The Global Market for Biofuels 2025-2035

0

cover

Biodiesel, renewable diesel, bio-jet fuels, bio-naphtha, biomethanol, ethanol, biobutanol, biogas, biosyngas, biohydrogen, biofuel from plastic waste & used tires, biofuels from carbon capture, chemical recycling based biofuels, electrofuels, bio-oils, algae-derived biofuels, green ammonia, refuse-derived biofuels.

  • Published: July 2024
  • Pages: 437
  • Tables: 96
  • Figures: 114

 

The biofuels market has emerged as a critical component in the global effort to transition towards more sustainable and environmentally friendly energy sources. Biofuels offer a promising alternative to traditional fossil fuels, particularly in the transportation sector. These renewable fuels, derived from biomass sources such as crops, agricultural residues, and organic waste, have the potential to significantly reduce  emissions and decrease dependence on oil reserves. The importance of the biofuels market extends beyond environmental benefits. It plays a crucial role in rural economic development, creating jobs in agriculture and biofuel production facilities. Additionally, biofuels contribute to energy diversification, enhancing national energy security by reducing reliance on imported fossil fuels. As governments worldwide implement policies to promote renewable energy and reduce emissions, the biofuels market has experienced substantial growth and technological advancement.

This comprehensive 400+ page report provides an in-depth analysis of the rapidly evolving global biofuels market, with detailed forecasts from 2025 to 2035. As the world transitions to more sustainable energy sources, biofuels are playing an increasingly critical role in reducing carbon emissions across transportation, industry, and power generation sectors.

The report offers a thorough examination of conventional and advanced biofuels, including biodiesel, renewable diesel, bioethanol, bio-jet fuel, biomethane, and emerging technologies like e-fuels and algae-based biofuels. It provides granular insights into market sizes, growth projections, key players, technological innovations, and regulatory landscapes shaping the industry's future. Report contents include: 

  • Detailed market forecasts for major biofuel types from 2025-2035
  • Analysis of feedstocks including energy crops, agricultural residues, forestry waste, and algae
  • Evaluation of production processes like pyrolysis, gasification, and fermentation
  • Assessment of biofuel applications in road transport, aviation, and marine sectors
  • Profiles of 221 companies across the biofuels value chain. Companies profiled include BTG Bioliquids, Byogy Renewables, Caphenia, Cepsa, Enerkem, Electro-Active Technologies Inc., Eni S.p.A., Ensyn, FORGE Hydrocarbons Corporation, Genecis Bioindustries, Gevo, Haldor Topsoe, HutanBio,  Infinium Electrofuels,  Kvasir Technologies, Lootah Biofuels, Neste, OMV, Opera Bioscience, Quantum Commodity Intelligence, Reverion GmbH, Steeper Energy,  SunFire GmbH, Total, Vertus Energy, Viridos, Inc. and WasteFuel. 
  • Examination of policy support mechanisms and sustainability criteria globally

 

The report segments the market by fuel type, feedstock, application, and region, providing comprehensive data on production volumes, consumption patterns, and trade flows. It highlights the shift towards advanced biofuels and the integration of biofuel production with carbon capture technologies.

Feedstock Analysis

A key focus is the evolving landscape of biofuel feedstocks, from first-generation food crops to advanced lignocellulosic biomass and waste streams. The report examines:

  • Comparative analysis of feedstock costs and availability
  • Sustainability concerns and land use change impacts
  • Innovations in energy crop development and agricultural practices
  • Potential of municipal solid waste and industrial residues as feedstocks
  • Emerging feedstocks like algae and CO2 for e-fuel production

 

Production Technologies

The study provides an in-depth look at both established and cutting-edge biofuel production technologies, including:

  • Advances in enzymatic hydrolysis for cellulosic ethanol
  • Improvements in biodiesel and renewable diesel production processes
  • Biomass gasification and Fischer-Tropsch synthesis for drop-in fuels
  • Hydrothermal liquefaction for algal biofuels
  • Power-to-X technologies for e-fuel synthesis
  • Biogas upgrading and biomethane production

 

Market Applications

Detailed analysis is provided for key biofuel applications:

