The Global Market for Carbon Capture, Utilization and Storage (CCUS) 2023-2040

0

Published June 2023 | 429 pages, 121 figures, 73 tables |Download Table of contents | Download market map

Carbon capture, utilization, and storage (CCUS) refers to technologies that capture CO2 emissions and use or store them, leading to permanent sequestration. CCUS technologies capture carbon dioxide emissions from large power sources, including power generation or industrial facilities that use either fossil fuels or biomass for fuel. CO2 can also be captured directly from the atmosphere. If not utilized onsite, captured CO2  is compressed and transported by pipeline, ship, rail or truck to be used in a range of applications, or injected into deep geological formations (including depleted oil and gas reservoirs or saline formations) which trap th CO2 for permanent storage.

Carbon removal technologies include direct air capture (DAC) or bioenergy with carbon capture and storage (BECCS). This fast growing market is being driven by government climate initiatives and increased public and private investments. In 2022 there was over $1 billion in private investment in CCUS companies. Climeworks, a Swiss start-up developing direct air capture (DAC) raised a $650m round in April 2022. In December 2022, Svante raised US$318 million in a Series E fundraising round. Funding has dipped in 2023, but investment remains robust. 

The market for CO2 use is expected to remain relatively small in the near term (<$2.5 billion), but will grow in the next few years in the drive to mitigate carbon emissions from industry, potentially becoming a Trillion Dollar market. There are currently 35 commercial facilities globally are capturing 45 Mt CO2 globally, with another 200 carbon capture facilities planned by 2030, increasing annual carbon capture volume to ~220 Mt CO2 in total. 

New pathways to use CO2 in the production of fuels, chemicals and building materials are driving global interest, allied to increasing backing from governments, industry and investors. 

Report contents include:

  • Analysis of the global market for carbon capture, utilization, and storage (CCUS) technologies.
  • Market developments, funding and investment in carbon capture, utilization, and storage (CCUS) 2020-2023.
  • Analysis of key market dynamics, trends, opportunities and factors influencing the global carbon, capture utilization & storage technologies market and its subsegments.
  • Market barriers to carbon capture, utilization, and storage (CCUS) technologies.
  • National policies.
  • Prices to January 2023. 
  • Latest CCS projects updates.
  • Latest developments in carbon capture, storage and utilization technologies
  • Market analysis of CO2-derived products including fuels, chemicals, building materials from minerals, building materials from waste, enhanced oil recovery, and CO2 use to enhance the yields of biological processes.
  • Profiles of 263 companies in Carbon capture, utilization, and storage (CCUS) including products, collaborations and investment funding. Companies profiled include Algiecel, Aspiring Materials, Cambridge Carbon Capture, Carbon Engineering Ltd., Captura, Carbyon BV, CarbonCure Technologies Inc., CarbonOrO, Carbon Collect, Climeworks, Dimensional Energy, Dioxycle, Ebb Carbon, enaDyne, Fortera Corporation, Global Thermostat, Heirloom Carbon Technologies, High Hopes Labs, LanzaTech, Liquid Wind AB, Lithos, Living Carbon, Mars Materials, Mercurius Biorefining, Mission Zero Technologies, OXCUU, Oxylum, Paebbl, Prometheus Fuels, RepAir, Sunfire GmbH, Sustaera, Svante, Travertine Technologies and Verdox. Full list of companies profiled in table of contents. 

 

 

1              ABBREVIATIONS               21

 

2              RESEARCH METHODOLOGY         22

  • 2.1          Definition of Carbon Capture, Utilisation and Storage (CCUS)        22
  • 2.2          Technology Readiness Level (TRL)             23

 

3              EXECUTIVE SUMMARY   25

  • 3.1          Main sources of carbon dioxide emissions             25
  • 3.2          CO2 as a commodity       26
  • 3.3          Meeting climate targets 28
  • 3.4          Market drivers and trends            29
  • 3.5          The current market and future outlook  30
  • 3.6          CCUS Industry developments 2020-2023                31
  • 3.7          CCUS investments           37
    • 3.7.1      Venture Capital Funding                37
  • 3.8          Government CCUS initiatives      38
    • 3.8.1      North America   38
    • 3.8.2      Europe 38
    • 3.8.3      China     39
  • 3.9          Market map       41
  • 3.10        Commercial CCUS facilities and projects 44
    • 3.10.1    Facilities               45
      • 3.10.1.1                Operational        45
      • 3.10.1.2                Under development/construction            47
  • 3.11        CCUS Value Chain             53
  • 3.12        Key market barriers for CCUS      54

 

