The Global Market for Bioplastics and Advanced (Chemical) Plastics Recycling 2024-2034

0

  • Published: February 2024
  • Pages: 1,027
  • Tables: 199
  • Figures: 279

 

Innovation in bioplastics and plastics recycling is spurring a renaissance in the petrochemical industry, with the latest technologies reinventing plastic and making waste plastic a new resource.  The Global Market for Bioplastics and Advanced (Chemical) Plastics Recycling 2024-2034 provides a comprehensive analysis of the global bio-based feedstocks, bio-based plastics, and advanced chemical recycling markets. It covers key trends, drivers, latest developments, production capacities, producers, and market segmentation. The report analyses major feedstocks like starch, sugar crops, plant oils, lignocellulosic biomass, waste streams, algae etc and the key bio-based chemicals produced from them. Market demand projections are provided for chemicals like lactic acid, FDCA, acrylic acid, succinic acid, 1,4-butanediol etc to 2034.

An extensive section is dedicated to the global bio-based and biodegradable plastics market, segmented by types including PLA, PHA, PBS, bio-PET etc. It includes production capacities by leading manufacturers, SWOT analysis, price trends and demand forecast by end-user markets like packaging, automotive, textiles, agriculture etc.

The report also covers technologies in advanced chemical recycling including pyrolysis, gasification, glycolysis, enzymatic processes etc. Profiles are provided of key companies active in these spaces along with their production capacities. An in-depth demand analysis is provided for chemical recycling by region and polymer type through 2040. The role of natural fibers as sustainable reinforcements is also explored including typical properties, manufacturing processes, applications and market statistics.

Report contents include:

  • Global production capacities and demand forecasts for major bio-based feedstocks like starch, sugar crops, oils, lignocellulosic biomass etc up to 2034
  • Production projections for key platform chemicals such as lactic acid, FDCA, acrylic acid, 1,4-butanediol, succinic acid etc derived from bio-based feedstocks
  • Market analysis, applications, producers and production capacities for biobased plastics including PLA, PHA, PBS, bio-PET, bio-PE, bio-PP
  • Role and demand for bioplastics in major end-user markets: packaging, textiles, automotive, agriculture, building & construction
  • Latest technologies and leading companies active in advanced (chemical) plastic recycling markets
  • Capacity expansions and anticipated demand growth for chemical recycling techniques: pyrolysis, gasification, enzymatic, etc by region and polymer type
  • Applications and market overview of natural fiber reinforced biocomposites
  • Comprehensive profiles of over 800 companies active across production, R&D and commercialization of bio-based chemicals, bioplastics and advanced recycling technologies. Companies profiled include Agilyx, APK AG, Aquafil, Avantium, BASF, Biome Bioplastics, Braskem, Buyo, Carbios, Corsair, Danimer Scientific, Eastman, Extracthive, FabricNano, FlexSea, Floreon, Fych Technologies, Garbo, gr3n SA, Hyundai Chemical Ioniqa, Itero, Licella, LyondellBasell, MetaCycler BioInnovations, Mi Terro, Mura Technology, revalyu Resources GmbH,  OMV, PlantSwitch, Plastogaz SA, Plastic Energy, Polystyvert, Pyrowave, RePEaT Co., Ltd., Synova, Synpet Technologies, SABIC, Teijin Limited, Verde Bioresins, Versalis, and  Xampla.
  • Global policy landscape and regulations promoting sustainable alternatives to conventional plastics
  • Comparative life cycle assessments benchmarking eco-profiles of green alternatives against traditional petrochemical routes
  • Market challenges and opportunities in scaling up environment-friendly solutions aligned with principles of circular economy

 

 

 

 

1              RESEARCH METHODOLOGY         53

 

2              INTRODUCTION 55

  • 2.1          Global production of plastics       55
  • 2.2          The importance of plastic              55
  • 2.3          Issues with plastics use  56
  • 2.4          Bio-based or renewable plastics 56
    • 2.4.1      Drop-in bio-based plastics            57
    • 2.4.2      Novel bio-based plastics                58
  • 2.5          Biodegradable and compostable plastics                58
    • 2.5.1      Biodegradability               59
    • 2.5.2      Compostability  60
  • 2.6          Plastic pollution 60
  • 2.7          Policy and regulations    61
  • 2.8          The circular economy     62
  • 2.9          Plastic recycling 63
    • 2.9.1      Mechanical recycling      66
      • 2.9.1.1   Closed-loop mechanical recycling              66
      • 2.9.1.2   Open-loop mechanical recycling 67
      • 2.9.1.3   Polymer types, use, and recovery             67
    • 2.9.2      Advanced recycling (molecular recycling, chemical recycling)        68
      • 2.9.2.1   Main streams of plastic waste    68
      • 2.9.2.2   Comparison of mechanical and advanced chemical recycling         69
  • 2.10        Life cycle assessment     70

 

