Published June 2023 | 429 pages, 121 figures, 73 tables |Download Table of contents | Download market map
Carbon capture, utilization, and storage (CCUS) refers to technologies that capture CO2 emissions and use or store them, leading to permanent sequestration. CCUS technologies capture carbon dioxide emissions from large power sources, including power generation or industrial facilities that use either fossil fuels or biomass for fuel. CO2 can also be captured directly from the atmosphere. If not utilized onsite, captured CO2 is compressed and transported by pipeline, ship, rail or truck to be used in a range of applications, or injected into deep geological formations (including depleted oil and gas reservoirs or saline formations) which trap th CO2 for permanent storage.
Carbon removal technologies include direct air capture (DAC) or bioenergy with carbon capture and storage (BECCS). This fast growing market is being driven by government climate initiatives and increased public and private investments. In 2022 there was over $1 billion in private investment in CCUS companies. Climeworks, a Swiss start-up developing direct air capture (DAC) raised a $650m round in April 2022. In December 2022, Svante raised US$318 million in a Series E fundraising round. Funding has dipped in 2023, but investment remains robust.
The market for CO2 use is expected to remain relatively small in the near term (<$2.5 billion), but will grow in the next few years in the drive to mitigate carbon emissions from industry, potentially becoming a Trillion Dollar market. There are currently 35 commercial facilities globally are capturing 45 Mt CO2 globally, with another 200 carbon capture facilities planned by 2030, increasing annual carbon capture volume to ~220 Mt CO2 in total.
New pathways to use CO2 in the production of fuels, chemicals and building materials are driving global interest, allied to increasing backing from governments, industry and investors.
Report contents include:
- Analysis of the global market for carbon capture, utilization, and storage (CCUS) technologies.
- Market developments, funding and investment in carbon capture, utilization, and storage (CCUS) 2020-2023.
- Analysis of key market dynamics, trends, opportunities and factors influencing the global carbon, capture utilization & storage technologies market and its subsegments.
- Market barriers to carbon capture, utilization, and storage (CCUS) technologies.
- National policies.
- Prices to January 2023.
- Latest CCS projects updates.
- Latest developments in carbon capture, storage and utilization technologies
- Market analysis of CO2-derived products including fuels, chemicals, building materials from minerals, building materials from waste, enhanced oil recovery, and CO2 use to enhance the yields of biological processes.
- Profiles of 263 companies in Carbon capture, utilization, and storage (CCUS) including products, collaborations and investment funding. Companies profiled include Algiecel, Aspiring Materials, Cambridge Carbon Capture, Carbon Engineering Ltd., Captura, Carbyon BV, CarbonCure Technologies Inc., CarbonOrO, Carbon Collect, Climeworks, Dimensional Energy, Dioxycle, Ebb Carbon, enaDyne, Fortera Corporation, Global Thermostat, Heirloom Carbon Technologies, High Hopes Labs, LanzaTech, Liquid Wind AB, Lithos, Living Carbon, Mars Materials, Mercurius Biorefining, Mission Zero Technologies, OXCUU, Oxylum, Paebbl, Prometheus Fuels, RepAir, Sunfire GmbH, Sustaera, Svante, Travertine Technologies and Verdox. Full list of companies profiled in table of contents.
