The Global Market for Bioplastics and Natural Fibers to 2030

0

Published February 5 2021, 423 pages, 136 figures, 90 tables

Government legislation, consumer trends and environmental concerns are compelling the development of bioplastics and natural fibers in markets including food packaging, automotive, building/construction, textiles, agriculture, sports & leisure and consumer goods. Biocomposites based on these materials offer significant advantages over incumbent synthetic materials including lightweighting, sustainability and reduced carbon footprint. Natural fibers are also abundant and low-cost. The bioplastics and natural fibers market will witness good growth through to 2030, with excellent opportunities for large producers and start ups. 

The report provides an in depth analysis of the bioplastics and natural fibers market by applications and bioplastic and natural fiber type. Report contents include: 

  • Market trends and drivers in the bioplastics and natural fibers market.
  • Production estimates by bioplastics and natural fibers producers, types, market and regions.
  • Impact of COVID-19.
  • Challenges for the bioplastics and natural fibers market.
  • Advantages and disadvantages of the bioplastics and natural fibers over synthetic plastics. 
  • Analysis of synthetic biopolymers market including Polylactic acid (Bio-PLA), Polyethylene terephthalate (Bio-PET), Polytrimethylene terephthalate (Bio-PTT), Polyethylene furanoate (Bio-PEF), Polyamides (Bio-PA), Poly(butylene adipate-co-terephthalate) (Bio-PBAT), Polybutylene succinate (PBS) and copolymers, Polyethylene (Bio-PE), Polypropylene (Bio-PP)
  • Analysis of naturally produced bio-based polymers including Polyhydroxyalkanoates (PHA), Polysaccharides, Microfibrillated cellulose (MFC), Cellulose nanocrystals, Cellulose nanofibers,  Protein-based bioplastics, Algal and fungal. 
  • Analysis of natural fibers including seed fibers (cotton, luffa), bast fibers(jute, hemp, flax, ramie, kenaf), leaf fibers (sisal, abaca). fruit fibers (banana, pineapple, coir), stalk fibers, bamboo, sugarcane, animal proteins, plus alternative wool, leather, silk and down.
  • Profiles of over 250 companies. Companies profiled include Ananas Anam, BASF, Bast Fiber Technologies Inc., Kelheim Fibres GmbH, BComp, Circular Systems, Evrnu, Natural Fiber Welding, Icytos, NatureWorks, Total Corbion, Danimer Scientific, Novamont, Mitsubishi Chemicals, Indorama, Braskem, Avantium, Borealis, Cathay, Dupont, BASF, Arkema, DuPont, AMSilk GmbH, Notpla, Loliware, Bolt Threads, Ecovative, Kraig Biocraft Laboratories, Spiber and many more. 

 

Table of contents (PDF)

 

1              AIMS AND OBJECTIVES OF THE STUDY     30

 

2              RESEARCH METHODOLOGY         31

 

3              EXECUTIVE SUMMARY   32

  • 3.1          BIOPLASTICS      32
    • 3.1.1      What are bioplastics?     32
    • 3.1.2      Market trends   33
    • 3.1.3      Global production to 2030            34
    • 3.1.4      Main producers and global production capacities               36
      • 3.1.4.1   Producers           36
      • 3.1.4.2   By bioplastic type            37
      • 3.1.4.3   By region             41
    • 3.1.5      Global demand for bioplastics 2020, by market   42
    • 3.1.6      Impact of COVID-19 pandemic on the bioplastics market and future demand        46
    • 3.1.7      Challenges for the biobased and sustainable plastics market         46
  • 3.2          NATURAL FIBERS              48
    • 3.2.1      What are natural fibers?               48
    • 3.2.2      Benefits of natural fibers over synthetic 51
    • 3.2.3      Markets and applications for natural fibers           52
    • 3.2.4      Market drivers for natural fibers                54
    • 3.2.5      Challenges          55
    • 3.2.6      Covid-19 impact                56

 

4              THE GLOBAL PLASTICS MARKET 57

  • 4.1          Global production            57
  • 4.2          The importance of plastic              57
  • 4.3          Issues with plastics use  58

 

