuels demand to 2040 40
  • 4.7          Liquid biofuels market 2020-2033, by type and production            41
  • 4.8          Comparison of biofuel costs 2023, by type            43
  • 4.9          Conversion of biomass   45
  • 4.10        Types of bioenergy products       47
    • 4.10.1    Solid biomass based energy        47
    • 4.10.2    Liquid biomass based energy      48
    • 4.10.3    Gaseous biomass based energy 48
    • 4.10.4    Conventional biomass based energy        49
    • 4.10.5    Advanced biomassed based energy         50
  • 4.11        Feedstocks         51
    • 4.11.1    First-generation (1-G)    53
    • 4.11.2    Second-generation (2-G)              55
      • 4.11.2.1                Lignocellulosic wastes and residues         55
      • 4.11.2.2                Biorefinery lignin              57
    • 4.11.3    Third-generation (3-G)  61
      • 4.11.3.1                Algal biofuels     61
    • 4.11.4    Fourth-generation (4-G) 64
    • 4.11.5    Advantages and disadvantages, by generation    64
    • 4.11.6    Energy crops      65
    • 4.11.7    Agricultural residues      66
    • 4.11.8    Manure, sewage sludge and organic waste           67
    • 4.11.9    Forestry and wood waste             67
    • 4.11.10  Feedstock costs 68

 

5              BIOENERGY PRICES 2020-2023, BY TYPE 69

 

6              BIOMASS-BASED DIESEL 72

  • 6.1          Biodiesel              72
    • 6.1.1      Biodiesel by generation 73
    • 6.1.2      Production of biodiesel and other biofuels            74
      • 6.1.2.1   Pyrolysis of biomass        75
      • 6.1.2.2   Vegetable oil transesterification 78
      • 6.1.2.3   Vegetable oil hydrogenation (HVO)         79
      • 6.1.2.4   Biodiesel from tall oil      81
      • 6.1.2.5   Fischer-Tropsch BioDiesel             81
      • 6.1.2.6   Hydrothermal liquefaction of biomass    83
      • 6.1.2.7   CO2 capture and Fischer-Tropsch (FT)     83
      • 6.1.2.8   Dymethyl ether (DME)   84
    • 6.1.3      Prices    85
    • 6.1.4      Global production and consumption        86
  • 6.2          Renewable diesel            89
    • 6.2.1      Production          89
    • 6.2.2      Prices    90
    • 6.2.3      Global consumption       91

 

7              BIO-AVIATION FUEL        93

  • 7.1          Description         93
    • 7.1.1      Global market   93
    • 7.1.2      Production pathways     94
    • 7.1.3      Prices    97
    • 7.1.4      Biojet fuel production capacities                98
    • 7.1.5      Challenges          98
    • 7.1.6      Global consumption       99

 

8              BIO-NAPHTHA FUELS      101

  • 8.1          Overview            101
  • 8.2          Markets and applications              102
  • 8.3          Prices    104
  • 8.4          Production capacities, by producer, current and planned               105
  • 8.5          Production capacities, total (tonnes), historical, current and planned        106

 

9              BIOMETHANOL 108

  • 9.1          Methanol-to gasoline technology             109
    • 9.1.1      Production processes     110
      • 9.1.1.1   Anaerobic digestion        111
      • 9.1.1.2   Biomass gasification        111
      • 9.1.1.3   Power to Methane          112
    • 9.1.2      Biomethanol prices         113

 

10           BIOETHANOL     114

  • 10.1        Technology description 114
  • 10.2        1G Bio-Ethanol  115
  • 10.3        Ethanol to jet fuel technology     115
  • 10.4        Methanol from pulp & paper production               116
  • 10.5        Sulfite spent liquor fermentation              116
  • 10.6        Gasification        117
    • 10.6.1    Biomass gasification and syngas fermentation    117
    • 10.6.2    Biomass gasification and syngas thermochemical conversion        117
  • 10.7        CO2 capture and alcohol synthesis           118
  • 10.8        Biomass hydrolysis and fermentation     118
    • 10.8.1    Separate hydrolysis and fermentation    118
    • 10.8.2    Simultaneous saccharification and fermentation (SSF)     119
    • 10.8.3    Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)             119
    • 10.8.4    Simultaneous saccharification and co-fermentation (SSCF)            120
    • 10.8.5    Direct conversion (consolidated bioprocessing) (CBP)      120
  • 10.9        Prices    121
  • 10.10     Global ethanol consumption       122