1 ABBREVIATIONS 21
2 RESEARCH METHODOLOGY 22
- 2.1 Definition of Carbon Capture, Utilisation and Storage (CCUS) 22
- 2.2 Technology Readiness Level (TRL) 23
3 EXECUTIVE SUMMARY 25
- 3.1 Main sources of carbon dioxide emissions 25
- 3.2 CO2 as a commodity 26
- 3.3 Meeting climate targets 28
- 3.4 Market drivers and trends 29
- 3.5 The current market and future outlook 30
- 3.6 CCUS Industry developments 2020-2023 31
- 3.7 CCUS investments 37
- 3.7.1 Venture Capital Funding 37
- 3.8 Government CCUS initiatives 38
- 3.8.1 North America 38
- 3.8.2 Europe 38
- 3.8.3 China 39
- 3.9 Market map 41
- 3.10 Commercial CCUS facilities and projects 44
- 3.10.1 Facilities 45
- 3.10.1.1 Operational 45
- 3.10.1.2 Under development/construction 47
- 3.10.1 Facilities 45
- 3.11 CCUS Value Chain 53
- 3.12 Key market barriers for CCUS 54
4 INTRODUCTION 55
- 4.1 What is CCUS? 55
- 4.1.1 Carbon Capture 60
- 4.1.1.1 Source Characterization 60
- 4.1.1.2 Purification 61
- 4.1.1.3 CO2 capture technologies 62
- 4.1.2 Carbon Utilization 65
- 4.1.2.1 CO2 utilization pathways 66
- 4.1.3 Carbon storage 67
- 4.1.3.1 Passive storage 67
- 4.1.3.2 Enhanced oil recovery 68
- 4.1.1 Carbon Capture 60
- 4.2 Transporting CO2 69
- 4.2.1 Methods of CO2 transport 69
- 4.2.1.1 Pipeline 70
- 4.2.1.2 Ship 71
- 4.2.1.3 Road 71
- 4.2.1.4 Rail 71
- 4.2.2 Safety 72
- 4.2.1 Methods of CO2 transport 69
- 4.3 Costs 72
- 4.3.1 Cost of CO2 transport 74
- 4.4 Carbon credits 77
5 CARBON CAPTURE 78
- 5.1 CO2 capture from point sources 79
- 5.1.1 Transportation 80
- 5.1.2 Global point source CO2 capture capacities 80
- 5.1.3 By source 82
- 5.1.4 By endpoint 83
- 5.2 Main carbon capture processes 84
- 5.2.1 Materials 84
- 5.2.2 Post-combustion 86
- 5.2.3 Oxy-fuel combustion 87
- 5.2.4 Liquid or supercritical CO2: Allam-Fetvedt Cycle 88
- 5.2.5 Pre-combustion 89
- 5.3 Carbon separation technologies 90
- 5.3.1 Absorption capture 92
- 5.3.2 Adsorption capture 96
- 5.3.3 Membranes 98
- 5.3.4 Liquid or supercritical CO2 (Cryogenic) capture 100
- 5.3.5 Chemical Looping-Based Capture 101
- 5.3.6 Calix Advanced Calciner 102
- 5.3.7 Other technologies 103
- 5.3.7.1 Solid Oxide Fuel Cells (SOFCs) 104
- 5.3.7.2 Microalgae Carbon Capture 105
- 5.3.8 Comparison of key separation technologies 106
- 5.3.9 Technology readiness level (TRL) of gas separation technologies 107
- 5.4 Opportunities and barriers 108
- 5.5 Costs of CO2 capture 110
- 5.6 CO2 capture capacity 111
- 5.7 Bioenergy with carbon capture and storage (BECCS) 113
- 5.7.1 Overview of technology 113
- 5.7.2 Biomass conversion 115
- 5.7.3 BECCS facilities 115
- 5.7.4 Challenges 116
- 5.8 Direct air capture (DAC) 117
- 5.8.1 Description 117
- 5.8.2 Deployment 119
- 5.8.3 Point source carbon capture versus Direct Air Capture 119
- 5.8.4 Technologies 120
- 5.8.4.1 Solid sorbents 121
- 5.8.4.2 Liquid sorbents 123
- 5.8.4.3 Liquid solvents 124
- 5.8.4.4 Airflow equipment integration 124
- 5.8.4.5 Passive Direct Air Capture (PDAC) 125
- 5.8.4.6 Direct conversion 125
- 5.8.4.7 Co-product generation 125
- 5.8.4.8 Low Temperature DAC 125
- 5.8.4.9 Regeneration methods 126
- 5.8.5 Commercialization and plants 126
- 5.8.6 Metal-organic frameworks (MOFs) in DAC 127
- 5.8.7 DAC plants and projects-current and planned 128
- 5.8.8 Markets for DAC 134
- 5.8.9 Costs 135
- 5.8.10 Challenges 140
- 5.8.11 Players and production 141
- 5.9 Other technologies 141
- 5.9.1 Enhanced weathering 142
- 5.9.2 Afforestation and reforestation 142
- 5.9.3 Soil carbon sequestration (SCS) 143
- 5.9.4 Biochar 144
- 5.9.5 Ocean Carbon Capture 146
- 5.9.5.1 CO₂ capture from seawater 146