  • Road Transport: Ethanol and biodiesel blending trends, flex-fuel vehicles, and heavy-duty applications
  • Aviation: Progress in bio-jet fuel commercialization and airline adoption strategies
  • Marine: Potential for biofuels in meeting IMO 2020 sulfur regulations
  • Power Generation: Use of biogas and biomethane for electricity production
  • Industrial Uses: Biofuels as process energy and feedstock for biochemicals

 

Regional Analysis

The report offers a comprehensive regional breakdown, covering:

  • North America: US and Canadian biofuel policies and production capacities
  • Europe: Impact of RED II directives on market growth
  • Asia Pacific: Rapid expansion in China, India, and Southeast Asian markets
  • Latin America: Brazil's leadership in sugarcane ethanol and emerging markets
  • Africa and Middle East: Potential for biofuel production and consumption

 

Competitive Landscape

An extensive analysis of the competitive environment includes:

  • Market shares of leading biofuel producers
  • Detailed company profiles of over 200 key players
  • Strategic initiatives, partnerships, and M&A activities
  • Investments in capacity expansion and new technology development
  • Emerging start-ups and their innovative approaches

 

Regulatory Framework

A thorough examination of the regulatory landscape influencing biofuel markets, including:

  • Renewable fuel standards and blending mandates by region
  • Carbon pricing mechanisms and their impact on biofuel competitiveness
  • Sustainability criteria and certification schemes
  • Trade policies affecting biofuel imports and exports

 

Emerging Trends and Opportunities

The report highlights key trends shaping the future of the biofuels industry:

  • Integration of biofuel production with carbon capture and utilization
  • Development of bio-refineries producing multiple value-added products
  • Increasing focus on waste-based and circular economy approaches
  • Growing interest in e-fuels and power-to-liquid technologies
  • Potential of biogas and biomethane in decarbonizing natural gas grids

 

Challenges and Risks

The study also addresses major challenges facing the biofuels industry:

  • Feedstock availability and price volatility
  • Competition with electric vehicles in road transport
  • Sustainability concerns and indirect land use change
  • Scaling up advanced biofuel technologies
  • Policy uncertainty and changing regulatory landscapes

 

 

 

 

1             RESEARCH METHODOLOGY              24

 

2             EXECUTIVE SUMMARY            25

  • 2.1        Comparison to fossil fuels    25
  • 2.2        Role in the circular economy               26
  • 2.3        Market drivers                26
  • 2.4        Market challenges      27
  • 2.5        Liquid biofuels market             28
    • 2.5.1    Liquid biofuel production and consumption (in thousands of m3), 2000-2023 28
    • 2.5.2    Liquid biofuels market 2020-2035, by type and production.          30

 

3             INDUSTRY DEVELOPMENTS 2022-2024      32

 

4             BIOFUELS        35

  • 4.1        Overview           35
  • 4.2        The global biofuels market    36
    • 4.2.1    Diesel substitutes and alternatives 37
    • 4.2.2    Gasoline substitutes and alternatives           38
  • 4.3        SWOT analysis: Biofuels market        39
  • 4.4        Comparison of biofuel costs 2024, by type                40
  • 4.5        Types   41
    • 4.5.1    Solid Biofuels 41
    • 4.5.2    Liquid Biofuels              42
    • 4.5.3    Gaseous Biofuels       42
    • 4.5.4    Conventional Biofuels             43
    • 4.5.5    Advanced Biofuels     44
  • 4.6        Feedstocks      46
    • 4.6.1    First-generation (1-G)               47
    • 4.6.2    Second-generation (2-G)       49
      • 4.6.2.1 Lignocellulosic wastes and residues             50
      • 4.6.2.2 Biorefinery lignin         51
    • 4.6.3    Third-generation (3-G)             55
      • 4.6.3.1 Algal biofuels 55
        • 4.6.3.1.1           Properties         56
        • 4.6.3.1.2           Advantages     56
    • 4.6.4    Fourth-generation (4-G)          57
    • 4.6.5    Advantages and disadvantages, by generation        58
    • 4.6.6    Energy crops  59
      • 4.6.6.1 Feedstocks      59
      • 4.6.6.2 SWOT analysis              60
    • 4.6.7    Agricultural residues 61
      • 4.6.7.1 Feedstocks      61
      • 4.6.7.2 SWOT analysis              62
    • 4.6.8    Manure, sewage sludge and organic waste                63
      • 4.6.8.1 Processing pathways                63
      • 4.6.8.2 SWOT analysis              63
    • 4.6.9    Forestry and wood waste       65
      • 4.6.9.1 Feedstocks      65
      • 4.6.9.2 SWOT analysis              65
    • 4.6.10 Feedstock costs          67