 

11           BIOBUTANOL     124

  • 11.1        Production          126
  • 11.2        Prices    126

 

12           BIOMASS-BASED GAS     127

  • 12.1        Biogas   127
    • 12.1.1    Biomethane       128
    • 12.1.2    Production pathways     131
      • 12.1.2.1                Landfill gas recovery       131
      • 12.1.2.2                Anaerobic digestion        132
      • 12.1.2.3                Thermal gasification        133
    • 12.1.3    Global production            134
    • 12.1.4    Bio-LNG and bio-CNG     136
    • 12.1.5    Plants    139
    • 12.1.6    Prices    141
    • 12.1.7    Carbon capture from biogas        142
  • 12.2        Biosyngas            144
    • 12.2.1    Production          144
    • 12.2.2    Prices    145
  • 12.3        Biohydrogen      146
    • 12.3.1    Description         147
    • 12.3.2    Production of biohydrogen from biomass              147
      • 12.3.2.1                Biological Conversion Routes      148
      • 12.3.2.2                Thermochemical conversion routes         150
    • 12.3.3    Applications       152
    • 12.3.4    Prices    153
  • 12.4        Biochar in biogas production       154

 

13           ELECTROFUELS (E-FUELS)             155

  • 13.1        Introduction       155
    • 13.1.1    Benefits of e-fuels           158
  • 13.2        Feedstocks         159
    • 13.2.1    Hydrogen electrolysis     159
    • 13.2.2    CO2 capture       160
  • 13.3        Production          160
    • 13.3.1    eFuel production facilities, current and planned 162
  • 13.4        Electrolysers      163
    • 13.4.1    Commercial alkaline electrolyser cells (AECs)       165
    • 13.4.2    PEM electrolysers (PEMEC)         165
    • 13.4.3    High-temperature solid oxide electrolyser cells (SOECs)  165
  • 13.5        Prices    165
  • 13.6        Market challenges           168
  • 13.7        Companies         169

 

14           ALGAE-DERIVED BIOFUELS           170

  • 14.1        Technology description 170
  • 14.2        Conversion pathways     170
  • 14.3        Production          171
  • 14.4        Market challenges           172
  • 14.5        Prices    173
  • 14.6        Commercial development and producers              174

 

15           GREEN AMMONIA           176

  • 15.1        Production          176
    • 15.1.1    Decarbonisation of ammonia production               179
    • 15.1.2    Green ammonia projects              179
  • 15.2        Green ammonia synthesis methods         179
    • 15.2.1    Haber-Bosch process      179
    • 15.2.2    Biological nitrogen fixation          180
    • 15.2.3    Electrochemical production         181
    • 15.2.4    Chemical looping processes        181
  • 15.3        Blue ammonia   181
    • 15.3.1    Blue ammonia projects  181
  • 15.4        Markets and applications              182
    • 15.4.1    Chemical energy storage              182
      • 15.4.1.1                Ammonia fuel cells          182
    • 15.4.2    Marine fuel         183
  • 15.5        Prices    185
  • 15.6        Estimated market demand           187
  • 15.7        Companies and projects 187

 

16           BIO-OILS              189

  • 16.1        Description         189
  • 16.2        Production          190
    • 16.2.1    Fast Pyrolysis     190
    • 16.2.2    Costs     191
    • 16.2.3    Upgrading           192
  • 16.3        Applications       192
  • 16.4        Prices    193
  • 16.5        Virgin and waste lubricant oils (WLO)      194

 