3              BIO-BASED FEEDSTOCKS AND INTERMEDIATES MARKET  71

  • 3.1          BIOREFINERIES  71
  • 3.2          BIO-BASED FEEDSTOCK AND LAND USE   72
  • 3.3          PLANT-BASED    75
    • 3.3.1      STARCH 75
      • 3.3.1.1   Overview            75
      • 3.3.1.2   Sources 75
      • 3.3.1.3   Global production            76
      • 3.3.1.4   Lysine   76
        • 3.3.1.4.1               Source  77
        • 3.3.1.4.2               Applications       77
        • 3.3.1.4.3               Global production            78
      • 3.3.1.5   Glucose 79
        • 3.3.1.5.1               HMDA   80
          • 3.3.1.5.1.1           Overview            80
          • 3.3.1.5.1.2           Sources 80
          • 3.3.1.5.1.3           Applications       81
          • 3.3.1.5.1.4           Global production            81
        • 3.3.1.5.2               1,5-diaminopentane (DA5)          82
          • 3.3.1.5.2.1           Overview            82
          • 3.3.1.5.2.2           Sources 82
          • 3.3.1.5.2.3           Applications       83
          • 3.3.1.5.2.4           Global production            83
        • 3.3.1.5.3               Sorbitol 84
          • 3.3.1.5.3.1           Isosorbide           84
            • 3.3.1.5.3.1.1        Overview            84
            • 3.3.1.5.3.1.2        Sources 84
            • 3.3.1.5.3.1.3        Applications       85
            • 3.3.1.5.3.1.4        Global production            86
        • 3.3.1.5.4               Lactic acid            86
          • 3.3.1.5.4.1           Overview            86
          • 3.3.1.5.4.2           D-lactic acid        87
          • 3.3.1.5.4.3           L-lactic acid         87
          • 3.3.1.5.4.4           Lactide  87
        • 3.3.1.5.5               Itaconic acid       89
          • 3.3.1.5.5.1           Overview            89
          • 3.3.1.5.5.2           Sources 89
          • 3.3.1.5.5.3           Applications       90
          • 3.3.1.5.5.4           Global production            90
        • 3.3.1.5.6               3-HP      91
          • 3.3.1.5.6.1           Overview            91
          • 3.3.1.5.6.2           Sources 91
          • 3.3.1.5.6.3           Applications       91
          • 3.3.1.5.6.4           Global production            92
          • 3.3.1.5.6.5           Acrylic acid          93
            • 3.3.1.5.6.5.1        Overview            93
            • 3.3.1.5.6.5.2        Applications       93
            • 3.3.1.5.6.5.3        Global production            94
          • 3.3.1.5.6.6           1,3-Propanediol (1,3-PDO)           94
            • 3.3.1.5.6.6.1        Overview            94
            • 3.3.1.5.6.6.2        Applications       94
            • 3.3.1.5.6.6.3        Global production            95
        • 3.3.1.5.7               Succinic Acid      96
          • 3.3.1.5.7.1           Overview            96
          • 3.3.1.5.7.2           Sources 96
          • 3.3.1.5.7.3           Applications       96
          • 3.3.1.5.7.4           Global production            97
          • 3.3.1.5.7.5           1,4-Butanediol (1,4-BDO)              98
            • 3.3.1.5.7.5.1        Overview            98
            • 3.3.1.5.7.5.2        Applications       98
            • 3.3.1.5.7.5.3        Gobal production             98
          • 3.3.1.5.7.6           Tetrahydrofuran (THF)   99
            • 3.3.1.5.7.6.1        Overview            99
            • 3.3.1.5.7.6.2        Applications       100
            • 3.3.1.5.7.6.3        Global production            100
        • 3.3.1.5.8               Adipic acid           101
          • 3.3.1.5.8.1           Overview            101
          • 3.3.1.5.8.2           Applications       101
          • 3.3.1.5.8.3           Caprolactame    102
            • 3.3.1.5.8.3.1        Overview            102
            • 3.3.1.5.8.3.2        Applications       102
            • 3.3.1.5.8.3.3        Global production            103
        • 3.3.1.5.9               Isobutanol          104
          • 3.3.1.5.9.1           Overview            104
          • 3.3.1.5.9.2           Sources 105
          • 3.3.1.5.9.3           Applications       105
          • 3.3.1.5.9.4           Global production            106
          • 3.3.1.5.9.5           p-Xylene              106
            • 3.3.1.5.9.5.1        Overview            106
            • 3.3.1.5.9.5.2        Sources 107
            • 3.3.1.5.9.5.3        Applications       107
            • 3.3.1.5.9.5.4        Global production            108
            • 3.3.1.5.9.5.5        Terephthalic acid              108
            • 3.3.1.5.9.5.6        Overview            108
              • 3.3.1.5.9.5.6.1    Applications       109
              • 3.3.1.5.9.5.6.2    Global production            109
        • 3.3.1.5.10             1,3 Proppanediol             110
          • 3.3.1.5.10.1.1     Overview            110
          • 3.3.1.5.10.2         Sources 110
          • 3.3.1.5.10.3         Applications       110
          • 3.3.1.5.10.4         Global production            111
        • 3.3.1.5.11             Monoethylene glycol (MEG)       111
          • 3.3.1.5.11.1         Overview            111
          • 3.3.1.5.11.2         Sources 112
          • 3.3.1.5.11.3         Applications       112
          • 3.3.1.5.11.4         Global production            112
        • 3.3.1.5.12             Ethanol 113
          • 3.3.1.5.12.1         Overview            113
          • 3.3.1.5.12.2         Sources 113
          • 3.3.1.5.12.3         Applications       114
          • 3.3.1.5.12.4         Global production            114
          • 3.3.1.5.12.5         Ethylene              115
          • 3.3.1.5.12.5.1     Overview            115
          • 3.3.1.5.12.5.2     Applications       115
          • 3.3.1.5.12.5.3     Global production            116
          • 3.3.1.5.12.5.4     Propylene           116
            • 3.3.1.5.12.5.4.1  Overview            116
            • 3.3.1.5.12.5.4.2  Applications       117
            • 3.3.1.5.12.5.4.3  Global production            118
          • 3.3.1.5.12.5.5     Vinyl chloride     118
            • 3.3.1.5.12.5.5.1  Overview            118
            • 3.3.1.5.12.5.5.2  Applications       119
            • 3.3.1.5.12.5.5.3  Global production            120
          • 3.3.1.5.12.6         Methly methacrylate      120
            • 3.3.1.5.12.6.1.1  Overview            120
            • 3.3.1.5.12.6.1.2  Applications       120
            • 3.3.1.5.12.6.1.3  Global production            121
    • 3.3.2      SUGAR CROPS   122
        • 3.3.2.1   Saccharose         122
          • 3.3.2.1.1               Aniline  122
            • 3.3.2.1.1.1           Overview            122
            • 3.3.2.1.1.2           Applications       122
            • 3.3.2.1.1.3           Global production            123
        • 3.3.2.1.2               Fructose              123
          • 3.3.2.1.2.1           Overview            123
          • 3.3.2.1.2.2           Applications       124
          • 3.3.2.1.2.3           Global production            124
          • 3.3.2.1.2.4           5-Hydroxymethylfurfural (5-HMF)            124
            • 3.3.2.1.2.4.1        Overview            124
            • 3.3.2.1.2.4.2        Applications       125
            • 3.3.2.1.2.4.3        Global production            125