 

5             HYDROCARBON BIOFUELS 67

  • 5.1        Biodiesel           68
    • 5.1.1    Biodiesel by generation           69
    • 5.1.2    SWOT analysis              70
    • 5.1.3    Production of biodiesel and other biofuels 72
      • 5.1.3.1 Pyrolysis of biomass 72
      • 5.1.3.2 Vegetable oil transesterification       75
      • 5.1.3.3 Vegetable oil hydrogenation (HVO)  76
        • 5.1.3.3.1           Production process   77
      • 5.1.3.4 Biodiesel from tall oil                78
      • 5.1.3.5 Fischer-Tropsch BioDiesel     78
      • 5.1.3.6 Hydrothermal liquefaction of biomass         80
      • 5.1.3.7 CO2 capture and Fischer-Tropsch (FT)          81
      • 5.1.3.8 Dymethyl ether (DME)              81
    • 5.1.4    Prices  82
    • 5.1.5    Global production and consumption            83
  • 5.2        Renewable diesel        86
    • 5.2.1    Production       86
    • 5.2.2    SWOT analysis              87
    • 5.2.3    Global consumption 88
  • 5.2.4    Prices  90
  • 5.3        Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel)                91
    • 5.3.1    Description     91
    • 5.3.2    SWOT analysis              91
    • 5.3.3    Global production and consumption            92
    • 5.3.4    Production pathways                93
    • 5.3.5    Prices  95
    • 5.3.6    Bio-aviation fuel production capacities       96
    • 5.3.7    Challenges      96
    • 5.3.8    Global consumption 97
  • 5.4        Bio-naphtha   99
    • 5.4.1    Overview           99
    • 5.4.2    SWOT analysis              100
    • 5.4.3    Markets and applications      101
    • 5.4.4    Prices  102
    • 5.4.5    Production capacities, by producer, current and planned               103
    • 5.4.6    Production capacities, total (tonnes), historical, current and planned   104

 

6             ALCOHOL FUELS        105

  • 6.1        Biomethanol  105
    • 6.1.1    SWOT analysis              105
    • 6.1.2    Methanol-to gasoline technology     106
      • 6.1.2.1 Production processes              107
        • 6.1.2.1.1           Anaerobic digestion  108
        • 6.1.2.1.2           Biomass gasification 108
        • 6.1.2.1.3           Power to Methane       109
  • 6.2        Ethanol              110
    • 6.2.1    Technology description           110
    • 6.2.2    1G Bio-Ethanol             111
    • 6.2.3    SWOT analysis              111
    • 6.2.4    Ethanol to jet fuel technology             112
    • 6.2.5    Methanol from pulp & paper production      113
    • 6.2.6    Sulfite spent liquor fermentation      113
    • 6.2.7    Gasification    114
      • 6.2.7.1 Biomass gasification and syngas fermentation       114
      • 6.2.7.2 Biomass gasification and syngas thermochemical conversion    114
    • 6.2.8    CO2 capture and alcohol synthesis               115
    • 6.2.9    Biomass hydrolysis and fermentation           115
      • 6.2.9.1 Separate hydrolysis and fermentation           115
      • 6.2.9.2 Simultaneous saccharification and fermentation (SSF)    116
      • 6.2.9.3 Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)      116
      • 6.2.9.4 Simultaneous saccharification and co-fermentation (SSCF)         117
      • 6.2.9.5 Direct conversion (consolidated bioprocessing) (CBP)      117
    • 6.2.10 Global ethanol consumption              118
  • 6.3        Biobutanol      119
    • 6.3.1    Production       121
    • 6.3.2    Prices  121

 

