The Global Market for Bioplastics 2024-2034

0

  • Published: December 2023.
  • Pages: 744
  • Tables: 185
  • Figures: 259

 

The global plastic industry is worth over $600 billion per annum, but only a small percentage of plastics are from renewable resources. There is a growing movement to greatly reduce plastics that are not biodegradable or compostable, and companies are under increasing pressure from regulators, shareholders and customers to transition plastics products and consumption to eco-friendly alternatives – namely, biodegradable and/or recyclable solutions. Global bioplastics production grew by ~20% in 2023, with Bio-PLA, Bio-PA, Bio-PE and Bio-PTT accounting for most of the market. The market is running at almost full capacity production. 

The Global Bioplastics Market 2023-2034 is a 740+ page comprehensive analysis that provides granular data and in-depth analysis of bioplastics types, feedstocks, production capacities, end use applications, market trends, drivers/challenges, regional markets, and profiles of over 700 companies.

The report covers both bio-based/renewable and biodegradable plastics, including key materials such as PLA, PBAT, starch blends, PHA, PBS, Bio-PE, Bio-PET, Bio-PA, cellulose nanomaterials, protein-based bioplastics and more. Detailed quantitative data and forecasts are provided for global and regional production capacities by material and end use market to 2034.

This essential industry report also analyzes the markets, applications and production volumes for natural fibers (wood, cellulosic, animal/protein based), lignin and bio-based chemicals & intermediates which also impact the bioplastics value chain. 

Report contents include:

  • Global production capacities, market demand forecasts of bio-based and biodegradable plastics to 2034
  • Detailed analysis of bioplastic types - PLA, PBAT, starch blends, PHA, PBS, Bio-PE, Bio-PET, Bio-PA, cellulose nanomaterials, etc.
  • Feedstocks, manufacturing processes, properties, applications, market trends
  • Profiles and production capacities of over 700 companies across the bioplastics value chain. Companies profiled include Avantium, BASF, Biome Bioplastics, Braskem, Buyo, Danimer Scientific, FabricNano, FlexSea, Floreon, Gevo, MetaCycler BioInnovations, Mi Terro, PlantSwitch, Teijin Limited, Verde Bioresins, Versalis, and  Xampla.
  • Market analysis and production forecasts to 2034 for natural fibers (plant-based, animal-based)
  • Global market analysis, applications and production forecasts for lignin
  • Production forecasts to 2034 for key bio-based chemicals & intermediates
  • End use applications and market segment analysis: Packaging (flexible, rigid), Consumer Goods, Automotive, Building & Construction, Textiles, Agriculture
  • Regional markets: North America, Europe, Asia-Pacific, Latin America
  • Latest R&D, new technologies, investments and industry developments
  • Key growth drivers, opportunities and challenges impacting the markets

 

1              RESEARCH METHODOLOGY         42

 