17           CHEMICAL RECYCLING FOR BIOFUELS      195

  • 17.1        Plastic pyrolysis 195
  • 17.2        Used tires pyrolysis         196
    • 17.2.1    Conversion to biofuel     197
  • 17.3        Co-pyrolysis of biomass and plastic wastes           198
  • 17.4        Gasification        199
    • 17.4.1    Syngas conversion to methanol 200
    • 17.4.2    Biomass gasification and syngas fermentation    204
    • 17.4.3    Biomass gasification and syngas thermochemical conversion        204
  • 17.5        Hydrothermal cracking   205

 

18           BIOFUELS FROM CARBON CAPTURE         205

  • 18.1        Overview            206
  • 18.2        CO2 capture from point sources 209
  • 18.3        Production routes            210
  • 18.4        Prices    211
  • 18.5        Bioenergy with carbon capture and storage (BECCS)         212
    • 18.5.1    Overview of technology 212
    • 18.5.2    Biomass conversion        214
    • 18.5.3    BECCS facilities  214
    • 18.5.4    Challenges          215
  • 18.6        Biomass carbon removal and storage (BiCRS)       216
  • 18.7        Hydrogen bioenergy with carbon capture and storage (HyBECCs)               217
  • 18.8        Direct air capture (DAC) 217
    • 18.8.1    Description         217
    • 18.8.2    Deployment       219
    • 18.8.3    Point source carbon capture versus Direct Air Capture     220
    • 18.8.4    Technologies     220
      • 18.8.4.1                Solid sorbents   222
      • 18.8.4.2                Liquid sorbents 224
      • 18.8.4.3                Liquid solvents  224
      • 18.8.4.4                Airflow equipment integration   225
      • 18.8.4.5                Passive Direct Air Capture (PDAC)             225
      • 18.8.4.6                Direct conversion             226
      • 18.8.4.7                Co-product generation  226
      • 18.8.4.8                Low Temperature DAC  226
      • 18.8.4.9                Regeneration methods 226
    • 18.8.5    Commercialization and plants     227
    • 18.8.6    Metal-organic frameworks (MOFs) in DAC             228
    • 18.8.7    DAC plants and projects-current and planned      228
    • 18.8.8    Markets for DAC               235
    • 18.8.9    Costs     236
    • 18.8.10  Challenges          241
    • 18.8.11  Players and production  242
  • 18.9        Methanol            242
  • 18.10     Algae based carbon utilization    243
  • 18.11     CO₂-fuels from solar        244
  • 18.12     Companies         246
  • 18.13     Challenges          248

 

19           REFUSE-DERIVED FUELS 249

  • 19.1        Overview            249
  • 19.2        Production          250
    • 19.2.1    Mechanical biological treatment               250
    • 19.2.2    Production process         251
    • 19.2.3    Markets               252

 

20           SOLID WOOD BIOFUELS 253

  • 20.1        Overview            253
    • 20.1.1    Solid biofuels     253
  • 20.2        Production          254
    • 20.2.1    Wood chips and pellets 254
  • 20.3        Markets               255

 

21           COMPANY PROFILES       256 (206 company profiles)

 

22           REFERENCES       417

 

