- Published: December 2023.
- Pages: 744
- Tables: 185
- Figures: 259
The global plastic industry is worth over $600 billion per annum, but only a small percentage of plastics are from renewable resources. There is a growing movement to greatly reduce plastics that are not biodegradable or compostable, and companies are under increasing pressure from regulators, shareholders and customers to transition plastics products and consumption to eco-friendly alternatives – namely, biodegradable and/or recyclable solutions. Global bioplastics production grew by ~20% in 2023, with Bio-PLA, Bio-PA, Bio-PE and Bio-PTT accounting for most of the market. The market is running at almost full capacity production.
The Global Bioplastics Market 2023-2034 is a 740+ page comprehensive analysis that provides granular data and in-depth analysis of bioplastics types, feedstocks, production capacities, end use applications, market trends, drivers/challenges, regional markets, and profiles of over 700 companies.
The report covers both bio-based/renewable and biodegradable plastics, including key materials such as PLA, PBAT, starch blends, PHA, PBS, Bio-PE, Bio-PET, Bio-PA, cellulose nanomaterials, protein-based bioplastics and more. Detailed quantitative data and forecasts are provided for global and regional production capacities by material and end use market to 2034.
This essential industry report also analyzes the markets, applications and production volumes for natural fibers (wood, cellulosic, animal/protein based), lignin and bio-based chemicals & intermediates which also impact the bioplastics value chain.
Report contents include:
- Global production capacities, market demand forecasts of bio-based and biodegradable plastics to 2034
- Detailed analysis of bioplastic types - PLA, PBAT, starch blends, PHA, PBS, Bio-PE, Bio-PET, Bio-PA, cellulose nanomaterials, etc.
- Feedstocks, manufacturing processes, properties, applications, market trends
- Profiles and production capacities of over 700 companies across the bioplastics value chain. Companies profiled include Avantium, BASF, Biome Bioplastics, Braskem, Buyo, Danimer Scientific, FabricNano, FlexSea, Floreon, Gevo, MetaCycler BioInnovations, Mi Terro, PlantSwitch, Teijin Limited, Verde Bioresins, Versalis, and Xampla.
- Market analysis and production forecasts to 2034 for natural fibers (plant-based, animal-based)
- Global market analysis, applications and production forecasts for lignin
- Production forecasts to 2034 for key bio-based chemicals & intermediates
- End use applications and market segment analysis: Packaging (flexible, rigid), Consumer Goods, Automotive, Building & Construction, Textiles, Agriculture
- Regional markets: North America, Europe, Asia-Pacific, Latin America
- Latest R&D, new technologies, investments and industry developments
- Key growth drivers, opportunities and challenges impacting the markets
1 RESEARCH METHODOLOGY 42
2 BIO-BASED FEEDSTOCKS AND INTERMEDIATES MARKET 44
- 2.1 BIOREFINERIES 44
- 2.2 BIO-BASED FEEDSTOCK AND LAND USE 45
- 2.3 PLANT-BASED 47
- 2.3.1 STARCH 47
- 2.3.1.1 Overview 47
- 2.3.1.2 Sources 48
- 2.3.1.3 Global production 48
- 2.3.1.4 Lysine 49
- 2.3.1.4.1 Source 49
- 2.3.1.4.2 Applications 49
- 2.3.1.4.3 Global production 50
- 2.3.1.5 Glucose 51
- 2.3.1.5.1 HMDA 52
- 2.3.1.5.1.1 Overview 52
- 2.3.1.5.1.2 Sources 52
- 2.3.1.5.1.3 Applications 52
- 2.3.1.5.1.4 Global production 53
- 2.3.1.5.2 1,5-diaminopentane (DA5) 53
- 2.3.1.5.2.1 Overview 53
- 2.3.1.5.2.2 Sources 54
- 2.3.1.5.2.3 Applications 54
- 2.3.1.5.2.4 Global production 54
- 2.3.1.5.3 Sorbitol 55
- 2.3.1.5.3.1 Isosorbide 55
- 2.3.1.5.3.1.1 Overview 55
- 2.3.1.5.3.1.2 Sources 55
- 2.3.1.5.3.1.3 Applications 56
- 2.3.1.5.3.1.4 Global production 57
- 2.3.1.5.3.1 Isosorbide 55
- 2.3.1.5.4 Lactic acid 57
- 2.3.1.5.4.1 Overview 57
- 2.3.1.5.4.2 D-lactic acid 57
- 2.3.1.5.4.3 L-lactic acid 58
- 2.3.1.5.4.4 Lactide 58
- 2.3.1.5.5 Itaconic acid 60
- 2.3.1.5.5.1 Overview 60
- 2.3.1.5.5.2 Sources 60
- 2.3.1.5.5.3 Applications 60
- 2.3.1.5.5.4 Global production 61
- 2.3.1.5.6 3-HP 61
- 2.3.1.5.6.1 Overview 61
- 2.3.1.5.6.2 Sources 61
- 2.3.1.5.6.3 Applications 62
- 2.3.1.5.6.4 Global production 62
- 2.3.1.5.6.5 Acrylic acid 63
- 2.3.1.5.6.5.1 Overview 63
- 2.3.1.5.6.5.2 Applications 64
- 2.3.1.5.6.5.3 Global production 64
- 2.3.1.5.6.6 1,3-Propanediol (1,3-PDO) 65
- 2.3.1.5.6.6.1 Overview 65
- 2.3.1.5.6.6.2 Applications 65
- 2.3.1.5.6.6.3 Global production 65
- 2.3.1.5.7 Succinic Acid 66
- 2.3.1.5.7.1 Overview 66
- 2.3.1.5.7.2 Sources 66
- 2.3.1.5.7.3 Applications 67
- 2.3.1.5.7.4 Global production 67
- 2.3.1.5.7.5 1,4-Butanediol (1,4-BDO) 68
- 2.3.1.5.7.5.1 Overview 68
- 2.3.1.5.7.5.2 Applications 68
- 2.3.1.5.7.5.3 Gobal production 69
- 2.3.1.5.7.6 Tetrahydrofuran (THF) 69
- 2.3.1.5.7.6.1 Overview 69
- 2.3.1.5.7.6.2 Applications 70
- 2.3.1.5.7.6.3 Global production 70
- 2.3.1.5.8 Adipic acid 71
- 2.3.1.5.8.1 Overview 71
- 2.3.1.5.8.2 Applications 71
- 2.3.1.5.8.3 Caprolactame 72
- 2.3.1.5.8.3.1 Overview 72
- 2.3.1.5.8.3.2 Applications 72
- 2.3.1.5.8.3.3 Global production 73
- 2.3.1.5.9 Isobutanol 74
- 2.3.1.5.9.1 Overview 74
- 2.3.1.5.9.2 Sources 74
- 2.3.1.5.9.3 Applications 74
- 2.3.1.5.9.4 Global production 75
- 2.3.1.5.9.5 p-Xylene 75
- 2.3.1.5.9.5.1 Overview 75
- 2.3.1.5.9.5.2 Sources 76
- 2.3.1.5.9.5.3 Applications 76
- 2.3.1.5.9.5.4 Global production 76
- 2.3.1.5.9.5.5 Terephthalic acid 77
- 2.3.1.5.9.5.6 Overview 77
- 2.3.1.5.10 1,3 Proppanediol 78
- 2.3.1.5.10.1 Overview 78
- 2.3.1.5.10.2 Sources 78
- 2.3.1.5.10.3 Applications 79
- 2.3.1.5.10.4 Global production 79
- 2.3.1.5.11 Monoethylene glycol (MEG) 80
- 2.3.1.5.11.1 Overview 80
- 2.3.1.5.11.2 Sources 80
- 2.3.1.5.11.3 Applications 80
- 2.3.1.5.11.4 Global production 81
- 2.3.1.5.12 Ethanol 81
- 2.3.1.5.12.1 Overview 81
- 2.3.1.5.12.2 Sources 82
- 2.3.1.5.12.3 Applications 82
- 2.3.1.5.12.4 Global production 82
- 2.3.1.5.12.5 Ethylene 83
- 2.3.1.5.12.5.1 Overview 83
- 2.3.1.5.12.5.2 Applications 83
- 2.3.1.5.12.5.3 Global production 84
- 2.3.1.5.12.5.4 Propylene 84
- 2.3.1.5.12.5.5 Vinyl chloride 86
- 2.3.1.5.12.6 Methly methacrylate 87
- 2.3.1.5.1 HMDA 52
- 2.3.2 SUGAR CROPS 89
- 2.3.2.1 Saccharose 89
- 2.3.2.1.1 Aniline 89
- 2.3.2.1.1.1 Overview 89
- 2.3.2.1.1.2 Applications 89
- 2.3.2.1.1.3 Global production 90
- 2.3.2.1.2 Fructose 90
- 2.3.2.1.2.1 Overview 90