          • 3.3.2.1.2.5           5-Chloromethylfurfural (5-CMF) 126
            • 3.3.2.1.2.5.1        Overview            126
            • 3.3.2.1.2.5.2        Applications       126
            • 3.3.2.1.2.5.3        Global production            127
          • 3.3.2.1.2.6           Levulinic Acid     127
            • 3.3.2.1.2.6.1        Overview            127
            • 3.3.2.1.2.6.2        Applications       127
            • 3.3.2.1.2.6.3        Global production            128
          • 3.3.2.1.2.7           FDME    129
            • 3.3.2.1.2.7.1        Overview            129
            • 3.3.2.1.2.7.2        Applications       129
            • 3.3.2.1.2.7.3        Global production            129
          • 3.3.2.1.2.8           2,5-FDCA             130
            • 3.3.2.1.2.8.1        Overview            130
            • 3.3.2.1.2.8.2        Applications       130
            • 3.3.2.1.2.8.3        Global production            131
    • 3.3.3      LIGNOCELLULOSIC BIOMASS       131
      • 3.3.3.1   Levoglucosenone             131
        • 3.3.3.1.1               Overview            131
        • 3.3.3.1.2               Applications       132
        • 3.3.3.1.3               Global production            132
      • 3.3.3.2   Hemicellulose    133
        • 3.3.3.2.1               Overview            133
        • 3.3.3.2.2               Biochemicals from hemicellulose              133
        • 3.3.3.2.3               Global production            134
        • 3.3.3.2.4               Furfural 135
          • 3.3.3.2.4.1           Overview            135
          • 3.3.3.2.4.2           Applications       135
          • 3.3.3.2.4.3           Global production            135
          • 3.3.3.2.4.4           Furfuyl alcohol   136
            • 3.3.3.2.4.4.1        Overview            136
            • 3.3.3.2.4.4.2        Applications       137
            • 3.3.3.2.4.4.3        Global production            137
      • 3.3.3.3   Lignin    138
        • 3.3.3.3.1               Overview            138
        • 3.3.3.3.2               Sources 138
        • 3.3.3.3.3               Applications       140
          • 3.3.3.3.3.1           Aromatic compounds     140
            • 3.3.3.3.3.1.1        Benzene, toluene and xylene      140
            • 3.3.3.3.3.1.2        Phenol and phenolic resins          141
            • 3.3.3.3.3.1.3        Vanillin 141
          • 3.3.3.3.3.2           Polymers             142
        • 3.3.3.3.4               Global production            143
    • 3.3.4      PLANT OILS         144
      • 3.3.4.1   Overview            144
      • 3.3.4.2   Glycerol               144
        • 3.3.4.2.1               Overview            144
        • 3.3.4.2.2               Applications       144
        • 3.3.4.2.3               Global production            145
        • 3.3.4.2.4               MPG      145
          • 3.3.4.2.4.1           Overview            145
          • 3.3.4.2.4.2           Applications       146
          • 3.3.4.2.4.3           Global production            147
        • 3.3.4.2.5               ECH        147
          • 3.3.4.2.5.1           Overview            147
          • 3.3.4.2.5.2           Applications       147
          • 3.3.4.2.5.3           Global production            148
      • 3.3.4.3   Fatty acids           148
        • 3.3.4.3.1               Overview            148
        • 3.3.4.3.2               Applications       149
        • 3.3.4.3.3               Global production            149
      • 3.3.4.4   Castor oil             150
        • 3.3.4.4.1               Overview            150
        • 3.3.4.4.2               Sebacic acid        150
          • 3.3.4.4.2.1           Overview            150
          • 3.3.4.4.2.2           Applications       150
          • 3.3.4.4.2.3           Global production            151
        • 3.3.4.4.3               11-Aminoundecanoic acid (11-AA)            151
          • 3.3.4.4.3.1           Overview            151
          • 3.3.4.4.3.2           Applications       152
          • 3.3.4.4.3.3           Global production            152
      • 3.3.4.5   Dodecanedioic acid (DDDA)         153
        • 3.3.4.5.1               Overview            153
        • 3.3.4.5.2               Applications       153
        • 3.3.4.5.3               Global production            154
      • 3.3.4.6   Pentamethylene diisocyanate    154
        • 3.3.4.6.1               Overview            154
        • 3.3.4.6.2               Applications       155
        • 3.3.4.6.3               Global production            155
    • 3.3.5      NON-EDIBIBLE MILK        156
      • 3.3.5.1   Casein   156
        • 3.3.5.1.1               Overview            156
        • 3.3.5.1.2               Applications       156
        • 3.3.5.1.3               Global production            157
  • 3.4          WASTE  157
    • 3.4.1      Food waste         157
      • 3.4.1.1   Overview            157
      • 3.4.1.2   Products and applications             158
        • 3.4.1.2.1               Global production            158
    • 3.4.2      Agricultural waste           159
      • 3.4.2.1   Overview            159
      • 3.4.2.2   Products and applications             159
      • 3.4.2.3   Global production            160
    • 3.4.3      Forestry waste  160
      • 3.4.3.1   Overview            160
      • 3.4.3.2   Products and applications             161
      • 3.4.3.3   Global production            161
    • 3.4.4      Aquaculture/fishing waste           161
      • 3.4.4.1   Overview            161
      • 3.4.4.2   Products and applications             162
      • 3.4.4.3   Global production            162
    • 3.4.5      Municipal solid waste    162
      • 3.4.5.1   Overview            162
      • 3.4.5.2   Products and applications             163
      • 3.4.5.3   Global production            163
    • 3.4.6      Industrial waste 164
      • 3.4.6.1   Overview            164
    • 3.4.7      Waste oils            164
      • 3.4.7.1   Overview            164
      • 3.4.7.2   Products and applications             164
      • 3.4.7.3   Global production            165
  • 3.5          MICROBIAL & MINERAL SOURCES             165
    • 3.5.1      Microalgae          165
      • 3.5.1.1   Overview            165
      • 3.5.1.2   Products and applications             165
      • 3.5.1.3   Global production            166
    • 3.5.2      Macroalgae        166
      • 3.5.2.1   Overview            166
      • 3.5.2.2   Products and applications             167
      • 3.5.2.3   Global production            168
    • 3.5.3      Mineral sources 168
      • 3.5.3.1   Overview            168
      • 3.5.3.2   Products and applications             169
  • 3.6          GASEOUS            169
    • 3.6.1      Biogas   170
      • 3.6.1.1   Overview            170
      • 3.6.1.2   Products and applications             171
      • 3.6.1.3   Global production            171
    • 3.6.2      Syngas  172
      • 3.6.2.1   Overview            172
      • 3.6.2.2   Products and applications             173
      • 3.6.2.3   Global production            174
    • 3.6.3      Off gases - fermentation CO2, CO              174
      • 3.6.3.1   Overview            174
      • 3.6.3.2   Products and applications             175
  • 3.7          COMPANY PROFILES       176 (115 company profiles)