List of Tables

  • Table 1. Bioenergy industry developments in 2020-2023.                27
  • Table 2. Market drivers for biofuels.        33
  • Table 3. Market challenges for biofuels. 34
  • Table 4. Liquid biofuels market 2020-2033, by type and production.          42
  • Table 5. Comparison of biofuel costs (USD/liter) 2023, by type.   43
  • Table 6. Categories and examples of solid biofuel.             47
  • Table 7. Comparison of biofuels and e-fuels to fossil and electricity.           50
  • Table 8. Classification of biomass feedstock.        52
  • Table 9. Biorefinery feedstocks. 52
  • Table 10. Feedstock conversion pathways.           53
  • Table 11. First-Generation Feedstocks.   53
  • Table 12.  Lignocellulosic ethanol plants and capacities.  56
  • Table 13. Comparison of pulping and biorefinery lignins. 57
  • Table 14. Commercial and pre-commercial biorefinery lignin production facilities and  processes 58
  • Table 15. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol.  60
  • Table 16. Properties of microalgae and macroalgae.         62
  • Table 17. Yield of algae and other biodiesel crops.             63
  • Table 18. Advantages and disadvantages of biofuels, by generation.         64
  • Table 19. Bioenergy prices 2020-2023, by type.  69
  • Table 20. Biodiesel by generation.            73
  • Table 21. Biodiesel production techniques.          75
  • Table 22. Summary of pyrolysis technique under different operating conditions. 75
  • Table 23. Biomass materials and their bio-oil yield.            77
  • Table 24. Biofuel production cost from the biomass pyrolysis process.      77
  • Table 25. Properties of vegetable oils in comparison to diesel.     79
  • Table 26. Main producers of HVO and capacities.               80
  • Table 27. Example commercial Development of BtL processes.    81
  • Table 28. Pilot or demo projects for biomass to liquid (BtL) processes.     82
  • Table 29. Global biodiesel consumption, 2010-2033 (M litres/year).          87
  • Table 30. Global renewable diesel consumption, to 2033 (M litres/year). 92
  • Table 31. Advantages and disadvantages of biojet fuel    93
  • Table 32. Production pathways for bio-jet fuel.   94
  • Table 33. Current and announced biojet fuel facilities and capacities.        98
  • Table 34. Global bio-jet fuel consumption to 2033 (Million litres/year).    99
  • Table 35. Bio-based naphtha markets and applications.   102
  • Table 36. Bio-naphtha market value chain.            102
  • Table 37. Bio-based Naphtha production capacities, by producer.               105
  • Table 38. Comparison of biogas, biomethane and natural gas.      111
  • Table 39.  Processes in bioethanol production.  119
  • Table 40. Microorganisms used in CBP for ethanol production from biomass lignocellulosic.           120
  • Table 41. Ethanol consumption 2010-2033 (million litres).             123
  • Table 42. Global biogas and biomethane production.       134
  • Table 43. Biogas feedstocks.       136
  • Table 44. Existing and planned bio-LNG production plants.            139
  • Table 45. Comparison of different Bio-H2 production pathways   152
  • Table 46. Biohydrogen prices.     153
  • Table 47.  Levelized cost and carbon footprint comparison between types of hydrogen.   153
  • Table 48. Applications of e-fuels, by type.             157
  • Table 49. Overview of e-fuels.    158
  • Table 50. Benefits of e-fuels.      158
  • Table 51. eFuel production facilities, current and planned.            162
  • Table 52. Main characteristics of different electrolyzer technologies.        164
  • Table 53. Market challenges for e-fuels. 168
  • Table 54. E-fuels companies.       169
  • Table 55. Companies producing algae-derived fuels.        175
  • Table 56. Green ammonia projects (current and planned).             179
  • Table 57. Blue ammonia projects.             181
  • Table 58. Ammonia fuel cell technologies.            182
  • Table 59. Market overview of green ammonia in marine fuel.       184
  • Table 60. Summary of marine alternative fuels.  184
  • Table 61. Estimated costs for different types of ammonia.             186
  • Table 62. Main players in green ammonia.            187
  • Table 63. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil.              189
  • Table 64. Summary of gasification technologies. 199
  • Table 65. Overview of hydrothermal cracking for advanced chemical recycling.     205
  • Table 66. Market overview for CO2 derived fuels.              207
  • Table 67. Point source examples.              209
  • Table 68. Existing and planned capacity for sequestration of biogenic carbon.       214
  • Table 69. Existing facilities with capture and/or geologic sequestration of biogenic CO2.   215
  • Table 70. Advantages and disadvantages of DAC.               219
  • Table 71. Companies developing airflow equipment integration with DAC.             225
  • Table 72. Companies developing Passive Direct Air Capture (PDAC) technologies. 225
  • Table 73. Companies developing regeneration methods for DAC technologies.     227
  • Table 74. DAC companies and technologies.         227
  • Table 75. DAC technology developers and production.    229
  • Table 76. DAC projects in development. 234
  • Table 77. Markets for DAC.          235
  • Table 78. Costs summary for DAC.            236
  • Table 79. Cost estimates of DAC.               239
  • Table 80. Challenges for DAC technology.              241
  • Table 81. DAC companies and technologies.         242
  • Table 82. Microalgae products and prices.             244
  • Table 83. Main Solar-Driven CO2 Conversion Approaches.             245
  • Table 84. Companies in CO2-derived fuel products.          246
  • Table 85. Overview of key resource recovery technologies.           249
  • Table 86. Granbio Nanocellulose Processes.         327