- 2.3.2.1.2.2 Applications 90
- 2.3.2.1.2.3 Global production 91
- 2.3.2.1.2.4 5-Hydroxymethylfurfural (5-HMF) 91
- 2.3.2.1.2.4.1 Overview 91
- 2.3.2.1.2.4.2 Applications 91
- 2.3.2.1.2.4.3 Global production 92
- 2.3.2.1.2.5 5-Chloromethylfurfural (5-CMF) 92
- 2.3.2.1.2.5.1 Overview 92
- 2.3.2.1.2.5.2 Applications 93
- 2.3.2.1.2.5.3 Global production 93
- 2.3.2.1.2.6 Levulinic Acid 94
- 2.3.2.1.2.6.1 Overview 94
- 2.3.2.1.2.6.2 Applications 94
- 2.3.2.1.2.6.3 Global production 95
- 2.3.2.1.2.7 FDME 95
- 2.3.2.1.2.7.1 Overview 95
- 2.3.2.1.2.7.2 Applications 95
- 2.3.2.1.2.7.3 Global production 96
- 2.3.2.1.2.8 2,5-FDCA 96
- 2.3.2.1.2.8.1 Overview 96
- 2.3.2.1.2.8.2 Applications 97
- 2.3.2.1.2.8.3 Global production 97
- 2.3.2.1.1 Aniline 89
- 2.3.2.1 Saccharose 89
- 2.3.3 LIGNOCELLULOSIC BIOMASS 98
- 2.3.3.1 Levoglucosenone 98
- 2.3.3.1.1 Overview 98
- 2.3.3.1.2 Applications 98
- 2.3.3.1.3 Global production 98
- 2.3.3.2 Hemicellulose 99
- 2.3.3.2.1 Overview 99
- 2.3.3.2.2 Biochemicals from hemicellulose 99
- 2.3.3.2.3 Global production 101
- 2.3.3.2.4 Furfural 101
- 2.3.3.2.4.1 Overview 101
- 2.3.3.2.4.2 Applications 101
- 2.3.3.2.4.3 Global production 102
- 2.3.3.2.4.4 Furfuyl alcohol 102
- 2.3.3.2.4.4.1 Overview 102
- 2.3.3.2.4.4.2 Applications 103
- 2.3.3.2.4.4.3 Global production 103
- 2.3.3.3 Lignin 104
- 2.3.3.3.1 Overview 104
- 2.3.3.3.2 Sources 104
- 2.3.3.3.3 Applications 105
- 2.3.3.3.3.1 Aromatic compounds 105
- 2.3.3.3.3.1.1 Benzene, toluene and xylene 106
- 2.3.3.3.3.1.2 Phenol and phenolic resins 106
- 2.3.3.3.3.1.3 Vanillin 107
- 2.3.3.3.3.2 Polymers 107
- 2.3.3.3.3.1 Aromatic compounds 105
- 2.3.3.3.4 Global production 109
- 2.3.3.1 Levoglucosenone 98
- 2.3.4 PLANT OILS 110
- 2.3.4.1 Overview 110
- 2.3.4.2 Glycerol 110
- 2.3.4.2.1 Overview 110
- 2.3.4.2.2 Applications 110
- 2.3.4.2.3 Global production 111
- 2.3.4.2.4 MPG 111
- 2.3.4.2.4.1 Overview 111
- 2.3.4.2.4.2 Applications 112
- 2.3.4.2.4.3 Global production 112
- 2.3.4.2.5 ECH 113
- 2.3.4.2.5.1 Overview 113
- 2.3.4.2.5.2 Applications 113
- 2.3.4.2.5.3 Global production 113
- 2.3.4.3 Fatty acids 114
- 2.3.4.3.1 Overview 114
- 2.3.4.3.2 Applications 114
- 2.3.4.3.3 Global production 115
- 2.3.4.4 Castor oil 115
- 2.3.4.4.1 Overview 115
- 2.3.4.4.2 Sebacic acid 116
- 2.3.4.4.2.1 Overview 116
- 2.3.4.4.2.2 Applications 116
- 2.3.4.4.2.3 Global production 116
- 2.3.4.4.3 11-Aminoundecanoic acid (11-AA) 117
- 2.3.4.4.3.1 Overview 117
- 2.3.4.4.3.2 Applications 117
- 2.3.4.4.3.3 Global production 118
- 2.3.4.5 Dodecanedioic acid (DDDA) 119
- 2.3.4.5.1 Overview 119
- 2.3.4.5.2 Applications 119
- 2.3.4.5.3 Global production 120
- 2.3.4.6 Pentamethylene diisocyanate 120
- 2.3.4.6.1 Overview 120
- 2.3.4.6.2 Applications 121
- 2.3.4.6.3 Global production 121
- 2.3.5 NON-EDIBIBLE MILK 122
- 2.3.5.1 Casein 122
- 2.3.5.1.1 Overview 122
- 2.3.5.1.2 Applications 122
- 2.3.5.1.3 Global production 123
- 2.3.5.1 Casein 122
- 2.3.1 STARCH 47
- 2.4 WASTE 123
- 2.4.1 Food waste 123
- 2.4.1.1 Overview 123
- 2.4.1.2 Products and applications 124
- 2.4.1.2.1 Global production 124
- 2.4.2 Agricultural waste 125
- 2.4.2.1 Overview 125
- 2.4.2.2 Products and applications 125
- 2.4.2.3 Global production 125
- 2.4.3 Forestry waste 126
- 2.4.3.1 Overview 126
- 2.4.3.2 Products and applications 126
- 2.4.3.3 Global production 126
- 2.4.4 Aquaculture/fishing waste 127
- 2.4.4.1 Overview 127
- 2.4.4.2 Products and applications 127
- 2.4.4.3 Global production 127
- 2.4.5 Municipal solid waste 128
- 2.4.5.1 Overview 128
- 2.4.5.2 Products and applications 128
- 2.4.5.3 Global production 129
- 2.4.6 Industrial waste 129
- 2.4.6.1 Overview 129
- 2.4.7 Waste oils 129
- 2.4.7.1 Overview 129
- 2.4.7.2 Products and applications 130
- 2.4.7.3 Global production 130
- 2.4.1 Food waste 123
- 2.5 MICROBIAL & MINERAL SOURCES 131
- 2.5.1 Microalgae 131
- 2.5.1.1 Overview 131
- 2.5.1.2 Products and applications 131
- 2.5.1.3 Global production 131
- 2.5.2 Macroalgae 132
- 2.5.2.1 Overview 132
- 2.5.2.2 Products and applications 132
- 2.5.2.3 Global production 133
- 2.5.3 Mineral sources 133
- 2.5.3.1 Overview 133
- 2.5.3.2 Products and applications 134
- 2.5.1 Microalgae 131
- 2.6 GASEOUS 134
- 2.6.1 Biogas 135
- 2.6.1.1 Overview 135
- 2.6.1.2 Products and applications 135
- 2.6.1.3 Global production 136
- 2.6.2 Syngas 137
- 2.6.2.1 Overview 137
- 2.6.2.2 Products and applications 138
- 2.6.2.3 Global production 138
- 2.6.3 Off gases - fermentation CO2, CO 139
- 2.6.3.1 Overview 139
- 2.6.3.2 Products and applications 139
- 2.6.1 Biogas 135
- 2.7 COMPANY PROFILES 140 (115 company profiles)
3 BIO-BASED PLASTICS MARKET 212
- 3.1 BIO-BASED OR RENEWABLE PLASTICS 212
- 3.1.1 Drop-in bio-based plastics 212
- 3.1.2 Novel bio-based plastics 213
- 3.2 BIODEGRADABLE AND COMPOSTABLE PLASTICS 213
- 3.2.1 Biodegradability 214
- 3.2.2 Compostability 215
- 3.3 TYPES 215
- 3.4 KEY MARKET PLAYERS 217
- 3.5 SYNTHETIC BIO-BASED POLYMERS 218
- 3.5.1 Polylactic acid (Bio-PLA) 218
- 3.5.1.1 Market analysis 218
- 3.5.1.2 Production 219
- 3.5.1.3 Producers and production capacities, current and planned 219
- 3.5.1.3.1 Lactic acid producers and production capacities 219
- 3.5.1.3.2 PLA producers and production capacities 220
- 3.5.1.3.3 Polylactic acid (Bio-PLA) production 2019-2034 (1,000 tonnes) 222
- 3.5.2 Polyethylene terephthalate (Bio-PET) 222
- 3.5.2.1 Market analysis 222
- 3.5.2.2 Producers and production capacities 223
- 3.5.2.3 Polyethylene terephthalate (Bio-PET) production 2019-2034 (1,000 tonnes) 224
- 3.5.3 Polytrimethylene terephthalate (Bio-PTT) 224
- 3.5.3.1 Market analysis 224
- 3.5.3.2 Producers and production capacities 225
- 3.5.3.3 Polytrimethylene terephthalate (PTT) production 2019-2034 (1,000 tonnes) 225
- 3.5.4 Polyethylene furanoate (Bio-PEF) 226
- 3.5.4.1 Market analysis 226
- 3.5.4.2 Comparative properties to PET 227
- 3.5.4.3 Producers and production capacities 227
- 3.5.4.3.1 FDCA and PEF producers and production capacities 227
- 3.5.4.3.2 Polyethylene furanoate (Bio-PEF) production 2019-2034 (1,000 tonnes). 228
- 3.5.5 Polyamides (Bio-PA) 229
- 3.5.5.1 Market analysis 229
- 3.5.5.2 Producers and production capacities 230
- 3.5.5.3 Polyamides (Bio-PA) production 2019-2034 (1,000 tonnes) 230
- 3.5.6 Poly(butylene adipate-co-terephthalate) (Bio-PBAT) 231
- 3.5.6.1 Market analysis 231
- 3.5.6.2 Producers and production capacities 231