- 5.9.5.2 Ocean fertilisation 146
- 5.9.5.3 Ocean alkalinisation 146
6 CARBON UTILIZATION 147
- 6.1 Overview 147
- 6.1.1 Current market status 147
- 6.1.2 Benefits of carbon utilization 151
- 6.1.3 Market challenges 153
- 6.2 Co2 utilization pathways 154
- 6.3 Conversion processes 157
- 6.3.1 Thermochemical 157
- 6.3.1.1 Process overview 157
- 6.3.1.2 Plasma-assisted CO2 conversion 160
- 6.3.2 Electrochemical conversion of CO2 161
- 6.3.2.1 Process overview 162
- 6.3.3 Photocatalytic and photothermal catalytic conversion of CO2 164
- 6.3.4 Catalytic conversion of CO2 164
- 6.3.5 Biological conversion of CO2 165
- 6.3.6 Copolymerization of CO2 169
- 6.3.7 Mineral carbonation 170
- 6.3.1 Thermochemical 157
- 6.4 CO2-derived products 174
- 6.4.1 Fuels 174
- 6.4.1.1 Overview 174
- 6.4.1.2 Production routes 176
- 6.4.1.3 Methanol 177
- 6.4.1.4 Algae based biofuels 178
- 6.4.1.5 CO₂-fuels from solar 179
- 6.4.1.6 Companies 180
- 6.4.1.7 Challenges 183
- 6.4.2 Chemicals 184
- 6.4.2.1 Overview 184
- 6.4.2.2 Scalability 184
- 6.4.2.3 Applications 185
- 6.4.2.4 Companies 187
- 6.4.3 Construction materials 190
- 6.4.3.1 Overview 190
- 6.4.3.2 CCUS technologies 191
- 6.4.3.3 Carbonated aggregates 194
- 6.4.3.4 Additives during mixing 195
- 6.4.3.5 Concrete curing 195
- 6.4.3.6 Costs 196
- 6.4.3.7 Companies 196
- 6.4.3.8 Challenges 198
- 6.4.4 CO2 Utilization in Biological Yield-Boosting 199
- 6.4.4.1 Overview 199
- 6.4.4.2 Applications 199
- 6.4.4.3 Companies 202
- 6.4.1 Fuels 174
- 6.5 CO₂ Utilization in Enhanced Oil Recovery 204
- 6.5.1 Overview 204
- 6.5.1.1 Process 204
- 6.5.1.2 CO₂ sources 205
- 6.5.2 CO₂-EOR facilities and projects 206
- 6.5.3 Challenges 208
- 6.5.1 Overview 204
- 6.6 Enhanced mineralization 209
- 6.6.1 Advantages 209
- 6.6.2 In situ and ex-situ mineralization 210
- 6.6.3 Enhanced mineralization pathways 211
- 6.6.4 Challenges 212
7 CARBON STORAGE 213
- 7.1 CO2 storage sites 214
- 7.1.1 Storage types for geologic CO2 storage 214
- 7.1.2 Oil and gas fields 216
- 7.1.3 Saline formations 217
- 7.2 Global CO2 storage capacity 220
- 7.3 Costs 222
- 7.4 Challenges 222
8 COMPANY PROFILES 224
- 8.1 Aeroborn B.V. 224
- 8.2 AirCapture LLC 224
- 8.3 Air Company 225
- 8.4 Air Liquide S.A. 226
- 8.5 Air Products and Chemicals, Inc. 227
- 8.6 Air Protein 228
- 8.7 Air Quality Solutions Worldwide DAC 229
- 8.8 Airovation Technologies 229
- 8.9 Aker Carbon Capture 230
- 8.10 Algal Bio Co., Ltd. 231
- 8.11 Algenol 232
- 8.12 Algiecel ApS 233
- 8.13 Andes Ag, Inc. 234
- 8.14 Aqualung Carbon Capture 234
- 8.15 Arca 235
- 8.16 Arkeon Biotechnologies 236
- 8.17 Asahi Kasei 236
- 8.18 AspiraDAC Pty Ltd. 237
- 8.19 Aspiring Materials 239
- 8.20 Avantium N.V. 239
- 8.21 Avnos, Inc. 240
- 8.22 Aymium 241
- 8.23 Axens SA 242
- 8.24 Azolla 244
- 8.25 Barton Blakeley Technologies Ltd. 244
- 8.26 BASF Group 245
- 8.27 BP PLC 245
- 8.28 Blue Planet Systems Corporation 246
- 8.29 BluSky, Inc. 246
- 8.30 Breathe Applied Sciences 247
- 8.31 Brilliant Planet 247
- 8.32 bse Methanol GmbH 248
- 8.33 C-Capture 249
- 8.34 C4X Technologies Inc. 250
- 8.35 C2CNT LLC 251
- 8.36 Cambridge Carbon Capture Ltd. 252
- 8.37 Captura Corporation 252
- 8.38 Capture6 253
- 8.39 Carba 254
- 8.40 CarbiCrete 254
- 8.41 Carbfix 255
- 8.42 Carboclave 256
- 8.43 Carbo Culture 256
- 8.44 Carbofex Oy 257
- 8.45 Carbominer 258
- 8.46 Carbonade 258
- 8.47 Carbonaide Oy 259
- 8.48 Carbonaught Pty Ltd. 260
- 8.49 Carbonova 260
- 8.50 CarbonScape Ltd. 261
- 8.51 Carbon8 Systems 261
- 8.52 Carbon Blade 262
- 8.53 Carbon Blue 263
- 8.54 CarbonBuilt 263
- 8.55 Carbon CANTONNE 264