 

List of Figures

  • Figure 1. Bioenergy pathways: from biomass to final energy use. 25
  • Figure 2. Role of bioenergy in final energy consumption. 26
  • Figure 3. Diesel and gasoline alternatives and blends.      39
  • Figure 4. Global biofuels demand to 2040.             40
  • Figure 5. Liquid biofuel production and consumption (in thousands of m3), 2000-2021.     41
  • Figure 6. Distribution of global liquid biofuel production in 2022. 42
  • Figure 7. Current conversion technologies of biomass.     45
  • Figure 8. : Biomass feedstock conversion chains. 51
  • Figure 9.  Schematic of a biorefinery for production of carriers and chemicals.      58
  • Figure 10. Hydrolytic lignin powder.        61
  • Figure 11. Range of biomass cost by feedstock type.        68
  • Figure 12. Bioenergy prices 2020-2023, by type. 70
  • Figure 13. Regional production of biodiesel (billion litres).              73
  • Figure 14. Flow chart for biodiesel production.    78
  • Figure 15. Biodiesel prices, current and historical.              85
  • Figure 16. Global biodiesel consumption, 2010-2033 (M litres/year).        87
  • Figure 17. Renewable diesel prices.         90
  • Figure 18. Global renewable diesel consumption, to 2033 (M litres/year).               91
  • Figure 19. Biojet fuel prices.        97
  • Figure 20. Global bio-jet fuel consumption to 2033 (Million litres/year).  99
  • Figure 21. Bio-naphtha prices.    104
  • Figure 22. Bio-based naphtha production capacities, 2018-2033 (tonnes).              107
  • Figure 23. Renewable Methanol Production Processes from Different Feedstocks.              110
  • Figure 24. Production of biomethane through anaerobic digestion and upgrading.              111
  • Figure 25. Production of biomethane through biomass gasification and methanation.       112
  • Figure 26. Production of biomethane through the Power to methane process.     113
  • Figure 27. Biomethanol prices.   113
  • Figure 28. Bioethanol prices.       121
  • Figure 29. Ethanol consumption 2010-2033 (million litres).            122
  • Figure 30. Properties of petrol and biobutanol.   124
  • Figure 31. Biobutanol production route. 125
  • Figure 32. Biobutanol prices.       126
  • Figure 33. Overview of biogas utilization.               129
  • Figure 34. Biogas and biomethane pathways.      131
  • Figure 35. Schematic overview of anaerobic digestion process for biomethane production.            132
  • Figure 36. Schematic overview of biomass gasification for biomethane production.            133
  • Figure 37. Biomethane prices.    141
  • Figure 38.  Bio-LNG from anaerobic digestion total cost range in 2020, 2030 and 2050, compared with fossil LNG. 141
  • Figure 39. Total syngas market by product in MM Nm³/h of Syngas, 2021.               145
  • Figure 40. Biosyngas prices.         145
  • Figure 41. Metabolic pathways of biohydrogen production by micro-algal biomass.            147
  • Figure 42. Process steps in the production of electrofuels.             156
  • Figure 43. Mapping storage technologies according to performance characteristics.           157
  • Figure 44. Production process for green hydrogen.           159
  • Figure 45. E-liquids production routes.   161
  • Figure 46. Fischer-Tropsch liquid e-fuel products.              161
  • Figure 47. Resources required for liquid e-fuel production.            162
  • Figure 48. E-fuel prices. 166
  • Figure 49. Levelized cost and fuel-switching CO2 prices of e-fuels.             166
  • Figure 50. Cost breakdown for e-fuels.   168
  • Figure 51.  Pathways for algal biomass conversion to biofuels.     170
  • Figure 52. Algal biomass conversion process for biofuel production.          172
  • Figure 53. Algal biofuels prices.  173
  • Figure 54. Algal biofuel selling prices.      174
  • Figure 55. Classification and process technology according to carbon emission in ammonia production.    177