- 3.5.6.3 Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2034 (1,000 tonnes) 232
- 3.5.7 Polybutylene succinate (PBS) and copolymers 233
- 3.5.7.1 Market analysis 233
- 3.5.7.2 Producers and production capacities 234
- 3.5.7.3 Polybutylene succinate (PBS) production 2019-2034 (1,000 tonnes) 234
- 3.5.8 Polyethylene (Bio-PE) 235
- 3.5.8.1 Market analysis 235
- 3.5.8.2 Producers and production capacities 235
- 3.5.8.3 Polyethylene (Bio-PE) production 2019-2034 (1,000 tonnes). 236
- 3.5.9 Polypropylene (Bio-PP) 236
- 3.5.9.1 Market analysis 236
- 3.5.9.2 Producers and production capacities 237
- 3.5.9.3 Polypropylene (Bio-PP) production 2019-2034 (1,000 tonnes) 237
- 3.5.1 Polylactic acid (Bio-PLA) 218
- 3.6 NATURAL BIO-BASED POLYMERS 238
- 3.6.1 Polyhydroxyalkanoates (PHA) 238
- 3.6.1.1 Technology description 238
- 3.6.1.2 Types 239
- 3.6.1.2.1 PHB 241
- 3.6.1.2.2 PHBV 242
- 3.6.1.3 Synthesis and production processes 243
- 3.6.1.4 Market analysis 245
- 3.6.1.5 Commercially available PHAs 246
- 3.6.1.6 Markets for PHAs 247
- 3.6.1.6.1 Packaging 248
- 3.6.1.6.2 Cosmetics 249
- 3.6.1.6.2.1 PHA microspheres 249
- 3.6.1.6.3 Medical 250
- 3.6.1.6.3.1 Tissue engineering 250
- 3.6.1.6.3.2 Drug delivery 250
- 3.6.1.6.4 Agriculture 250
- 3.6.1.6.4.1 Mulch film 250
- 3.6.1.6.4.2 Grow bags 250
- 3.6.1.7 Producers and production capacities 251
- 3.6.1.8 PHA production capacities 2019-2034 (1,000 tonnes) 252
- 3.6.2 Cellulose 253
- 3.6.2.1 Microfibrillated cellulose (MFC) 253
- 3.6.2.1.1 Market analysis 253
- 3.6.2.1.2 Producers and production capacities 254
- 3.6.2.2 Nanocellulose 254
- 3.6.2.2.1 Cellulose nanocrystals 254
- 3.6.2.2.1.1 Synthesis 255
- 3.6.2.2.1.2 Properties 256
- 3.6.2.2.1.3 Production 257
- 3.6.2.2.1.4 Applications 257
- 3.6.2.2.1.5 Market analysis 259
- 3.6.2.2.1.6 Producers and production capacities 260
- 3.6.2.2.2 Cellulose nanofibers 260
- 3.6.2.2.2.1 Applications 261
- 3.6.2.2.2.2 Market analysis 262
- 3.6.2.2.2.3 Producers and production capacities 263
- 3.6.2.2.3 Bacterial Nanocellulose (BNC) 264
- 3.6.2.2.3.1 Production 264
- 3.6.2.2.3.2 Applications 266
- 3.6.2.2.1 Cellulose nanocrystals 254
- 3.6.2.1 Microfibrillated cellulose (MFC) 253
- 3.6.3 Protein-based bioplastics 267
- 3.6.3.1 Types, applications and producers 268
- 3.6.4 Algal and fungal 269
- 3.6.4.1 Algal 269
- 3.6.4.1.1 Advantages 269
- 3.6.4.1.2 Production 270
- 3.6.4.1.3 Producers 271
- 3.6.4.2 Mycelium 271
- 3.6.4.2.1 Properties 271
- 3.6.4.2.2 Applications 272
- 3.6.4.2.3 Commercialization 273
- 3.6.4.1 Algal 269
- 3.6.5 Chitosan 274
- 3.6.5.1 Technology description 274
- 3.6.1 Polyhydroxyalkanoates (PHA) 238
- 3.7 PRODUCTION OF BIOBASED AND BIODEGRADABLE PLASTICS, BY REGION 275
- 3.7.1 North America 276
- 3.7.2 Europe 276
- 3.7.3 Asia-Pacific 277
- 3.7.3.1 China 277
- 3.7.3.2 Japan 277
- 3.7.3.3 Thailand 277
- 3.7.3.4 Indonesia 277
- 3.7.4 Latin America 278
- 3.8 MARKET SEGMENTATION OF BIOPLASTICS 279
- 3.8.1 Packaging 280
- 3.8.1.1 Processes for bioplastics in packaging 280
- 3.8.1.2 Applications 281
- 3.8.1.3 Flexible packaging 281
- 3.8.1.3.1 Production volumes 2019-2034 283
- 3.8.1.4 Rigid packaging 284
- 3.8.1.4.1 Production volumes 2019-2034 285
- 3.8.2 Consumer products 286
- 3.8.2.1 Applications 286
- 3.8.2.2 Production volumes 2019-2034 286
- 3.8.3 Automotive 287
- 3.8.3.1 Applications 287
- 3.8.3.2 Production volumes 2019-2034 288
- 3.8.4 Building & construction 288
- 3.8.4.1 Applications 288
- 3.8.4.2 Production volumes 2019-2034 289
- 3.8.5 Textiles 289
- 3.8.5.1 Apparel 290
- 3.8.5.2 Footwear 290
- 3.8.5.3 Medical textiles 291
- 3.8.5.4 Production volumes 2019-2034 292
- 3.8.6 Electronics 292
- 3.8.6.1 Applications 292
- 3.8.6.2 Production volumes 2019-2034 293
- 3.8.7 Agriculture and horticulture 293
- 3.8.7.1 Production volumes 2019-2034 294
- 3.8.1 Packaging 280
- 3.9 NATURAL FIBERS 295
- 3.9.1 Manufacturing method, matrix materials and applications of natural fibers 298
- 3.9.2 Advantages of natural fibers 298
- 3.9.3 Commercially available next-gen natural fiber products 299
- 3.9.4 Market drivers for next-gen natural fibers 302
- 3.9.5 Challenges 303
- 3.9.6 Plants (cellulose, lignocellulose) 304
- 3.9.6.1 Seed fibers 304
- 3.9.6.1.1 Cotton 304
- 3.9.6.1.1.1 Production volumes 2018-2034 305
- 3.9.6.1.2 Kapok 305
- 3.9.6.1.2.1 Production volumes 2018-2034 306
- 3.9.6.1.3 Luffa 307
- 3.9.6.1.1 Cotton 304
- 3.9.6.2 Bast fibers 307
- 3.9.6.2.1 Jute 308
- 3.9.6.2.2 Production volumes 2018-2034 309
- 3.9.6.2.2.1 Hemp 309
- 3.9.6.2.2.2 Production volumes 2018-2034 310
- 3.9.6.2.3 Flax 311
- 3.9.6.2.3.1 Production volumes 2018-2034 312
- 3.9.6.2.4 Ramie 312
- 3.9.6.2.4.1 Production volumes 2018-2034 313
- 3.9.6.2.5 Kenaf 314
- 3.9.6.2.5.1 Production volumes 2018-2034 315
- 3.9.6.3 Leaf fibers 315
- 3.9.6.3.1 Sisal 315
- 3.9.6.3.1.1 Production volumes 2018-2034 316
- 3.9.6.3.2 Abaca 316
- 3.9.6.3.2.1 Production volumes 2018-2034 317
- 3.9.6.3.1 Sisal 315
- 3.9.6.4 Fruit fibers 318
- 3.9.6.4.1 Coir 318
- 3.9.6.4.1.1 Production volumes 2018-2034 318
- 3.9.6.4.2 Banana 319
- 3.9.6.4.2.1 Production volumes 2018-2034 320
- 3.9.6.4.3 Pineapple 320
- 3.9.6.4.1 Coir 318
- 3.9.6.5 Stalk fibers from agricultural residues 322
- 3.9.6.5.1 Rice fiber 322
- 3.9.6.5.2 Corn 323
- 3.9.6.6 Cane, grasses and reed 323
- 3.9.6.6.1 Switch grass 323
- 3.9.6.6.2 Sugarcane (agricultural residues) 324
- 3.9.6.6.3 Bamboo 325
- 3.9.6.6.3.1 Production volumes 2018-2034 325
- 3.9.6.6.4 Fresh grass (green biorefinery) 326
- 3.9.6.1 Seed fibers 304
- 3.9.7 Animal (fibrous protein) 326
- 3.9.7.1 Wool 326
- 3.9.7.1.1 Alternative wool materials 327
- 3.9.7.1.2 Producers 327
- 3.9.7.2 Silk fiber 327
- 3.9.7.2.1 Alternative silk materials 328
- 3.9.7.2.1.1 Producers 328
- 3.9.7.3 Leather 328
- 3.9.7.3.1 Alternative leather materials 329
- 3.9.7.3.1.1 Producers 329
- 3.9.7.4 Fur 330
- 3.9.7.4.1 Producers 330
- 3.9.7.5 Down 331
- 3.9.7.5.1 Alternative down materials 331
- 3.9.7.5.1.1 Producers 331
- 3.9.7.5.1 Alternative down materials 331
- 3.9.7.1 Wool 326
- 3.9.8 Markets for natural fibers 331
- 3.9.8.1 Composites 331
- 3.9.8.2 Applications 332
- 3.9.8.3 Natural fiber injection moulding compounds 333
- 3.9.8.3.1 Properties 333
- 3.9.8.3.2 Applications 333
- 3.9.8.4 Non-woven natural fiber mat composites 334
- 3.9.8.4.1 Automotive 334
- 3.9.8.4.2 Applications 334
- 3.9.8.5 Aligned natural fiber-reinforced composites 334