5              THE BIOPLASTICS MARKET           59

  • 5.1          Drop-in bio-based plastics            59
  • 5.2          Novel bio-based plastics                60
  • 5.3          Advantages and disadvantages compared to traditional plastics   60
  • 5.4          Types of Bio-based and/or Biodegradable Plastics              62
  • 5.5          BIODEGRADABLE AND COMPOSTABLE PLASTICS 63
    • 5.5.1      Biodegradability               64
    • 5.5.2      Compostability  65
  • 5.6          SYNTHETIC BIO-BASED POLYMERS            66
    • 5.6.1      Polylactic acid (Bio-PLA) 66
      • 5.6.1.1   Market analysis 66
      • 5.6.1.2   Producers           68
    • 5.6.2      Polyethylene terephthalate (Bio-PET)     69
      • 5.6.2.1   Market analysis 69
      • 5.6.2.2   Producers           70
    • 5.6.3      Polytrimethylene terephthalate (Bio-PTT)             70
      • 5.6.3.1   Market analysis 70
      • 5.6.3.2   Producers           71
    • 5.6.4      Polyethylene furanoate (Bio-PEF)             71
      • 5.6.4.1   Market analysis 71
      • 5.6.4.2   Comparative properties to PET   72
      • 5.6.4.3   Producers           73
    • 5.6.5      Polyamides (Bio-PA)       73
      • 5.6.5.1   Market analysis 73
      • 5.6.5.2   Producers           74
    • 5.6.6      Poly(butylene adipate-co-terephthalate) (Bio-PBAT)        75
      • 5.6.6.1   Market analysis 75
      • 5.6.6.2   Producers           76
    • 5.6.7      Polybutylene succinate (PBS) and copolymers     76
      • 5.6.7.1   Market analysis 76
      • 5.6.7.2   Producers           77
    • 5.6.8      Polyethylene (Bio-PE)    77
      • 5.6.8.1   Market analysis 77
      • 5.6.8.2   Producers           78
    • 5.6.9      Polypropylene (Bio-PP) 78
      • 5.6.9.1   Market analysis 78
      • 5.6.9.2   Producers           78
  • 5.7          NATURAL BIO-BASED POLYMERS               80
    • 5.7.1      Polyhydroxyalkanoates (PHA)     80
      • 5.7.1.1   Market analysis 80
      • 5.7.1.2   Commercially available PHAs      81
      • 5.7.1.3   Producers           82
    • 5.7.2      Polysaccharides 83
      • 5.7.2.1   Microfibrillated cellulose (MFC) 83
        • 5.7.2.1.1               Market analysis 83
        • 5.7.2.1.2               Producers           84
      • 5.7.2.2   Cellulose nanocrystals    85
        • 5.7.2.2.1               Market analysis 85
        • 5.7.2.2.2               Producers           86
      • 5.7.2.3   Cellulose nanofibers       86
        • 5.7.2.3.1               Market analysis 86
        • 5.7.2.3.2               Producers           88
  • 5.8          MARKETS FOR BIOPLASTICS        90
    • 5.8.1      Packaging            92
    • 5.8.2      Consumer products        94
    • 5.8.3      Automotive        95
    • 5.8.4      Building & construction 96
    • 5.8.5      Textiles 97
    • 5.8.6      Electronics          98
    • 5.8.7      Agriculture and horticulture        99

 