 

4              BIO-BASED PLASTICS MARKET    258

  • 4.1          BIO-BASED OR RENEWABLE PLASTICS      258
    • 4.1.1      Drop-in bio-based plastics            258
    • 4.1.2      Novel bio-based plastics                259
  • 4.2          BIODEGRADABLE AND COMPOSTABLE PLASTICS 260
    • 4.2.1      Biodegradability               260
    • 4.2.2      Compostability  261
  • 4.3          TYPES    262
  • 4.4          KEY MARKET PLAYERS    264
  • 4.5          SYNTHETIC BIO-BASED POLYMERS            265
    • 4.5.1      Polylactic acid (Bio-PLA) 265
      • 4.5.1.1   Market analysis 266
      • 4.5.1.2   Production          267
      • 4.5.1.3   Producers and production capacities, current and planned            267
        • 4.5.1.3.1               Lactic acid producers and production capacities  267
        • 4.5.1.3.2               PLA producers and production capacities               268
        • 4.5.1.3.3               Polylactic acid (Bio-PLA) production 2019-2034 (1,000 tonnes)    269
    • 4.5.2      Polyethylene terephthalate (Bio-PET)     270
      • 4.5.2.1   Market analysis 270
      • 4.5.2.2   Producers and production capacities       271
      • 4.5.2.3   Polyethylene terephthalate (Bio-PET) production 2019-2034 (1,000 tonnes)          272
    • 4.5.3      Polytrimethylene terephthalate (Bio-PTT)             272
      • 4.5.3.1   Market analysis 272
      • 4.5.3.2   Producers and production capacities       273
      • 4.5.3.3   Polytrimethylene terephthalate (PTT) production 2019-2034 (1,000 tonnes)         273
    • 4.5.4      Polyethylene furanoate (Bio-PEF)             274
      • 4.5.4.1   Market analysis 274
      • 4.5.4.2   Comparative properties to PET   275
      • 4.5.4.3   Producers and production capacities       276
        • 4.5.4.3.1               FDCA and PEF producers and production capacities           276
        • 4.5.4.3.2               Polyethylene furanoate (Bio-PEF) production 2019-2034 (1,000 tonnes). 277
    • 4.5.5      Polyamides (Bio-PA)       277
      • 4.5.5.1   Market analysis 278
      • 4.5.5.2   Producers and production capacities       279
      • 4.5.5.3   Polyamides (Bio-PA) production 2019-2034 (1,000 tonnes)           279
    • 4.5.6      Poly(butylene adipate-co-terephthalate) (Bio-PBAT)        280
      • 4.5.6.1   Market analysis 280
      • 4.5.6.2   Producers and production capacities       280
      • 4.5.6.3   Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2034 (1,000 tonnes)             281
    • 4.5.7      Polybutylene succinate (PBS) and copolymers     282
      • 4.5.7.1   Market analysis 282
      • 4.5.7.2   Producers and production capacities       283
      • 4.5.7.3   Polybutylene succinate (PBS) production 2019-2034 (1,000 tonnes)          283
    • 4.5.8      Polyethylene (Bio-PE)    284
      • 4.5.8.1   Market analysis 284
      • 4.5.8.2   Producers and production capacities       285
      • 4.5.8.3   Polyethylene (Bio-PE) production 2019-2034 (1,000 tonnes).       285
    • 4.5.9      Polypropylene (Bio-PP) 286
      • 4.5.9.1   Market analysis 286
      • 4.5.9.2   Producers and production capacities       286
      • 4.5.9.3   Polypropylene (Bio-PP) production 2019-2034 (1,000 tonnes)      287
  • 4.6          NATURAL BIO-BASED POLYMERS               288
    • 4.6.1      Polyhydroxyalkanoates (PHA)     288
      • 4.6.1.1   Technology description 288
      • 4.6.1.2   Types    290
        • 4.6.1.2.1               PHB        292
        • 4.6.1.2.2               PHBV     292
      • 4.6.1.3   Synthesis and production processes        294
      • 4.6.1.4   Market analysis 297
      • 4.6.1.5   Commercially available PHAs      298
      • 4.6.1.6   Markets for PHAs             299
        • 4.6.1.6.1               Packaging            300
        • 4.6.1.6.2               Cosmetics           302
          • 4.6.1.6.2.1           PHA microspheres           302
        • 4.6.1.6.3               Medical 302
          • 4.6.1.6.3.1           Tissue engineering          302
          • 4.6.1.6.3.2           Drug delivery     303
        • 4.6.1.6.4               Agriculture          303
          • 4.6.1.6.4.1           Mulch film           303
          • 4.6.1.6.4.2           Grow bags           303
      • 4.6.1.7   Producers and production capacities       304
      • 4.6.1.8   PHA production capacities 2019-2034 (1,000 tonnes)      305
    • 4.6.2      Cellulose              306
      • 4.6.2.1   Microfibrillated cellulose (MFC) 306
        • 4.6.2.1.1               Market analysis 306
        • 4.6.2.1.2               Producers and production capacities       307
      • 4.6.2.2   Nanocellulose   307
        • 4.6.2.2.1               Cellulose nanocrystals    307
          • 4.6.2.2.1.1           Synthesis             308
          • 4.6.2.2.1.2           Properties           309
          • 4.6.2.2.1.3           Production          311
          • 4.6.2.2.1.4           Applications       311
          • 4.6.2.2.1.5           Market analysis 312
          • 4.6.2.2.1.6           Producers and production capacities       314
        • 4.6.2.2.2               Cellulose nanofibers       314
          • 4.6.2.2.2.1           Applications       315
          • 4.6.2.2.2.2           Market analysis 316
          • 4.6.2.2.2.3           Producers and production capacities       317
        • 4.6.2.2.3               Bacterial Nanocellulose (BNC)    318
          • 4.6.2.2.3.1           Production          318
          • 4.6.2.2.3.2           Applications       321
    • 4.6.3      Protein-based bioplastics             322
      • 4.6.3.1   Types, applications and producers            323
    • 4.6.4      Algal and fungal 324
      • 4.6.4.1   Algal      324
        • 4.6.4.1.1               Advantages        324
        • 4.6.4.1.2               Production          326
        • 4.6.4.1.3               Producers           326
      • 4.6.4.2   Mycelium            327
        • 4.6.4.2.1               Properties           327
        • 4.6.4.2.2               Applications       328
        • 4.6.4.2.3               Commercialization           329
    • 4.6.5      Chitosan              329
      • 4.6.5.1   Technology description 330
  • 4.7          PRODUCTION OF BIOBASED AND BIODEGRADABLE PLASTICS, BY REGION 331
    • 4.7.1      North America   332
    • 4.7.2      Europe 332
    • 4.7.3      Asia-Pacific         333
      • 4.7.3.1   China     333
      • 4.7.3.2   Japan    333
      • 4.7.3.3   Thailand               333
      • 4.7.3.4   Indonesia            334
    • 4.7.4      Latin America    334
  • 4.8          MARKET SEGMENTATION OF BIOPLASTICS           335
    • 4.8.1      Packaging            336
      • 4.8.1.1   Processes for bioplastics in packaging      336
      • 4.8.1.2   Applications       337
      • 4.8.1.3   Flexible packaging            338
        • 4.8.1.3.1               Production volumes 2019-2034   340
      • 4.8.1.4   Rigid packaging 340
        • 4.8.1.4.1               Production volumes 2019-2034   342
    • 4.8.2      Consumer products        342
      • 4.8.2.1   Applications       342
      • 4.8.2.2   Production volumes 2019-2034   343
    • 4.8.3      Automotive        344
      • 4.8.3.1   Applications       344
      • 4.8.3.2   Production volumes 2019-2034   345
    • 4.8.4      Building & construction 345
      • 4.8.4.1   Applications       345
      • 4.8.4.2   Production volumes 2019-2034   346
    • 4.8.5      Textiles 347
      • 4.8.5.1   Apparel 347
      • 4.8.5.2   Footwear            348
      • 4.8.5.3   Medical textiles 349
      • 4.8.5.4   Production volumes 2019-2034   349
    • 4.8.6      Electronics          350
      • 4.8.6.1   Applications       350
        • 4.8.6.1.1               Bioplastics in injection moulded electronics parts              350
        • 4.8.6.1.2               Biodegradable substrates             353
        • 4.8.6.1.3               Sustainable Chemistry   354
      • 4.8.6.2   Production volumes 2019-2034   355
    • 4.8.7      Agriculture and horticulture        356
      • 4.8.7.1   Production volumes 2019-2034   356
  • 4.9          NATURAL FIBERS IN BIOPLASTICS              357
    • 4.9.1      Manufacturing method, matrix materials and applications of natural fibers            360
    • 4.9.2      Advantages of natural fibers       362
    • 4.9.3      Natural fiber biopolymer markets             363
      • 4.9.3.1   Composites        363
      • 4.9.3.2   Applications       363
      • 4.9.3.3   Natural fiber injection moulding compounds       364
        • 4.9.3.3.1               Properties           365
        • 4.9.3.3.2               Applications       365
      • 4.9.3.4   Non-woven natural fiber mat composites              365
        • 4.9.3.4.1               Automotive        365
        • 4.9.3.4.2               Applications       366
      • 4.9.3.5   Aligned natural fiber-reinforced composites        366
      • 4.9.3.6   Natural fiber biobased polymer compounds         367
      • 4.9.3.7   Natural fiber biobased polymer non-woven mats              367
        • 4.9.3.7.1               Flax        367
        • 4.9.3.7.2               Kenaf    368
      • 4.9.3.8   Natural fiber thermoset bioresin composites       368
      • 4.9.3.9   Aerospace          369
        • 4.9.3.9.1               Market overview             369
      • 4.9.3.10                Automotive        370
        • 4.9.3.10.1             Market overview             370
        • 4.9.3.10.2             Applications of natural fibers      374
      • 4.9.3.11                Packaging            374
        • 4.9.3.11.1             Market overview             375
    • 4.9.4      Global production of natural fibers           376
      • 4.9.4.1   Overall global fibers market        376
      • 4.9.4.2   Plant-based fiber production      379
      • 4.9.4.3   Animal-based natural fiber production   380
  • 4.10        COMPANY PROFILES       381 (517 company profiles)