- 3.9.8.6 Natural fiber biobased polymer compounds 335
- 3.9.8.7 Natural fiber biobased polymer non-woven mats 336
- 3.9.8.7.1 Flax 336
- 3.9.8.7.2 Kenaf 336
- 3.9.8.8 Natural fiber thermoset bioresin composites 336
- 3.9.8.9 Aerospace 337
- 3.9.8.9.1 Market overview 337
- 3.9.8.10 Automotive 337
- 3.9.8.10.1 Market overview 337
- 3.9.8.10.2 Applications of natural fibers 341
- 3.9.8.11 Building/construction 341
- 3.9.8.11.1 Market overview 342
- 3.9.8.11.2 Applications of natural fibers 342
- 3.9.8.12 Sports and leisure 343
- 3.9.8.12.1 Market overview 343
- 3.9.8.13 Textiles 344
- 3.9.8.13.1 Market overview 344
- 3.9.8.13.2 Consumer apparel 345
- 3.9.8.13.3 Geotextiles 345
- 3.9.8.14 Packaging 346
- 3.9.8.14.1 Market overview 346
- 3.9.9 Global production of natural fibers 348
- 3.9.9.1 Overall global fibers market 348
- 3.9.9.2 Plant-based fiber production 350
- 3.9.9.3 Animal-based natural fiber production 351
- 3.10 LIGNIN 352
- 3.10.1 Introduction 352
- 3.10.1.1 What is lignin? 352
- 3.10.1.1.1 Lignin structure 352
- 3.10.1.2 Types of lignin 353
- 3.10.1.2.1 Sulfur containing lignin 355
- 3.10.1.2.2 Sulfur-free lignin from biorefinery process 356
- 3.10.1.3 Properties 356
- 3.10.1.4 The lignocellulose biorefinery 358
- 3.10.1.5 Markets and applications 359
- 3.10.1.6 Challenges for using lignin 360
- 3.10.1.1 What is lignin? 352
- 3.10.2 Lignin production processes 361
- 3.10.2.1 Lignosulphonates 362
- 3.10.2.2 Kraft Lignin 362
- 3.10.2.2.1 LignoBoost process 363
- 3.10.2.2.2 LignoForce method 363
- 3.10.2.2.3 Sequential Liquid Lignin Recovery and Purification 364
- 3.10.2.2.4 A-Recovery+ 365
- 3.10.2.3 Soda lignin 365
- 3.10.2.4 Biorefinery lignin 366
- 3.10.2.4.1 Commercial and pre-commercial biorefinery lignin production facilities and processes 367
- 3.10.2.5 Organosolv lignins 369
- 3.10.2.6 Hydrolytic lignin 369
- 3.10.3 Markets for lignin 370
- 3.10.3.1 Market drivers and trends for lignin 370
- 3.10.3.2 Production capacities 371
- 3.10.3.2.1 Technical lignin availability (dry ton/y) 371
- 3.10.3.2.2 Biomass conversion (Biorefinery) 372
- 3.10.3.3 Estimated consumption of lignin 372
- 3.10.3.4 Prices 373
- 3.10.3.5 Heat and power energy 374
- 3.10.3.6 Pyrolysis and syngas 374
- 3.10.3.7 Aromatic compounds 374
- 3.10.3.7.1 Benzene, toluene and xylene 374
- 3.10.3.7.2 Phenol and phenolic resins 375
- 3.10.3.7.3 Vanillin 375
- 3.10.3.8 Plastics and polymers 375
- 3.10.1 Introduction 352
- 3.11 COMPANY PROFILES 377 (516 company profiles)
4 REFERENCES 737
List of Tables
- Table 1. Plant-based feedstocks and biochemicals produced. 45
- Table 2. Waste-based feedstocks and biochemicals produced. 46
- Table 3. Microbial and mineral-based feedstocks and biochemicals produced. 47
- Table 4. Common starch sources that can be used as feedstocks for producing biochemicals. 48
- Table 5. Common lysine sources that can be used as feedstocks for producing biochemicals. 49
- Table 6. Applications of lysine as a feedstock for biochemicals. 49
- Table 7. HDMA sources that can be used as feedstocks for producing biochemicals. 52
- Table 8. Applications of bio-based HDMA. 52
- Table 9. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5). 54
- Table 10. Applications of DN5. 54
- Table 11. Biobased feedstocks for isosorbide. 56
- Table 12. Applications of bio-based isosorbide. 56
- Table 13. Lactide applications. 59
- Table 14. Biobased feedstock sources for itaconic acid. 60
- Table 15. Applications of bio-based itaconic acid. 60
- Table 16. Biobased feedstock sources for 3-HP. 62
- Table 17. Applications of 3-HP. 62
- Table 18. Applications of bio-based acrylic acid. 64
- Table 19. Applications of bio-based 1,3-Propanediol (1,3-PDO). 65
- Table 20. Biobased feedstock sources for Succinic acid. 66
- Table 21. Applications of succinic acid. 67
- Table 22. Applications of bio-based 1,4-Butanediol (BDO). 68
- Table 23. Applications of bio-based Tetrahydrofuran (THF). 70
- Table 24. Applications of bio-based adipic acid. 71
- Table 25. Applications of bio-based caprolactam. 72
- Table 26. Biobased feedstock sources for isobutanol. 74
- Table 27. Applications of bio-based isobutanol. 74
- Table 28. Biobased feedstock sources for p-Xylene. 76
- Table 29. Applications of bio-based p-Xylene. 76
- Table 30. Applications of bio-based Terephthalic acid (TPA). 77
- Table 31. Biobased feedstock sources for 1,3 Proppanediol. 78
- Table 32. Applications of bio-based 1,3 Proppanediol. 79
- Table 33. Biobased feedstock sources for MEG. 80
- Table 34. Applications of bio-based MEG. 80
- Table 35. Biobased MEG producers capacities. 81
- Table 36. Biobased feedstock sources for ethanol. 82
- Table 37. Applications of bio-based ethanol. 82
- Table 38. Applications of bio-based ethylene. 83
- Table 39. Applications of bio-based propylene. 84
- Table 40. Applications of bio-based vinyl chloride. 86
- Table 41. Applications of bio-based Methly methacrylate. 87
- Table 42. Applications of bio-based aniline. 89
- Table 43. Applications of biobased fructose. 90
- Table 44. Applications of bio-based 5-Hydroxymethylfurfural (5-HMF). 92
- Table 45. Applications of 5-(Chloromethyl)furfural (CMF). 93
- Table 46. Applications of Levulinic acid. 94
- Table 47. Markets and applications for bio-based FDME. 95
- Table 48. Applications of FDCA. 97
- Table 49. Markets and applications for bio-based levoglucosenone. 98
- Table 50. Biochemicals derived from hemicellulose 99
- Table 51. Markets and applications for bio-based hemicellulose 100
- Table 52. Markets and applications for bio-based furfuryl alcohol. 103
- Table 53. Commercial and pre-commercial biorefinery lignin production facilities and processes 104
- Table 54. Lignin aromatic compound products. 105
- Table 55. Prices of benzene, toluene, xylene and their derivatives. 106
- Table 56. Lignin products in polymeric materials. 107
- Table 57. Application of lignin in plastics and composites. 108
- Table 58. Markets and applications for bio-based glycerol. 110
- Table 59. Markets and applications for Bio-based MPG. 112
- Table 60. Markets and applications: Bio-based ECH. 113
- Table 61. Mineral source products and applications. 134
- Table 62. Type of biodegradation. 214
- Table 63. Advantages and disadvantages of biobased plastics compared to conventional plastics. 215
- Table 64. Types of Bio-based and/or Biodegradable Plastics, applications. 215