6              THE NATURAL FIBERS MARKET   102

  • 6.1          Manufacturing method, matrix materials and applications of natural fibers            103
  • 6.2          Advantages of natural fibers       104
  • 6.3          Plants (cellulose, lignocellulose) 105
    • 6.3.1      Seed fibers         105
      • 6.3.1.1   Cotton  105
        • 6.3.1.1.1               Production volumes 2018-2030   106
      • 6.3.1.2   Kapok   106
        • 6.3.1.2.1               Production volumes 2018-2030   107
      • 6.3.1.3   Luffa      107
    • 6.3.2      Bast fibers           109
      • 6.3.2.1   Jute       109
        • 6.3.2.1.1               Production volumes 2018-2030   110
      • 6.3.2.2   Hemp    111
        • 6.3.2.2.1               Production volumes 2018-2030   111
      • 6.3.2.3   Flax        112
        • 6.3.2.3.1               Production volumes 2018-2030   113
      • 6.3.2.4   Ramie   114
        • 6.3.2.4.1               Production volumes 2018-2030   115
      • 6.3.2.5   Kenaf    115
        • 6.3.2.5.1               Production volumes 2018-2030   116
    • 6.3.3      Leaf fibers           117
      • 6.3.3.1   Sisal       117
        • 6.3.3.1.1               Production volumes 2018-2030   118
      • 6.3.3.2   Abaca    118
        • 6.3.3.2.1               Production volumes 2018-2030   119
    • 6.3.4      Fruit fibers          120
      • 6.3.4.1   Coir        120
        • 6.3.4.1.1               Production volumes 2018-2030   120
      • 6.3.4.2   Banana 121
        • 6.3.4.2.1               Production volumes 2018-2030   122
      • 6.3.4.3   Pineapple            123
    • 6.3.5      Stalk fibers from agricultural residues     124
      • 6.3.5.1   Rice fiber             124
      • 6.3.5.2   Corn      124
    • 6.3.6      Cane, grasses and reed  125
      • 6.3.6.1   Switch grass       125
      • 6.3.6.2   Sugarcane (agricultural residues)              126
      • 6.3.6.3   Bamboo               127
        • 6.3.6.3.1               Production volumes 2018-2030   128
      • 6.3.6.4   Fresh grass (green biorefinery)  128
    • 6.3.7      Modified natural polymers          128
      • 6.3.7.1   Mycelium            128
      • 6.3.7.2   Chitosan              131
      • 6.3.7.3   Alginate               131
  • 6.4          Animal (fibrous protein) 133
    • 6.4.1      Wool     133
      • 6.4.1.1   Alternative wool materials           134
        • 6.4.1.1.1               Producers           134
    • 6.4.2      Silk fiber              134
      • 6.4.2.1   Alternative silk materials               135
        • 6.4.2.1.1               Producers           135
    • 6.4.3      Leather 135
      • 6.4.3.1   Alternative leather materials       136
        • 6.4.3.1.1               Producers           136
    • 6.4.4      Down    137
      • 6.4.4.1   Alternative down materials          137
        • 6.4.4.1.1               Producers           137
  • 6.5          MARKETS FOR NATURAL FIBERS 138
    • 6.5.1      Composites        138
      • 6.5.1.1   Applications       138
      • 6.5.1.2   Natural fiber injection moulding compounds       140
        • 6.5.1.2.1               Properties           140
        • 6.5.1.2.2               Applications       140
      • 6.5.1.3   Non-woven natural fiber mat composites              140
        • 6.5.1.3.1               Automotive        141
        • 6.5.1.3.2               Applications       141
      • 6.5.1.4   Aligned natural fiber-reinforced composites        141
      • 6.5.1.5   Natural fiber biobased polymer compounds         142
      • 6.5.1.6   Natural fiber biobased polymer non-woven mats              143
        • 6.5.1.6.1               Flax        143
        • 6.5.1.6.2               Kenaf    143
      • 6.5.1.7   Natural fiber thermoset bioresin composites       144
    • 6.5.2      Aerospace          144
      • 6.5.2.1   Market overview             144
    • 6.5.3      Automotive        145
      • 6.5.3.1   Market overview             145
      • 6.5.3.2   Applications of natural fibers      149
    • 6.5.4      Building/construction     150
      • 6.5.4.1   Market overview             150
      • 6.5.4.2   Applications of natural fibers      150
    • 6.5.5      Sports and leisure            151
      • 6.5.5.1   Market overview             151
    • 6.5.6      Textiles 152
      • 6.5.6.1   Market overview             152
      • 6.5.6.2   Consumer apparel           153
      • 6.5.6.3   Geotextiles        153
    • 6.5.7      Packaging            154
      • 6.5.7.1   Market overview             155
  • 6.6          NATURAL FIBERS GLOBAL PRODUCTION 157
    • 6.6.1      Overall global fibers market        157
    • 6.6.2      Plant-based fiber production      159
    • 6.6.3      Animal-based natural fiber production   160