 

5              ADVANCED (CHEMICAL) PLASTICS RECYCLING MARKET   792

  • 5.1          Classification of recycling technologies   792
  • 5.2          Market drivers and trends            793
  • 5.3          Industry news, funding and developments 2020-2023      793
  • 5.4          Capacities            802
  • 5.5          Global polymer demand 2022-2040, segmented by recycling technology 805
  • 5.5.1      PE           805
  • 5.5.2      PP           807
  • 5.5.3      PET         808
  • 5.5.4      PS           810
  • 5.5.5      Nylon    811
  • 5.5.6      Others  813
  • 5.6          Global polymer demand 2022-2040, segmented by recycling technology, by region            814
  • 5.6.1      Europe 814
  • 5.6.2      North America   816
  • 5.6.3      South America   817
  • 5.6.4      Asia        819
  • 5.6.5      Oceania                820
  • 5.6.6      Africa    822
  • 5.7          Chemically recycled plastic products        824
  • 5.8          Market map       826
  • 5.9          Value chain         827
  • 5.10        Life Cycle Assessments (LCA) of advanced plastics recycling processes      828
  • 5.10.1    PE           829
  • 5.10.2    PP           829
  • 5.10.3    PET         830
  • 5.11        Recycled plastic yield and cost    830
  • 5.11.1    Plastic yield of each chemical recycling technologies        830
  • 5.11.2    Prices    831
  • 5.12        Market challenges           831

6              THE ADVANCED (CHEMICAL) RECYCLING MARKET             833

  • 6.1          Applications       833
  • 6.2          Pyrolysis              834
    • 6.2.1      Non-catalytic     835
    • 6.2.2      Catalytic               836
      • 6.2.2.1   Polystyrene pyrolysis     838
      • 6.2.2.2   Pyrolysis for production of bio fuel           838
      • 6.2.2.3   Used tires pyrolysis         842
        • 6.2.2.3.1               Conversion to biofuel     843
      • 6.2.2.4   Co-pyrolysis of biomass and plastic wastes           844
    • 6.2.3      SWOT analysis   845
    • 6.2.4      Companies and capacities             846
  • 6.3          Gasification        847
    • 6.3.1      Technology overview     847
      • 6.3.1.1   Syngas conversion to methanol 848
      • 6.3.1.2   Biomass gasification and syngas fermentation    852
      • 6.3.1.3   Biomass gasification and syngas thermochemical conversion        852
    • 6.3.2      SWOT analysis   853
    • 6.3.3      Companies and capacities (current and planned)               854
  • 6.4          Dissolution          854
    • 6.4.1      Technology overview     854
    • 6.4.2      SWOT analysis   855
    • 6.4.3      Companies and capacities (current and planned)               856
  • 6.5          Depolymerisation            857
    • 6.5.1      Hydrolysis           859
      • 6.5.1.1   Technology overview     859
      • 6.5.1.2   SWOT analysis   860
    • 6.5.2      Enzymolysis        861
      • 6.5.2.1   Technology overview     861
      • 6.5.2.2   SWOT analysis   862
    • 6.5.3      Methanolysis     862
      • 6.5.3.1   Technology overview     862
      • 6.5.3.2   SWOT analysis   864
    • 6.5.4      Glycolysis            864
      • 6.5.4.1   Technology overview     864
      • 6.5.4.2   SWOT analysis   866
    • 6.5.5      Aminolysis          867
      • 6.5.5.1   Technology overview     867
      • 6.5.5.2   SWOT analysis   867
    • 6.5.6      Companies and capacities (current and planned)               868
  • 6.6          Other advanced chemical recycling technologies 869
    • 6.6.1      Hydrothermal cracking   869
    • 6.6.2      Pyrolysis with in-line reforming  870
    • 6.6.3      Microwave-assisted pyrolysis     870
    • 6.6.4      Plasma pyrolysis               871
    • 6.6.5      Plasma gasification          872
    • 6.6.6      Supercritical fluids           872
    • 6.6.7      Carbon fiber recycling    873
      • 6.6.7.1   Processes            873
      • 6.6.7.2   Companies         876
  • 6.8            COMPANY PROFILES       877 (164 company profiles)