4              INTRODUCTION 55

  • 4.1          What is CCUS?  55
    • 4.1.1      Carbon Capture 60
      • 4.1.1.1   Source Characterization 60
      • 4.1.1.2   Purification         61
      • 4.1.1.3   CO2 capture technologies            62
    • 4.1.2      Carbon Utilization            65
      • 4.1.2.1   CO2 utilization pathways              66
    • 4.1.3      Carbon storage 67
      • 4.1.3.1   Passive storage 67
      • 4.1.3.2   Enhanced oil recovery   68
  • 4.2          Transporting CO2             69
    • 4.2.1      Methods of CO2 transport           69
      • 4.2.1.1   Pipeline 70
      • 4.2.1.2   Ship       71
      • 4.2.1.3   Road      71
      • 4.2.1.4   Rail         71
    • 4.2.2      Safety   72
  • 4.3          Costs     72
    • 4.3.1      Cost of CO2 transport     74
  • 4.4          Carbon credits   77

 

5              CARBON CAPTURE           78

  • 5.1          CO2 capture from point sources 79
    • 5.1.1      Transportation  80
    • 5.1.2      Global point source CO2 capture capacities          80
    • 5.1.3      By source            82
    • 5.1.4      By endpoint       83
  • 5.2          Main carbon capture processes 84
    • 5.2.1      Materials             84
    • 5.2.2      Post-combustion             86
    • 5.2.3      Oxy-fuel combustion      87
    • 5.2.4      Liquid or supercritical CO2: Allam-Fetvedt Cycle 88
    • 5.2.5      Pre-combustion 89
  • 5.3          Carbon separation technologies 90
    • 5.3.1      Absorption capture         92
    • 5.3.2      Adsorption capture         96
    • 5.3.3      Membranes       98
    • 5.3.4      Liquid or supercritical CO2 (Cryogenic) capture   100
    • 5.3.5      Chemical Looping-Based Capture              101
    • 5.3.6      Calix Advanced Calciner 102
    • 5.3.7      Other technologies         103
      • 5.3.7.1   Solid Oxide Fuel Cells (SOFCs)     104
      • 5.3.7.2   Microalgae Carbon Capture         105
    • 5.3.8      Comparison of key separation technologies         106
    • 5.3.9      Technology readiness level (TRL) of gas separation technologies 107
  • 5.4          Opportunities and barriers           108
  • 5.5          Costs of CO2 capture      110
  • 5.6          CO2 capture capacity      111
  • 5.7          Bioenergy with carbon capture and storage (BECCS)         113
    • 5.7.1      Overview of technology 113
    • 5.7.2      Biomass conversion        115
    • 5.7.3      BECCS facilities  115
    • 5.7.4      Challenges          116
  • 5.8          Direct air capture (DAC) 117
    • 5.8.1      Description         117
    • 5.8.2      Deployment       119
    • 5.8.3      Point source carbon capture versus Direct Air Capture     119
    • 5.8.4      Technologies     120
      • 5.8.4.1   Solid sorbents   121
      • 5.8.4.2   Liquid sorbents 123
      • 5.8.4.3   Liquid solvents  124
      • 5.8.4.4   Airflow equipment integration   124
      • 5.8.4.5   Passive Direct Air Capture (PDAC)             125
      • 5.8.4.6   Direct conversion             125
      • 5.8.4.7   Co-product generation  125
      • 5.8.4.8   Low Temperature DAC  125
      • 5.8.4.9   Regeneration methods 126
    • 5.8.5      Commercialization and plants     126
    • 5.8.6      Metal-organic frameworks (MOFs) in DAC             127
    • 5.8.7      DAC plants and projects-current and planned      128
    • 5.8.8      Markets for DAC               134
    • 5.8.9      Costs     135
    • 5.8.10    Challenges          140
    • 5.8.11    Players and production  141
  • 5.9          Other technologies         141
    • 5.9.1      Enhanced weathering    142
    • 5.9.2      Afforestation and reforestation 142
    • 5.9.3      Soil carbon sequestration (SCS) 143
    • 5.9.4      Biochar 144
    • 5.9.5      Ocean Carbon Capture  146
      • 5.9.5.1   CO₂ capture from seawater         146
      • 5.9.5.2   Ocean fertilisation           146
      • 5.9.5.3   Ocean alkalinisation        146

 