7             BIOMASS-BASED GAS              122

  • 7.1        Feedstocks      124
    • 7.1.1    Biomethane    124
    • 7.1.2    Production pathways                126
      • 7.1.2.1 Landfill gas recovery 126
      • 7.1.2.2 Anaerobic digestion  127
      • 7.1.2.3 Thermal gasification 128
    • 7.1.3    SWOT analysis              128
    • 7.1.4    Global production      129
    • 7.1.5    Prices  130
      • 7.1.5.1 Raw Biogas     130
      • 7.1.5.2 Upgraded Biomethane            130
    • 7.1.6    Bio-LNG             130
      • 7.1.6.1 Markets              130
        • 7.1.6.1.1           Trucks 130
        • 7.1.6.1.2           Marine 130
      • 7.1.6.2 Production       131
      • 7.1.6.3 Plants 131
    • 7.1.7    bio-CNG (compressed natural gas derived from biogas)  132
    • 7.1.8    Carbon capture from biogas               132
  • 7.2        Biosyngas        133
    • 7.2.1    Production       133
    • 7.2.2    Prices  134
  • 7.3        Biohydrogen   135
    • 7.3.1    Description     135
    • 7.3.2    SWOT analysis              136
    • 7.3.3    Production of biohydrogen from biomass  137
      • 7.3.3.1 Biological Conversion Routes             137
        • 7.3.3.1.1           Bio-photochemical Reaction              137
        • 7.3.3.1.2           Fermentation and Anaerobic Digestion        138
      • 7.3.3.2 Thermochemical conversion routes               138
        • 7.3.3.2.1           Biomass Gasification               138
        • 7.3.3.2.2           Biomass Pyrolysis      139
        • 7.3.3.2.3           Biomethane Reforming           139
    • 7.3.4    Applications   139
    • 7.3.5    Prices  140
  • 7.4        Biochar in biogas production              141
  • 7.5        Bio-DME            141

 

8             CHEMICAL RECYCLING FOR BIOFUELS      141

  • 8.1        Plastic pyrolysis           142
  • 8.2        Used tires pyrolysis   142
    • 8.2.1    Conversion to biofuel               144
  • 8.3        Co-pyrolysis of biomass and plastic wastes             145
  • 8.4        Gasification    146
    • 8.4.1    Syngas conversion to methanol        147
    • 8.4.2    Biomass gasification and syngas fermentation       151
    • 8.4.3    Biomass gasification and syngas thermochemical conversion    151
  • 8.5        Hydrothermal cracking           152
  • 8.6        SWOT analysis              153

 

9             ELECTROFUELS (E-FUELS)   154

  • 9.1        Introduction    154
    • 9.1.1    Benefits of e-fuels       156
  • 9.2        Feedstocks      157
    • 9.2.1    Hydrogen electrolysis               157
    • 9.2.2    CO2 capture   158
  • 9.3        SWOT analysis              158
  • 9.4        Production       159
    • 9.4.1    eFuel production facilities, current and planned   161
  • 9.5        Electrolysers   162
    • 9.5.1    Commercial alkaline electrolyser cells (AECs)        164
    • 9.5.2    PEM electrolysers (PEMEC)  164
    • 9.5.3    High-temperature solid oxide electrolyser cells (SOECs) 164
  • 9.6        Prices  164
  • 9.7        Market challenges      167
  • 9.8        Companies     168

 

10          ALGAE-DERIVED BIOFUELS 169

  • 10.1     Technology description           169
  • 10.2     Conversion pathways               169
  • 10.3     SWOT analysis              170
  • 10.4     Production       171
  • 10.5     Market challenges      172
  • 10.6     Prices  173
  • 10.7     Producers         173

 

11          GREEN AMMONIA       174

  • 11.1     Production       174
    • 11.1.1 Decarbonisation of ammonia production  176
    • 11.1.2 Green ammonia projects       177
  • 11.2     Green ammonia synthesis methods              177
    • 11.2.1 Haber-Bosch process              177
    • 11.2.2 Biological nitrogen fixation   178
    • 11.2.3 Electrochemical production                179
    • 11.2.4 Chemical looping processes               179
  • 11.3     SWOT analysis              179
  • 11.4     Blue ammonia              180
    • 11.4.1 Blue ammonia projects           180
  • 11.5     Markets and applications      181
    • 11.5.1 Chemical energy storage       181
      • 11.5.1.1            Ammonia fuel cells    181
    • 11.5.2 Marine fuel      182
  • 11.6     Prices  184
  • 11.7     Estimated market demand   186
  • 11.8     Companies and projects        186

 