2              BIO-BASED FEEDSTOCKS AND INTERMEDIATES MARKET  44

  • 2.1          BIOREFINERIES  44
  • 2.2          BIO-BASED FEEDSTOCK AND LAND USE   45
  • 2.3          PLANT-BASED    47
    • 2.3.1      STARCH 47
      • 2.3.1.1   Overview            47
      • 2.3.1.2   Sources 48
      • 2.3.1.3   Global production            48
      • 2.3.1.4   Lysine   49
        • 2.3.1.4.1               Source  49
        • 2.3.1.4.2               Applications       49
        • 2.3.1.4.3               Global production            50
      • 2.3.1.5   Glucose 51
        • 2.3.1.5.1               HMDA   52
          • 2.3.1.5.1.1           Overview            52
          • 2.3.1.5.1.2           Sources 52
          • 2.3.1.5.1.3           Applications       52
          • 2.3.1.5.1.4           Global production            53
        • 2.3.1.5.2               1,5-diaminopentane (DA5)          53
          • 2.3.1.5.2.1           Overview            53
          • 2.3.1.5.2.2           Sources 54
          • 2.3.1.5.2.3           Applications       54
          • 2.3.1.5.2.4           Global production            54
        • 2.3.1.5.3               Sorbitol 55
          • 2.3.1.5.3.1           Isosorbide           55
            • 2.3.1.5.3.1.1        Overview            55
            • 2.3.1.5.3.1.2        Sources 55
            • 2.3.1.5.3.1.3        Applications       56
            • 2.3.1.5.3.1.4        Global production            57
        • 2.3.1.5.4               Lactic acid            57
          • 2.3.1.5.4.1           Overview            57
          • 2.3.1.5.4.2           D-lactic acid        57
          • 2.3.1.5.4.3           L-lactic acid         58
          • 2.3.1.5.4.4           Lactide  58
        • 2.3.1.5.5               Itaconic acid       60
          • 2.3.1.5.5.1           Overview            60
          • 2.3.1.5.5.2           Sources 60
          • 2.3.1.5.5.3           Applications       60
          • 2.3.1.5.5.4           Global production            61
        • 2.3.1.5.6               3-HP      61
          • 2.3.1.5.6.1           Overview            61
          • 2.3.1.5.6.2           Sources 61
          • 2.3.1.5.6.3           Applications       62
          • 2.3.1.5.6.4           Global production            62
          • 2.3.1.5.6.5           Acrylic acid          63
            • 2.3.1.5.6.5.1        Overview            63
            • 2.3.1.5.6.5.2        Applications       64
            • 2.3.1.5.6.5.3        Global production            64
          • 2.3.1.5.6.6           1,3-Propanediol (1,3-PDO)           65
            • 2.3.1.5.6.6.1        Overview            65
            • 2.3.1.5.6.6.2        Applications       65
            • 2.3.1.5.6.6.3        Global production            65
        • 2.3.1.5.7               Succinic Acid      66
          • 2.3.1.5.7.1           Overview            66
          • 2.3.1.5.7.2           Sources 66
          • 2.3.1.5.7.3           Applications       67
          • 2.3.1.5.7.4           Global production            67
          • 2.3.1.5.7.5           1,4-Butanediol (1,4-BDO)              68
            • 2.3.1.5.7.5.1        Overview            68
            • 2.3.1.5.7.5.2        Applications       68
            • 2.3.1.5.7.5.3        Gobal production             69
          • 2.3.1.5.7.6           Tetrahydrofuran (THF)   69
            • 2.3.1.5.7.6.1        Overview            69
            • 2.3.1.5.7.6.2        Applications       70
            • 2.3.1.5.7.6.3        Global production            70
        • 2.3.1.5.8               Adipic acid           71
          • 2.3.1.5.8.1           Overview            71
          • 2.3.1.5.8.2           Applications       71
          • 2.3.1.5.8.3           Caprolactame    72
            • 2.3.1.5.8.3.1        Overview            72
            • 2.3.1.5.8.3.2        Applications       72
            • 2.3.1.5.8.3.3        Global production            73
        • 2.3.1.5.9               Isobutanol          74
          • 2.3.1.5.9.1           Overview            74
          • 2.3.1.5.9.2           Sources 74
          • 2.3.1.5.9.3           Applications       74
          • 2.3.1.5.9.4           Global production            75
          • 2.3.1.5.9.5           p-Xylene              75
            • 2.3.1.5.9.5.1        Overview            75
            • 2.3.1.5.9.5.2        Sources 76
            • 2.3.1.5.9.5.3        Applications       76
            • 2.3.1.5.9.5.4        Global production            76
            • 2.3.1.5.9.5.5        Terephthalic acid              77
            • 2.3.1.5.9.5.6        Overview            77
        • 2.3.1.5.10             1,3 Proppanediol             78
          • 2.3.1.5.10.1     Overview            78
          • 2.3.1.5.10.2         Sources 78
          • 2.3.1.5.10.3         Applications       79
          • 2.3.1.5.10.4         Global production            79
        • 2.3.1.5.11             Monoethylene glycol (MEG)       80
          • 2.3.1.5.11.1         Overview            80
          • 2.3.1.5.11.2         Sources 80
          • 2.3.1.5.11.3         Applications       80
          • 2.3.1.5.11.4         Global production            81
        • 2.3.1.5.12             Ethanol 81
          • 2.3.1.5.12.1         Overview            81
          • 2.3.1.5.12.2         Sources 82
          • 2.3.1.5.12.3         Applications       82
          • 2.3.1.5.12.4         Global production            82
          • 2.3.1.5.12.5         Ethylene              83
            • 2.3.1.5.12.5.1     Overview            83
            • 2.3.1.5.12.5.2     Applications       83
            • 2.3.1.5.12.5.3     Global production            84
            • 2.3.1.5.12.5.4     Propylene           84
            • 2.3.1.5.12.5.5     Vinyl chloride     86
          • 2.3.1.5.12.6         Methly methacrylate      87
    • 2.3.2      SUGAR CROPS   89
      • 2.3.2.1   Saccharose         89
        • 2.3.2.1.1               Aniline  89
          • 2.3.2.1.1.1           Overview            89
          • 2.3.2.1.1.2           Applications       89
          • 2.3.2.1.1.3           Global production            90
        • 2.3.2.1.2               Fructose              90
          • 2.3.2.1.2.1           Overview            90
          • 2.3.2.1.2.2           Applications       90
          • 2.3.2.1.2.3           Global production            91
          • 2.3.2.1.2.4           5-Hydroxymethylfurfural (5-HMF)            91
            • 2.3.2.1.2.4.1        Overview            91
            • 2.3.2.1.2.4.2        Applications       91
            • 2.3.2.1.2.4.3        Global production            92
          • 2.3.2.1.2.5           5-Chloromethylfurfural (5-CMF) 92
            • 2.3.2.1.2.5.1        Overview            92
            • 2.3.2.1.2.5.2        Applications       93
            • 2.3.2.1.2.5.3        Global production            93
          • 2.3.2.1.2.6           Levulinic Acid     94
            • 2.3.2.1.2.6.1        Overview            94