 

8              GLOSSARY OF TERMS      1016

 

9              REFERENCES       1018

 

List of Tables

  • Table 1. Issues related to the use of plastics.        56
  • Table 2. Type of biodegradation.               59
  • Table 3. Overview of the recycling technologies. 66
  • Table 4. Polymer types, use, and recovery.           67
  • Table 5. Composition of plastic waste streams.   69
  • Table 6. Comparison of mechanical and advanced chemical recycling.       69
  • Table 7. Life cycle assessment of virgin plastic production, mechanical recycling and chemical recycling.   70
  • Table 8. Life cycle assessment of chemical recycling technologies (pyrolysis, gasification, depolymerization and dissolution).       70
  • Table 9. Plant-based feedstocks and biochemicals produced.       72
  • Table 10. Waste-based feedstocks and biochemicals produced.   73
  • Table 11. Microbial and mineral-based feedstocks and biochemicals produced.   74
  • Table 12. Common starch sources that can be used as feedstocks for producing biochemicals.      75
  • Table 13. Common lysine sources that can be used as feedstocks for producing biochemicals.       77
  • Table 14. Applications of  lysine as a feedstock for biochemicals. 78
  • Table 15. HDMA sources that can be used as feedstocks for producing biochemicals.         81
  • Table 16. Applications of bio-based HDMA.          81
  • Table 17. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5).   82
  • Table 18. Applications of DN5.    83
  • Table 19. Biobased feedstocks for isosorbide.     85
  • Table 20. Applications of bio-based isosorbide.   85
  • Table 21. Lactide applications.    88
  • Table 22. Biobased feedstock sources for itaconic acid.    89
  • Table 23. Applications of bio-based itaconic acid.               90
  • Table 24. Biobased feedstock sources for 3-HP.  91
  • Table 25. Applications of 3-HP.   92
  • Table 26. Applications of bio-based acrylic acid.  93
  • Table 27. Applications of bio-based 1,3-Propanediol (1,3-PDO).   95
  • Table 28. Biobased feedstock sources for Succinic acid.   96
  • Table 29. Applications of succinic acid.    97
  • Table 30. Applications of bio-based 1,4-Butanediol (BDO).             98
  • Table 31. Applications of bio-based Tetrahydrofuran (THF).          100
  • Table 32. Applications of bio-based adipic acid.   101
  • Table 33. Applications of bio-based caprolactam.               103
  • Table 34. Biobased feedstock sources for isobutanol.       105
  • Table 35. Applications of bio-based isobutanol.  105
  • Table 36. Biobased feedstock sources for p-Xylene.          107
  • Table 37. Applications of bio-based p-Xylene.      107
  • Table 38. Applications of bio-based Terephthalic acid (TPA).         109
  • Table 39. Biobased feedstock sources for 1,3 Proppanediol.          110
  • Table 40. Applications of bio-based 1,3 Proppanediol.     110
  • Table 41. Biobased feedstock sources for MEG.  112
  • Table 42. Applications of bio-based MEG.              112
  • Table 43. Biobased MEG producers capacities.    112
  • Table 44. Biobased feedstock sources for ethanol.            113
  • Table 45. Applications of bio-based ethanol.        114
  • Table 46. Applications of bio-based ethylene.     115
  • Table 47. Applications of bio-based propylene.   117
  • Table 48. Applications of bio-based vinyl chloride.             119
  • Table 49. Applications of bio-based Methly methacrylate.             120
  • Table 50. Applications of bio-based aniline.          122
  • Table 51. Applications of biobased fructose.        124
  • Table 52. Applications of bio-based 5-Hydroxymethylfurfural (5-HMF).    125
  • Table 53. Applications of 5-(Chloromethyl)furfural (CMF).             126
  • Table 54. Applications of Levulinic acid.  128
  • Table 55. Markets and applications for bio-based FDME. 129
  • Table 56. Applications of FDCA.  130
  • Table 57. Markets and applications for bio-based levoglucosenone.          132
  • Table 58. Biochemicals derived from hemicellulose           133
  • Table 59. Markets and applications for bio-based hemicellulose  134
  • Table 60. Markets and applications for bio-based furfuryl alcohol.              137
  • Table 61. Commercial and pre-commercial biorefinery lignin production facilities and processes  138
  • Table 62. Lignin aromatic compound products.   140
  • Table 63. Prices of benzene, toluene, xylene and their derivatives.            140
  • Table 64. Lignin products in polymeric materials.               142
  • Table 65. Application of lignin in plastics and composites.              142
  • Table 66. Markets and applications for bio-based glycerol.             144
  • Table 67. Markets and applications for Bio-based MPG.  146
  • Table 68. Markets and applications: Bio-based ECH.          147
  • Table 69. Mineral source products and applications.         169
  • Table 70. Type of biodegradation.            261
  • Table 71. Advantages and disadvantages of biobased plastics compared to conventional plastics. 262
  • Table 72. Types of Bio-based and/or Biodegradable Plastics, applications.               262
  • Table 73. Key market players by Bio-based and/or Biodegradable Plastic types.    264
  • Table 74. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.               266
  • Table 75. Lactic acid producers and production capacities.             267
  • Table 76. PLA producers and production capacities.          268
  • Table 77. Planned PLA capacity expansions in China.         268
  • Table 78. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications.              270
  • Table 79. Bio-based Polyethylene terephthalate (PET) producers and production capacities,           271
  • Table 80. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications.       272
  • Table 81. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.   273
  • Table 82. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.                274
  • Table 83. PEF vs. PET.     275
  • Table 84. FDCA and PEF producers.          276
  • Table 85. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications.                278
  • Table 86. Leading Bio-PA producers production capacities.            279
  • Table 87. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications.              280
  • Table 88. Leading PBAT producers, production capacities and brands.      280
  • Table 89. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications.       282
  • Table 90. Leading PBS producers and production capacities.          283
  • Table 91. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.                284
  • Table 92. Leading Bio-PE producers.        285
  • Table 93. Bio-PP market analysis- manufacture, advantages, disadvantages and applications.        286
  • Table 94. Leading Bio-PP producers and capacities.           286
  • Table 95.Types of PHAs and properties. 291
  • Table 96. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 293
  • Table 97. Polyhydroxyalkanoate (PHA) extraction methods.          295
  • Table 98. Polyhydroxyalkanoates (PHA) market analysis. 297
  • Table 99. Commercially available PHAs.  298
  • Table 100. Markets and applications for PHAs.    299
  • Table 101. Applications, advantages and disadvantages of PHAs in packaging.       300
  • Table 102. Polyhydroxyalkanoates (PHA) producers.        304
  • Table 103. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications.                306
  • Table 104. Leading MFC producers and capacities.             307
  • Table 105. Synthesis methods for cellulose nanocrystals (CNC).   308
  • Table 106. CNC sources, size and yield.   309
  • Table 107. CNC properties.          310
  • Table 108. Mechanical properties of CNC and other reinforcement materials.       310
  • Table 109. Applications of nanocrystalline cellulose (NCC).            312
  • Table 110. Cellulose nanocrystals analysis.            312
  • Table 111: Cellulose nanocrystal production capacities and production process, by producer.        314
  • Table 112. Applications of cellulose nanofibers (CNF).     315
  • Table 113. Cellulose nanofibers market analysis. 316
  • Table 114. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes.  317
  • Table 115. Applications of bacterial nanocellulose (BNC).               321
  • Table 116. Types of protein based-bioplastics, applications and companies.           323
  • Table 117. Types of algal and fungal based-bioplastics, applications and companies.          324
  • Table 118. Overview of alginate-description, properties, application and market size.        325
  • Table 119. Companies developing algal-based bioplastics.              326
  • Table 120. Overview of mycelium fibers-description, properties, drawbacks and applications.       327
  • Table 121. Companies developing mycelium-based bioplastics.   329
  • Table 122. Overview of chitosan-description, properties, drawbacks and applications.      330
  • Table 123. Global production capacities of biobased and sustainable plastics in 2019-2034, by region, 1,000 tonnes.                332
  • Table 124. Biobased and sustainable plastics producers in North America.              332
  • Table 125. Biobased and sustainable plastics producers in Europe.             332
  • Table 126. Biobased and sustainable plastics producers in Asia-Pacific.     334
  • Table 127. Biobased and sustainable plastics producers in Latin America. 335
  • Table 128. Processes for bioplastics in packaging.              336
  • Table 129. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.           338
  • Table 130. Typical applications for bioplastics in flexible packaging.           339
  • Table 131. Typical applications for bioplastics in rigid packaging. 341
  • Table 132. Bio-based and non-toxic materials in sustainable electronics. 351
  • Table 133. Biodegradable substrates for PCBs.    353
  • Table 134. Types of next-gen natural fibers.         357
  • Table 135. Application, manufacturing method, and matrix materials of natural fibers.     361
  • Table 136. Typical properties of natural fibers.    362
  • Table 137. Applications of natural fiber composites.         363
  • Table 138. Typical properties of short natural fiber-thermoplastic composites.     365
  • Table 139. Properties of non-woven natural fiber mat composites.            366
  • Table 140. Properties of aligned natural fiber composites.             366
  • Table 141. Properties of natural fiber-bio-based polymer compounds.     367
  • Table 142. Properties of natural fiber-bio-based polymer non-woven mats.           368
  • Table 143. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use. 369
  • Table 144. Natural fiber-reinforced polymer composite in the automotive market.             371
  • Table 145. Natural fibers in the aerospace sector- market drivers, applications and challenges for NF use. 372
  • Table 146. Applications of natural fibers in the automotive industry.         374
  • Table 147. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use. 375
  • Table 148. Lactips plastic pellets.              586
  • Table 149. Oji Holdings CNF products.     657
  • Table 150. Types of recycling.     792
  • Table 151. Market drivers and trends in the advanced chemical recycling market.               793
  • Table 152. Advanced chemical recycling industry news, funding and developments 2020-2023.     793
  • Table 153. Advanced plastics recycling capacities, by technology.               803
  • Table 154. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes).            805
  • Table 155. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes).           807
  • Table 156. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes).         808
  • Table 157. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes).            810
  • Table 158. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes).     811
  • Table 159. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes).*                813
  • Table 160. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes).            814
  • Table 161. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes).             816
  • Table 162. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes).             817
  • Table 163. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes).  819
  • Table 164. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes).          820
  • Table 165. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes).              822
  • Table 166. Example chemically recycled plastic products.               824
  • Table 167. Life Cycle Assessments (LCA) of Advanced Chemical Recycling Processes.          828
  • Table 168. Life cycle assessment of mechanically versus chemically recycling polyethylene (PE).   829
  • Table 169. Life cycle assessment of mechanically versus chemically recycling polypropylene (PP). 829
  • Table 170. Life cycle assessment of mechanically versus chemically recycling polyethylene terephthalate (PET).    830
  • Table 171. Plastic yield of each chemical recycling technologies. 830
  • Table 172. Chemically recycled plastics prices in USD.      831
  • Table 173. Challenges in the advanced chemical recycling market.             831
  • Table 174. Applications of chemically recycled materials.                833
  • Table 175. Summary of non-catalytic pyrolysis technologies.        835
  • Table 176. Summary of catalytic pyrolysis technologies. 836
  • Table 177. Summary of pyrolysis technique under different operating conditions.              840
  • Table 178. Biomass materials and their bio-oil yield.         841
  • Table 179. Biofuel production cost from the biomass pyrolysis process.   842
  • Table 180. Pyrolysis companies and plant capacities, current and planned.             846
  • Table 181. Summary of gasification technologies.              847
  • Table 182. Advanced recycling (Gasification) companies. 854
  • Table 183. Summary of dissolution technologies.               854
  • Table 184. Advanced recycling (Dissolution) companies  856
  • Table 185. Depolymerisation processes for PET, PU, PC and PA, products and yields.          858
  • Table 186. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        859
  • Table 187. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        861
  • Table 188. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        862
  • Table 189. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        864
  • Table 190. Summary of aminolysis technologies. 867
  • Table 191. Advanced recycling (Depolymerisation) companies and capacities (current and planned).          868
  • Table 192. Overview of hydrothermal cracking for advanced chemical recycling.  869
  • Table 193. Overview of Pyrolysis with in-line reforming for advanced chemical recycling. 870
  • Table 194. Overview of microwave-assisted pyrolysis for advanced chemical recycling.     870
  • Table 195. Overview of plasma pyrolysis for advanced chemical recycling.              871
  • Table 196. Overview of plasma gasification for advanced chemical recycling.         872
  • Table 197. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages. 874
  • Table 198. Retention rate of tensile properties of recovered carbon fibres by different recycling processes.            875
  • Table 199. Recycled carbon fiber producers, technology and capacity.      876