12          BIOFUELS FROM CARBON CAPTURE            188

  • 12.1     Overview           189
  • 12.2     CO2 capture from point sources      191
  • 12.3     Production routes       192
  • 12.4     SWOT analysis              193
  • 12.5     Direct air capture (DAC)         194
    • 12.5.1 Description     194
    • 12.5.2 Deployment    196
    • 12.5.3 Point source carbon capture versus Direct Air Capture     196
    • 12.5.4 Technologies  197
      • 12.5.4.1            Solid sorbents               198
      • 12.5.4.2            Liquid sorbents            200
      • 12.5.4.3            Liquid solvents             200
      • 12.5.4.4            Airflow equipment integration            201
      • 12.5.4.5            Passive Direct Air Capture (PDAC)   201
      • 12.5.4.6            Direct conversion        202
      • 12.5.4.7            Co-product generation            202
      • 12.5.4.8            Low Temperature DAC             202
      • 12.5.4.9            Regeneration methods            203
    • 12.5.5 Commercialization and plants           203
    • 12.5.6 Metal-organic frameworks (MOFs) in DAC  204
    • 12.5.7 DAC plants and projects-current and planned        204
    • 12.5.8 Markets for DAC           211
    • 12.5.9 Costs  212
    • 12.5.10              Challenges      217
    • 12.5.11              Players and production           218
  • 12.6     Carbon utilization for biofuels            218
    • 12.6.1 Production routes       222
      • 12.6.1.1            Electrolyzers   223
      • 12.6.1.2            Low-carbon hydrogen              223
    • 12.6.2 Products & applications         225
      • 12.6.2.1            Vehicles             225
      • 12.6.2.2            Shipping            225
      • 12.6.2.3            Aviation              226
      • 12.6.2.4            Costs  227
      • 12.6.2.5            Ethanol              227
      • 12.6.2.6            Methanol          228
      • 12.6.2.7            Sustainable Aviation Fuel      232
      • 12.6.2.8            Methane            232
      • 12.6.2.9            Algae based biofuels 233
      • 12.6.2.10         CO₂-fuels from solar 234
    • 12.6.3 Challenges      236
    • 12.6.4 SWOT analysis              237
    • 12.6.5 Companies     238

 

13          BIO-OILS (PYROLYSIS OIL)    241

  • 13.1     Description     241
    • 13.1.1 Advantages of bio-oils             241
  • 13.2     Production       243
    • 13.2.1 Fast Pyrolysis 243
    • 13.2.2 Costs of production  243
    • 13.2.3 Upgrading        243
  • 13.3     SWOT analysis              245
  • 13.4     Applications   246
  • 13.5     Bio-oil producers         246
  • 13.6     Prices  247

 

14          REFUSE-DERIVED FUELS (RDF)        248

  • 14.1     Overview           248
  • 14.2     Production       248
    • 14.2.1 Production process   249
    • 14.2.2 Mechanical biological treatment      249
  • 14.3     Markets              250

 

15          COMPANY PROFILES                251 (221 company profiles)

 

16          REFERENCES 418

 