- 8.56 Carbon Capture, Inc. (CarbonCapture) 265
- 8.57 Carbon Capture Machine (UK) 266
- 8.58 Carbon Centric AS 267
- 8.59 Carbon Clean Solutions Limited 267
- 8.60 Carbon Collect Limited 268
- 8.61 CarbonCure Technologies Inc. 269
- 8.62 Carbon Geocapture Corp 271
- 8.63 Carbon Engineering Ltd. 271
- 8.64 Carbon Infinity Limited 273
- 8.65 Carbon Limit 274
- 8.66 Carbon Recycling International 274
- 8.67 Carbon Reform, Inc. 275
- 8.68 Carbon Ridge, Inc. 276
- 8.69 Carbon Sink LLC 277
- 8.70 CarbonStar Systems 277
- 8.71 Carbon Upcycling Technologies 278
- 8.72 Carbonfree Chemicals 279
- 8.73 CarbonMeta Research Ltd 280
- 8.74 CarbonOrO Products B.V. 281
- 8.75 CarbonQuest 281
- 8.76 Carbon-Zero US LLC 282
- 8.77 Carbyon BV 283
- 8.78 Cella Mineral Storage 283
- 8.79 Cemvita Factory Inc. 284
- 8.80 CERT Systems, Inc. 284
- 8.81 CFOAM Limited 285
- 8.82 Charm Industrial 286
- 8.83 Chevron Corporation 286
- 8.84 Chiyoda Corporation 288
- 8.85 China Energy Investment Corporation (CHN Energy) 289
- 8.86 Climeworks 290
- 8.87 CO2 Capsol 292
- 8.88 CO2Rail Company 292
- 8.89 CO2CirculAir B.V. 293
- 8.90 Compact Carbon Capture AS (Baker Hughes) 294
- 8.91 Coval Energy B.V. 295
- 8.92 Covestro AG 296
- 8.93 Cquestr8 Limited 297
- 8.94 CyanoCapture 298
- 8.95 D-CRBN 298
- 8.96 Decarbontek LLC 299
- 8.97 Deep Branch Biotechnology 299
- 8.98 Denbury Inc. 300
- 8.99 Dimensional Energy 301
- 8.100 Dioxide Materials 302
- 8.101 Dioxycle 303
- 8.102 8Rivers 304
- 8.103 Ebb Carbon 304
- 8.104 Ecocera 305
- 8.105 ecoLocked GmbH 306
- 8.106 Eion Carbon 307
- 8.107 Econic Technologies Ltd 308
- 8.108 EcoClosure LLC 308
- 8.109 Electrochaea GmbH 309
- 8.110 Emerging Fuels Technology (EFT) 310
- 8.111 Empower Materials, Inc. 311
- 8.112 Enerkem, Inc. 312
- 8.113 enaDyne GmbH 312
- 8.114 Entropy Inc. 313
- 8.115 E-Quester 314
- 8.116 Equatic 314
- 8.117 Equinor ASA 315
- 8.118 Evonik Industries AG 316
- 8.119 ExxonMobil 316
- 8.120 44.01 317
- 8.121 Fairbrics 318
- 8.122 Fervo Energy 318
- 8.123 Fluor Corporation 319
- 8.124 Fortera Corporation 319
- 8.125 Framergy, Inc. 320
- 8.126 FuelCell Energy, Inc. 321
- 8.127 GE Gas Power (General Electric) 322
- 8.128 Giner, Inc. 322
- 8.129 Global Algae Innovations 323
- 8.130 Global Thermostat LLC 323
- 8.131 Graviky Labs 324
- 8.132 Gulf Coast Sequestration 325
- 8.133 Greenlyte Carbon Technologies 325
- 8.134 greenSand 326
- 8.135 Hago Energetics 326
- 8.136 Haldor Topsoe 327
- 8.137 Heimdal CCU 328
- 8.138 Heirloom Carbon Technologies 329
- 8.139 High Hopes Labs 330
- 8.140 Holcim Group 331
- 8.141 Holy Grail, Inc. 331
- 8.142 Honeywell 332
- 8.143 Oy Hydrocell Ltd. 334
- 8.144 1point8 334
- 8.145 IHI Corporation 335
- 8.146 Immaterial Ltd 336
- 8.147 Ineratec GmbH 336
- 8.148 Infinitree LLC 338
- 8.149 Innovator Energy 339
- 8.150 InnoSepra LLC 339
- 8.151 Inplanet GmbH 340
- 8.152 InterEarth 341
- 8.153 ION Clean Energy, Inc. 341
- 8.154 Japan CCS Co., Ltd. 342
- 8.155 Jupiter Oxygen Corporation 342
- 8.156 Kawasaki Heavy Industries, Ltd. 343
- 8.157 Krajete GmbH 343
- 8.158 LanzaJet, Inc. 345
- 8.159 Lanzatech 346
- 8.160 Lectrolyst LLC 348
- 8.161 Levidian Nanosystems 348
- 8.162 The Linde Group 349
- 8.163 Liquid Wind AB 350
- 8.164 Lithos Carbon 351
- 8.165 Living Carbon 351
- 8.166 Loam Bio 352
- 8.167 Low Carbon Korea 353
- 8.168 Low Carbon Materials 353
- 8.169 Made of Air GmbH 354
- 8.170 Mango Materials, Inc. 355
- 8.171 Mars Materials 355
- 8.172 Mattershift 356
- 8.173 Mercurius Biorefining 357
- 8.174 Minera Systems 357
- 8.175 Mineral Carbonation International (MCi) Carbon 358