6              CARBON UTILIZATION    147

  • 6.1          Overview            147
    • 6.1.1      Current market status    147
    • 6.1.2      Benefits of carbon utilization       151
    • 6.1.3      Market challenges           153
  • 6.2          Co2 utilization pathways               154
  • 6.3          Conversion processes    157
    • 6.3.1      Thermochemical              157
      • 6.3.1.1   Process overview             157
      • 6.3.1.2   Plasma-assisted CO2 conversion 160
    • 6.3.2      Electrochemical conversion of CO2           161
      • 6.3.2.1   Process overview             162
    • 6.3.3      Photocatalytic and photothermal catalytic conversion of CO2       164
    • 6.3.4      Catalytic conversion of CO2         164
    • 6.3.5      Biological conversion of CO2       165
    • 6.3.6      Copolymerization of CO2              169
    • 6.3.7      Mineral carbonation       170
  • 6.4          CO2-derived products    174
    • 6.4.1      Fuels     174
      • 6.4.1.1   Overview            174
      • 6.4.1.2   Production routes            176
      • 6.4.1.3   Methanol            177
      • 6.4.1.4   Algae based biofuels       178
      • 6.4.1.5   CO₂-fuels from solar        179
      • 6.4.1.6   Companies         180
      • 6.4.1.7   Challenges          183
    • 6.4.2      Chemicals            184
      • 6.4.2.1   Overview            184
      • 6.4.2.2   Scalability            184
      • 6.4.2.3   Applications       185
      • 6.4.2.4   Companies         187
    • 6.4.3      Construction materials   190
      • 6.4.3.1   Overview            190
      • 6.4.3.2   CCUS technologies          191
      • 6.4.3.3   Carbonated aggregates 194
      • 6.4.3.4   Additives during mixing 195
      • 6.4.3.5   Concrete curing 195
      • 6.4.3.6   Costs     196
      • 6.4.3.7   Companies         196
      • 6.4.3.8   Challenges          198
    • 6.4.4      CO2 Utilization in Biological Yield-Boosting           199
      • 6.4.4.1   Overview            199
      • 6.4.4.2   Applications       199
      • 6.4.4.3   Companies         202
  • 6.5          CO₂ Utilization in Enhanced Oil Recovery               204
    • 6.5.1      Overview            204
      • 6.5.1.1   Process 204
      • 6.5.1.2   CO₂ sources        205
    • 6.5.2      CO₂-EOR facilities and projects   206
    • 6.5.3      Challenges          208
  • 6.6          Enhanced mineralization               209
    • 6.6.1      Advantages        209
    • 6.6.2      In situ and ex-situ mineralization               210
    • 6.6.3      Enhanced mineralization pathways          211
    • 6.6.4      Challenges          212

 

7              CARBON STORAGE          213

  • 7.1          CO2 storage sites             214
    • 7.1.1      Storage types for geologic CO2 storage  214
    • 7.1.2      Oil and gas fields              216
    • 7.1.3      Saline formations             217
  • 7.2          Global CO2 storage capacity        220
  • 7.3          Costs     222
  • 7.4          Challenges          222

 