List of Tables

  • Table 1. Market drivers for biofuels. 26
  • Table 2. Market challenges for biofuels.       27
  • Table 3. Liquid biofuels market 2020-2035, by type and production.        30
  • Table 4. Industry developments in biofuels 2022-2024.   32
  • Table 5. Comparison of biofuels.      35
  • Table 6. Comparison of biofuel costs (USD/liter) 2024, by type.   40
  • Table 7. Categories and examples of solid biofuel.               41
  • Table 8. Comparison of biofuels and e-fuels to fossil and electricity.       44
  • Table 9. Classification of biomass feedstock.          46
  • Table 10. Biorefinery feedstocks.     46
  • Table 11. Feedstock conversion pathways.                47
  • Table 12. First-Generation Feedstocks.        47
  • Table 13.  Lignocellulosic ethanol plants and capacities. 50
  • Table 14. Comparison of pulping and biorefinery lignins. 51
  • Table 15. Commercial and pre-commercial biorefinery lignin production facilities and  processes    52
  • Table 16. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol.      54
  • Table 17. Properties of microalgae and macroalgae.          56
  • Table 18. Yield of algae and other biodiesel crops.               57
  • Table 19. Advantages and disadvantages of biofuels, by generation.       58
  • Table 20. Biodiesel by generation.    69
  • Table 21. Biodiesel production techniques.              72
  • Table 22. Summary of pyrolysis technique under different operating conditions.            73
  • Table 23. Biomass materials and their bio-oil yield.             74
  • Table 24. Biofuel production cost from the biomass pyrolysis process. 75
  • Table 25. Properties of vegetable oils in comparison to diesel.     76
  • Table 26. Main producers of HVO and capacities. 78
  • Table 27. Example commercial Development of BtL processes. 79
  • Table 28. Pilot or demo projects for biomass to liquid (BtL) processes.  79
  • Table 29. Global biodiesel consumption, 2010-2035 (M litres/year).        84
  • Table 30. Global renewable diesel consumption, 2010-2035 (M litres/year).      89
  • Table 31. Renewable diesel price ranges.   90
  • Table 32. Advantages and disadvantages of Bio-aviation fuel.      91
  • Table 33. Production pathways for Bio-aviation fuel.           93
  • Table 34. Current and announced Bio-aviation fuel facilities and capacities.    96
  • Table 35. Global bio-jet fuel consumption 2019-2035 (Million litres/year).          97
  • Table 36. Bio-based naphtha markets and applications. 101
  • Table 37. Bio-naphtha market value chain.               101
  • Table 38. Bio-naphtha pricing against petroleum-derived naphtha and related fuel products.               103
  • Table 39. Bio-based Naphtha production capacities, by producer.           103
  • Table 40. Comparison of biogas, biomethane and natural gas.   108
  • Table 41.  Processes in bioethanol production.     116
  • Table 42. Microorganisms used in CBP for ethanol production from biomass lignocellulosic.               117
  • Table 43. Ethanol consumption 2010-2035 (million litres).             118
  • Table 44. Biogas feedstocks.               124
  • Table 45. Existing and planned bio-LNG production plants.           131
  • Table 46. Methods for capturing carbon dioxide from biogas.       132
  • Table 47. Comparison of different Bio-H2 production pathways.                137
  • Table 48. Markets and applications for biohydrogen.          139
  • Table 49. Summary of gasification technologies.  146
  • Table 50. Overview of hydrothermal cracking for advanced chemical recycling.              152
  • Table 51. Applications of e-fuels, by type.   155
  • Table 52. Overview of e-fuels.             156
  • Table 53. Benefits of e-fuels.               156
  • Table 54. eFuel production facilities, current and planned.            161
  • Table 55. Main characteristics of different electrolyzer technologies.     163
  • Table 56. Market challenges for e-fuels.       167
  • Table 57. E-fuels companies.              168
  • Table 58. Algae-derived biofuel producers.                173
  • Table 59. Green ammonia projects (current and planned).             177
  • Table 60. Blue ammonia projects.   180
  • Table 61. Ammonia fuel cell technologies. 181
  • Table 62. Market overview of green ammonia in marine fuel.         182
  • Table 63. Summary of marine alternative fuels.      183
  • Table 64. Estimated costs for different types of ammonia.             185
  • Table 65. Main players in green ammonia. 186
  • Table 66. Market overview for CO2 derived fuels.  189
  • Table 67. Point source examples.     191
  • Table 68. Advantages and disadvantages of DAC. 195
  • Table 69. Companies developing airflow equipment integration with DAC.         201
  • Table 70. Companies developing Passive Direct Air Capture (PDAC) technologies.       201
  • Table 71. Companies developing regeneration methods for DAC technologies.               203
  • Table 72. DAC companies and technologies.           203
  • Table 73. DAC technology developers and production.     205
  • Table 74. DAC projects in development.      210
  • Table 75. Markets for DAC.    211
  • Table 76. Costs summary for DAC.  212
  • Table 77. Cost estimates of DAC.     215
  • Table 78. Challenges for DAC technology.  217
  • Table 79. DAC companies and technologies.           218
  • Table 80. Market overview for CO2 derived fuels.  220
  • Table 81. Main production routes and processes for manufacturing fuels from captured carbon dioxide.                223
  • Table 82. CO₂-derived fuels projects.            224
  • Table 83. Thermochemical methods to produce methanol from CO2.   229
  • Table 84. pilot plants for CO2-to-methanol conversion.   231
  • Table 85. Microalgae products and prices. 234
  • Table 86. Main Solar-Driven CO2 Conversion Approaches.            236
  • Table 87. Market challenges for CO2 derived fuels.              236
  • Table 88. Companies in CO2-derived fuel products.           238
  • Table 89. Typical composition and physicochemical properties reported for bio-oils and heavy petroleum-derived oils.          242
  • Table 90. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil. 242
  • Table 91. Main techniques used to upgrade bio-oil into higher-quality fuels.      244
  • Table 92. Markets and applications for bio-oil.       246
  • Table 93. Bio-oil producers. 246
  • Table 94. Key resource recovery technologies         249
  • Table 95. Markets and end uses for refuse-derived fuels (RDF).  250
  • Table 96. Granbio Nanocellulose Processes.           323