- 8.176 Mission Zero Technologies 358
- 8.177 Mitsui Chemicals, Inc. 359
- 8.178 Mitsubishi Heavy Industries Ltd. 360
- 8.179 MOFWORX 360
- 8.180 Molten Industries, Inc. 361
- 8.181 Mosaic Materials, Inc. (Baker Hughes) 362
- 8.182 Myno Carbon 363
- 8.183 Nanyang Zhongju Tianguan Low Carbon Technology Company 364
- 8.184 Net Power, LLC 364
- 8.185 NetZero 365
- 8.186 Neustark AG 365
- 8.187 Newlight Technologies LLC 366
- 8.188 New Sky Energy 367
- 8.189 Norsk e-Fuel AS 368
- 8.190 Novocarbo GmbH 368
- 8.191 Novo Nutrients 369
- 8.192 Noya 369
- 8.193 Nuada Carbon Capture 370
- 8.194 Oakbio 370
- 8.195 Obrist Group 371
- 8.196 Occidental Petroleum Corp. 372
- 8.197 OCOchem 372
- 8.198 Orchestra Scientific S.L. 373
- 8.199 Origen Carbon Solutions 374
- 8.200 Osaki CoolGen Corporation 375
- 8.201 OXCCU Tech Ltd. 376
- 8.202 OxEon Energy, LLC 376
- 8.203 Oxylum 377
- 8.204 Paebbl AB 377
- 8.205 Parallel Carbon Limited 378
- 8.206 Perpetual Next Technologies 379
- 8.207 Photanol B.V. 380
- 8.208 Phytonix Corporation 380
- 8.209 Pond Technologies 381
- 8.210 Planetary Technologies 382
- 8.211 Prometheus Fuels, Inc. 382
- 8.212 Prometheus Materials 383
- 8.213 PTTEP 383
- 8.214 Proton Power, Inc. 385
- 8.215 PYREG GmbH 385
- 8.216 RedoxNRG 386
- 8.217 Remora 386
- 8.218 Removr 387
- 8.219 RepAir Carbon DAC Ltd. 388
- 8.220 Rubi Laboratories, Inc. 389
- 8.221 Running Tide Technologies, Inc. 389
- 8.222 Saipem S.p.A. 390
- 8.223 Seabound 391
- 8.224 Seachange Technologies 391
- 8.225 Sekisui Chemical 392
- 8.226 SeaO2 392
- 8.227 Seeo2 Energy, Inc. 393
- 8.228 Shell plc 393
- 8.229 Silicate Carbon 395
- 8.230 SkyMining AB 395
- 8.231 SkyNano Technologies 396
- 8.232 Skyrenu Technologies 397
- 8.233 Skytree 397
- 8.234 Solar Foods Oy 398
- 8.235 Soletair Power Oy 399
- 8.236 Solidia Technologies 400
- 8.237 South Ocean Air 400
- 8.238 Southern Green Gas 401
- 8.239 Steeper Energy 402
- 8.240 Stockholm Exergi AB 403
- 8.241 Storegga Geotechnologies Limited 403
- 8.242 Sublime Systems 404
- 8.243 Sunfire GmbH 405
- 8.244 Sustaera 406
- 8.245 Svante, Inc. 407
- 8.246 Synhelion 408
- 8.247 Quantiam Technologies Inc. 409
- 8.248 Tandem Technical 410
- 8.249 TerraCOH, Inc. 410
- 8.250 TerraFixing, Inc. 411
- 8.251 Terra CO2 Technologies Ltd. 411
- 8.252 TierraSpec Ltd. 412
- 8.253 TotalEnergies SE 413
- 8.254 Travertine Technologies, Inc. 413
- 8.255 Twelve 414
- 8.256 UNDO Carbon Ltd. 416
- 8.257 UP Catalyst 417
- 8.258 Vertus Energy Ltd. 418
- 8.259 Verdox 419
- 8.260 Vortis Carbon Co. 419
- 8.261 YuanChu Technology Corp. 420
- 8.262 ZoraMat Solutions 420
- 8.263 ZS2 Technologies 421
9 REFERENCES 422
List of Tables
- Table 1. Technology Readiness Level (TRL) Examples. 23
- Table 2. Carbon Capture, Utilisation and Storage (CCUS) market drivers and trends. 29
- Table 3. Carbon capture, usage, and storage (CCUS) industry developments 2020-2023. 31
- Table 4. CCUS VC deals 2020-2023. 37
- Table 5. Demonstration and commercial CCUS facilities in China. 39
- Table 6. Global commercial CCUS facilities-in operation. 45
- Table 7. Global commercial CCUS facilities-under development/construction. 47
- Table 8. Key market barriers for CCUS. 54
- Table 9. CO2 utilization and removal pathways 57
- Table 10. Approaches for capturing carbon dioxide (CO2) from point sources. 60
- Table 11. CO2 capture technologies. 62
- Table 12. Advantages and challenges of carbon capture technologies. 63
- Table 13. Overview of commercial materials and processes utilized in carbon capture. 64
- Table 14. Methods of CO2 transport. 70
- Table 15. Carbon capture, transport, and storage cost per unit of CO2 72