8              COMPANY PROFILES       224

  • 8.1          Aeroborn B.V.   224
  • 8.2          AirCapture LLC   224
  • 8.3          Air Company      225
  • 8.4          Air Liquide S.A.  226
  • 8.5          Air Products and Chemicals, Inc. 227
  • 8.6          Air Protein          228
  • 8.7          Air Quality Solutions Worldwide DAC       229
  • 8.8          Airovation Technologies 229
  • 8.9          Aker Carbon Capture      230
  • 8.10        Algal Bio Co., Ltd.             231
  • 8.11        Algenol 232
  • 8.12        Algiecel ApS       233
  • 8.13        Andes Ag, Inc.    234
  • 8.14        Aqualung Carbon Capture            234
  • 8.15        Arca       235
  • 8.16        Arkeon Biotechnologies 236
  • 8.17        Asahi Kasei         236
  • 8.18        AspiraDAC Pty Ltd.           237
  • 8.19        Aspiring Materials            239
  • 8.20        Avantium N.V.   239
  • 8.21        Avnos, Inc.          240
  • 8.22        Aymium               241
  • 8.23        Axens SA             242
  • 8.24        Azolla    244
  • 8.25        Barton Blakeley Technologies Ltd.             244
  • 8.26        BASF Group        245
  • 8.27        BP PLC  245
  • 8.28        Blue Planet Systems Corporation              246
  • 8.29        BluSky, Inc.         246
  • 8.30        Breathe Applied Sciences             247
  • 8.31        Brilliant Planet  247
  • 8.32        bse Methanol GmbH      248
  • 8.33        C-Capture           249
  • 8.34        C4X Technologies Inc.     250
  • 8.35        C2CNT LLC           251
  • 8.36        Cambridge Carbon Capture Ltd. 252
  • 8.37        Captura Corporation       252
  • 8.38        Capture6             253
  • 8.39        Carba    254
  • 8.40        CarbiCrete          254
  • 8.41        Carbfix  255
  • 8.42        Carboclave          256
  • 8.43        Carbo Culture    256
  • 8.44        Carbofex Oy       257
  • 8.45        Carbominer        258
  • 8.46        Carbonade          258
  • 8.47        Carbonaide Oy  259
  • 8.48        Carbonaught Pty Ltd.      260
  • 8.49        Carbonova          260
  • 8.50        CarbonScape Ltd.             261
  • 8.51        Carbon8 Systems             261
  • 8.52        Carbon Blade     262
  • 8.53        Carbon Blue        263
  • 8.54        CarbonBuilt        263
  • 8.55        Carbon CANTONNE         264
  • 8.56        Carbon Capture, Inc. (CarbonCapture)    265
  • 8.57        Carbon Capture Machine (UK)    266
  • 8.58        Carbon Centric AS            267
  • 8.59        Carbon Clean Solutions Limited  267
  • 8.60        Carbon Collect Limited   268
  • 8.61        CarbonCure Technologies Inc.    269
  • 8.62        Carbon Geocapture Corp              271
  • 8.63        Carbon Engineering Ltd. 271
  • 8.64        Carbon Infinity Limited  273
  • 8.65        Carbon Limit       274
  • 8.66        Carbon Recycling International  274
  • 8.67        Carbon Reform, Inc.        275
  • 8.68        Carbon Ridge, Inc.            276
  • 8.69        Carbon Sink LLC 277
  • 8.70        CarbonStar Systems        277
  • 8.71        Carbon Upcycling Technologies  278
  • 8.72        Carbonfree Chemicals    279
  • 8.73        CarbonMeta Research Ltd            280
  • 8.74        CarbonOrO Products B.V.             281
  • 8.75        CarbonQuest     281
  • 8.76        Carbon-Zero US LLC         282
  • 8.77        Carbyon BV         283
  • 8.78        Cella Mineral Storage     283
  • 8.79        Cemvita Factory Inc.       284
  • 8.80        CERT Systems, Inc.           284
  • 8.81        CFOAM Limited 285
  • 8.82        Charm Industrial               286
  • 8.83        Chevron Corporation      286
  • 8.84        Chiyoda Corporation       288
  • 8.85        China Energy Investment Corporation (CHN Energy)         289
  • 8.86        Climeworks        290
  • 8.87        CO2 Capsol         292
  • 8.88        CO2Rail Company            292
  • 8.89        CO2CirculAir B.V.             293
  • 8.90        Compact Carbon Capture AS (Baker Hughes)        294
  • 8.91        Coval Energy B.V.             295
  • 8.92        Covestro AG       296
  • 8.93        Cquestr8 Limited              297
  • 8.94        CyanoCapture   298
  • 8.95        D-CRBN 298
  • 8.96        Decarbontek LLC              299
  • 8.97        Deep Branch Biotechnology        299
  • 8.98        Denbury Inc.      300
  • 8.99        Dimensional Energy        301
  • 8.100     Dioxide Materials             302
  • 8.101     Dioxycle               303
  • 8.102     8Rivers 304
  • 8.103     Ebb Carbon         304
  • 8.104     Ecocera 305
  • 8.105     ecoLocked GmbH             306
  • 8.106     Eion Carbon        307
  • 8.107     Econic Technologies Ltd 308
  • 8.108     EcoClosure LLC  308
  • 8.109     Electrochaea GmbH        309
  • 8.110     Emerging Fuels Technology (EFT)              310
  • 8.111     Empower Materials, Inc.               311
  • 8.112     Enerkem, Inc.    312
  • 8.113     enaDyne GmbH 312
  • 8.114     Entropy Inc.        313
  • 8.115     E-Quester           314
  • 8.116     Equatic 314
  • 8.117     Equinor ASA       315
  • 8.118     Evonik Industries AG      316
  • 8.119     ExxonMobil        316
  • 8.120     44.01     317
  • 8.121     Fairbrics               318
  • 8.122     Fervo Energy      318
  • 8.123     Fluor Corporation            319
  • 8.124     Fortera Corporation        319
  • 8.125     Framergy, Inc.   320
  • 8.126     FuelCell Energy, Inc.        321
  • 8.127     GE Gas Power (General Electric) 322
  • 8.128     Giner, Inc.           322