- Table 65. Key market players by Bio-based and/or Biodegradable Plastic types. 217
- Table 66. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications. 218
- Table 67. Lactic acid producers and production capacities. 219
- Table 68. PLA producers and production capacities. 220
- Table 69. Planned PLA capacity expansions in China. 220
- Table 70. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications. 222
- Table 71. Bio-based Polyethylene terephthalate (PET) producers and production capacities, 223
- Table 72. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications. 224
- Table 73. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers. 225
- Table 74. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications. 226
- Table 75. PEF vs. PET. 227
- Table 76. FDCA and PEF producers. 228
- Table 77. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications. 229
- Table 78. Leading Bio-PA producers production capacities. 230
- Table 79. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications. 231
- Table 80. Leading PBAT producers, production capacities and brands. 231
- Table 81. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications. 233
- Table 82. Leading PBS producers and production capacities. 234
- Table 83. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications. 235
- Table 84. Leading Bio-PE producers. 235
- Table 85. Bio-PP market analysis- manufacture, advantages, disadvantages and applications. 236
- Table 86. Leading Bio-PP producers and capacities. 237
- Table 87.Types of PHAs and properties. 240
- Table 88. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 242
- Table 89. Polyhydroxyalkanoate (PHA) extraction methods. 244
- Table 90. Polyhydroxyalkanoates (PHA) market analysis. 245
- Table 91. Commercially available PHAs. 246
- Table 92. Markets and applications for PHAs. 247
- Table 93. Applications, advantages and disadvantages of PHAs in packaging. 248
- Table 94. Polyhydroxyalkanoates (PHA) producers. 251
- Table 95. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications. 253
- Table 96. Leading MFC producers and capacities. 254
- Table 97. Synthesis methods for cellulose nanocrystals (CNC). 255
- Table 98. CNC sources, size and yield. 256
- Table 99. CNC properties. 256
- Table 100. Mechanical properties of CNC and other reinforcement materials. 257
- Table 101. Applications of nanocrystalline cellulose (NCC). 258
- Table 102. Cellulose nanocrystals analysis. 259
- Table 103: Cellulose nanocrystal production capacities and production process, by producer. 260
- Table 104. Applications of cellulose nanofibers (CNF). 261
- Table 105. Cellulose nanofibers market analysis. 262
- Table 106. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes. 263
- Table 107. Applications of bacterial nanocellulose (BNC). 266
- Table 108. Types of protein based-bioplastics, applications and companies. 268
- Table 109. Types of algal and fungal based-bioplastics, applications and companies. 269
- Table 110. Overview of alginate-description, properties, application and market size. 269
- Table 111. Companies developing algal-based bioplastics. 271
- Table 112. Overview of mycelium fibers-description, properties, drawbacks and applications. 271
- Table 113. Companies developing mycelium-based bioplastics. 273
- Table 114. Overview of chitosan-description, properties, drawbacks and applications. 274
- Table 115. Global production capacities of biobased and sustainable plastics in 2019-2034, by region, 1,000 tonnes. 275
- Table 116. Biobased and sustainable plastics producers in North America. 276
- Table 117. Biobased and sustainable plastics producers in Europe. 276
- Table 118. Biobased and sustainable plastics producers in Asia-Pacific. 277
- Table 119. Biobased and sustainable plastics producers in Latin America. 278
- Table 120. Processes for bioplastics in packaging. 280
- Table 121. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging. 281
- Table 122. Typical applications for bioplastics in flexible packaging. 282
- Table 123. Typical applications for bioplastics in rigid packaging. 284
- Table 124. Types of next-gen natural fibers. 295
- Table 125. Application, manufacturing method, and matrix materials of natural fibers. 298
- Table 126. Typical properties of natural fibers. 299
- Table 127. Commercially available next-gen natural fiber products. 299
- Table 128. Market drivers for natural fibers. 302
- Table 129. Overview of cotton fibers-description, properties, drawbacks and applications. 304
- Table 130. Overview of kapok fibers-description, properties, drawbacks and applications. 306
- Table 131. Overview of luffa fibers-description, properties, drawbacks and applications. 307
- Table 132. Overview of jute fibers-description, properties, drawbacks and applications. 308
- Table 133. Overview of hemp fibers-description, properties, drawbacks and applications. 309
- Table 134. Overview of flax fibers-description, properties, drawbacks and applications. 311
- Table 135. Overview of ramie fibers- description, properties, drawbacks and applications. 312
- Table 136. Overview of kenaf fibers-description, properties, drawbacks and applications. 314
- Table 137. Overview of sisal leaf fibers-description, properties, drawbacks and applications. 315
- Table 138. Overview of abaca fibers-description, properties, drawbacks and applications. 316
- Table 139. Overview of coir fibers-description, properties, drawbacks and applications. 318
- Table 140. Overview of banana fibers-description, properties, drawbacks and applications. 319
- Table 141. Overview of pineapple fibers-description, properties, drawbacks and applications. 320
- Table 142. Overview of rice fibers-description, properties, drawbacks and applications. 322
- Table 143. Overview of corn fibers-description, properties, drawbacks and applications. 323
- Table 144. Overview of switch grass fibers-description, properties and applications. 323
- Table 145. Overview of sugarcane fibers-description, properties, drawbacks and application and market size. 324
- Table 146. Overview of bamboo fibers-description, properties, drawbacks and applications. 325
- Table 147. Overview of wool fibers-description, properties, drawbacks and applications. 326
- Table 148. Alternative wool materials producers. 327
- Table 149. Overview of silk fibers-description, properties, application and market size. 327