            • 2.3.2.1.2.6.2        Applications       94
            • 2.3.2.1.2.6.3        Global production            95
          • 2.3.2.1.2.7           FDME    95
            • 2.3.2.1.2.7.1        Overview            95
            • 2.3.2.1.2.7.2        Applications       95
            • 2.3.2.1.2.7.3        Global production            96
          • 2.3.2.1.2.8           2,5-FDCA             96
            • 2.3.2.1.2.8.1        Overview            96
            • 2.3.2.1.2.8.2        Applications       97
            • 2.3.2.1.2.8.3        Global production            97
    • 2.3.3      LIGNOCELLULOSIC BIOMASS       98
      • 2.3.3.1   Levoglucosenone             98
        • 2.3.3.1.1               Overview            98
        • 2.3.3.1.2               Applications       98
        • 2.3.3.1.3               Global production            98
      • 2.3.3.2   Hemicellulose    99
        • 2.3.3.2.1               Overview            99
        • 2.3.3.2.2               Biochemicals from hemicellulose              99
        • 2.3.3.2.3               Global production            101
        • 2.3.3.2.4               Furfural 101
          • 2.3.3.2.4.1           Overview            101
          • 2.3.3.2.4.2           Applications       101
          • 2.3.3.2.4.3           Global production            102
          • 2.3.3.2.4.4           Furfuyl alcohol   102
            • 2.3.3.2.4.4.1        Overview            102
            • 2.3.3.2.4.4.2        Applications       103
            • 2.3.3.2.4.4.3        Global production            103
      • 2.3.3.3   Lignin    104
        • 2.3.3.3.1               Overview            104
        • 2.3.3.3.2               Sources 104
        • 2.3.3.3.3               Applications       105
          • 2.3.3.3.3.1           Aromatic compounds     105
            • 2.3.3.3.3.1.1        Benzene, toluene and xylene      106
            • 2.3.3.3.3.1.2        Phenol and phenolic resins          106
            • 2.3.3.3.3.1.3        Vanillin 107
          • 2.3.3.3.3.2           Polymers             107
        • 2.3.3.3.4               Global production            109
    • 2.3.4      PLANT OILS         110
      • 2.3.4.1   Overview            110
      • 2.3.4.2   Glycerol               110
        • 2.3.4.2.1               Overview            110
        • 2.3.4.2.2               Applications       110
        • 2.3.4.2.3               Global production            111
        • 2.3.4.2.4               MPG      111
          • 2.3.4.2.4.1           Overview            111
          • 2.3.4.2.4.2           Applications       112
          • 2.3.4.2.4.3           Global production            112
        • 2.3.4.2.5               ECH        113
          • 2.3.4.2.5.1           Overview            113
          • 2.3.4.2.5.2           Applications       113
          • 2.3.4.2.5.3           Global production            113
      • 2.3.4.3   Fatty acids           114
        • 2.3.4.3.1               Overview            114
        • 2.3.4.3.2               Applications       114
        • 2.3.4.3.3               Global production            115
      • 2.3.4.4   Castor oil             115
        • 2.3.4.4.1               Overview            115
        • 2.3.4.4.2               Sebacic acid        116
          • 2.3.4.4.2.1           Overview            116
          • 2.3.4.4.2.2           Applications       116
          • 2.3.4.4.2.3           Global production            116
        • 2.3.4.4.3               11-Aminoundecanoic acid (11-AA)            117
          • 2.3.4.4.3.1           Overview            117
          • 2.3.4.4.3.2           Applications       117
          • 2.3.4.4.3.3           Global production            118
      • 2.3.4.5   Dodecanedioic acid (DDDA)         119
        • 2.3.4.5.1               Overview            119
        • 2.3.4.5.2               Applications       119
        • 2.3.4.5.3               Global production            120
      • 2.3.4.6   Pentamethylene diisocyanate    120
        • 2.3.4.6.1               Overview            120
        • 2.3.4.6.2               Applications       121
        • 2.3.4.6.3               Global production            121
    • 2.3.5      NON-EDIBIBLE MILK        122
      • 2.3.5.1   Casein   122
        • 2.3.5.1.1               Overview            122
        • 2.3.5.1.2               Applications       122
        • 2.3.5.1.3               Global production            123
  • 2.4          WASTE  123
    • 2.4.1      Food waste         123
      • 2.4.1.1   Overview            123
      • 2.4.1.2   Products and applications             124
        • 2.4.1.2.1               Global production            124
    • 2.4.2      Agricultural waste           125
      • 2.4.2.1   Overview            125
      • 2.4.2.2   Products and applications             125
      • 2.4.2.3   Global production            125
    • 2.4.3      Forestry waste  126
      • 2.4.3.1   Overview            126
      • 2.4.3.2   Products and applications             126
      • 2.4.3.3   Global production            126
    • 2.4.4      Aquaculture/fishing waste           127
      • 2.4.4.1   Overview            127
      • 2.4.4.2   Products and applications             127
      • 2.4.4.3   Global production            127
    • 2.4.5      Municipal solid waste    128
      • 2.4.5.1   Overview            128
      • 2.4.5.2   Products and applications             128
      • 2.4.5.3   Global production            129
    • 2.4.6      Industrial waste 129
      • 2.4.6.1   Overview            129
    • 2.4.7      Waste oils            129
      • 2.4.7.1   Overview            129
      • 2.4.7.2   Products and applications             130
      • 2.4.7.3   Global production            130
  • 2.5          MICROBIAL & MINERAL SOURCES             131
    • 2.5.1      Microalgae          131
      • 2.5.1.1   Overview            131
      • 2.5.1.2   Products and applications             131
      • 2.5.1.3   Global production            131
    • 2.5.2      Macroalgae        132
      • 2.5.2.1   Overview            132
      • 2.5.2.2   Products and applications             132
      • 2.5.2.3   Global production            133
    • 2.5.3      Mineral sources 133
      • 2.5.3.1   Overview            133
      • 2.5.3.2   Products and applications             134
  • 2.6          GASEOUS            134
    • 2.6.1      Biogas   135
      • 2.6.1.1   Overview            135
      • 2.6.1.2   Products and applications             135
      • 2.6.1.3   Global production            136
    • 2.6.2      Syngas  137
      • 2.6.2.1   Overview            137
      • 2.6.2.2   Products and applications             138
      • 2.6.2.3   Global production            138
    • 2.6.3      Off gases - fermentation CO2, CO              139
      • 2.6.3.1   Overview            139
      • 2.6.3.2   Products and applications             139
  • 2.7          COMPANY PROFILES       140 (115 company profiles)