 

7              BIOPLASTICS COMPANY PROFILES            162 (165 COMPANY PROFILES)

 

8              NATURAL FIBER PRODUCERS AND PRODUCT DEVELOPER PROFILES            281 (123 COMPANY PROFILES)

 

9              REFERENCES       420

 

 

TABLES

  • Table 1. Market drivers and trends in bioplastics.               33
  • Table 2. Global production capacities of bioplastics 2018-2030, in 1,000 tons.       34
  • Table 3. Global production capacities, by producers.        36
  • Table 4. Global production capacities of bioplastics 2019-2030, by type, in 1,000 tons.      37
  • Table 5. Global production capacities of bioplastics 2019-2025, by region, tons.   41
  • Table 6. Types of natural fibers. 48
  • Table 7. Markets and applications for natural fibers.         52
  • Table 8. Market drivers for natural fibers.             54
  • Table 9. Issues related to the use of plastics.        58
  • Table 10. Advantages and disadvantages of biobased plastics compared to conventional plastics. 60
  • Table 11. Types of Bio-based and/or Biodegradable Plastics, applications.               62
  • Table 12. Type of biodegradation.            64
  • Table 13. Polylactic acid (PLA) market analysis.    66
  • Table 14. Lactic acid producers and production capacities.             68
  • Table 15. PLA producers and production capacities.          68
  • Table 16. Bio-based Polyethylene terephthalate (Bio-PET) market analysis.            69
  • Table 17. Bio-based Polyethylene terephthalate (PET) producers.              70
  • Table 18. Polytrimethylene terephthalate (PTT) market analysis. 70
  • Table 19. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.   71
  • Table 20. Polyethylene furanoate (PEF) market analysis. 71
  • Table 21. PEF vs. PET.     72
  • Table 22. FDCA and PEF producers.          73
  • Table 23. Bio-based polyamides (Bio-PA) market analysis.              73
  • Table 24. Leading Bio-PA producers production capacities.            74
  • Table 25. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis.            75
  • Table 26. Leading PBAT producers, production capacities and brands.      76
  • Table 27. Bio-PBS market analysis.            76
  • Table 28. Leading PBS producers and production capacities.          77
  • Table 29. Bio-based Polyethylene (Bio-PE) market analysis.           77
  • Table 30. Leading Bio-PE producers.        78
  • Table 31. Bio-PP market analysis.              78
  • Table 32. Leading Bio-PP producers and capacities.           78
  • Table 33. Polyhydroxyalkanoates (PHA) market analysis. 80
  • Table 34. Commercially available PHAs.  81
  • Table 35. Polyhydroxyalkanoates (PHA) producers.           82
  • Table 36. Microfibrillated cellulose (MFC) market analysis.            83
  • Table 37. Leading MFC producers and capacities.               84
  • Table 38. Cellulose nanocrystals analysis.               85
  • Table 39. Cellulose nanocrystal production capacities and production process, by producer.          86
  • Table 40. Cellulose nanofibers market analysis.   86
  • Table 41. CNF production capacities and production process, by producer.             88
  • Table 42. Application, manufacturing method, and matrix materials of natural fibers.        103
  • Table 43. Typical properties of natural fibers.      104
  • Table 44. Overview of cotton fibers-description, properties, drawbacks and applications. 105
  • Table 45. Overview of kapok fibers-description, properties, drawbacks and applications. 106
  • Table 46. Overview of luffa fibers-description, properties, drawbacks and applications.    107
  • Table 47. Overview of jute fibers-description, properties, drawbacks and applications.     109
  • Table 48. Overview of hemp fibers-description, properties, drawbacks and applications.  111