 

List of Figures

  • Figure 1. Liquid biofuel production and consumption (in thousands of m3), 2000-2022.          29
  • Figure 2. Distribution of global liquid biofuel production in 2022.              30
  • Figure 3. Diesel and gasoline alternatives and blends.      38
  • Figure 4. SWOT analysis for biofuels.             40
  • Figure 5.  Schematic of a biorefinery for production of carriers and chemicals.                52
  • Figure 6. Hydrolytic lignin powder.   55
  • Figure 7. SWOT analysis for energy crops in biofuels.         61
  • Figure 8. SWOT analysis for agricultural residues in biofuels.       63
  • Figure 9. SWOT analysis for Manure, sewage sludge and organic waste in biofuels.      65
  • Figure 10. SWOT analysis for forestry and wood waste in biofuels.           67
  • Figure 11. Range of biomass cost by feedstock type.          67
  • Figure 12. Regional production of biodiesel (billion litres).              69
  • Figure 13. SWOT analysis for biodiesel.       71
  • Figure 14. Flow chart for biodiesel production.       76
  • Figure 15. Biodiesel (B20) average prices, current and historical, USD/litre.       82
  • Figure 16. Global biodiesel consumption, 2010-2035 (M litres/year).      84
  • Figure 17. SWOT analysis for renewable iesel.         88
  • Figure 18. Global renewable diesel consumption, 2010-2035 (M litres/year).    89
  • Figure 19. SWOT analysis for Bio-aviation fuel.       92
  • Figure 20. Global bio-jet fuel consumption to 2019-2035 (Million litres/year).   97
  • Figure 21. SWOT analysis for bio-naphtha. 100
  • Figure 22. Bio-based naphtha production capacities, 2018-2035 (tonnes).        105
  • Figure 23. SWOT analysis biomethanol.      106
  • Figure 24. Renewable Methanol Production Processes from Different Feedstocks.       107
  • Figure 25. Production of biomethane through anaerobic digestion and upgrading.        108
  • Figure 26. Production of biomethane through biomass gasification and methanation.               109
  • Figure 27. Production of biomethane through the Power to methane process.  110
  • Figure 28. SWOT analysis for ethanol.           112
  • Figure 29. Ethanol consumption 2010-2035 (million litres).           118
  • Figure 30. Properties of petrol and biobutanol.       120
  • Figure 31. Biobutanol production route.      120
  • Figure 32. Biogas and biomethane pathways.          123
  • Figure 33. Overview of biogas utilization.    125
  • Figure 34. Biogas and biomethane pathways.          126
  • Figure 35. Schematic overview of anaerobic digestion process for biomethane production.   128
  • Figure 36. Schematic overview of biomass gasification for biomethane production.    128
  • Figure 37. SWOT analysis for biogas.             129
  • Figure 38. Total syngas market by product in MM Nm³/h of Syngas, 2023.           134
  • Figure 39. SWOT analysis for biohydrogen. 136
  • Figure 40. Waste plastic production pathways to (A) diesel and (B) gasoline      142
  • Figure 41. Schematic for Pyrolysis of Scrap Tires. 144
  • Figure 42. Used tires conversion process.  145
  • Figure 43. Total syngas market by product in MM Nm³/h of Syngas, 2023.           147
  • Figure 44. Overview of biogas utilization.    149
  • Figure 45. Biogas and biomethane pathways.          150
  • Figure 46. SWOT analysis for chemical recycling of biofuels.        153
  • Figure 47. Process steps in the production of electrofuels.             154
  • Figure 48. Mapping storage technologies according to performance characteristics.  155
  • Figure 49. Production process for green hydrogen.              158
  • Figure 50. SWOT analysis for E-fuels.            159
  • Figure 51. E-liquids production routes.        160
  • Figure 52. Fischer-Tropsch liquid e-fuel products. 160
  • Figure 53. Resources required for liquid e-fuel production.            161
  • Figure 54. Levelized cost and fuel-switching CO2 prices of e-fuels.          165
  • Figure 55. Cost breakdown for e-fuels.         167
  • Figure 56.  Pathways for algal biomass conversion to biofuels.    169