 

 

3              BIO-BASED PLASTICS MARKET    212

  • 3.1          BIO-BASED OR RENEWABLE PLASTICS      212
    • 3.1.1      Drop-in bio-based plastics            212
    • 3.1.2      Novel bio-based plastics                213
  • 3.2          BIODEGRADABLE AND COMPOSTABLE PLASTICS 213
    • 3.2.1      Biodegradability               214
    • 3.2.2      Compostability  215
  • 3.3          TYPES    215
  • 3.4          KEY MARKET PLAYERS    217
  • 3.5          SYNTHETIC BIO-BASED POLYMERS            218
    • 3.5.1      Polylactic acid (Bio-PLA) 218
      • 3.5.1.1   Market analysis 218
      • 3.5.1.2   Production          219
      • 3.5.1.3   Producers and production capacities, current and planned            219
        • 3.5.1.3.1               Lactic acid producers and production capacities  219
        • 3.5.1.3.2               PLA producers and production capacities               220
        • 3.5.1.3.3               Polylactic acid (Bio-PLA) production 2019-2034 (1,000 tonnes)    222
    • 3.5.2      Polyethylene terephthalate (Bio-PET)     222
      • 3.5.2.1   Market analysis 222
      • 3.5.2.2   Producers and production capacities       223
      • 3.5.2.3   Polyethylene terephthalate (Bio-PET) production 2019-2034 (1,000 tonnes)          224
    • 3.5.3      Polytrimethylene terephthalate (Bio-PTT)             224
      • 3.5.3.1   Market analysis 224
      • 3.5.3.2   Producers and production capacities       225
      • 3.5.3.3   Polytrimethylene terephthalate (PTT) production 2019-2034 (1,000 tonnes)         225
    • 3.5.4      Polyethylene furanoate (Bio-PEF)             226
      • 3.5.4.1   Market analysis 226
      • 3.5.4.2   Comparative properties to PET   227
      • 3.5.4.3   Producers and production capacities       227
        • 3.5.4.3.1               FDCA and PEF producers and production capacities           227
        • 3.5.4.3.2               Polyethylene furanoate (Bio-PEF) production 2019-2034 (1,000 tonnes). 228
    • 3.5.5      Polyamides (Bio-PA)       229
      • 3.5.5.1   Market analysis 229
      • 3.5.5.2   Producers and production capacities       230
      • 3.5.5.3   Polyamides (Bio-PA) production 2019-2034 (1,000 tonnes)           230
    • 3.5.6      Poly(butylene adipate-co-terephthalate) (Bio-PBAT)        231
      • 3.5.6.1   Market analysis 231
      • 3.5.6.2   Producers and production capacities       231
      • 3.5.6.3   Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2034 (1,000 tonnes)             232
    • 3.5.7      Polybutylene succinate (PBS) and copolymers     233
      • 3.5.7.1   Market analysis 233
      • 3.5.7.2   Producers and production capacities       234
      • 3.5.7.3   Polybutylene succinate (PBS) production 2019-2034 (1,000 tonnes)          234
    • 3.5.8      Polyethylene (Bio-PE)    235
      • 3.5.8.1   Market analysis 235
      • 3.5.8.2   Producers and production capacities       235
      • 3.5.8.3   Polyethylene (Bio-PE) production 2019-2034 (1,000 tonnes).       236
    • 3.5.9      Polypropylene (Bio-PP) 236
      • 3.5.9.1   Market analysis 236
      • 3.5.9.2   Producers and production capacities       237
      • 3.5.9.3   Polypropylene (Bio-PP) production 2019-2034 (1,000 tonnes)      237
  • 3.6          NATURAL BIO-BASED POLYMERS               238
    • 3.6.1      Polyhydroxyalkanoates (PHA)     238
      • 3.6.1.1   Technology description 238
      • 3.6.1.2   Types    239
        • 3.6.1.2.1               PHB        241
        • 3.6.1.2.2               PHBV     242
      • 3.6.1.3   Synthesis and production processes        243
      • 3.6.1.4   Market analysis 245
      • 3.6.1.5   Commercially available PHAs      246
      • 3.6.1.6   Markets for PHAs             247
        • 3.6.1.6.1               Packaging            248
        • 3.6.1.6.2               Cosmetics           249
          • 3.6.1.6.2.1           PHA microspheres           249
        • 3.6.1.6.3               Medical 250
          • 3.6.1.6.3.1           Tissue engineering          250
          • 3.6.1.6.3.2           Drug delivery     250
        • 3.6.1.6.4               Agriculture          250
          • 3.6.1.6.4.1           Mulch film           250
          • 3.6.1.6.4.2           Grow bags           250
      • 3.6.1.7   Producers and production capacities       251
      • 3.6.1.8   PHA production capacities 2019-2034 (1,000 tonnes)      252
    • 3.6.2      Cellulose              253
      • 3.6.2.1   Microfibrillated cellulose (MFC) 253
        • 3.6.2.1.1               Market analysis 253
        • 3.6.2.1.2               Producers and production capacities       254
      • 3.6.2.2   Nanocellulose   254
        • 3.6.2.2.1               Cellulose nanocrystals    254
          • 3.6.2.2.1.1           Synthesis             255
          • 3.6.2.2.1.2           Properties           256
          • 3.6.2.2.1.3           Production          257
          • 3.6.2.2.1.4           Applications       257
          • 3.6.2.2.1.5           Market analysis 259
          • 3.6.2.2.1.6           Producers and production capacities       260
        • 3.6.2.2.2               Cellulose nanofibers       260
          • 3.6.2.2.2.1           Applications       261
          • 3.6.2.2.2.2           Market analysis 262
          • 3.6.2.2.2.3           Producers and production capacities       263
        • 3.6.2.2.3               Bacterial Nanocellulose (BNC)    264
          • 3.6.2.2.3.1           Production          264
          • 3.6.2.2.3.2           Applications       266
    • 3.6.3      Protein-based bioplastics             267
      • 3.6.3.1   Types, applications and producers            268
    • 3.6.4      Algal and fungal 269
      • 3.6.4.1   Algal      269
        • 3.6.4.1.1               Advantages        269
        • 3.6.4.1.2               Production          270
        • 3.6.4.1.3               Producers           271
      • 3.6.4.2   Mycelium            271
        • 3.6.4.2.1               Properties           271
        • 3.6.4.2.2               Applications       272
        • 3.6.4.2.3               Commercialization           273
    • 3.6.5      Chitosan              274
      • 3.6.5.1   Technology description 274
  • 3.7          PRODUCTION OF BIOBASED AND BIODEGRADABLE PLASTICS, BY REGION 275
    • 3.7.1      North America   276
    • 3.7.2      Europe 276
    • 3.7.3      Asia-Pacific         277
      • 3.7.3.1   China     277
      • 3.7.3.2   Japan    277
      • 3.7.3.3   Thailand               277
      • 3.7.3.4   Indonesia            277
    • 3.7.4      Latin America    278
  • 3.8          MARKET SEGMENTATION OF BIOPLASTICS           279
    • 3.8.1      Packaging            280
      • 3.8.1.1   Processes for bioplastics in packaging      280
      • 3.8.1.2   Applications       281
      • 3.8.1.3   Flexible packaging            281
        • 3.8.1.3.1               Production volumes 2019-2034   283
      • 3.8.1.4   Rigid packaging 284
        • 3.8.1.4.1               Production volumes 2019-2034   285
    • 3.8.2      Consumer products        286
      • 3.8.2.1   Applications       286
      • 3.8.2.2   Production volumes 2019-2034   286
    • 3.8.3      Automotive        287
      • 3.8.3.1   Applications       287
      • 3.8.3.2   Production volumes 2019-2034   288
    • 3.8.4      Building & construction 288
      • 3.8.4.1   Applications       288
      • 3.8.4.2   Production volumes 2019-2034   289
    • 3.8.5      Textiles 289
      • 3.8.5.1   Apparel 290
      • 3.8.5.2   Footwear            290
      • 3.8.5.3   Medical textiles 291
      • 3.8.5.4   Production volumes 2019-2034   292
    • 3.8.6      Electronics          292
      • 3.8.6.1   Applications       292
      • 3.8.6.2   Production volumes 2019-2034   293
    • 3.8.7      Agriculture and horticulture        293
      • 3.8.7.1   Production volumes 2019-2034   294
  • 3.9          NATURAL FIBERS              295