- Table 16. Estimated capital costs for commercial-scale carbon capture. 73
- Table 17. Point source examples. 79
- Table 18. Assessment of carbon capture materials 84
- Table 19. Chemical solvents used in post-combustion. 87
- Table 20. Commercially available physical solvents for pre-combustion carbon capture. 90
- Table 21. Main capture processes and their separation technologies. 90
- Table 22. Absorption methods for CO2 capture overview. 92
- Table 23. Commercially available physical solvents used in CO2 absorption. 94
- Table 24. Adsorption methods for CO2 capture overview. 96
- Table 25. Membrane-based methods for CO2 capture overview. 98
- Table 26. Benefits and drawbacks of microalgae carbon capture. 106
- Table 27. Comparison of main separation technologies. 106
- Table 28. Technology readiness level (TRL) of gas separation technologies 107
- Table 29. Opportunities and Barriers by sector. 108
- Table 30. Existing and planned capacity for sequestration of biogenic carbon. 115
- Table 31. Existing facilities with capture and/or geologic sequestration of biogenic CO2. 116
- Table 32. Advantages and disadvantages of DAC. 118
- Table 33. Companies developing airflow equipment integration with DAC. 124
- Table 34. Companies developing Passive Direct Air Capture (PDAC) technologies. 125
- Table 35. Companies developing regeneration methods for DAC technologies. 126
- Table 36. DAC companies and technologies. 127
- Table 37. DAC technology developers and production. 129
- Table 38. DAC projects in development. 133
- Table 39. Markets for DAC. 134
- Table 40. Costs summary for DAC. 135
- Table 41. Cost estimates of DAC. 138
- Table 42. Challenges for DAC technology. 140
- Table 43. DAC companies and technologies. 141
- Table 44. Biological CCS technologies. 141
- Table 45. Biochar in carbon capture overview. 145
- Table 46. Carbon utilization revenue forecast by product (US$). 151
- Table 47. CO2 utilization and removal pathways. 151
- Table 48. Market challenges for CO2 utilization. 153
- Table 49. Example CO2 utilization pathways. 154
- Table 50. CO2 derived products via Thermochemical conversion-applications, advantages and disadvantages. 157
- Table 51. Electrochemical CO₂ reduction products. 161
- Table 52. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages. 162
- Table 53. CO2 derived products via biological conversion-applications, advantages and disadvantages. 167
- Table 54. Companies developing and producing CO2-based polymers. 169
- Table 55. Companies developing mineral carbonation technologies. 173
- Table 56. Market overview for CO2 derived fuels. 174
- Table 57. Microalgae products and prices. 178
- Table 58. Main Solar-Driven CO2 Conversion Approaches. 179
- Table 59. Companies in CO2-derived fuel products. 180
- Table 60. Commodity chemicals and fuels manufactured from CO2. 185
- Table 61. Companies in CO2-derived chemicals products. 187
- Table 62. Carbon capture technologies and projects in the cement sector 191
- Table 63. Companies in CO2 derived building materials. 196
- Table 64. Market challenges for CO2 utilization in construction materials. 198
- Table 65. Companies in CO2 Utilization in Biological Yield-Boosting. 202
- Table 66. Applications of CCS in oil and gas production. 204
- Table 67. CO2 EOR/Storage Challenges. 212
- Table 68. Storage and utilization of CO2. 213
- Table 69. Global depleted reservoir storage projects. 215
- Table 70. Global CO2 ECBM storage projects. 215
- Table 71. CO2 EOR/storage projects. 216
- Table 72. Global storage sites-saline aquifer projects. 218