  • Table 49. Overview of flax fibers-description, properties, drawbacks and applications.      112
  • Table 50. Overview of ramie fibers- description, properties, drawbacks and applications. 114
  • Table 51. Overview of kenaf fibers-description, properties, drawbacks and applications.  115
  • Table 52. Overview of sisal fibers-description, properties, drawbacks and applications.     117
  • Table 53. Overview of abaca fibers-description, properties, drawbacks and applications.  118
  • Table 54. Overview of coir fibers-description, properties, drawbacks and applications.      120
  • Table 55. Overview of banana fibers-description, properties, drawbacks and applications.               121
  • Table 56. Overview of pineapple fibers-description, properties, drawbacks and applications.         123
  • Table 57. Overview of rice fibers-description, properties, drawbacks and applications.      124
  • Table 58. Overview of corn fibers-description, properties, drawbacks and applications.    124
  • Table 59. Overview of switch grass fibers-description, properties and applications.             125
  • Table 60. Overview of sugarcane fibers-description, properties, drawbacks and application and market size.           126
  • Table 61. Overview of bamboo fibers-description, properties, drawbacks and applications.             127
  • Table 62. Overview of mycelium fibers-description, properties, drawbacks and applications.          130
  • Table 63. Overview of chitosan fibers-description, properties, drawbacks and applications.            131
  • Table 64. Overview of alginate-description, properties, application and market size.          131
  • Table 65. Overview of wool fibers-description, properties, drawbacks and applications.   133
  • Table 66. Alternative wool materials producers. 134
  • Table 67. Overview of silk fibers-description, properties, application and market size.       134
  • Table 68. Alternative silk materials producers.    135
  • Table 69. Alternative leather materials producers.            136
  • Table 70. Alternative down materials producers. 137
  • Table 71. Applications of natural fiber composites.           138
  • Table 72. Typical properties of short natural fiber-thermoplastic composites.       140
  • Table 73. Properties of non-woven natural fiber mat composites.               141
  • Table 74. Properties of aligned natural fiber composites. 142
  • Table 75. Properties of natural fiber-bio-based polymer compounds.       143
  • Table 76. Properties of natural fiber-bio-based polymer non-woven mats.             143
  • Table 77. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use.   144
  • Table 78. Natural fiber-reinforced polymer composite in the automotive market. 146
  • Table 79. Natural fibers in the aerospace sector- market drivers, applications and challenges for NF use.  147
  • Table 80. Applications of natural fibers in the automotive industry.           149
  • Table 81. Natural fibers in the building/construction sector- market drivers, applications and challenges for NF use.                150
  • Table 82. Applications of natural fibers in the building/construction sector.           150
  • Table 83. Natural fibers in the sports and leisure sector-market drivers, applications and challenges for NF use.    151
  • Table 84. Natural fibers in the textiles sector- market drivers, applications and challenges for NF use.        152
  • Table 85. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use.    155
  • Table 86. Market leader by Bio-based and/or Biodegradable Plastic types.             162
  • Table 87. Lactips plastic pellets. 231
  • Table 88. Granbio Nanocellulose Processes.         338
  • Table 89. Oji Holdings CNF products.       381