    • 3.9.1      Manufacturing method, matrix materials and applications of natural fibers            298
    • 3.9.2      Advantages of natural fibers       298
    • 3.9.3      Commercially available next-gen natural fiber  products 299
    • 3.9.4      Market drivers for next-gen natural fibers             302
    • 3.9.5      Challenges          303
    • 3.9.6      Plants (cellulose, lignocellulose) 304
      • 3.9.6.1   Seed fibers         304
        • 3.9.6.1.1               Cotton  304
          • 3.9.6.1.1.1           Production volumes 2018-2034   305
        • 3.9.6.1.2               Kapok   305
          • 3.9.6.1.2.1           Production volumes 2018-2034   306
        • 3.9.6.1.3               Luffa      307
      • 3.9.6.2   Bast fibers           307
        • 3.9.6.2.1               Jute       308
        • 3.9.6.2.2               Production volumes 2018-2034   309
          • 3.9.6.2.2.1           Hemp    309
          • 3.9.6.2.2.2           Production volumes 2018-2034   310
        • 3.9.6.2.3               Flax        311
          • 3.9.6.2.3.1           Production volumes 2018-2034   312
        • 3.9.6.2.4               Ramie   312
          • 3.9.6.2.4.1           Production volumes 2018-2034   313
        • 3.9.6.2.5               Kenaf    314
          • 3.9.6.2.5.1           Production volumes 2018-2034   315
      • 3.9.6.3   Leaf fibers           315
        • 3.9.6.3.1               Sisal       315
          • 3.9.6.3.1.1           Production volumes 2018-2034   316
        • 3.9.6.3.2               Abaca    316
          • 3.9.6.3.2.1           Production volumes 2018-2034   317
      • 3.9.6.4   Fruit fibers          318
        • 3.9.6.4.1               Coir        318
          • 3.9.6.4.1.1           Production volumes 2018-2034   318
        • 3.9.6.4.2               Banana 319
          • 3.9.6.4.2.1           Production volumes 2018-2034   320
        • 3.9.6.4.3               Pineapple            320
      • 3.9.6.5   Stalk fibers from agricultural residues     322
        • 3.9.6.5.1               Rice fiber             322
        • 3.9.6.5.2               Corn      323
      • 3.9.6.6   Cane, grasses and reed  323
        • 3.9.6.6.1               Switch grass       323
        • 3.9.6.6.2               Sugarcane (agricultural residues)              324
        • 3.9.6.6.3               Bamboo               325
          • 3.9.6.6.3.1           Production volumes 2018-2034   325
        • 3.9.6.6.4               Fresh grass (green biorefinery)  326
    • 3.9.7      Animal (fibrous protein) 326
      • 3.9.7.1   Wool     326
        • 3.9.7.1.1               Alternative wool materials           327
        • 3.9.7.1.2               Producers           327
      • 3.9.7.2   Silk fiber              327
        • 3.9.7.2.1               Alternative silk materials               328
        • 3.9.7.2.1.1           Producers           328
      • 3.9.7.3   Leather 328
        • 3.9.7.3.1               Alternative leather materials       329
        • 3.9.7.3.1.1           Producers           329
      • 3.9.7.4   Fur         330
        • 3.9.7.4.1               Producers           330
      • 3.9.7.5   Down    331
        • 3.9.7.5.1               Alternative down materials          331
          • 3.9.7.5.1.1           Producers           331
    • 3.9.8      Markets for natural fibers            331
      • 3.9.8.1   Composites        331
      • 3.9.8.2   Applications       332
      • 3.9.8.3   Natural fiber injection moulding compounds       333
        • 3.9.8.3.1               Properties           333
        • 3.9.8.3.2               Applications       333
      • 3.9.8.4   Non-woven natural fiber mat composites              334
        • 3.9.8.4.1               Automotive        334
        • 3.9.8.4.2               Applications       334
      • 3.9.8.5   Aligned natural fiber-reinforced composites        334
      • 3.9.8.6   Natural fiber biobased polymer compounds         335
      • 3.9.8.7   Natural fiber biobased polymer non-woven mats              336
        • 3.9.8.7.1               Flax        336
        • 3.9.8.7.2               Kenaf    336
      • 3.9.8.8   Natural fiber thermoset bioresin composites       336
      • 3.9.8.9   Aerospace          337
        • 3.9.8.9.1               Market overview             337
      • 3.9.8.10                Automotive        337
        • 3.9.8.10.1             Market overview             337
        • 3.9.8.10.2             Applications of natural fibers      341
      • 3.9.8.11                Building/construction     341
        • 3.9.8.11.1             Market overview             342
        • 3.9.8.11.2             Applications of natural fibers      342
      • 3.9.8.12                Sports and leisure            343
        • 3.9.8.12.1             Market overview             343
      • 3.9.8.13                Textiles 344
        • 3.9.8.13.1             Market overview             344
        • 3.9.8.13.2             Consumer apparel           345
        • 3.9.8.13.3             Geotextiles        345
      • 3.9.8.14                Packaging            346
        • 3.9.8.14.1             Market overview             346
    • 3.9.9      Global production of natural fibers           348
      • 3.9.9.1   Overall global fibers market        348
      • 3.9.9.2   Plant-based fiber production      350
      • 3.9.9.3   Animal-based natural fiber production   351
  • 3.10        LIGNIN 352
    • 3.10.1    Introduction       352
      • 3.10.1.1                What is lignin?   352
        • 3.10.1.1.1             Lignin structure 352
      • 3.10.1.2                Types of lignin    353
        • 3.10.1.2.1             Sulfur containing lignin  355
        • 3.10.1.2.2             Sulfur-free lignin from biorefinery process            356
      • 3.10.1.3                Properties           356
      • 3.10.1.4                The lignocellulose biorefinery     358
      • 3.10.1.5                Markets and applications              359
      • 3.10.1.6                Challenges for using lignin            360
    • 3.10.2    Lignin production processes        361
      • 3.10.2.1                Lignosulphonates            362
      • 3.10.2.2                Kraft Lignin          362
        • 3.10.2.2.1             LignoBoost process         363
        • 3.10.2.2.2             LignoForce method         363
        • 3.10.2.2.3             Sequential Liquid Lignin Recovery and Purification             364
        • 3.10.2.2.4             A-Recovery+      365
      • 3.10.2.3                Soda lignin          365
      • 3.10.2.4                Biorefinery lignin              366
        • 3.10.2.4.1             Commercial and pre-commercial biorefinery lignin production facilities and  processes    367
      • 3.10.2.5                Organosolv lignins            369
      • 3.10.2.6                Hydrolytic lignin                369
    • 3.10.3    Markets for lignin             370
      • 3.10.3.1                Market drivers and trends for lignin         370
      • 3.10.3.2                Production capacities     371
        • 3.10.3.2.1             Technical lignin availability (dry ton/y)    371
        • 3.10.3.2.2             Biomass conversion (Biorefinery)             372
      • 3.10.3.3                Estimated consumption of lignin                372
      • 3.10.3.4                Prices    373
      • 3.10.3.5                Heat and power energy 374
      • 3.10.3.6                Pyrolysis and syngas       374
      • 3.10.3.7                Aromatic compounds     374
        • 3.10.3.7.1             Benzene, toluene and xylene      374
        • 3.10.3.7.2             Phenol and phenolic resins          375
        • 3.10.3.7.3             Vanillin 375
      • 3.10.3.8                Plastics and polymers     375
  • 3.11        COMPANY PROFILES       377 (516 company profiles)