- Table 150. Alternative silk materials producers. 328
- Table 151. Alternative leather materials producers. 329
- Table 152. Next-gen fur producers. 330
- Table 153. Alternative down materials producers. 331
- Table 154. Applications of natural fiber composites. 332
- Table 155. Typical properties of short natural fiber-thermoplastic composites. 333
- Table 156. Properties of non-woven natural fiber mat composites. 334
- Table 157. Properties of aligned natural fiber composites. 335
- Table 158. Properties of natural fiber-bio-based polymer compounds. 335
- Table 159. Properties of natural fiber-bio-based polymer non-woven mats. 336
- Table 160. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use. 337
- Table 161. Natural fiber-reinforced polymer composite in the automotive market. 339
- Table 162. Natural fibers in the aerospace sector- market drivers, applications and challenges for NF use. 340
- Table 163. Applications of natural fibers in the automotive industry. 341
- Table 164. Natural fibers in the building/construction sector- market drivers, applications and challenges for NF use. 342
- Table 165. Applications of natural fibers in the building/construction sector. 342
- Table 166. Natural fibers in the sports and leisure sector-market drivers, applications and challenges for NF use. 344
- Table 167. Natural fibers in the textiles sector- market drivers, applications and challenges for NF use. 344
- Table 168. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use. 346
- Table 169. Technical lignin types and applications. 354
- Table 170. Classification of technical lignins. 356
- Table 171. Lignin content of selected biomass. 356
- Table 172. Properties of lignins and their applications. 357
- Table 173. Example markets and applications for lignin. 359
- Table 174. Processes for lignin production. 361
- Table 175. Biorefinery feedstocks. 366
- Table 176. Comparison of pulping and biorefinery lignins. 366
- Table 177. Commercial and pre-commercial biorefinery lignin production facilities and processes 367
- Table 178. Market drivers and trends for lignin. 371
- Table 179. Production capacities of technical lignin producers. 371
- Table 180. Production capacities of biorefinery lignin producers. 372
- Table 181. Estimated consumption of lignin, 2019-2034 (000 MT). 372
- Table 182. Prices of benzene, toluene, xylene and their derivatives. 374
- Table 183. Application of lignin in plastics and polymers. 375
- Table 184. Lactips plastic pellets. 555
- Table 185. Oji Holdings CNF products. 619
List of Figures
- Figure 1. Schematic of biorefinery processes. 44
- Figure 2. Global production of starch for biobased chemicals and intermediates, 2018-2034 (million metric tonnes). 48
- Figure 3. Global production of biobased lysine, 2018-2034 (metric tonnes). 50
- Figure 4. Global glucose production for bio-based chemicals and intermediates 2018-2034 (million metric tonnes). 51
- Figure 5. Global production volumes of bio-HMDA, 2018 to 2034 in metric tonnes. 53
- Figure 6. Global production of bio-based DN5, 2018-2034 (metric tonnes). 55
- Figure 7. Global production of bio-based isosorbide, 2018-2034 (metric tonnes). 57
- Figure 8. L-lactic acid (L-LA) production, 2018-2034 (metric tonnes). 58
- Figure 9. Global lactide production, 2018-2034 (metric tonnes). 59
- Figure 10. Global production of bio-itaconic acid, 2018-2034 (metric tonnes). 61
- Figure 11. Global production of 3-HP, 2018-2034 (metric tonnes). 63
- Figure 12. Global production of bio-based acrylic acid, 2018-2034 (metric tonnes). 64
- Figure 13. Global production of bio-based 1,3-Propanediol (1,3-PDO), 2018-2034 (metric tonnes). 66
- Figure 14. Global production of bio-based Succinic acid, 2018-2034 (metric tonnes). 68
- Figure 15. Global production of 1,4-Butanediol (BDO), 2018-2034 (metric tonnes). 69
- Figure 16. Global production of bio-based tetrahydrofuran (THF), 2018-2034 (metric tonnes). 71
- Figure 17. Overview of Toray process. 71
- Figure 18. Global production of bio-based caprolactam, 2018-2034 (metric tonnes). 73
- Figure 19. Global production of bio-based isobutanol, 2018-2034 (metric tonnes). 75
- Figure 20. Global production of bio-based p-xylene, 2018-2034 (metric tonnes). 77
- Figure 21. Global production of biobased terephthalic acid (TPA), 2018-2034 (metric tonnes). 78
- Figure 22. Global production of biobased 1,3 Proppanediol, 2018-2034 (metric tonnes). 80
- Figure 23. Global production of biobased MEG, 2018-2034 (metric tonnes). 81
- Figure 24. Global production of biobased ethanol, 2018-2034 (million metric tonnes). 83
- Figure 25. Global production of biobased ethylene, 2018-2034 (million metric tonnes). 84
- Figure 26. Global production of biobased propylene, 2018-2034 (metric tonnes). 85
- Figure 27. Global production of biobased vinyl chloride, 2018-2034 (metric tonnes). 87
- Figure 28. Global production of bio-based Methly methacrylate, 2018-2034 (metric tonnes). 88
- Figure 29. Global production of biobased aniline, 2018-2034 (metric tonnes). 90
- Figure 30. Global production of biobased fructose, 2018-2034 (metric tonnes). 91
- Figure 31. Global production of biobased 5-Hydroxymethylfurfural (5-HMF), 2018-2034 (metric tonnes). 92
- Figure 32. Global production of biobased 5-(Chloromethyl)furfural (CMF), 2018-2034 (metric tonnes). 93
- Figure 33. Global production of biobased Levulinic acid, 2018-2034 (metric tonnes). 95
- Figure 34. Global production of biobased FDME, 2018-2034 (metric tonnes). 96
- Figure 35. Global production of biobased Furan-2,5-dicarboxylic acid (FDCA), 2018-2034 (metric tonnes). 97
- Figure 36. Global production projections for bio-based levoglucosenone from 2018 to 2034 in metric tonnes: 99
- Figure 37. Global production of hemicellulose, 2018-2034 (metric tonnes). 101
- Figure 38. Global production of biobased furfural, 2018-2034 (metric tonnes). 102
- Figure 39. Global production of biobased furfuryl alcohol, 2018-2034 (metric tonnes). 103
- Figure 40. Schematic of WISA plywood home. 107
- Figure 41. Global production of biobased lignin, 2018-2034 (metric tonnes). 109
- Figure 42. Global production of biobased glycerol, 2018-2034 (metric tonnes). 111
- Figure 43. Global production of Bio-MPG, 2018-2034 (metric tonnes). 112
- Figure 44. Global production of biobased ECH, 2018-2034 (metric tonnes). 114
