The Global Market for Carbon Dioxide Removal (CDR) 2024-2045

0

  • Published: April 2024
  • Pages: 275
  • Tables: 35
  • Figures: 48
  • Series: Bio-economy

 

Carbon removal, or carbon dioxide (CO₂) removal (CDR), encompasses both natural solutions such as sequestering and storing carbon in trees and soil, and technology that extracts CO₂ directly from the atmosphere. The Global Market for Carbon Dioxide Removal (CDR) 2024-2045 report provides a comprehensive analysis of the rapidly evolving CDR industry.  The report offers in-depth insights into the current state of the CDR market, key technologies, market drivers, challenges, and future growth prospects.

The report provides an overview of the main sources of carbon dioxide emissions and the role of CDR in meeting climate targets. It explores the history and evolution of carbon markets and examines the mitigation costs of various CDR technologies. The market map provides a clear picture of the CDR landscape, highlighting the key players, technologies, and market segments. A significant focus of the report is on the growing importance of CDR in voluntary carbon markets and the increasing investments in CDR technologies. The market size analysis offers valuable projections for the CDR industry, segmented by technology and region, from 2023 to 2043.

The report covers main CDR methods, including conventional land-based approaches like afforestation, reforestation, and soil carbon sequestration, as well as novel technologies such as direct air capture and storage (DACCS), bioenergy with carbon capture and storage (BECCS), enhanced weathering, and ocean-based CDR. Each technology is thoroughly examined, covering its principles, applications, key players, projects, and cost analysis.

The carbon credits market is analyzed in detail, including the types of carbon credits, corporate commitments, government support and regulations, advancements in project verification and monitoring, and the potential for blockchain technology in carbon credit trading. The report also explores the challenges and risks associated with the carbon credit market.

The company profiles section features over 130 leading companies in the CDR industry, providing valuable insights into their technologies, projects, and market strategies. Companies covered include Avnos, Banyu Carbon, Blusink, Brineworks, CarbonCure Technologies, Charm Industrial, Clairity Technology, Climeworks, EcoLocked GmbH, Ebb Carbon, Eion Carbon, Equatic, Graphyte, Greenlyte, Heirloom, Hyvegeo, Misson Zero, Noya, Octavia Carbon , Parallel Carbon, Pyro CSS GmbH, Qaptis, Ulysses Ecosystem Engineering and UNDO.

The report also includes a comprehensive SWOT analysis for each CDR technology, highlighting the strengths, weaknesses, opportunities, and threats. The future outlook for the CDR market is discussed, focusing on emerging trends, opportunities, and strategic recommendations for stakeholders. The report emphasizes the importance of supportive policies, research and development, and collaboration among industry players to accelerate the deployment of CDR technologies.

The Global Market for Carbon Dioxide Removal (CDR) 2024-2045 is an indispensable resource for businesses, investors, policymakers, and researchers seeking to understand the complex dynamics of the CDR industry. With its comprehensive analysis, detailed market insights, and strategic recommendations, this report enables stakeholders to make informed decisions and capitalize on the growing opportunities in the CDR market as the world transitions towards a low-carbon future.

 

 

1             ABBREVIATIONS            14

 

2             RESEARCH METHODOLOGY   16

  • 2.1         Definition of Carbon Dioxide Removal 16

 

3             EXECUTIVE SUMMARY 17

  • 3.1         Main sources of carbon dioxide emissions       17
  • 3.2         CO2 as a commodity   19
  • 3.3         History and evolution of carbon markets           21
  • 3.4         Meeting climate targets              22
  • 3.5         Mitigation costs of CDR technologies  23
  • 3.6         Market map       25
  • 3.7         CDR in voluntary carbon markets          29
  • 3.8         CDR investments           30
  • 3.9         Market size        31

 

4             INTRODUCTION             34

  • 4.1         Conventional CDR on land        36
    • 4.1.1     Wetland and peatland restoration         37
    • 4.1.2     Cropland, grassland, and agroforestry 38
  • 4.2         Main CDR methods       39
  • 4.3         Novel CDR methods     40
  • 4.4         Market drivers  43
  • 4.5         Value chain       45

 

5             CARBON CREDITS         47

  • 5.1         Description       47
  • 5.2         Types of Carbon Credits             49
    • 5.2.1     Voluntary Carbon Credits          49
    • 5.2.2     Compliance Carbon Credits     50
  • 5.3         Corporate commitments           50
  • 5.4         Increasing government support and regulations            52
  • 5.5         Advancements in carbon offset project verification and monitoring    53
  • 5.6         Potential for blockchain technology in carbon credit trading   54
  • 5.7         Prices  54
  • 5.8         Buying and Selling Carbon Credits        56
    • 5.8.1     Carbon credit exchanges and trading platforms          56
    • 5.8.2     Over-the-counter (OTC) transactions  57
    • 5.8.3     Pricing mechanisms and factors affecting carbon credit prices             58
  • 5.9         Certification     58
  • 5.10       Challenges and risks    59
  • 5.11       Market size        61

 