  • 8.129     Global Algae Innovations              323
  • 8.130     Global Thermostat LLC   323
  • 8.131     Graviky Labs       324
  • 8.132     Gulf Coast Sequestration              325
  • 8.133     Greenlyte Carbon Technologies 325
  • 8.134     greenSand          326
  • 8.135     Hago Energetics                326
  • 8.136     Haldor Topsoe   327
  • 8.137     Heimdal CCU      328
  • 8.138     Heirloom Carbon Technologies  329
  • 8.139     High Hopes Labs               330
  • 8.140     Holcim Group    331
  • 8.141     Holy Grail, Inc.   331
  • 8.142     Honeywell          332
  • 8.143     Oy Hydrocell Ltd.              334
  • 8.144     1point8 334
  • 8.145     IHI Corporation 335
  • 8.146     Immaterial Ltd   336
  • 8.147     Ineratec GmbH 336
  • 8.148     Infinitree LLC      338
  • 8.149     Innovator Energy             339
  • 8.150     InnoSepra LLC    339
  • 8.151     Inplanet GmbH 340
  • 8.152     InterEarth           341
  • 8.153     ION Clean Energy, Inc.    341
  • 8.154     Japan CCS Co., Ltd.           342
  • 8.155     Jupiter Oxygen Corporation         342
  • 8.156     Kawasaki Heavy Industries, Ltd. 343
  • 8.157     Krajete GmbH   343
  • 8.158     LanzaJet, Inc.     345
  • 8.159     Lanzatech            346
  • 8.160     Lectrolyst LLC     348
  • 8.161     Levidian Nanosystems   348
  • 8.162     The Linde Group               349
  • 8.163     Liquid Wind AB 350
  • 8.164     Lithos Carbon    351
  • 8.165     Living Carbon     351
  • 8.166     Loam Bio              352
  • 8.167     Low Carbon Korea           353
  • 8.168     Low Carbon Materials    353
  • 8.169     Made of Air GmbH          354
  • 8.170     Mango Materials, Inc.    355
  • 8.171     Mars Materials  355
  • 8.172     Mattershift         356
  • 8.173     Mercurius Biorefining     357
  • 8.174     Minera Systems 357
  • 8.175     Mineral Carbonation International (MCi) Carbon 358
  • 8.176     Mission Zero Technologies           358
  • 8.177     Mitsui Chemicals, Inc.     359
  • 8.178     Mitsubishi Heavy Industries Ltd. 360
  • 8.179     MOFWORX         360
  • 8.180     Molten Industries, Inc.   361
  • 8.181     Mosaic Materials, Inc. (Baker Hughes)    362
  • 8.182     Myno Carbon     363
  • 8.183     Nanyang Zhongju Tianguan Low Carbon Technology Company     364
  • 8.184     Net Power, LLC  364
  • 8.185     NetZero               365
  • 8.186     Neustark AG      365
  • 8.187     Newlight Technologies LLC           366
  • 8.188     New Sky Energy 367
  • 8.189     Norsk e-Fuel AS 368
  • 8.190     Novocarbo GmbH            368
  • 8.191     Novo Nutrients 369
  • 8.192     Noya     369
  • 8.193     Nuada Carbon Capture  370
  • 8.194     Oakbio  370
  • 8.195     Obrist Group      371
  • 8.196     Occidental Petroleum Corp.        372
  • 8.197     OCOchem           372
  • 8.198     Orchestra Scientific S.L. 373
  • 8.199     Origen Carbon Solutions               374
  • 8.200     Osaki CoolGen Corporation         375
  • 8.201     OXCCU Tech Ltd.               376
  • 8.202     OxEon Energy, LLC           376
  • 8.203     Oxylum 377
  • 8.204     Paebbl AB            377
  • 8.205     Parallel Carbon Limited  378
  • 8.206     Perpetual Next Technologies      379
  • 8.207     Photanol B.V.     380
  • 8.208     Phytonix Corporation     380
  • 8.209     Pond Technologies          381
  • 8.210     Planetary Technologies 382
  • 8.211     Prometheus Fuels, Inc.  382
  • 8.212     Prometheus Materials   383
  • 8.213     PTTEP    383
  • 8.214     Proton Power, Inc.           385
  • 8.215     PYREG GmbH     385
  • 8.216     RedoxNRG          386
  • 8.217     Remora 386
  • 8.218     Removr 387
  • 8.219     RepAir Carbon DAC Ltd. 388
  • 8.220     Rubi Laboratories, Inc.   389
  • 8.221     Running Tide Technologies, Inc. 389
  • 8.222     Saipem S.p.A.    390
  • 8.223     Seabound           391
  • 8.224     Seachange Technologies               391
  • 8.225     Sekisui Chemical               392
  • 8.226     SeaO2   392
  • 8.227     Seeo2 Energy, Inc.           393
  • 8.228     Shell plc                393
  • 8.229     Silicate Carbon  395
  • 8.230     SkyMining AB     395
  • 8.231     SkyNano Technologies   396
  • 8.232     Skyrenu Technologies    397
  • 8.233     Skytree 397
  • 8.234     Solar Foods Oy  398
  • 8.235     Soletair Power Oy            399
  • 8.236     Solidia Technologies       400
  • 8.237     South Ocean Air                400
  • 8.238     Southern Green Gas       401
  • 8.239     Steeper Energy 402
  • 8.240     Stockholm Exergi AB       403
  • 8.241     Storegga Geotechnologies Limited           403
  • 8.242     Sublime Systems              404
  • 8.243     Sunfire GmbH    405
  • 8.244     Sustaera              406
  • 8.245     Svante, Inc.         407
  • 8.246     Synhelion            408
  • 8.247     Quantiam Technologies Inc.        409
  • 8.248     Tandem Technical            410
  • 8.249     TerraCOH, Inc.   410
  • 8.250     TerraFixing, Inc. 411
  • 8.251     Terra CO2 Technologies Ltd.        411
  • 8.252     TierraSpec Ltd.  412
  • 8.253     TotalEnergies SE               413
  • 8.254     Travertine Technologies, Inc.      413
  • 8.255     Twelve 414
  • 8.256     UNDO Carbon Ltd.           416
  • 8.257     UP Catalyst         417
  • 8.258     Vertus Energy Ltd.           418
  • 8.259     Verdox 419
  • 8.260     Vortis Carbon Co.             419
  • 8.261     YuanChu Technology Corp.          420
  • 8.262     ZoraMat Solutions           420
  • 8.263     ZS2 Technologies             421