 

FIGURES

  • Figure 1. Total global production capacities for biobased and sustainable plastics, all types, 000 tons.        33
  • Figure 2. Global production capacities of bioplastics 2018-2030, in 1,000 tons by biodegradable/non-biodegradable types.   35
  • Figure 3. Global production capacities of bioplastics in 2019-2030, by type, in 1,000 tons.               39
  • Figure 4. Global production capacities of bioplastics in 2019-2025, by type.           39
  • Figure 5. Global production capacities of bioplastics in 2030, by type.       40
  • Figure 6. Global production capacities of bioplastics 2019.              41
  • Figure 7. Global production capacities of bioplastics 2025.              42
  • Figure 8. Current and future applications of biobased and sustainable plastics.     43
  • Figure 9. Global demand for bioplastics by end user market, 2020.             44
  • Figure 10. Global production capacities for bioplastics by end user market 2019-2030, tons.          46
  • Figure 11. Challenges for the bioplastics market. 46
  • Figure 12. Global plastics production 1950-2018, millions of tons.              57
  • Figure 13.  Coca-Cola PlantBottle®.           60
  • Figure 14. Interrelationship between conventional, bio-based and biodegradable plastics.              61
  • Figure 15. Production capacities of Polyethylene furanoate (PEF) to 2025.               73
  • Figure 16. Global production capacities for biobased and sustainable plastics by end user market 2019, 1,000 tons.                90
  • Figure 17. Global production capacities for biobased and sustainable plastics by end user market 2020, 1,000 tons.                91
  • Figure 18. Global production capacities for biobased and sustainable plastics by end user market 2030, in 1,000 tons.                92
  • Figure 19. PHA bioplastics products.        93
  • Figure 20. Global production capacities for biobased and sustainable plastics in packaging 2019-2030, in 1,000 tons.                94
  • Figure 21. Global production capacities for biobased and sustainable plastics in consumer products 2019-2030, in 1,000 tons.         95
  • Figure 22. Global production capacities for biobased and sustainable plastics in automotive 2019-2030, in 1,000 tons.                96
  • Figure 23. Global production capacities for biobased and sustainable plastics in building and construction 2019-2030, in 1,000 tons.     97
  • Figure 24. Global production capacities for biobased and sustainable plastics in textiles 2019-2030, in 1,000 tons.                98
  • Figure 25. Global production capacities for biobased and sustainable plastics in electronics 2019-2030, in 1,000 tons.                99
  • Figure 26. Biodegradable mulch films.     100
  • Figure 27. Global production capacities for biobased and sustainable plastics in agriculture 2019-2030, in 1,000 tons.                101
  • Figure 28. Types of natural fibers.             102
  • Figure 29. Cotton production volume 2018-2030 (Million MT).     106
  • Figure 30. Kapok production volume 2018-2030 (MT).     107
  • Figure 31.  Luffa cylindrica fiber. 108
  • Figure 32. Jute production volume 2018-2030 (Million MT).          110
  • Figure 33. Hemp fiber production volume 2018-2030 (Million MT).            112
  • Figure 34. Flax fiber production volume 2018-2030 (MT).               113
  • Figure 35. Ramie fiber production volume 2018-2030 (MT).          115
  • Figure 36. Kenaf fiber production volume 2018-2030 (MT).           116
  • Figure 37. Sisal fiber production volume 2018-2030 (MT).              118
  • Figure 38. Abaca fiber production volume 2018-2030 (MT).          119
  • Figure 39. Coir fiber production volume 2018-2030 (MILLION MT).            121
  • Figure 40. Banana fiber production volume 2018-2030 (MT).        122
  • Figure 41. Pineapple fiber.           124
  • Figure 42. Bamboo fiber production volume 2018-2030 (MILLION MT).    128
  • Figure 43. Typical structure of mycelium-based foam.     129
  • Figure 44. Commercial mycelium composite construction materials.          130
  • Figure 45. BLOOM masterbatch from Algix.           132
  • Figure 46. Hemp fibers combined with PP in car door panel.         144
  • Figure 47. Car door produced from Hemp fiber.  145
  • Figure 48. Mercedes-Benz components containing natural fibers.               146
  • Figure 49. AlgiKicks sneaker, made with the Algiknit biopolymer gel.         153
  • Figure 50. Coir mats for erosion control. 154
  • Figure 51. Global fiber production in 2019, by fiber type, million MT and %.           157
  • Figure 52. Global fiber production (million MT) to 2020-2030.       158
  • Figure 53. Plant-based fiber production 2018-2030, by fiber type, MT.     160
  • Figure 54. Animal based fiber production 2018-2030, by fiber type, million MT.    161
  • Figure 55. Algiknit yarn. 167
  • Figure 56. Bio-PA rear bumper stay.         178
  • Figure 57. PHA production process.         214