6             BIOMASS WITH CARBON REMOVAL  AND STORAGE (BICRS)  62

  • 6.1         Technology overview    63
  • 6.2         Feedstocks       65
  • 6.3         Biomass conversion     66
  • 6.4         CO₂ capture technologies         67
  • 6.5         Bioenergy with carbon capture and storage (BECCS)   69
  • 6.6         BECCS facilities             69
  • 6.7         Cost analysis   71
  • 6.8         BECCS carbon credits 71
  • 6.9         Challenges        73

 

7             DIRECT AIR CAPTURE AND STORAGE (DACCS)              74

  • 7.1         Description       74
  • 7.2         Deployment      77
  • 7.3         Point source carbon capture versus Direct Air Capture              78
  • 7.4         Technologies    79
    • 7.4.1     Solid sorbents  80
    • 7.4.2     Liquid sorbents               84
    • 7.4.3     Liquid solvents 85
    • 7.4.4     Airflow equipment integration 86
    • 7.4.5     Passive Direct Air Capture (PDAC)         86
    • 7.4.6     Direct conversion          87
    • 7.4.7     Co-product generation                87
    • 7.4.8     Low Temperature DAC 87
    • 7.4.9     Regeneration methods 88
    • 7.4.10   Commercialization and plants 88
    • 7.4.11   Metal-organic frameworks (MOFs) in DAC         89
  • 7.5         DAC plants and projects-current and planned 90
  • 7.6         Markets for DAC              96
  • 7.7         Cost analysis   96
  • 7.8         Challenges        102
  • 7.9         SWOT analysis 103
  • 7.10       Players and production               104

 

8             ENHANCED WEATHERING           105

  • 8.1         Overview            105
    • 8.1.1     Role of enhanced weathering in carbon dioxide removal           106
    • 8.1.2     CO₂ mineralization       107
  • 8.2         Enhanced Weathering Processes and Materials            108
  • 8.3         Enhanced Weathering Applications     110
  • 8.4         Trends and Opportunities          111
  • 8.5         Challenges and Risks   112
  • 8.6         Cost analysis   113
  • 8.7         SWOT analysis 114

 

9             AFFORESTATION/REFORESTATION     117

  • 9.1         Overview            117
  • 9.2         Carbon dioxide removal methods          118
  • 9.3         Projects              120
  • 9.4         Trends and Opportunities          122
  • 9.5         Challenges and Risks   123
  • 9.6         SWOT analysis 124

 

10           SOIL CARBON SEQUESTRATION (SCS)              127

  • 10.1       Overview            127
  • 10.2       Practices           128
  • 10.3       Measuring and Verifying             128
  • 10.4       Trends and Opportunities          131
  • 10.5       Carbon credits 132
  • 10.6       Challenges and Risks   134
  • 10.7       SWOT analysis 135

 

11           BIOCHAR           137

  • 11.1       What is biochar?            138
  • 11.2       Carbon sequestration  139
  • 11.3       Properties of biochar    141
  • 11.4       Feedstocks       143
  • 11.5       Production processes  144
    • 11.5.1   Sustainable production              145
    • 11.5.2   Pyrolysis             146
      • 11.5.2.1               Slow pyrolysis  146
      • 11.5.2.2               Fast pyrolysis   148
    • 11.5.3   Gasification     148
    • 11.5.4   Hydrothermal carbonization (HTC)       149
    • 11.5.5   Torrefaction      149
    • 11.5.6   Equipment manufacturers        150
  • 11.6       Biochar pricing 151
  • 11.7       Biochar carbon credits 152
    • 11.7.1   Overview            152
    • 11.7.2   Removal and reduction credits               152
    • 11.7.3   The advantage of biochar           153
    • 11.7.4   Prices  153
    • 11.7.5   Buyers of biochar credits           154
    • 11.7.6   Competitive materials and technologies           154
  • 11.8       Bio-oil based CDR          155
  • 11.9       SWOT analysis 158

 

12           OCEAN-BASED CARBON DIOXIDE REMOVAL 160

  • 12.1       Overview            160
  • 12.2       CO₂ capture from seawater      161
  • 12.3       Ocean fertilisation        161
  • 12.4       Ocean alkalinisation    162
  • 12.5       Trends and Opportunities          163
  • 12.6       Ocean-based carbon credits   164
  • 12.7       Cost analysis   165
  • 12.8       Challenges and Risks   166
  • 12.9       SWOT analysis 168

 

13           COMPANY PROFILES  170 (131 company profiles)

 

14           REFERENCES   272

 