  • Figure 57. SWOT analysis for algae-derived biofuels.         170
  • Figure 58. Algal biomass conversion process for biofuel production.      172
  • Figure 59. Classification and process technology according to carbon emission in ammonia production.     174
  • Figure 60. Green ammonia production and use.    176
  • Figure 61. Schematic of the Haber Bosch ammonia synthesis reaction.               178
  • Figure 62. Schematic of hydrogen production via steam methane reformation.               178
  • Figure 63. SWOT analysis for green ammonia.        180
  • Figure 64. Estimated production cost of green ammonia.               185
  • Figure 65. Projected annual ammonia production, million tons to 2050.              186
  • Figure 66. CO2 capture and separation technology.            188
  • Figure 67. Conversion route for CO2-derived fuels and chemical intermediates.            190
  • Figure 68.  Conversion pathways for CO2-derived methane, methanol and diesel.        191
  • Figure 69. SWOT analysis for biofuels from carbon capture.          193
  • Figure 70. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.        194
  • Figure 71. Global CO2 capture from biomass and DAC in the Net Zero Scenario.            195
  • Figure 72.  DAC technologies.             197
  • Figure 73. Schematic of Climeworks DAC system.               198
  • Figure 74. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.                199
  • Figure 75.  Flow diagram for solid sorbent DAC.     200
  • Figure 76. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.           200
  • Figure 77. Global capacity of direct air capture facilities. 205
  • Figure 78. Global map of DAC and CCS plants.      211
  • Figure 79. Schematic of costs of DAC technologies.           213
  • Figure 80. DAC cost breakdown and comparison. 214
  • Figure 81. Operating costs of generic liquid and solid-based DAC systems.       216
  • Figure 82. Conversion route for CO2-derived fuels and chemical intermediates.            221
  • Figure 83.  Conversion pathways for CO2-derived methane, methanol and diesel.        222
  • Figure 84. CO2 feedstock for the production of e-methanol.         230
  • Figure 85. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2.             235
  • Figure 86. SWOT analysis: CO2 utilization in fuels.               237
  • Figure 87. Audi synthetic fuels.          238
  • Figure 88. Bio-oil upgrading/fractionation techniques.      244
  • Figure 89. SWOT analysis for bio-oils.           245
  • Figure 90. ANDRITZ Lignin Recovery process.          258
  • Figure 91. ChemCyclingTM prototypes.       264
  • Figure 92. ChemCycling circle by BASF.       265
  • Figure 93. FBPO process        277
  • Figure 94. Direct Air Capture Process.          281
  • Figure 95. CRI process.           283
  • Figure 96. Cassandra Oil  process.  287
  • Figure 97. Colyser process.  295
  • Figure 98. ECFORM electrolysis reactor schematic.            300
  • Figure 99. Dioxycle modular electrolyzer.    301
  • Figure 100. Domsjö process.               302
  • Figure 101. FuelPositive system.       316
  • Figure 102. INERATEC unit.   334
  • Figure 103. Infinitree swing method.              336
  • Figure 104. Audi/Krajete unit.              342
  • Figure 105. Enfinity cellulosic ethanol technology process.           371
  • Figure 106: Plantrose process.           379
  • Figure 107. Sunfire process for Blue Crude production.    398
  • Figure 108. Takavator.               401
  • Figure 109. O12 Reactor.        404
  • Figure 110. Sunglasses with lenses made from CO2-derived materials.               405
  • Figure 111. CO2 made car part.        405
  • Figure 112. The Velocys process.     408
  • Figure 113. Goldilocks process and applications. 411
  • Figure 114. The Proesa® Process.     412

 

 

 

 

The Global Market for Biofuels 2025-2035
The Global Market for Biofuels 2025-2035
PDF download/by email.

The Global Market for Biofuels 2025-2035
The Global Market for Biofuels 2025-2035
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.