 

9              REFERENCES       422

 

List of Tables

  • Table 1. Technology Readiness Level (TRL) Examples.       23
  • Table 2. Carbon Capture, Utilisation and Storage (CCUS) market drivers and trends.           29
  • Table 3. Carbon capture, usage, and storage (CCUS) industry developments 2020-2023.   31
  • Table 4. CCUS VC deals 2020-2023.            37
  • Table 5. Demonstration and commercial CCUS facilities in China. 39
  • Table 6. Global commercial CCUS facilities-in operation. 45
  • Table 7. Global commercial CCUS facilities-under development/construction.      47
  • Table 8. Key market barriers for CCUS.    54
  • Table 9. CO2 utilization and removal pathways   57
  • Table 10. Approaches for capturing carbon dioxide (CO2) from point sources.       60
  • Table 11. CO2 capture technologies.       62
  • Table 12. Advantages and challenges of carbon capture technologies.      63
  • Table 13. Overview of commercial materials and processes utilized in carbon capture.      64
  • Table 14. Methods of CO2 transport.       70
  • Table 15. Carbon capture, transport, and storage cost per unit of CO2      72
  • Table 16. Estimated capital costs for commercial-scale carbon capture.   73
  • Table 17. Point source examples.              79
  • Table 18. Assessment of carbon capture materials             84
  • Table 19. Chemical solvents used in post-combustion.    87
  • Table 20. Commercially available physical solvents for pre-combustion carbon capture.   90
  • Table 21. Main capture processes and their separation technologies.       90
  • Table 22. Absorption methods for CO2 capture overview.              92
  • Table 23. Commercially available physical solvents used in CO2 absorption.           94
  • Table 24. Adsorption methods for CO2 capture overview.              96
  • Table 25. Membrane-based methods for CO2 capture overview. 98
  • Table 26. Benefits and drawbacks of microalgae carbon capture. 106
  • Table 27. Comparison of main separation technologies.  106
  • Table 28. Technology readiness level (TRL) of gas separation technologies              107
  • Table 29. Opportunities and Barriers by sector.   108
  • Table 30. Existing and planned capacity for sequestration of biogenic carbon.       115
  • Table 31. Existing facilities with capture and/or geologic sequestration of biogenic CO2.   116
  • Table 32. Advantages and disadvantages of DAC.               118
  • Table 33. Companies developing airflow equipment integration with DAC.             124
  • Table 34. Companies developing Passive Direct Air Capture (PDAC) technologies. 125
  • Table 35. Companies developing regeneration methods for DAC technologies.     126
  • Table 36. DAC companies and technologies.         127
  • Table 37. DAC technology developers and production.    129
  • Table 38. DAC projects in development. 133
  • Table 39. Markets for DAC.          134
  • Table 40. Costs summary for DAC.            135
  • Table 41. Cost estimates of DAC.               138
  • Table 42. Challenges for DAC technology.              140
  • Table 43. DAC companies and technologies.         141
  • Table 44. Biological CCS technologies.     141
  • Table 45. Biochar in carbon capture overview.    145
  • Table 46. Carbon utilization revenue forecast by product (US$).  151
  • Table 47. CO2 utilization and removal pathways.               151
  • Table 48. Market challenges for CO2 utilization.  153
  • Table 49. Example CO2 utilization pathways.       154
  • Table 50. CO2 derived products via Thermochemical conversion-applications, advantages and disadvantages.       157
  • Table 51. Electrochemical CO₂ reduction products.            161
  • Table 52. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages.        162
  • Table 53. CO2 derived products via biological conversion-applications, advantages and disadvantages.     167
  • Table 54. Companies developing and producing CO2-based polymers.     169
  • Table 55. Companies developing mineral carbonation technologies.          173
  • Table 56. Market overview for CO2 derived fuels.              174
  • Table 57. Microalgae products and prices.             178
  • Table 58. Main Solar-Driven CO2 Conversion Approaches.             179
  • Table 59. Companies in CO2-derived fuel products.          180
  • Table 60. Commodity chemicals and fuels manufactured from CO2.          185
  • Table 61. Companies in CO2-derived chemicals products.               187
  • Table 62. Carbon capture technologies and projects in the cement sector               191
  • Table 63. Companies in CO2 derived building materials.  196
  • Table 64. Market challenges for CO2 utilization in construction materials.               198
  • Table 65. Companies in CO2 Utilization in Biological Yield-Boosting.          202
  • Table 66. Applications of CCS in oil and gas production.   204
  • Table 67. CO2 EOR/Storage Challenges. 212
  • Table 68. Storage and utilization of CO2. 213
  • Table 69. Global depleted reservoir storage projects.      215
  • Table 70. Global CO2 ECBM storage projects.      215
  • Table 71. CO2 EOR/storage projects.       216
  • Table 72. Global storage sites-saline aquifer projects.      218
  • Table 73. Global storage capacity estimates, by region.   220