 

4              REFERENCES       737

 

List of Tables

  • Table 1. Plant-based feedstocks and biochemicals produced.       45
  • Table 2. Waste-based feedstocks and biochemicals produced.     46
  • Table 3. Microbial and mineral-based feedstocks and biochemicals produced.      47
  • Table 4. Common starch sources that can be used as feedstocks for producing biochemicals.         48
  • Table 5. Common lysine sources that can be used as feedstocks for producing biochemicals.          49
  • Table 6. Applications of  lysine as a feedstock for biochemicals.   49
  • Table 7. HDMA sources that can be used as feedstocks for producing biochemicals.           52
  • Table 8. Applications of bio-based HDMA.             52
  • Table 9. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5).     54
  • Table 10. Applications of DN5.    54
  • Table 11. Biobased feedstocks for isosorbide.     56
  • Table 12. Applications of bio-based isosorbide.   56
  • Table 13. Lactide applications.    59
  • Table 14. Biobased feedstock sources for itaconic acid.    60
  • Table 15. Applications of bio-based itaconic acid.               60
  • Table 16. Biobased feedstock sources for 3-HP.  62
  • Table 17. Applications of 3-HP.   62
  • Table 18. Applications of bio-based acrylic acid.  64
  • Table 19. Applications of bio-based 1,3-Propanediol (1,3-PDO).   65
  • Table 20. Biobased feedstock sources for Succinic acid.   66
  • Table 21. Applications of succinic acid.    67
  • Table 22. Applications of bio-based 1,4-Butanediol (BDO).             68
  • Table 23. Applications of bio-based Tetrahydrofuran (THF).          70
  • Table 24. Applications of bio-based adipic acid.   71
  • Table 25. Applications of bio-based caprolactam.               72
  • Table 26. Biobased feedstock sources for isobutanol.       74
  • Table 27. Applications of bio-based isobutanol.  74
  • Table 28. Biobased feedstock sources for p-Xylene.          76
  • Table 29. Applications of bio-based p-Xylene.      76
  • Table 30. Applications of bio-based Terephthalic acid (TPA).         77
  • Table 31. Biobased feedstock sources for 1,3 Proppanediol.          78
  • Table 32. Applications of bio-based 1,3 Proppanediol.     79
  • Table 33. Biobased feedstock sources for MEG.  80
  • Table 34. Applications of bio-based MEG.              80
  • Table 35. Biobased MEG producers capacities.    81
  • Table 36. Biobased feedstock sources for ethanol.            82
  • Table 37. Applications of bio-based ethanol.        82
  • Table 38. Applications of bio-based ethylene.     83
  • Table 39. Applications of bio-based propylene.   84
  • Table 40. Applications of bio-based vinyl chloride.             86
  • Table 41. Applications of bio-based Methly methacrylate.             87
  • Table 42. Applications of bio-based aniline.          89
  • Table 43. Applications of biobased fructose.        90
  • Table 44. Applications of bio-based 5-Hydroxymethylfurfural (5-HMF).    92
  • Table 45. Applications of 5-(Chloromethyl)furfural (CMF).             93
  • Table 46. Applications of Levulinic acid.  94
  • Table 47. Markets and applications for bio-based FDME. 95
  • Table 48. Applications of FDCA.  97
  • Table 49. Markets and applications for bio-based levoglucosenone.          98
  • Table 50. Biochemicals derived from hemicellulose           99
  • Table 51. Markets and applications for bio-based hemicellulose  100
  • Table 52. Markets and applications for bio-based furfuryl alcohol.              103
  • Table 53. Commercial and pre-commercial biorefinery lignin production facilities and processes  104
  • Table 54. Lignin aromatic compound products.   105
  • Table 55. Prices of benzene, toluene, xylene and their derivatives.            106
  • Table 56. Lignin products in polymeric materials.               107
  • Table 57. Application of lignin in plastics and composites.              108
  • Table 58. Markets and applications for bio-based glycerol.             110
  • Table 59. Markets and applications for Bio-based MPG.  112
  • Table 60. Markets and applications: Bio-based ECH.          113
  • Table 61. Mineral source products and applications.         134
  • Table 62. Type of biodegradation.            214
  • Table 63. Advantages and disadvantages of biobased plastics compared to conventional plastics. 215
  • Table 64. Types of Bio-based and/or Biodegradable Plastics, applications.               215
  • Table 65. Key market players by Bio-based and/or Biodegradable Plastic types.    217
  • Table 66. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.               218
  • Table 67. Lactic acid producers and production capacities.             219
  • Table 68. PLA producers and production capacities.          220
  • Table 69. Planned PLA capacity expansions in China.         220
  • Table 70. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications.              222
  • Table 71. Bio-based Polyethylene terephthalate (PET) producers and production capacities,           223
  • Table 72. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications.       224
  • Table 73. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.   225
  • Table 74. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.                226
  • Table 75. PEF vs. PET.     227
  • Table 76. FDCA and PEF producers.          228
  • Table 77. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications.                229
  • Table 78. Leading Bio-PA producers production capacities.            230
  • Table 79. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications.              231
  • Table 80. Leading PBAT producers, production capacities and brands.      231
  • Table 81. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications.       233
  • Table 82. Leading PBS producers and production capacities.          234
  • Table 83. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.                235
  • Table 84. Leading Bio-PE producers.        235
  • Table 85. Bio-PP market analysis- manufacture, advantages, disadvantages and applications.        236
  • Table 86. Leading Bio-PP producers and capacities.           237
  • Table 87.Types of PHAs and properties. 240
  • Table 88. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 242
  • Table 89. Polyhydroxyalkanoate (PHA) extraction methods.          244
  • Table 90. Polyhydroxyalkanoates (PHA) market analysis. 245
  • Table 91. Commercially available PHAs.  246
  • Table 92. Markets and applications for PHAs.       247
  • Table 93. Applications, advantages and disadvantages of PHAs in packaging.         248
  • Table 94. Polyhydroxyalkanoates (PHA) producers.           251
  • Table 95. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications.                253
  • Table 96. Leading MFC producers and capacities.               254
  • Table 97. Synthesis methods for cellulose nanocrystals (CNC).     255
  • Table 98. CNC sources, size and yield.      256
  • Table 99. CNC properties.             256
  • Table 100. Mechanical properties of CNC and other reinforcement materials.       257
  • Table 101. Applications of nanocrystalline cellulose (NCC).            258
  • Table 102. Cellulose nanocrystals analysis.            259
  • Table 103: Cellulose nanocrystal production capacities and production process, by producer.        260
  • Table 104. Applications of cellulose nanofibers (CNF).     261
  • Table 105. Cellulose nanofibers market analysis. 262
  • Table 106. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes.  263
  • Table 107. Applications of bacterial nanocellulose (BNC).               266
  • Table 108. Types of protein based-bioplastics, applications and companies.           268
  • Table 109. Types of algal and fungal based-bioplastics, applications and companies.          269
  • Table 110. Overview of alginate-description, properties, application and market size.        269
  • Table 111. Companies developing algal-based bioplastics.              271
  • Table 112. Overview of mycelium fibers-description, properties, drawbacks and applications.       271
  • Table 113. Companies developing mycelium-based bioplastics.   273
  • Table 114. Overview of chitosan-description, properties, drawbacks and applications.      274
  • Table 115. Global production capacities of biobased and sustainable plastics in 2019-2034, by region, 1,000 tonnes.                275
  • Table 116. Biobased and sustainable plastics producers in North America.              276
  • Table 117. Biobased and sustainable plastics producers in Europe.             276
  • Table 118. Biobased and sustainable plastics producers in Asia-Pacific.     277
  • Table 119. Biobased and sustainable plastics producers in Latin America. 278
  • Table 120. Processes for bioplastics in packaging.              280
  • Table 121. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.           281
  • Table 122. Typical applications for bioplastics in flexible packaging.           282
  • Table 123. Typical applications for bioplastics in rigid packaging. 284
  • Table 124. Types of next-gen natural fibers.         295
  • Table 125. Application, manufacturing method, and matrix materials of natural fibers.     298
  • Table 126. Typical properties of natural fibers.    299
  • Table 127. Commercially available next-gen natural fiber products.           299
  • Table 128. Market drivers for natural fibers.        302
  • Table 129. Overview of cotton fibers-description, properties, drawbacks and applications.              304
  • Table 130. Overview of kapok fibers-description, properties, drawbacks and applications.               306
  • Table 131. Overview of luffa fibers-description, properties, drawbacks and applications.  307
  • Table 132. Overview of jute fibers-description, properties, drawbacks and applications.   308
  • Table 133. Overview of hemp fibers-description, properties, drawbacks and applications.               309
  • Table 134. Overview of flax fibers-description, properties, drawbacks and applications.    311
  • Table 135. Overview of ramie fibers- description, properties, drawbacks and applications.              312
  • Table 136. Overview of kenaf fibers-description, properties, drawbacks and applications. 314
  • Table 137. Overview of sisal leaf fibers-description, properties, drawbacks and applications.          315
  • Table 138. Overview of abaca fibers-description, properties, drawbacks and applications.               316
  • Table 139. Overview of coir fibers-description, properties, drawbacks and applications.   318
  • Table 140. Overview of banana fibers-description, properties, drawbacks and applications.            319
  • Table 141. Overview of pineapple fibers-description, properties, drawbacks and applications.       320
  • Table 142. Overview of rice fibers-description, properties, drawbacks and applications.   322
  • Table 143. Overview of corn fibers-description, properties, drawbacks and applications.  323
  • Table 144. Overview of switch grass fibers-description, properties and applications.          323
  • Table 145. Overview of sugarcane fibers-description, properties, drawbacks and application and market size.        324
  • Table 146. Overview of bamboo fibers-description, properties, drawbacks and applications.          325
  • Table 147. Overview of wool fibers-description, properties, drawbacks and applications. 326
  • Table 148. Alternative wool materials producers.              327
  • Table 149. Overview of silk fibers-description, properties, application and market size.     327
  • Table 150. Alternative silk materials producers.  328
  • Table 151. Alternative leather materials producers.          329
  • Table 152. Next-gen fur producers.          330
  • Table 153. Alternative down materials producers.             331
  • Table 154. Applications of natural fiber composites.         332
  • Table 155. Typical properties of short natural fiber-thermoplastic composites.     333
  • Table 156. Properties of non-woven natural fiber mat composites.            334
  • Table 157. Properties of aligned natural fiber composites.             335
  • Table 158. Properties of natural fiber-bio-based polymer compounds.     335
  • Table 159. Properties of natural fiber-bio-based polymer non-woven mats.           336
  • Table 160. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use. 337
  • Table 161. Natural fiber-reinforced polymer composite in the automotive market.             339
  • Table 162. Natural fibers in the aerospace sector- market drivers, applications and challenges for NF use. 340
  • Table 163. Applications of natural fibers in the automotive industry.         341
  • Table 164. Natural fibers in the building/construction sector- market drivers, applications and challenges for NF use.                342
  • Table 165. Applications of natural fibers in the building/construction sector.         342
  • Table 166. Natural fibers in the sports and leisure sector-market drivers, applications and challenges for NF use.  344
  • Table 167. Natural fibers in the textiles sector- market drivers, applications and challenges for NF use.     344
  • Table 168. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use. 346
  • Table 169. Technical lignin types and applications.             354
  • Table 170. Classification of technical lignins.         356
  • Table 171. Lignin content of selected biomass.   356
  • Table 172. Properties of lignins and their applications.     357
  • Table 173. Example markets and applications for lignin.  359
  • Table 174. Processes for lignin production.           361
  • Table 175. Biorefinery feedstocks.           366
  • Table 176. Comparison of pulping and biorefinery lignins.              366
  • Table 177. Commercial and pre-commercial biorefinery lignin production facilities and  processes              367
  • Table 178. Market drivers and trends for lignin.  371
  • Table 179. Production capacities of technical lignin producers.    371
  • Table 180. Production capacities of biorefinery lignin producers. 372
  • Table 181. Estimated consumption of lignin, 2019-2034 (000 MT).             372
  • Table 182. Prices of benzene, toluene, xylene and their derivatives.          374
  • Table 183. Application of lignin in plastics and polymers. 375
  • Table 184. Lactips plastic pellets.              555
  • Table 185. Oji Holdings CNF products.     619