- Figure 45. Global production of biobased fatty acids, 2018-2034 (million metric tonnes). 115
- Figure 46. Global production of biobased sebacic acid, 2018-2034 (metric tonnes). 117
- Figure 47. Global production of biobased 11-Aminoundecanoic acid (11-AA), 2018-2034 (metric tonnes). 118
- Figure 48. Global production of biobased Dodecanedioic acid (DDDA), 2018-2034 (metric tonnes). 120
- Figure 49. Global production of biobased Pentamethylene diisocyanate, 2018-2034 (metric tonnes). 121
- Figure 50. Global production of biobased casein, 2018-2034 (metric tonnes). 123
- Figure 51. Global production of food waste for biochemicals, 2018-2034 (million metric tonnes). 124
- Figure 52. Global production of agricultural waste for biochemicals, 2018-2034 (million metric tonnes). 126
- Figure 53. Global production of forestry waste for biochemicals, 2018-2034 (million metric tonnes). 127
- Figure 54. Global production of aquaculture/fishing waste for biochemicals, 2018-2034 (million metric tonnes). 128
- Figure 55. Global production of municipal solid waste for biochemicals, 2018-2034 (million metric tonnes). 129
- Figure 56. Global production of waste oils for biochemicals, 2018-2034 (million metric tonnes). 130
- Figure 57. Global microalgae production, 2018-2034 (million metric tonnes). 131
- Figure 58. Global macroalgae production, 2018-2034 (million metric tonnes). 133
- Figure 59. Global production of biogas, 2018-2034 (billion m3). 136
- Figure 60. Global production of syngas, 2018-2034 (billion m3). 138
- Figure 61. formicobio™ technology. 156
- Figure 62. Domsjö process. 160
- Figure 63. TMP-Bio Process. 165
- Figure 64. Lignin gel. 182
- Figure 65. BioFlex process. 185
- Figure 66. LX Process. 187
- Figure 67. METNIN™ Lignin refining technology. 190
- Figure 68. Enfinity cellulosic ethanol technology process. 196
- Figure 69. Precision Photosynthesis™ technology. 198
- Figure 70. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 199
- Figure 71. UPM biorefinery process. 208
- Figure 72. The Proesa® Process. 209
- Figure 73. Goldilocks process and applications. 210
- Figure 74. Coca-Cola PlantBottle®. 213
- Figure 75. Interrelationship between conventional, bio-based and biodegradable plastics. 213
- Figure 76. Polylactic acid (Bio-PLA) production 2019-2034 (1,000 tonnes). 222
- Figure 77. Polyethylene terephthalate (Bio-PET) production 2019-2034 (1,000 tonnes) 224
- Figure 78. Polytrimethylene terephthalate (PTT) production 2019-2034 (1,000 tonnes). 225
- Figure 79. Production capacities of Polyethylene furanoate (PEF) to 2025. 228
- Figure 80. Polyethylene furanoate (Bio-PEF) production 2019-2034 (1,000 tonnes). 228
- Figure 81. Polyamides (Bio-PA) production 2019-2034 (1,000 tonnes). 230
- Figure 82. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2034 (1,000 tonnes). 232
- Figure 83. Polybutylene succinate (PBS) production 2019-2034 (1,000 tonnes). 234
- Figure 84. Polyethylene (Bio-PE) production 2019-2034 (1,000 tonnes). 236
- Figure 85. Polypropylene (Bio-PP) production capacities 2019-2034 (1,000 tonnes). 237
- Figure 86. PHA family. 240
- Figure 87. PHA production capacities 2019-2034 (1,000 tonnes). 252
- Figure 88. TEM image of cellulose nanocrystals. 254
- Figure 89. CNC preparation. 255
- Figure 90. Extracting CNC from trees. 256
- Figure 91. CNC slurry. 258
- Figure 92. CNF gel. 261
- Figure 93. Bacterial nanocellulose shapes 265
- Figure 94. BLOOM masterbatch from Algix. 270
- Figure 95. Typical structure of mycelium-based foam. 272
- Figure 96. Commercial mycelium composite construction materials. 273
- Figure 97. Global production capacities for bioplastics by end user market 2019-2034, 1,000 tonnes. 275
- Figure 98. Global production capacities for bioplastics by end user market 2019-2034, 1,000 tonnes. 279
- Figure 99. PHA bioplastics products. 281
- Figure 100. The global market for biobased and biodegradable plastics for flexible packaging 2019–2033 (‘000 tonnes). 283
- Figure 101. Production volumes for bioplastics for rigid packaging, 2019–2033 (‘000 tonnes). 285
- Figure 102. Global production for biobased and biodegradable plastics in consumer products 2019-2034, in 1,000 tonnes. 287
- Figure 103. Global production capacities for biobased and biodegradable plastics in automotive 2019-2034, in 1,000 tonnes. 288
- Figure 104. Global production volumes for biobased and biodegradable plastics in building and construction 2019-2034, in 1,000 tonnes. 289
- Figure 105. Global production volumes for biobased and biodegradable plastics in textiles 2019-2034, in 1,000 tonnes. 292
- Figure 106. Global production volumes for biobased and biodegradable plastics in electronics 2019-2034, in 1,000 tonnes. 293
- Figure 107. Biodegradable mulch films. 294
- Figure 108. Global production volulmes for biobased and biodegradable plastics in agriculture 2019-2034, in 1,000 tonnes. 294
- Figure 109. Types of natural fibers. 297
- Figure 110. Absolut natural based fiber bottle cap. 300
- Figure 111. Adidas algae-ink tees. 300
- Figure 112. Carlsberg natural fiber beer bottle. 300
- Figure 113. Miratex watch bands. 300
- Figure 114. Adidas Made with Nature Ultraboost 22. 300
- Figure 115. PUMA RE:SUEDE sneaker 301
- Figure 116. Cotton production volume 2018-2034 (Million MT). 305
- Figure 117. Kapok production volume 2018-2034 (MT). 306
- Figure 118. Luffa cylindrica fiber. 307
- Figure 119. Jute production volume 2018-2034 (Million MT). 309
- Figure 120. Hemp fiber production volume 2018-2034 ( MT). 311
- Figure 121. Flax fiber production volume 2018-2034 (MT). 312
- Figure 122. Ramie fiber production volume 2018-2034 (MT). 314
- Figure 123. Kenaf fiber production volume 2018-2034 (MT). 315
- Figure 124. Sisal fiber production volume 2018-2034 (MT). 316
- Figure 125. Abaca fiber production volume 2018-2034 (MT). 317
- Figure 126. Coir fiber production volume 2018-2034 (MILLION MT). 319
- Figure 127. Banana fiber production volume 2018-2034 (MT). 320
- Figure 128. Pineapple fiber. 321
- Figure 129. A bag made with pineapple biomaterial from the H&M Conscious Collection 2019. 322
- Figure 130. Bamboo fiber production volume 2018-2034 (MILLION MT). 326
- Figure 131. Conceptual landscape of next-gen leather materials. 329
- Figure 132. Hemp fibers combined with PP in car door panel. 336
- Figure 133. Car door produced from Hemp fiber. 338