 

List of Figures

  • Figure 1. Carbon emissions by sector.      25
  • Figure 2. Overview of CCUS market          27
  • Figure 3. Pathways for CO2 use. 28
  • Figure 4. Regional capacity share 2022-2030.        30
  • Figure 5. Global investment in carbon capture 2010-2022, millions USD. 37
  • Figure 6. Carbon Capture, Utilization, & Storage (CCUS) Market Map.       43
  • Figure 7. CCS deployment projects, historical and to 2035.             44
  • Figure 8. Existing and planned CCS projects.         53
  • Figure 9. CCUS Value Chain.         53
  • Figure 10. Schematic of CCUS process.    55
  • Figure 11. Pathways for CO2 utilization and removal.       56
  • Figure 12. A pre-combustion capture system.      62
  • Figure 13. Carbon dioxide utilization and removal cycle.  66
  • Figure 14. Various pathways for CO2 utilization. 67
  • Figure 15. Example of underground carbon dioxide storage.         68
  • Figure 16. Transport of CCS technologies.              69
  • Figure 17. Railroad car for liquid CO₂ transport    72
  • Figure 18. Estimated costs of capture of one metric ton of carbon dioxide (Co2) by sector.              74
  • Figure 19. Cost of CO2 transported at different flowrates              75
  • Figure 20. Cost estimates for long-distance CO2 transport.            76
  • Figure 21. CO2 capture and separation technology.          78
  • Figure 22. Global capacity of point-source carbon capture and storage facilities.  81
  • Figure 23. Global carbon capture capacity by CO2 source, 2021.   82
  • Figure 24. Global carbon capture capacity by CO2 source, 2030.   82
  • Figure 25. Global carbon capture capacity by CO2 endpoint, 2021 and 2030.          83
  • Figure 26. Post-combustion carbon capture process.        86
  • Figure 27. Postcombustion CO2 Capture in a Coal-Fired Power Plant.        87
  • Figure 28. Oxy-combustion carbon capture process.         88
  • Figure 29. Liquid or supercritical CO2 carbon capture process.     89
  • Figure 30. Pre-combustion carbon capture process.          90
  • Figure 31. Amine-based absorption technology. 94
  • Figure 32. Pressure swing absorption technology.             98
  • Figure 33. Membrane separation technology.     100
  • Figure 34. Liquid or supercritical CO2 (cryogenic) distillation.        101
  • Figure 35. Process schematic of chemical looping.             102
  • Figure 36. Calix advanced calcination reactor.      103
  • Figure 37. Fuel Cell CO2 Capture diagram.             104
  • Figure 38. Microalgal carbon capture.     105
  • Figure 39. Cost of carbon capture.            110
  • Figure 40. CO2 capture capacity to 2030, MtCO2.              111
  • Figure 41. Capacity of large-scale CO2 capture projects, current and planned vs. the Net Zero Scenario, 2020-2030.                112
  • Figure 42. Bioenergy with carbon capture and storage (BECCS) process.  114
  • Figure 43. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.   117
  • Figure 44. Global CO2 capture from biomass and DAC in the Net Zero Scenario.   118
  • Figure 45.  DAC technologies.     120
  • Figure 46. Schematic of Climeworks DAC system.               121
  • Figure 47. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.          122
  • Figure 48.  Flow diagram for solid sorbent DAC.  123
  • Figure 49. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.    124
  • Figure 50. Global capacity of direct air capture facilities. 128
  • Figure 51. Global map of DAC and CCS plants.      134
  • Figure 52. Schematic of costs of DAC technologies.           136
  • Figure 53. DAC cost breakdown and comparison.               137
  • Figure 54. Operating costs of generic liquid and solid-based DAC systems.              139
  • Figure 55. Schematic of biochar production.         144
  • Figure 56. CO2 non-conversion and conversion technology, advantages and disadvantages.           147
  • Figure 57. Applications for CO2. 150
  • Figure 58. Cost to capture one metric ton of carbon, by sector.    150
  • Figure 59. Life cycle of CO2-derived products and services.            153
  • Figure 60. Co2 utilization pathways and products.             156
  • Figure 61. Plasma technology configurations and their advantages and disadvantages for CO2 conversion.              160