 

List of Figures

  • Figure 1. Global plastics production 1950-2021, millions of tonnes.            55
  • Figure 2.  Coca-Cola PlantBottle®.             57
  • Figure 3. Interrelationship between conventional, bio-based and biodegradable plastics. 58
  • Figure 4. Global production, use, and fate of polymer resins, synthetic fibers, and additives.          61
  • Figure 5. The circular plastic economy.   63
  • Figure 6. Current management systems for waste plastics.            64
  • Figure 7. Overview of the different circular pathways for plastics.               65
  • Figure 8. Schematic of biorefinery processes.      71
  • Figure 9. Global production of starch for biobased chemicals and intermediates, 2018-2034 (million metric tonnes).                76
  • Figure 10. Global production of biobased lysine, 2018-2034 (metric tonnes).         79
  • Figure 11. Global glucose production for bio-based chemicals and intermediates 2018-2034 (million metric tonnes).                80
  • Figure 12. Global production volumes of bio-HMDA, 2018 to 2034 in metric tonnes.          82
  • Figure 13. Global production of bio-based DN5, 2018-2034 (metric tonnes).          84
  • Figure 14. Global production of bio-based isosorbide, 2018-2034 (metric tonnes).              86
  • Figure 15. L-lactic acid (L-LA) production, 2018-2034 (metric tonnes).       87
  • Figure 16. Global lactide production, 2018-2034 (metric tonnes).               89
  • Figure 17. Global production of bio-itaconic acid, 2018-2034 (metric tonnes).       91
  • Figure 18. Global production of 3-HP,  2018-2034 (metric tonnes).             92
  • Figure 19. Global production of bio-based acrylic acid,  2018-2034 (metric tonnes).           94
  • Figure 20. Global production of bio-based 1,3-Propanediol (1,3-PDO), 2018-2034 (metric tonnes).              95
  • Figure 21. Global production of bio-based Succinic acid, 2018-2034 (metric tonnes).         97
  • Figure 22. Global production of 1,4-Butanediol (BDO), 2018-2034 (metric tonnes).             99
  • Figure 23. Global production of bio-based tetrahydrofuran (THF), 2018-2034 (metric tonnes).       100
  • Figure 24. Overview of Toray process.     101
  • Figure 25. Global production of bio-based caprolactam, 2018-2034 (metric tonnes).          104
  • Figure 26. Global production of bio-based isobutanol, 2018-2034 (metric tonnes).             106
  • Figure 27. Global production of bio-based p-xylene, 2018-2034 (metric tonnes). 108
  • Figure 28. Global production of biobased terephthalic acid (TPA), 2018-2034 (metric tonnes).       109
  • Figure 29. Global production of biobased 1,3 Proppanediol, 2018-2034 (metric tonnes).  111
  • Figure 30. Global production of biobased MEG, 2018-2034 (metric tonnes).          113
  • Figure 31. Global production of biobased ethanol, 2018-2034 (million metric tonnes).      115
  • Figure 32. Global production of biobased ethylene, 2018-2034 (million metric tonnes).    116
  • Figure 33. Global production of biobased propylene, 2018-2034 (metric tonnes). 118
  • Figure 34. Global production of biobased vinyl chloride, 2018-2034 (metric tonnes).         120
  • Figure 35. Global production of bio-based Methly methacrylate, 2018-2034 (metric tonnes).         121
  • Figure 36. Global production of biobased aniline, 2018-2034 (metric tonnes).       123
  • Figure 37. Global production of biobased fructose, 2018-2034 (metric tonnes).    124
  • Figure 38. Global production of biobased 5-Hydroxymethylfurfural (5-HMF), 2018-2034 (metric tonnes). 125
  • Figure 39. Global production of biobased 5-(Chloromethyl)furfural (CMF), 2018-2034 (metric tonnes).      127
  • Figure 40. Global production of biobased Levulinic acid, 2018-2034 (metric tonnes).         128
  • Figure 41. Global production of biobased FDME, 2018-2034 (metric tonnes).        130
  • Figure 42. Global production of biobased Furan-2,5-dicarboxylic acid (FDCA), 2018-2034 (metric tonnes). 131
  • Figure 43. Global production projections for bio-based levoglucosenone from 2018 to 2034 in metric tonnes:       132
  • Figure 44. Global production of hemicellulose, 2018-2034 (metric tonnes).            134
  • Figure 45. Global production of biobased furfural, 2018-2034 (metric tonnes).     136
  • Figure 46. Global production of biobased furfuryl alcohol, 2018-2034 (metric tonnes).      137
  • Figure 47. Schematic of WISA plywood home.     141
  • Figure 48. Global production of biobased lignin, 2018-2034 (metric tonnes).         143
  • Figure 49. Global production of biobased glycerol, 2018-2034 (metric tonnes).    145
  • Figure 50. Global production of Bio-MPG, 2018-2034 (metric tonnes).      147
  • Figure 51. Global production of biobased ECH, 2018-2034 (metric tonnes).            148
  • Figure 52. Global production of biobased fatty acids, 2018-2034 (million metric tonnes). 149
  • Figure 53. Global production of biobased sebacic acid, 2018-2034 (metric tonnes).            151
  • Figure 54. Global production of biobased 11-Aminoundecanoic acid (11-AA), 2018-2034 (metric tonnes). 152
  • Figure 55. Global production of biobased Dodecanedioic acid (DDDA), 2018-2034 (metric tonnes).             154
  • Figure 56. Global production of biobased Pentamethylene diisocyanate, 2018-2034 (metric tonnes).         155
  • Figure 57. Global production of biobased casein, 2018-2034 (metric tonnes).       157
  • Figure 58. Global production of food waste for biochemicals, 2018-2034 (million metric tonnes). 159
  • Figure 59. Global production of agricultural waste for biochemicals, 2018-2034 (million metric tonnes).   160
  • Figure 60. Global production of forestry waste for biochemicals, 2018-2034 (million metric tonnes).          161
  • Figure 61. Global production of aquaculture/fishing waste for biochemicals, 2018-2034 (million metric tonnes).   162
  • Figure 62. Global production of municipal solid waste for biochemicals, 2018-2034 (million metric tonnes).            163
  • Figure 63. Global production of waste oils for biochemicals, 2018-2034 (million metric tonnes).   165
  • Figure 64. Global microalgae production, 2018-2034 (million metric tonnes).        166
  • Figure 65. Global macroalgae production, 2018-2034 (million metric tonnes).      168
  • Figure 66. Global production of biogas, 2018-2034 (billion m3).   172
  • Figure 67. Global production of syngas, 2018-2034 (billion m3).   174
  • Figure 68. formicobio™ technology.         195
  • Figure 69. Domsjö process.          199
  • Figure 70.  TMP-Bio Process.       204
  • Figure 71. Lignin gel.       224
  • Figure 72. BioFlex process.           227
  • Figure 73. LX Process.    229
  • Figure 74. METNIN™ Lignin refining technology. 233
  • Figure 75. Enfinity cellulosic ethanol technology process.               240
  • Figure 76.  Precision Photosynthesis™ technology.            242
  • Figure 77. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.    243
  • Figure 78. UPM biorefinery process.        253
  • Figure 79. The Proesa® Process. 254
  • Figure 80. Goldilocks process and applications.   256
  • Figure 81.  Coca-Cola PlantBottle®.           259
  • Figure 82. Interrelationship between conventional, bio-based and biodegradable plastics.              260
  • Figure 83. Polylactic acid (Bio-PLA) production 2019-2034 (1,000 tonnes).              270
  • Figure 84. Polyethylene terephthalate (Bio-PET) production 2019-2034 (1,000 tonnes)     272
  • Figure 85. Polytrimethylene terephthalate (PTT) production 2019-2034 (1,000 tonnes).   274
  • Figure 86. Production capacities of Polyethylene furanoate (PEF) to 2025.               276
  • Figure 87. Polyethylene furanoate (Bio-PEF) production 2019-2034 (1,000 tonnes).           277
  • Figure 88. Polyamides (Bio-PA) production 2019-2034 (1,000 tonnes).     279
  • Figure 89. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2034 (1,000 tonnes).       282
  • Figure 90. Polybutylene succinate (PBS) production 2019-2034 (1,000 tonnes).    284
  • Figure 91. Polyethylene (Bio-PE) production 2019-2034 (1,000 tonnes).  285
  • Figure 92. Polypropylene (Bio-PP) production capacities 2019-2034 (1,000 tonnes).           287
  • Figure 93. PHA family.    291
  • Figure 94. PHA production capacities 2019-2034 (1,000 tonnes). 305
  • Figure 95. TEM image of cellulose nanocrystals. 308
  • Figure 96. CNC preparation.        308
  • Figure 97. Extracting CNC from trees.      309
  • Figure 98. CNC slurry.     311
  • Figure 99. CNF gel.           314
  • Figure 100. Bacterial nanocellulose shapes           320
  • Figure 101. BLOOM masterbatch from Algix.        325
  • Figure 102. Typical structure of mycelium-based foam.   328
  • Figure 103. Commercial mycelium composite construction materials.       329
  • Figure 104. Global production capacities for bioplastics by end user market 2019-2034, 1,000 tonnes.      331
  • Figure 105. Global production capacities for bioplastics by end user market 2019-2034, 1,000 tonnes.      335
  • Figure 106. PHA bioplastics products.      337
  • Figure 107. The global market for biobased and biodegradable plastics for flexible packaging 2019–2033 (‘000 tonnes).                340
  • Figure 108. Production volumes for bioplastics for rigid packaging, 2019–2033 (‘000 tonnes).        342
  • Figure 109. Global production for biobased and biodegradable plastics in consumer products 2019-2034, in 1,000 tonnes. 343
  • Figure 110. Global production capacities for biobased and biodegradable plastics in automotive 2019-2034, in 1,000 tonnes. 345
  • Figure 111. Global production volumes for biobased and biodegradable plastics in building and construction 2019-2034, in 1,000 tonnes.   346
  • Figure 112. Global production volumes for biobased and biodegradable plastics in textiles 2019-2034, in 1,000 tonnes.                349
  • Figure 113. Global production volumes for biobased and biodegradable plastics in electronics 2019-2034, in 1,000 tonnes. 355
  • Figure 114. Biodegradable mulch films.  356
  • Figure 115. Global production volulmes for biobased and biodegradable plastics in agriculture 2019-2034, in 1,000 tonnes. 357
  • Figure 116. Types of natural fibers.          360
  • Figure 117. Hemp fibers combined with PP in car door panel.       368