- Figure 134. Mercedes-Benz components containing natural fibers. 339
- Figure 135. AlgiKicks sneaker, made with the Algiknit biopolymer gel. 345
- Figure 136. Coir mats for erosion control. 346
- Figure 137. Global fiber production in 2022, by fiber type, million MT and %. 348
- Figure 138. Global fiber production (million MT) to 2020-2034. 349
- Figure 139. Plant-based fiber production 2018-2034, by fiber type, MT. 350
- Figure 140. Animal based fiber production 2018-2034, by fiber type, million MT. 351
- Figure 141. High purity lignin. 352
- Figure 142. Lignocellulose architecture. 353
- Figure 143. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins. 354
- Figure 144. The lignocellulose biorefinery. 359
- Figure 145. LignoBoost process. 363
- Figure 146. LignoForce system for lignin recovery from black liquor. 364
- Figure 147. Sequential liquid-lignin recovery and purification (SLPR) system. 364
- Figure 148. A-Recovery+ chemical recovery concept. 365
- Figure 149. Schematic of a biorefinery for production of carriers and chemicals. 367
- Figure 150. Organosolv lignin. 369
- Figure 151. Hydrolytic lignin powder. 370
- Figure 152. Estimated consumption of lignin, 2019-2034 (000 MT). 373
- Figure 153. Pluumo. 380
- Figure 154. ANDRITZ Lignin Recovery process. 389
- Figure 155. Anpoly cellulose nanofiber hydrogel. 391
- Figure 156. MEDICELLU™. 392
- Figure 157. Asahi Kasei CNF fabric sheet. 400
- Figure 158. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric. 400
- Figure 159. CNF nonwoven fabric. 401
- Figure 160. Roof frame made of natural fiber. 410
- Figure 161. Beyond Leather Materials product. 413
- Figure 162. BIOLO e-commerce mailer bag made from PHA. 419
- Figure 163. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc. 420
- Figure 164. Fiber-based screw cap. 431
- Figure 165. formicobio™ technology. 449
- Figure 166. nanoforest-S. 451
- Figure 167. nanoforest-PDP. 451
- Figure 168. nanoforest-MB. 452
- Figure 169. sunliquid® production process. 459
- Figure 170. CuanSave film. 461
- Figure 171. Celish. 462
- Figure 172. Trunk lid incorporating CNF. 464
- Figure 173. ELLEX products. 465
- Figure 174. CNF-reinforced PP compounds. 465
- Figure 175. Kirekira! toilet wipes. 466
- Figure 176. Color CNF. 467
- Figure 177. Rheocrysta spray. 472
- Figure 178. DKS CNF products. 473
- Figure 179. Domsjö process. 474
- Figure 180. Mushroom leather. 483
- Figure 181. CNF based on citrus peel. 484
- Figure 182. Citrus cellulose nanofiber. 484
- Figure 183. Filler Bank CNC products. 495
- Figure 184. Fibers on kapok tree and after processing. 497
- Figure 185. TMP-Bio Process. 499
- Figure 186. Flow chart of the lignocellulose biorefinery pilot plant in Leuna. 500
- Figure 187. Water-repellent cellulose. 502
- Figure 188. Cellulose Nanofiber (CNF) composite with polyethylene (PE). 503
- Figure 189. PHA production process. 504
- Figure 190. CNF products from Furukawa Electric. 505
- Figure 191. AVAPTM process. 514
- Figure 192. GreenPower+™ process. 515
- Figure 193. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials. 518
- Figure 194. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer). 520
- Figure 195. CNF gel. 526
- Figure 196. Block nanocellulose material. 527
- Figure 197. CNF products developed by Hokuetsu. 527
- Figure 198. Marine leather products. 530
- Figure 199. Inner Mettle Milk products. 533
- Figure 200. Kami Shoji CNF products. 544
- Figure 201. Dual Graft System. 546
- Figure 202. Engine cover utilizing Kao CNF composite resins. 547
- Figure 203. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended). 547
- Figure 204. Kel Labs yarn. 548
- Figure 205. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side). 552
- Figure 206. Lignin gel. 560
- Figure 207. BioFlex process. 564
- Figure 208. Nike Algae Ink graphic tee. 565
- Figure 209. LX Process. 568
- Figure 210. Made of Air's HexChar panels. 571
- Figure 211. TransLeather. 572
- Figure 212. Chitin nanofiber product. 576
- Figure 213. Marusumi Paper cellulose nanofiber products. 578
- Figure 214. FibriMa cellulose nanofiber powder. 578
- Figure 215. METNIN™ Lignin refining technology. 582
- Figure 216. IPA synthesis method. 586
- Figure 217. MOGU-Wave panels. 588
- Figure 218. CNF slurries. 589
- Figure 219. Range of CNF products. 589
- Figure 220. Reishi. 593
- Figure 221. Compostable water pod. 609
- Figure 222. Leather made from leaves. 609
- Figure 223. Nike shoe with beLEAF™. 610
- Figure 224. CNF clear sheets. 619
- Figure 225. Oji Holdings CNF polycarbonate product. 620
- Figure 226. Enfinity cellulosic ethanol technology process. 633
- Figure 227. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 637
- Figure 228. XCNF. 644
- Figure 229: Plantrose process. 645
- Figure 230. LOVR hemp leather. 648
- Figure 231. CNF insulation flat plates. 650
- Figure 232. Hansa lignin. 656
- Figure 233. Manufacturing process for STARCEL. 660
- Figure 234. Manufacturing process for STARCEL. 664
- Figure 235. 3D printed cellulose shoe. 671
- Figure 236. Lyocell process. 674
- Figure 237. North Face Spiber Moon Parka. 678
- Figure 238. PANGAIA LAB NXT GEN Hoodie. 678
- Figure 239. Spider silk production. 679
- Figure 240. Stora Enso lignin battery materials. 684
- Figure 241. 2 wt.% CNF suspension. 684
- Figure 242. BiNFi-s Dry Powder. 685
- Figure 243. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet. 685
- Figure 244. Silk nanofiber (right) and cocoon of raw material. 686
- Figure 245. Sulapac cosmetics containers. 687
- Figure 246. Sulzer equipment for PLA polymerization processing. 688
- Figure 247. Solid Novolac Type lignin modified phenolic resins. 689
- Figure 248. Teijin bioplastic film for door handles. 698
- Figure 249. Corbion FDCA production process. 704
- Figure 250. Comparison of weight reduction effect using CNF. 706
- Figure 251. CNF resin products. 709
- Figure 252. UPM biorefinery process. 711
- Figure 253. Vegea production process. 715
- Figure 254. The Proesa® Process. 717
- Figure 255. Goldilocks process and applications. 718
- Figure 256. Visolis’ Hybrid Bio-Thermocatalytic Process. 721
- Figure 257. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test. 723
- Figure 258. Worn Again products. 728
- Figure 259. Zelfo Technology GmbH CNF production process. 732
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer.
To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.