 

List of Figures

  • Figure 1. Schematic of biorefinery processes.      44
  • Figure 2. Global production of starch for biobased chemicals and intermediates, 2018-2034 (million metric tonnes).                48
  • Figure 3. Global production of biobased lysine, 2018-2034 (metric tonnes).           50
  • Figure 4. Global glucose production for bio-based chemicals and intermediates 2018-2034 (million metric tonnes).                51
  • Figure 5. Global production volumes of bio-HMDA, 2018 to 2034 in metric tonnes.            53
  • Figure 6. Global production of bio-based DN5, 2018-2034 (metric tonnes).            55
  • Figure 7. Global production of bio-based isosorbide, 2018-2034 (metric tonnes). 57
  • Figure 8. L-lactic acid (L-LA) production, 2018-2034 (metric tonnes).         58
  • Figure 9. Global lactide production, 2018-2034 (metric tonnes).  59
  • Figure 10. Global production of bio-itaconic acid, 2018-2034 (metric tonnes).       61
  • Figure 11. Global production of 3-HP,  2018-2034 (metric tonnes).             63
  • Figure 12. Global production of bio-based acrylic acid,  2018-2034 (metric tonnes).           64
  • Figure 13. Global production of bio-based 1,3-Propanediol (1,3-PDO), 2018-2034 (metric tonnes).              66
  • Figure 14. Global production of bio-based Succinic acid, 2018-2034 (metric tonnes).         68
  • Figure 15. Global production of 1,4-Butanediol (BDO), 2018-2034 (metric tonnes).             69
  • Figure 16. Global production of bio-based tetrahydrofuran (THF), 2018-2034 (metric tonnes).       71
  • Figure 17. Overview of Toray process.     71
  • Figure 18. Global production of bio-based caprolactam, 2018-2034 (metric tonnes).          73
  • Figure 19. Global production of bio-based isobutanol, 2018-2034 (metric tonnes).             75
  • Figure 20. Global production of bio-based p-xylene, 2018-2034 (metric tonnes). 77
  • Figure 21. Global production of biobased terephthalic acid (TPA), 2018-2034 (metric tonnes).       78
  • Figure 22. Global production of biobased 1,3 Proppanediol, 2018-2034 (metric tonnes).  80
  • Figure 23. Global production of biobased MEG, 2018-2034 (metric tonnes).          81
  • Figure 24. Global production of biobased ethanol, 2018-2034 (million metric tonnes).      83
  • Figure 25. Global production of biobased ethylene, 2018-2034 (million metric tonnes).    84
  • Figure 26. Global production of biobased propylene, 2018-2034 (metric tonnes). 85
  • Figure 27. Global production of biobased vinyl chloride, 2018-2034 (metric tonnes).         87
  • Figure 28. Global production of bio-based Methly methacrylate, 2018-2034 (metric tonnes).         88
  • Figure 29. Global production of biobased aniline, 2018-2034 (metric tonnes).       90
  • Figure 30. Global production of biobased fructose, 2018-2034 (metric tonnes).    91
  • Figure 31. Global production of biobased 5-Hydroxymethylfurfural (5-HMF), 2018-2034 (metric tonnes). 92
  • Figure 32. Global production of biobased 5-(Chloromethyl)furfural (CMF), 2018-2034 (metric tonnes).      93
  • Figure 33. Global production of biobased Levulinic acid, 2018-2034 (metric tonnes).         95
  • Figure 34. Global production of biobased FDME, 2018-2034 (metric tonnes).        96
  • Figure 35. Global production of biobased Furan-2,5-dicarboxylic acid (FDCA), 2018-2034 (metric tonnes). 97
  • Figure 36. Global production projections for bio-based levoglucosenone from 2018 to 2034 in metric tonnes:       99
  • Figure 37. Global production of hemicellulose, 2018-2034 (metric tonnes).            101
  • Figure 38. Global production of biobased furfural, 2018-2034 (metric tonnes).     102
  • Figure 39. Global production of biobased furfuryl alcohol, 2018-2034 (metric tonnes).      103
  • Figure 40. Schematic of WISA plywood home.     107
  • Figure 41. Global production of biobased lignin, 2018-2034 (metric tonnes).         109
  • Figure 42. Global production of biobased glycerol, 2018-2034 (metric tonnes).    111
  • Figure 43. Global production of Bio-MPG, 2018-2034 (metric tonnes).      112
  • Figure 44. Global production of biobased ECH, 2018-2034 (metric tonnes).            114
  • Figure 45. Global production of biobased fatty acids, 2018-2034 (million metric tonnes). 115
  • Figure 46. Global production of biobased sebacic acid, 2018-2034 (metric tonnes).            117
  • Figure 47. Global production of biobased 11-Aminoundecanoic acid (11-AA), 2018-2034 (metric tonnes). 118
  • Figure 48. Global production of biobased Dodecanedioic acid (DDDA), 2018-2034 (metric tonnes).             120
  • Figure 49. Global production of biobased Pentamethylene diisocyanate, 2018-2034 (metric tonnes).         121
  • Figure 50. Global production of biobased casein, 2018-2034 (metric tonnes).       123
  • Figure 51. Global production of food waste for biochemicals, 2018-2034 (million metric tonnes). 124
  • Figure 52. Global production of agricultural waste for biochemicals, 2018-2034 (million metric tonnes).   126
  • Figure 53. Global production of forestry waste for biochemicals, 2018-2034 (million metric tonnes).          127
  • Figure 54. Global production of aquaculture/fishing waste for biochemicals, 2018-2034 (million metric tonnes).   128
  • Figure 55. Global production of municipal solid waste for biochemicals, 2018-2034 (million metric tonnes).            129
  • Figure 56. Global production of waste oils for biochemicals, 2018-2034 (million metric tonnes).   130
  • Figure 57. Global microalgae production, 2018-2034 (million metric tonnes).        131
  • Figure 58. Global macroalgae production, 2018-2034 (million metric tonnes).      133
  • Figure 59. Global production of biogas, 2018-2034 (billion m3).   136
  • Figure 60. Global production of syngas, 2018-2034 (billion m3).   138
  • Figure 61. formicobio™ technology.         156
  • Figure 62. Domsjö process.          160
  • Figure 63.  TMP-Bio Process.       165
  • Figure 64. Lignin gel.       182
  • Figure 65. BioFlex process.           185
  • Figure 66. LX Process.    187
  • Figure 67. METNIN™ Lignin refining technology. 190
  • Figure 68. Enfinity cellulosic ethanol technology process.               196
  • Figure 69.  Precision Photosynthesis™ technology.            198
  • Figure 70. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.    199
  • Figure 71. UPM biorefinery process.        208
  • Figure 72. The Proesa® Process. 209
  • Figure 73. Goldilocks process and applications.   210
  • Figure 74.  Coca-Cola PlantBottle®.           213
  • Figure 75. Interrelationship between conventional, bio-based and biodegradable plastics.              213
  • Figure 76. Polylactic acid (Bio-PLA) production 2019-2034 (1,000 tonnes).              222
  • Figure 77. Polyethylene terephthalate (Bio-PET) production 2019-2034 (1,000 tonnes)     224
  • Figure 78. Polytrimethylene terephthalate (PTT) production 2019-2034 (1,000 tonnes).   225
  • Figure 79. Production capacities of Polyethylene furanoate (PEF) to 2025.               228
  • Figure 80. Polyethylene furanoate (Bio-PEF) production 2019-2034 (1,000 tonnes).           228
  • Figure 81. Polyamides (Bio-PA) production 2019-2034 (1,000 tonnes).     230
  • Figure 82. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2034 (1,000 tonnes).       232
  • Figure 83. Polybutylene succinate (PBS) production 2019-2034 (1,000 tonnes).    234
  • Figure 84. Polyethylene (Bio-PE) production 2019-2034 (1,000 tonnes).  236
  • Figure 85. Polypropylene (Bio-PP) production capacities 2019-2034 (1,000 tonnes).           237
  • Figure 86. PHA family.    240
  • Figure 87. PHA production capacities 2019-2034 (1,000 tonnes). 252
  • Figure 88. TEM image of cellulose nanocrystals. 254
  • Figure 89. CNC preparation.        255
  • Figure 90. Extracting CNC from trees.      256
  • Figure 91. CNC slurry.     258
  • Figure 92. CNF gel.           261
  • Figure 93. Bacterial nanocellulose shapes              265
  • Figure 94. BLOOM masterbatch from Algix.           270
  • Figure 95. Typical structure of mycelium-based foam.     272
  • Figure 96. Commercial mycelium composite construction materials.          273
  • Figure 97. Global production capacities for bioplastics by end user market 2019-2034, 1,000 tonnes.         275
  • Figure 98. Global production capacities for bioplastics by end user market 2019-2034, 1,000 tonnes.         279
  • Figure 99. PHA bioplastics products.        281
  • Figure 100. The global market for biobased and biodegradable plastics for flexible packaging 2019–2033 (‘000 tonnes).                283
  • Figure 101. Production volumes for bioplastics for rigid packaging, 2019–2033 (‘000 tonnes).        285
  • Figure 102. Global production for biobased and biodegradable plastics in consumer products 2019-2034, in 1,000 tonnes. 287
  • Figure 103. Global production capacities for biobased and biodegradable plastics in automotive 2019-2034, in 1,000 tonnes. 288
  • Figure 104. Global production volumes for biobased and biodegradable plastics in building and construction 2019-2034, in 1,000 tonnes.   289
  • Figure 105. Global production volumes for biobased and biodegradable plastics in textiles 2019-2034, in 1,000 tonnes.                292
  • Figure 106. Global production volumes for biobased and biodegradable plastics in electronics 2019-2034, in 1,000 tonnes. 293