  • Figure 118. Car door produced from Hemp fiber.               370
  • Figure 119. Mercedes-Benz components containing natural fibers.            371
  • Figure 120. Global fiber production in 2022, by fiber type, million MT and %.        377
  • Figure 121. Global fiber production (million MT) to 2020-2034.     378
  • Figure 122. Plant-based fiber production 2018-2034, by fiber type, MT.   379
  • Figure 123. Animal based fiber production 2018-2034, by fiber type, million MT. 380
  • Figure 124. Pluumo.        385
  • Figure 125. ANDRITZ Lignin Recovery process.    394
  • Figure 126. Anpoly cellulose nanofiber hydrogel.               396
  • Figure 127. MEDICELLU™.            397
  • Figure 128. Asahi Kasei CNF fabric sheet.               406
  • Figure 129. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.            406
  • Figure 130. CNF nonwoven fabric.            407
  • Figure 131. Roof frame made of natural fiber.     417
  • Figure 132. Beyond Leather Materials product.   421
  • Figure 133. BIOLO e-commerce mailer bag made from PHA.          427
  • Figure 134. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc. 429
  • Figure 135. Fiber-based screw cap.           442
  • Figure 136. formicobio™ technology.      462
  • Figure 137. nanoforest-S.             465
  • Figure 138. nanoforest-PDP.       465
  • Figure 139. nanoforest-MB.        466
  • Figure 140. sunliquid® production process.           474
  • Figure 141. CuanSave film.           477
  • Figure 142. Celish.           478
  • Figure 143. Trunk lid incorporating CNF. 480
  • Figure 144. ELLEX products.         481
  • Figure 145. CNF-reinforced PP compounds.          482
  • Figure 146. Kirekira! toilet wipes.              482
  • Figure 147. Color CNF.   484
  • Figure 148. Rheocrysta spray.     489
  • Figure 149. DKS CNF products.   490
  • Figure 150. Domsjö process.       492
  • Figure 151. Mushroom leather. 501
  • Figure 152. CNF based on citrus peel.      503
  • Figure 153. Citrus cellulose nanofiber.    503
  • Figure 154. Filler Bank CNC products.      515
  • Figure 155. Fibers on kapok tree and after processing.     518
  • Figure 156.  TMP-Bio Process.    520
  • Figure 157. Flow chart of the lignocellulose biorefinery pilot plant in Leuna.          521
  • Figure 158. Water-repellent cellulose.    523
  • Figure 159. Cellulose Nanofiber (CNF) composite with polyethylene (PE). 525
  • Figure 160. PHA production process.       526
  • Figure 161. CNF products from Furukawa Electric.              527
  • Figure 162. AVAPTM process.     538
  • Figure 163. GreenPower+™ process.       538
  • Figure 164. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.            542
  • Figure 165. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer).              544
  • Figure 166. CNF gel.        552
  • Figure 167. Block nanocellulose material.              552
  • Figure 168. CNF products developed by Hokuetsu.            553
  • Figure 169. Marine leather products.      556
  • Figure 170. Inner Mettle Milk products. 560
  • Figure 171. Soluboard immersed in water.            571
  • Figure 172. Infineon PCB before and after immersion.     571
  • Figure 173. Kami Shoji CNF products.      574
  • Figure 174. Dual Graft System.   576
  • Figure 175. Engine cover utilizing Kao CNF composite resins.        577
  • Figure 176. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).           578
  • Figure 177. Kel Labs yarn.             579
  • Figure 178. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side).     583
  • Figure 179. Lignin gel.    592
  • Figure 180. BioFlex process.        596
  • Figure 181. Nike Algae Ink graphic tee.   597
  • Figure 182. LX Process.  601
  • Figure 183. Made of Air's HexChar panels.            604
  • Figure 184. TransLeather.             605
  • Figure 185. Chitin nanofiber product.      610
  • Figure 186. Marusumi Paper cellulose nanofiber products.            611
  • Figure 187. FibriMa cellulose nanofiber powder. 612
  • Figure 188. METNIN™ Lignin refining technology.              616
  • Figure 189. IPA synthesis method.            620
  • Figure 190. MOGU-Wave panels.              623
  • Figure 191. CNF slurries.                624
  • Figure 192. Range of CNF products.          624
  • Figure 193. Reishi.           628
  • Figure 194. Compostable water pod.       646
  • Figure 195. Leather made from leaves.   647
  • Figure 196. Nike shoe with beLEAF™.      647
  • Figure 197. CNF clear sheets.      657
  • Figure 198. Oji Holdings CNF polycarbonate product.       659
  • Figure 199. Enfinity cellulosic ethanol technology process.            673
  • Figure 200. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 678
  • Figure 201. XCNF.            686
  • Figure 202: Plantrose process.    687
  • Figure 203. LOVR hemp leather. 690
  • Figure 204. CNF insulation flat plates.     693
  • Figure 205. Hansa lignin.               700
  • Figure 206. Manufacturing process for STARCEL. 704
  • Figure 207. Manufacturing process for STARCEL. 708
  • Figure 208. 3D printed cellulose shoe.    716
  • Figure 209. Lyocell process.         719
  • Figure 210. North Face Spiber Moon Parka.          724
  • Figure 211. PANGAIA LAB NXT GEN Hoodie.         724
  • Figure 212. Spider silk production.            726
  • Figure 213. Stora Enso lignin battery materials.   730
  • Figure 214. 2 wt.% CNF suspension.       731
  • Figure 215. BiNFi-s Dry Powder. 732
  • Figure 216. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.          732
  • Figure 217. Silk nanofiber (right) and cocoon of raw material.       733
  • Figure 218. Sulapac cosmetics containers.             735
  • Figure 219.  Sulzer equipment for PLA polymerization processing.              736
  • Figure 220. Solid Novolac Type lignin modified phenolic resins.    737
  • Figure 221. Teijin bioplastic film for door handles.             747
  • Figure 222. Corbion FDCA production process.    755
  • Figure 223. Comparison of weight reduction effect using CNF.     756
  • Figure 224. CNF resin products. 760
  • Figure 225. UPM biorefinery process.     762
  • Figure 226. Vegea production process.   767
  • Figure 227. The Proesa® Process.              769
  • Figure 228. Goldilocks process and applications. 770
  • Figure 229. Visolis’ Hybrid Bio-Thermocatalytic Process. 774
  • Figure 230. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.     777
  • Figure 231. Worn Again products.             782
  • Figure 232. Zelfo Technology GmbH CNF production process.       786
  • Figure 233. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes).          807
  • Figure 234. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes).          808
  • Figure 235. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes).        809
  • Figure 236. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes).          811
  • Figure 237. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes).   812
  • Figure 238. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes).                814
  • Figure 239. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes).          815
  • Figure 240. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes).           817
  • Figure 241. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes).           818
  • Figure 242. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes). 820
  • Figure 243. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes).        821
  • Figure 244. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes).             823
  • Figure 245. Market map for advanced plastics recycling. 827
  • Figure 246. Value chain for advanced plastics recycling market.   828
  • Figure 247. Schematic layout of a pyrolysis plant.               834
  • Figure 248. Waste plastic production pathways to (A) diesel and (B) gasoline         839
  • Figure 249. Schematic for Pyrolysis of Scrap Tires.              843
  • Figure 250. Used tires conversion process.            844
  • Figure 251. SWOT analysis-pyrolysis for advanced recycling.          845
  • Figure 252. Total syngas market by product in MM Nm³/h of Syngas, 2021.             849
  • Figure 253. Overview of biogas utilization.             850
  • Figure 254. Biogas and biomethane pathways.   851
  • Figure 255. SWOT analysis-gasification for advanced recycling.    853
  • Figure 256. SWOT analysis-dissoluton for advanced recycling.      856
  • Figure 257. Products obtained through the different solvolysis pathways of PET, PU, and PA.         857
  • Figure 258. SWOT analysis-Hydrolysis for advanced chemical recycling.    860
  • Figure 259. SWOT analysis-Enzymolysis for advanced chemical recycling. 862
  • Figure 260. SWOT analysis-Methanolysis for advanced chemical recycling.              864
  • Figure 261. SWOT analysis-Glycolysis for advanced chemical recycling.     866
  • Figure 262. SWOT analysis-Aminolysis for advanced chemical recycling.   867
  • Figure 263. NewCycling process.               884
  • Figure 264. ChemCyclingTM prototypes. 888
  • Figure 265. ChemCycling circle by BASF. 889
  • Figure 266. Recycled carbon fibers obtained through the R3FIBER process.            890
  • Figure 267. Cassandra Oil  process.           901
  • Figure 268. CuRe Technology process.    909
  • Figure 269. MoReTec.    949
  • Figure 270. Chemical decomposition process of polyurethane foam.         952
  • Figure 271. OMV ReOil process. 964
  • Figure 272. Schematic Process of Plastic Energy’s TAC Chemical Recycling.              968
  • Figure 273. Easy-tear film material from recycled material.            986
  • Figure 274. Polyester fabric made from recycled monomers.        989
  • Figure 275. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right).    1000
  • Figure 276. Teijin Frontier Co., Ltd. Depolymerisation process.    1004
  • Figure 277. The Velocys process.               1011
  • Figure 278. The Proesa® Process.              1012
  • Figure 279. Worn Again products.             1014

 

 

 

The Global Market for Bioplastics and Advanced (Chemical) Plastics Recycling 2024-2034
The Global Market for Bioplastics and Advanced (Chemical) Plastics Recycling 2024-2034
PDF download/by email.

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.