- Table 73. Global storage capacity estimates, by region. 220
List of Figures
- Figure 1. Carbon emissions by sector. 25
- Figure 2. Overview of CCUS market 27
- Figure 3. Pathways for CO2 use. 28
- Figure 4. Regional capacity share 2022-2030. 30
- Figure 5. Global investment in carbon capture 2010-2022, millions USD. 37
- Figure 6. Carbon Capture, Utilization, & Storage (CCUS) Market Map. 43
- Figure 7. CCS deployment projects, historical and to 2035. 44
- Figure 8. Existing and planned CCS projects. 53
- Figure 9. CCUS Value Chain. 53
- Figure 10. Schematic of CCUS process. 55
- Figure 11. Pathways for CO2 utilization and removal. 56
- Figure 12. A pre-combustion capture system. 62
- Figure 13. Carbon dioxide utilization and removal cycle. 66
- Figure 14. Various pathways for CO2 utilization. 67
- Figure 15. Example of underground carbon dioxide storage. 68
- Figure 16. Transport of CCS technologies. 69
- Figure 17. Railroad car for liquid CO₂ transport 72
- Figure 18. Estimated costs of capture of one metric ton of carbon dioxide (Co2) by sector. 74
- Figure 19. Cost of CO2 transported at different flowrates 75
- Figure 20. Cost estimates for long-distance CO2 transport. 76
- Figure 21. CO2 capture and separation technology. 78
- Figure 22. Global capacity of point-source carbon capture and storage facilities. 81
- Figure 23. Global carbon capture capacity by CO2 source, 2021. 82
- Figure 24. Global carbon capture capacity by CO2 source, 2030. 82
- Figure 25. Global carbon capture capacity by CO2 endpoint, 2021 and 2030. 83
- Figure 26. Post-combustion carbon capture process. 86
- Figure 27. Postcombustion CO2 Capture in a Coal-Fired Power Plant. 87
- Figure 28. Oxy-combustion carbon capture process. 88
- Figure 29. Liquid or supercritical CO2 carbon capture process. 89
- Figure 30. Pre-combustion carbon capture process. 90
- Figure 31. Amine-based absorption technology. 94
- Figure 32. Pressure swing absorption technology. 98
- Figure 33. Membrane separation technology. 100
- Figure 34. Liquid or supercritical CO2 (cryogenic) distillation. 101
- Figure 35. Process schematic of chemical looping. 102
- Figure 36. Calix advanced calcination reactor. 103
- Figure 37. Fuel Cell CO2 Capture diagram. 104
- Figure 38. Microalgal carbon capture. 105
- Figure 39. Cost of carbon capture. 110
- Figure 40. CO2 capture capacity to 2030, MtCO2. 111
- Figure 41. Capacity of large-scale CO2 capture projects, current and planned vs. the Net Zero Scenario, 2020-2030. 112
- Figure 42. Bioenergy with carbon capture and storage (BECCS) process. 114
- Figure 43. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse. 117
- Figure 44. Global CO2 capture from biomass and DAC in the Net Zero Scenario. 118
- Figure 45. DAC technologies. 120
- Figure 46. Schematic of Climeworks DAC system. 121
- Figure 47. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland. 122
- Figure 48. Flow diagram for solid sorbent DAC. 123
- Figure 49. Direct air capture based on high temperature liquid sorbent by Carbon Engineering. 124
- Figure 50. Global capacity of direct air capture facilities. 128
- Figure 51. Global map of DAC and CCS plants. 134
- Figure 52. Schematic of costs of DAC technologies. 136
- Figure 53. DAC cost breakdown and comparison. 137
- Figure 54. Operating costs of generic liquid and solid-based DAC systems. 139
- Figure 55. Schematic of biochar production. 144
- Figure 56. CO2 non-conversion and conversion technology, advantages and disadvantages. 147
- Figure 57. Applications for CO2. 150
- Figure 58. Cost to capture one metric ton of carbon, by sector. 150