  • Figure 107. Biodegradable mulch films.  294
  • Figure 108. Global production volulmes for biobased and biodegradable plastics in agriculture 2019-2034, in 1,000 tonnes. 294
  • Figure 109. Types of natural fibers.          297
  • Figure 110. Absolut natural based fiber bottle cap.            300
  • Figure 111. Adidas algae-ink tees.             300
  • Figure 112. Carlsberg natural fiber beer bottle.   300
  • Figure 113. Miratex watch bands.             300
  • Figure 114. Adidas Made with Nature Ultraboost 22.        300
  • Figure 115. PUMA RE:SUEDE sneaker      301
  • Figure 116. Cotton production volume 2018-2034 (Million MT).  305
  • Figure 117. Kapok production volume 2018-2034 (MT).  306
  • Figure 118.  Luffa cylindrica fiber.             307
  • Figure 119. Jute production volume 2018-2034 (Million MT).        309
  • Figure 120. Hemp fiber production volume 2018-2034 ( MT).       311
  • Figure 121. Flax fiber production volume 2018-2034 (MT).            312
  • Figure 122. Ramie fiber production volume 2018-2034 (MT).        314
  • Figure 123. Kenaf fiber production volume 2018-2034 (MT).         315
  • Figure 124. Sisal fiber production volume 2018-2034 (MT).           316
  • Figure 125. Abaca fiber production volume 2018-2034 (MT).        317
  • Figure 126. Coir fiber production volume 2018-2034 (MILLION MT).          319
  • Figure 127. Banana fiber production volume 2018-2034 (MT).     320
  • Figure 128. Pineapple fiber.         321
  • Figure 129. A bag made with pineapple biomaterial from the H&M Conscious Collection 2019.      322
  • Figure 130. Bamboo fiber production volume 2018-2034 (MILLION MT). 326
  • Figure 131. Conceptual landscape of next-gen leather materials. 329
  • Figure 132. Hemp fibers combined with PP in car door panel.       336
  • Figure 133. Car door produced from Hemp fiber.               338
  • Figure 134. Mercedes-Benz components containing natural fibers.            339
  • Figure 135. AlgiKicks sneaker, made with the Algiknit biopolymer gel.       345
  • Figure 136. Coir mats for erosion control.              346
  • Figure 137. Global fiber production in 2022, by fiber type, million MT and %.        348
  • Figure 138. Global fiber production (million MT) to 2020-2034.     349
  • Figure 139. Plant-based fiber production 2018-2034, by fiber type, MT.   350
  • Figure 140. Animal based fiber production 2018-2034, by fiber type, million MT. 351
  • Figure 141. High purity lignin.     352
  • Figure 142. Lignocellulose architecture. 353
  • Figure 143. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins.                354
  • Figure 144. The lignocellulose biorefinery.            359
  • Figure 145. LignoBoost process. 363
  • Figure 146. LignoForce system for lignin recovery from black liquor.          364
  • Figure 147. Sequential liquid-lignin recovery and purification (SLPR) system.         364
  • Figure 148. A-Recovery+ chemical recovery concept.       365
  • Figure 149.  Schematic of a biorefinery for production of carriers and chemicals. 367
  • Figure 150. Organosolv lignin.     369
  • Figure 151. Hydrolytic lignin powder.      370
  • Figure 152. Estimated consumption of lignin, 2019-2034 (000 MT).            373
  • Figure 153. Pluumo.        380
  • Figure 154. ANDRITZ Lignin Recovery process.    389
  • Figure 155. Anpoly cellulose nanofiber hydrogel.               391
  • Figure 156. MEDICELLU™.            392
  • Figure 157. Asahi Kasei CNF fabric sheet.               400
  • Figure 158. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.            400
  • Figure 159. CNF nonwoven fabric.            401
  • Figure 160. Roof frame made of natural fiber.     410
  • Figure 161. Beyond Leather Materials product.   413
  • Figure 162. BIOLO e-commerce mailer bag made from PHA.          419
  • Figure 163. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc. 420
  • Figure 164. Fiber-based screw cap.           431
  • Figure 165. formicobio™ technology.      449
  • Figure 166. nanoforest-S.             451
  • Figure 167. nanoforest-PDP.       451
  • Figure 168. nanoforest-MB.        452
  • Figure 169. sunliquid® production process.           459
  • Figure 170. CuanSave film.           461
  • Figure 171. Celish.           462
  • Figure 172. Trunk lid incorporating CNF. 464
  • Figure 173. ELLEX products.         465
  • Figure 174. CNF-reinforced PP compounds.          465
  • Figure 175. Kirekira! toilet wipes.              466
  • Figure 176. Color CNF.   467
  • Figure 177. Rheocrysta spray.     472
  • Figure 178. DKS CNF products.   473
  • Figure 179. Domsjö process.       474
  • Figure 180. Mushroom leather. 483
  • Figure 181. CNF based on citrus peel.      484
  • Figure 182. Citrus cellulose nanofiber.    484
  • Figure 183. Filler Bank CNC products.      495
  • Figure 184. Fibers on kapok tree and after processing.     497
  • Figure 185.  TMP-Bio Process.    499
  • Figure 186. Flow chart of the lignocellulose biorefinery pilot plant in Leuna.          500
  • Figure 187. Water-repellent cellulose.    502
  • Figure 188. Cellulose Nanofiber (CNF) composite with polyethylene (PE). 503
  • Figure 189. PHA production process.       504
  • Figure 190. CNF products from Furukawa Electric.              505
  • Figure 191. AVAPTM process.     514
  • Figure 192. GreenPower+™ process.       515
  • Figure 193. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.            518
  • Figure 194. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer).              520
  • Figure 195. CNF gel.        526
  • Figure 196. Block nanocellulose material.              527
  • Figure 197. CNF products developed by Hokuetsu.            527
  • Figure 198. Marine leather products.      530
  • Figure 199. Inner Mettle Milk products. 533
  • Figure 200. Kami Shoji CNF products.      544
  • Figure 201. Dual Graft System.   546
  • Figure 202. Engine cover utilizing Kao CNF composite resins.        547
  • Figure 203. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).           547
  • Figure 204. Kel Labs yarn.             548
  • Figure 205. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side).     552
  • Figure 206. Lignin gel.    560
  • Figure 207. BioFlex process.        564
  • Figure 208. Nike Algae Ink graphic tee.   565
  • Figure 209. LX Process.  568
  • Figure 210. Made of Air's HexChar panels.            571
  • Figure 211. TransLeather.             572
  • Figure 212. Chitin nanofiber product.      576
  • Figure 213. Marusumi Paper cellulose nanofiber products.            578
  • Figure 214. FibriMa cellulose nanofiber powder. 578
  • Figure 215. METNIN™ Lignin refining technology.              582
  • Figure 216. IPA synthesis method.            586
  • Figure 217. MOGU-Wave panels.              588
  • Figure 218. CNF slurries.                589
  • Figure 219. Range of CNF products.          589
  • Figure 220. Reishi.           593
  • Figure 221. Compostable water pod.       609
  • Figure 222. Leather made from leaves.   609
  • Figure 223. Nike shoe with beLEAF™.      610
  • Figure 224. CNF clear sheets.      619
  • Figure 225. Oji Holdings CNF polycarbonate product.       620
  • Figure 226. Enfinity cellulosic ethanol technology process.            633
  • Figure 227. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 637
  • Figure 228. XCNF.            644
  • Figure 229: Plantrose process.    645
  • Figure 230. LOVR hemp leather. 648
  • Figure 231. CNF insulation flat plates.     650
  • Figure 232. Hansa lignin.               656
  • Figure 233. Manufacturing process for STARCEL. 660
  • Figure 234. Manufacturing process for STARCEL. 664
  • Figure 235. 3D printed cellulose shoe.    671
  • Figure 236. Lyocell process.         674
  • Figure 237. North Face Spiber Moon Parka.          678
  • Figure 238. PANGAIA LAB NXT GEN Hoodie.         678
  • Figure 239. Spider silk production.            679
  • Figure 240. Stora Enso lignin battery materials.   684
  • Figure 241. 2 wt.% CNF suspension.       684
  • Figure 242. BiNFi-s Dry Powder. 685
  • Figure 243. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.          685
  • Figure 244. Silk nanofiber (right) and cocoon of raw material.       686
  • Figure 245. Sulapac cosmetics containers.             687
  • Figure 246.  Sulzer equipment for PLA polymerization processing.              688
  • Figure 247. Solid Novolac Type lignin modified phenolic resins.    689
  • Figure 248. Teijin bioplastic film for door handles.             698
  • Figure 249. Corbion FDCA production process.    704
  • Figure 250. Comparison of weight reduction effect using CNF.     706
  • Figure 251. CNF resin products. 709
  • Figure 252. UPM biorefinery process.     711
  • Figure 253. Vegea production process.   715
  • Figure 254. The Proesa® Process.              717
  • Figure 255. Goldilocks process and applications. 718
  • Figure 256. Visolis’ Hybrid Bio-Thermocatalytic Process. 721
  • Figure 257. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.     723
  • Figure 258. Worn Again products.             728
  • Figure 259. Zelfo Technology GmbH CNF production process.       732

 

 

 

 

The Global Market for Bioplastics 2024-2034
The Global Market for Bioplastics 2024-2034
PDF download/by email.

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.