List of Tables

  • Table 1. Long-term marginal abatement costs of selected removal methods. 23
  • Table 2. CDR investments and VC funding by company.            30
  • Table 3.  Main corporate buyers of carbon removeal in 2023 (t/Co2e)  35
  • Table 4. Main CDR methods.    39
  • Table 5. Market drivers for carbon dioxide removal (CDR).        44
  • Table 6. CDR versus CCUS.       44
  • Table 7. CDR Value Chain.         46
  • Table 8. Carbon credit prices.  54
  • Table 9. Carbon credit prices by company and technology.      56
  • Table 10. CO₂ capture technologies for BECCS.             67
  • Table 11. Existing and planned capacity for sequestration of biogenic carbon.               69
  • Table 12. Existing facilities with capture and/or geologic sequestration of biogenic CO2.         70
  • Table 13. Advantages and disadvantages of DAC.         77
  • Table 14. Emerging solid sorbent materials for DAC.    82
  • Table 15. Companies developing airflow equipment integration with DAC.      86
  • Table 16. Companies developing Passive Direct Air Capture (PDAC) technologies.     87
  • Table 17. Companies developing regeneration methods for DAC technologies.            88
  • Table 18. DAC companies and technologies.   89
  • Table 19. DAC technology developers and production.               91
  • Table 20. DAC projects in development.            95
  • Table 21. Markets for DAC.        96
  • Table 22. Costs summary for DAC.        97
  • Table 23. Cost estimates of DAC.          100
  • Table 24. Challenges for DAC technology.         102
  • Table 25. DAC companies and technologies.   104
  • Table 26. Nature-based CDR approaches.        118
  • Table 27. Summary of key properties of biochar.            141
  • Table 28. Biochar physicochemical and morphological properties       141
  • Table 29. Biochar feedstocks-source, carbon content, and characteristics.   143
  • Table 30. Biochar production technologies, description, advantages and disadvantages.        145
  • Table 31. Comparison of slow and fast pyrolysis for biomass. 148
  • Table 32. Comparison of thermochemical processes for biochar production. 149
  • Table 33. Biochar production equipment manufacturers.         150
  • Table 34. Competitive materials and technologies that can also earn carbon credits.                154
  • Table 35. Ocean-based CDR methods.               160
  •  

List of Figures

  • Figure 1. Carbon emissions by sector. 17
  • Figure 2. Overview of CCUS market      19
  • Figure 3. Pathways for CO2 use.             20
  • Figure 4. Carbon Dioxide Removal Market Map.             26
  • Figure 5. Cost estimates for long-distance CO2 transport.       27
  • Figure 6. Covering removals in international carbon market.   28
  • Figure 7. Carbon dioxide removal capacity by technology (million metric tons of CO₂/year), 2020-2045.          31
  • Figure 8, Carbon dioxide removal revenues  by technology (billion US$), 2020-2045.  32
  • Figure 9.  Global purchases of CO2 removal (tonnes) 2019-2024.         33
  • Figure 10. Bioenergy with carbon capture and storage (BECCS) process.          63
  • Figure 11. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.         75
  • Figure 12. Global CO2 capture from biomass and DAC in the Net Zero Scenario.         76
  • Figure 13.  DAC technologies.  78
  • Figure 14. Schematic of Climeworks DAC system.       79
  • Figure 15. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.              80
  • Figure 16.  Flow diagram for solid sorbent DAC.              81
  • Figure 17. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.            84
  • Figure 18. Global capacity of direct air capture facilities.          89
  • Figure 19. Global map of DAC and CCS plants.               95
  • Figure 20. Schematic of costs of DAC technologies.    97
  • Figure 21. DAC cost breakdown and comparison.         98
  • Figure 22. Operating costs of generic liquid and solid-based DAC systems.    100
  • Figure 23. SWOT analysis: DACCS.       103
  • Figure 24. SWOT analysis: enhanced weathering.         114
  • Figure 25. SWOT analysis: afforestation/reforestation.              124
  • Figure 26. SWOT analysis: SCS.              135
  • Figure 27. Schematic of biochar production.   136
  • Figure 28. Biochars from different sources, and by pyrolyzation at different temperatures.     138
  • Figure 29. Compressed biochar.            142
  • Figure 30. Biochar production diagram.              144
  • Figure 31. Pyrolysis process and by-products in agriculture.   146
  • Figure 32. SWOT analysis: Biochar for CDR.     157
  • Figure 33. SWOT analysis: ocean-based CDR. 167
  • Figure 34. Schematic of carbon capture solar project. 175
  • Figure 35. Capchar prototype pyrolysis kiln.     184
  • Figure 36. Carbon Blade system.           187
  • Figure 37. CarbonCure Technology.      192
  • Figure 38. Direct Air Capture Process. 194
  • Figure 39. Orca facility.               200
  • Figure 40. Holy Grail DAC system.         221
  • Figure 41. Infinitree swing method.       225
  • Figure 42. Mosaic Materials MOFs.       234
  • Figure 43. Neustark modular plant.       237
  • Figure 44. OCOchem’s Carbon Flux Electrolyzer.          242
  • Figure 45. RepAir technology.  249
  • Figure 46. Soletair Power unit. 256
  • Figure 47. CALF-20 has been integrated into a rotating CO2 capture machine (left), which operates inside a CO2 plant module (right).     260
  • Figure 48. Takavator.    261

 

 

The Global Market for Carbon Dioxide Removal (CDR) 2024-2045
The Global Market for Carbon Dioxide Removal (CDR) 2024-2045
PDF download/by email.

The Global Market for Carbon Dioxide Removal (CDR) 2024-2045
The Global Market for Carbon Dioxide Removal (CDR) 2024-2045
PDF and print edition.

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.