  • Figure 58. IPA synthesis method.              239
  • Figure 59. Compostable water pod.         248
  • Figure 60.  Sulzer equipment for PLA polymerization processing. 265
  • Figure 61. Teijin bioplastic film for door handles.               269
  • Figure 62. Corbion FDCA production process.      275
  • Figure 63. Pluumo.          283
  • Figure 64. Algiknit yarn. 286
  • Figure 65. Amadou leather shoes.            287
  • Figure 66. Anpoly cellulose nanofiber hydrogel.  290
  • Figure 67. MEDICELLU™.               290
  • Figure 68. Asahi Kasei CNF fabric sheet. 292
  • Figure 69. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.              292
  • Figure 70. CNF nonwoven fabric.               293
  • Figure 71. Roof frame made of natural fiber.        296
  • Figure 72. Beyond Leather Materials product.     299
  • Figure 73. Natural fibres racing seat.        302
  • Figure 74. Cellugy materials.        307
  • Figure 75. nanoforest-S. 310
  • Figure 76. nanoforest-PDP.         311
  • Figure 77. nanoforest-MB.           311
  • Figure 78. Celish.              313
  • Figure 79. Trunk lid incorporating CNF.   314
  • Figure 80. ELLEX products.           316
  • Figure 81. CNF-reinforced PP compounds.            317
  • Figure 82. Kirekira! toilet wipes. 317
  • Figure 83. Color CNF.      318
  • Figure 84. Rheocrysta spray.       322
  • Figure 85. DKS CNF products.      322
  • Figure 86. Mushroom leather.    326
  • Figure 87. CNF based on citrus peel.        327
  • Figure 88. Citrus cellulose nanofiber.       328
  • Figure 89. Filler Bank CNC products.         331
  • Figure 90. Fibers on kapok tree and after processing.       332
  • Figure 91. Cellulose Nanofiber (CNF) composite with polyethylene (PE).  334
  • Figure 92. CNF products from Furukawa Electric. 335
  • Figure 93. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.                340
  • Figure 94. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer). 341
  • Figure 95. CNF gel.           343
  • Figure 96. Block nanocellulose material. 343
  • Figure 97. CNF products developed by Hokuetsu.              344
  • Figure 98. Marine leather products.         345
  • Figure 99. Dual Graft System.     348
  • Figure 100. Engine cover utilizing Kao CNF composite resins.        349
  • Figure 101. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).           349
  • Figure 102. Kami Shoji CNF products.      350
  • Figure 103. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side).     352
  • Figure 104. BioFlex process.        357
  • Figure 105. Chitin nanofiber product.      360
  • Figure 106. Marusumi Paper cellulose nanofiber products.            361
  • Figure 107. FibriMa cellulose nanofiber powder. 362
  • Figure 108. Cellulomix production process.           364
  • Figure 109. Nanobase versus conventional products.       364
  • Figure 110. MOGU-Wave panels.              367
  • Figure 111. CNF slurries.                368
  • Figure 112. Range of CNF products.          368
  • Figure 113. Reishi.           370
  • Figure 114. Nippon Paper Industries’ adult diapers.          377
  • Figure 115. Leather made from leaves.   378
  • Figure 116. Nike shoe with beLEAF™.      378
  • Figure 117. CNF clear sheets.      381
  • Figure 118. Oji Holdings CNF polycarbonate product.       382
  • Figure 119. XCNF.            387
  • Figure 120. CNF insulation flat plates.     389
  • Figure 121. Manufacturing process for STARCEL. 392
  • Figure 122. Lyocell process.         395
  • Figure 123. North Face Spiber Moon Parka.          396
  • Figure 124. Spider silk production.            398
  • Figure 125. 2 wt.% CNF suspension.       399
  • Figure 126. BiNFi-s Dry Powder. 400
  • Figure 127. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.          400
  • Figure 128. Silk nanofiber (right) and cocoon of raw material.       401
  • Figure 129. Sulapac cosmetics containers.             403
  • Figure 130. Comparison of weight reduction effect using CNF.     407
  • Figure 131. CNF resin products. 409
  • Figure 132. Vegea production process.   411
  • Figure 133. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.     413
  • Figure 134. Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film.        414
  • Figure 135. Worn Again products.             416
  • Figure 136. Zelfo Technology GmbH CNF production process.       418

 

 

 

 

 

The Global Market for Bioplastics and Natural Fibers to 2030
The Global Market for Bioplastics and Natural Fibers to 2030
PDF download.

The Global Market for Bioplastics and Natural Fibers to 2030
The Global Market for Bioplastics and Natural Fibers to 2030
Print edition (including tracked delivery).

The Global Market for Bioplastics and Natural Fibers to 2030
The Global Market for Bioplastics and Natural Fibers to 2030
PDF download and print edition (including tracked delivery).

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com.