  • Figure 62. LanzaTech gas-fermentation process. 165
  • Figure 63. Schematic of biological CO2 conversion into e-fuels.   166
  • Figure 64. Econic catalyst systems.           169
  • Figure 65. Mineral carbonation processes.            172
  • Figure 66. Conversion route for CO2-derived fuels and chemical intermediates.   175
  • Figure 67.  Conversion pathways for CO2-derived methane, methanol and diesel.               176
  • Figure 68. CO2 feedstock for the production of e-methanol.         177
  • Figure 69. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c     179
  • Figure 70. Audi synthetic fuels.  181
  • Figure 71.  Conversion of CO2 into chemicals and fuels via different pathways.    184
  • Figure 72.  Conversion pathways for CO2-derived polymeric materials      186
  • Figure 73. Conversion pathway for CO2-derived building materials.           190
  • Figure 74. Schematic of CCUS in cement sector.  191
  • Figure 75. Carbon8 Systems’ ACT process.            194
  • Figure 76. CO2 utilization in the Carbon Cure process.     195
  • Figure 77. Algal cultivation in the desert.               200
  • Figure 78. Example pathways for products from cyanobacteria.   201
  • Figure 79. Typical Flow Diagram for CO2 EOR.      205
  • Figure 80. Large CO2-EOR projects in different project stages by industry.              207
  • Figure 81. Carbon mineralization pathways.         211
  • Figure 82. CO2 Storage Overview - Site Options  214
  • Figure 83.  CO2 injection into a saline formation while producing brine for beneficial use.               218
  • Figure 84. Subsurface storage cost estimation.    222
  • Figure 85. Air Products production process.          228
  • Figure 86. Aker carbon capture system. 231
  • Figure 87. ALGIECEL PhotoBioReactor.    233
  • Figure 88. Schematic of carbon capture solar project.      238
  • Figure 89. Aspiring Materials method.    239
  • Figure 90. Aymium’s Biocarbon production.         242
  • Figure 91. Carbonminer technology.        258
  • Figure 92. Carbon Blade system. 262
  • Figure 93. CarbonCure Technology.         270
  • Figure 94. Direct Air Capture Process.     272
  • Figure 95. CRI process.   275
  • Figure 96. PCCSD Project in China.            290
  • Figure 97. Orca facility.  291
  • Figure 98. Process flow scheme of Compact Carbon Capture Plant.            295
  • Figure 99. Colyser process.          296
  • Figure 100. ECFORM electrolysis reactor schematic.          302
  • Figure 101. Dioxycle modular electrolyzer.            303
  • Figure 102. Fuel Cell Carbon Capture.      321
  • Figure 103. Topsoe's SynCORTM autothermal reforming technology.        328
  • Figure 104. Carbon Capture balloon.        330
  • Figure 105. Holy Grail DAC system.           332
  • Figure 106. INERATEC unit.           337
  • Figure 107. Infinitree swing method.       338
  • Figure 108. Audi/Krajete unit.    344
  • Figure 109. Made of Air's HexChar panels.            354
  • Figure 110. Mosaic Materials MOFs.        362
  • Figure 111. Neustark modular plant.        366
  • Figure 112. OCOchem’s Carbon Flux Electrolyzer.               373
  • Figure 113. ZerCaL™ process.      374
  • Figure 114. CCS project at Arthit offshore gas field.           384
  • Figure 115. RepAir technology.  388
  • Figure 116. Soletair Power unit. 399
  • Figure 117. Sunfire process for Blue Crude production.    405
  • Figure 118. CALF-20 has been integrated into a rotating CO2 capture machine (left), which operates inside a CO2 plant module (right).  408
  • Figure 119. O12 Reactor.              415
  • Figure 120. Sunglasses with lenses made from CO2-derived materials.     415
  • Figure 121. CO2 made car part.  415

 

 

 

The Global Market for Carbon Capture, Utilization and Storage (CCUS) 2023-2040
The Global Market for Carbon Capture, Utilization and Storage (CCUS) 2023-2040
PDF download.

The Global Market for Carbon Capture, Utilization and Storage (CCUS) 2023-2040
The Global Market for Carbon Capture, Utilization and Storage (CCUS) 2023-2040
PDF download and print edition, including tracked delivery.

Payment methods: Visa, Mastercard, American Express, Paypal. 

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com