  • Figure 56. Green ammonia production and use. 178
  • Figure 57. Schematic of the Haber Bosch ammonia synthesis reaction.     180
  • Figure 58. Schematic of hydrogen production via steam methane reformation.    180
  • Figure 59. Estimated production cost of green ammonia.               186
  • Figure 60. Green ammonia prices.            186
  • Figure 61. Projected annual ammonia production, million tons.   187
  • Figure 62. Bio-oil prices. 193
  • Figure 63. Circular economy concept for the management of WLO.            194
  • Figure 64. Waste plastic production pathways to (A) diesel and (B) gasoline           195
  • Figure 65. Schematic for Pyrolysis of Scrap Tires. 197
  • Figure 66. Used tires conversion process.              198
  • Figure 67. Total syngas market by product in MM Nm³/h of Syngas, 2021.               200
  • Figure 68. Overview of biogas utilization.               202
  • Figure 69. Biogas and biomethane pathways.      203
  • Figure 70. CO2 capture and separation technology.          206
  • Figure 71. Conversion route for CO2-derived fuels and chemical intermediates.   208
  • Figure 72.  Conversion pathways for CO2-derived methane, methanol and diesel.               209
  • Figure 73. Bioenergy with carbon capture and storage (BECCS) process.  213
  • Figure 74. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.   218
  • Figure 75. Global CO2 capture from biomass and DAC in the Net Zero Scenario.   219
  • Figure 76.  DAC technologies.     221
  • Figure 77. Schematic of Climeworks DAC system.               222
  • Figure 78. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.          223
  • Figure 79.  Flow diagram for solid sorbent DAC.  223
  • Figure 80. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.    224
  • Figure 81. Global capacity of direct air capture facilities. 229
  • Figure 82. Global map of DAC and CCS plants.      235
  • Figure 83. Schematic of costs of DAC technologies.           237
  • Figure 84. DAC cost breakdown and comparison.               238
  • Figure 85. Operating costs of generic liquid and solid-based DAC systems.              240
  • Figure 86. CO2 feedstock for the production of e-methanol.         243
  • Figure 87. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c     245
  • Figure 88. Audi synthetic fuels.  246
  • Figure 89. Standard components of an RDF plant.              251
  • Figure 90. Woody biomass for energy in the wood value chain     253
  • Figure 91. ANDRITZ Lignin Recovery process.       264
  • Figure 92. ChemCyclingTM prototypes.  270
  • Figure 93. ChemCycling circle by BASF.   271
  • Figure 94. FBPO process 283
  • Figure 95. Direct Air Capture Process.     287
  • Figure 96. CRI process.   289
  • Figure 97. Cassandra Oil  process.             292
  • Figure 98. Colyser process.          299
  • Figure 99. Domsjö process.          303
  • Figure 100. ECFORM electrolysis reactor schematic.          306
  • Figure 101. Dioxycle modular electrolyzer.            307
  • Figure 102. FuelPositive system. 321
  • Figure 103. INERATEC unit.           337
  • Figure 104. Infinitree swing method.       338
  • Figure 105. Enfinity cellulosic ethanol technology process.            372
  • Figure 106: Plantrose process.    379
  • Figure 107. Sunfire process for Blue Crude production.    396
  • Figure 108. O12 Reactor.              403
  • Figure 109. Sunglasses with lenses made from CO2-derived materials.     403
  • Figure 110. CO2 made car part.  403
  • Figure 111. The Velocys process.               406
  • Figure 112. Goldilocks process and applications. 409
  • Figure 113. The Proesa® Process.              410

 

 

The Global Market for Bioenergy 2023-2033
The Global Market for Bioenergy 2023-2033
PDF download.

The Global Market for Bioenergy 2023-2033
The Global Market for Bioenergy 2023-2033
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.