- Figure 59. Life cycle of CO2-derived products and services. 153
- Figure 60. Co2 utilization pathways and products. 156
- Figure 61. Plasma technology configurations and their advantages and disadvantages for CO2 conversion. 160
- Figure 62. LanzaTech gas-fermentation process. 165
- Figure 63. Schematic of biological CO2 conversion into e-fuels. 166
- Figure 64. Econic catalyst systems. 169
- Figure 65. Mineral carbonation processes. 172
- Figure 66. Conversion route for CO2-derived fuels and chemical intermediates. 175
- Figure 67. Conversion pathways for CO2-derived methane, methanol and diesel. 176
- Figure 68. CO2 feedstock for the production of e-methanol. 177
- Figure 69. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c 179
- Figure 70. Audi synthetic fuels. 181
- Figure 71. Conversion of CO2 into chemicals and fuels via different pathways. 184
- Figure 72. Conversion pathways for CO2-derived polymeric materials 186
- Figure 73. Conversion pathway for CO2-derived building materials. 190
- Figure 74. Schematic of CCUS in cement sector. 191
- Figure 75. Carbon8 Systems’ ACT process. 194
- Figure 76. CO2 utilization in the Carbon Cure process. 195
- Figure 77. Algal cultivation in the desert. 200
- Figure 78. Example pathways for products from cyanobacteria. 201
- Figure 79. Typical Flow Diagram for CO2 EOR. 205
- Figure 80. Large CO2-EOR projects in different project stages by industry. 207
- Figure 81. Carbon mineralization pathways. 211
- Figure 82. CO2 Storage Overview - Site Options 214
- Figure 83. CO2 injection into a saline formation while producing brine for beneficial use. 218
- Figure 84. Subsurface storage cost estimation. 222
- Figure 85. Air Products production process. 228
- Figure 86. Aker carbon capture system. 231
- Figure 87. ALGIECEL PhotoBioReactor. 233
- Figure 88. Schematic of carbon capture solar project. 238
- Figure 89. Aspiring Materials method. 239
- Figure 90. Aymium’s Biocarbon production. 242
- Figure 91. Carbonminer technology. 258
- Figure 92. Carbon Blade system. 262
- Figure 93. CarbonCure Technology. 270
- Figure 94. Direct Air Capture Process. 272
- Figure 95. CRI process. 275
- Figure 96. PCCSD Project in China. 290
- Figure 97. Orca facility. 291
- Figure 98. Process flow scheme of Compact Carbon Capture Plant. 295
- Figure 99. Colyser process. 296
- Figure 100. ECFORM electrolysis reactor schematic. 302
- Figure 101. Dioxycle modular electrolyzer. 303
- Figure 102. Fuel Cell Carbon Capture. 321
- Figure 103. Topsoe's SynCORTM autothermal reforming technology. 328
- Figure 104. Carbon Capture balloon. 330
- Figure 105. Holy Grail DAC system. 332
- Figure 106. INERATEC unit. 337
- Figure 107. Infinitree swing method. 338
- Figure 108. Audi/Krajete unit. 344
- Figure 109. Made of Air's HexChar panels. 354
- Figure 110. Mosaic Materials MOFs. 362
- Figure 111. Neustark modular plant. 366
- Figure 112. OCOchem’s Carbon Flux Electrolyzer. 373
- Figure 113. ZerCaL™ process. 374
- Figure 114. CCS project at Arthit offshore gas field. 384
- Figure 115. RepAir technology. 388
- Figure 116. Soletair Power unit. 399
- Figure 117. Sunfire process for Blue Crude production. 405
- Figure 118. CALF-20 has been integrated into a rotating CO2 capture machine (left), which operates inside a CO2 plant module (right). 408
- Figure 119. O12 Reactor. 415
- Figure 120. Sunglasses with lenses made from CO2-derived materials. 415
- Figure 121. CO2 made car part. 415
Payment methods: Visa, Mastercard, American Express, Paypal.
To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com