Published October 2015 | 257 pages | £1000 (PDF download)
Due to their excellent optoelectrical performance, processability, stability, and high conductivity, CNT-based transparent electrode films have been put forward as a candidate to replace indium tin oxide (ITO) currently used in touchscreens and displays.
CNTs are deposited in thin films, leading to a conducting layer, which can also be transparent. In relation to ITO they are more cost effective, have higher resistivity and greater flexibility. Main applications of CNT in electronics are:
- EMI shielding
- Electronic textiles: Conductive and sensory textiles & fibers
- Transparent conducting CNT-based coatings for lower cost and flexible displays and solar cells
- Semiconducting materials in thin film transistors
- Electronic circuits for lower power and higher speed enabling new device architectures
- Improved heat dissipation in semiconductor chip packages
- Conductive inks.
Graphene has remarkable electronic properties, with an extraordinarily high charge carrier mobility and conductivity. It is an excellent conductor, and transports electrons tens of times faster than silicon. These properties make it an ideal candidate for next generation electronic applications.
Near-medium term electronics applications for graphene are in radio-frequency identification tags, low-resolution displays and backlights, sensors, electrical contacts, analog signal processing and electronics packaging. Initially applications will be in low-end electronics, depending on the manufacturing cost. High-end electronics applications are more cost sensitive.
The scalability, reproducibility and cost effectiveness of integrating graphene into practical devices is currently under development. Graphene‘s success in transparent conductive films (TCFs) is also dependent on the development of competing alternative materials. The demand for TCFs is increasing significantly as electronic devices such as touch screens, displays, solid-state lighting and photovoltaics become ubiquitous.
The Global Market for Carbon Nanotubes, Graphene and Other 2D Materials in Electronics examines applications, opportunities, companies and products.
TABLE OF CONTENTS
RESEARCH METHODOLOGY…………………………………………………………… 20
EXECUTIVE SUMMARY…………………………………………………………………….. 21
CARBON NANOTUBES…………………………………………………………………………. 21
Exceptional properties…………………………………………………………………………… 22
Products and applications…………………………………………………………………… 24
Threat from the graphene market………………………………………………………… 26
Production………………………………………………………………………………………… 26
Multi-walled nanotube (MWNT) production………………………………………… 26
Single-walled nanotube (SWNT) production……………………………………….. 28
Global demand for carbon nanotubes…………………………………………………… 30
Current products…………………………………………………………………………….. 32
Future products……………………………………………………………………………… 33
Market drivers and trends…………………………………………………………………… 34
Electronics…………………………………………………………………………………….. 34
Market and production challenges……………………………………………………….. 36
Safety issues…………………………………………………………………………………. 36
Dispersion……………………………………………………………………………………… 37
Synthesis and supply quality…………………………………………………………….. 37
Cost……………………………………………………………………………………………… 38
Competition from other materials……………………………………………………… 38
GRAPHENE…………………………………………………………………………………………. 39
Remarkable properties……………………………………………………………………….. 41
Global funding…………………………………………………………………………………… 41
Products and applications…………………………………………………………………… 42
Production………………………………………………………………………………………… 45
Market drivers and trends…………………………………………………………………… 47
Production exceeds demand……………………………………………………………. 47
Market revenues remain small but are growing…………………………………… 48
Scalability and cost…………………………………………………………………………. 49
Applications hitting the market………………………………………………………….. 51
Wait and see?………………………………………………………………………………… 52
Asia and US lead the race……………………………………………………………….. 52
Competition from other materials……………………………………………………… 53
Market and technical challenges………………………………………………………….. 54
Supply quality………………………………………………………………………………… 54
Cost……………………………………………………………………………………………… 55
Product integration…………………………………………………………………………. 55
Regulation and standards………………………………………………………………… 55
INTRODUCTION…………………………………………………………………………………. 56
Properties of nanomaterials……………………………………………………………………. 56
Categorization……………………………………………………………………………………… 57
CARBON NANOTUBES…………………………………………………………………………. 59
Multi-walled nanotubes (MWNT)………………………………………………………….. 59
Single-wall carbon nanotubes (SWNT)…………………………………………………. 60
Single-chirality……………………………………………………………………………….. 62
Double-walled carbon nanotubes (DWNTs)…………………………………………… 63
Few-walled carbon nanotubes (FWNTs)……………………………………………….. 64
Carbon Nanohorns (CNHs)…………………………………………………………………. 65
Fullerenes………………………………………………………………………………………… 66
Boron Nitride nanotubes (BNNTs)………………………………………………………… 67
Properties…………………………………………………………………………………………. 68
Applications of carbon nanotubes………………………………………………………… 69
High volume applications…………………………………………………………………. 69
Low volume applications………………………………………………………………….. 69
Novel applications…………………………………………………………………………… 70
GRAPHENE…………………………………………………………………………………………. 70
3D Graphene……………………………………………………………………………………. 74
Graphene Quantum Dots……………………………………………………………………. 74
Properties…………………………………………………………………………………………. 74
CARBON NANOTUBES VERSUS GRAPHENE………………………………………….. 76
Cost and production…………………………………………………………………………… 79
Carbon nanotube-graphene hybrids…………………………………………………….. 80
OTHER 2D MATERIALS………………………………………………………………………… 81
Phosphorene…………………………………………………………………………………….. 82
Properties……………………………………………………………………………………… 83
Applications…………………………………………………………………………………… 83
Recent research news…………………………………………………………………….. 84
Silicene…………………………………………………………………………………………….. 85
Properties……………………………………………………………………………………… 86
Applications…………………………………………………………………………………… 86
Recent research news…………………………………………………………………….. 87
Molybdenum disulfide………………………………………………………………………… 87
Properties……………………………………………………………………………………… 88
Applications…………………………………………………………………………………… 89
Recent research news…………………………………………………………………….. 91
Hexagonal boron nitride……………………………………………………………………… 92
Properties……………………………………………………………………………………… 93
Applications…………………………………………………………………………………… 94
Recent research news…………………………………………………………………….. 94
Germanene………………………………………………………………………………………. 95
Properties……………………………………………………………………………………… 95
Applications…………………………………………………………………………………… 96
Recent research news…………………………………………………………………….. 96
Graphdiyne………………………………………………………………………………………. 96
Properties……………………………………………………………………………………… 97
Applications…………………………………………………………………………………… 98
Graphane…………………………………………………………………………………………. 99
Properties……………………………………………………………………………………. 100
Applications…………………………………………………………………………………. 100
Stanene/tinene………………………………………………………………………………… 101
Properties……………………………………………………………………………………. 102
Applications…………………………………………………………………………………. 102
Tungsten diselenide…………………………………………………………………………. 102
Properties……………………………………………………………………………………. 103
Applications…………………………………………………………………………………. 103
Rhenium disulphide………………………………………………………………………….. 104
Properties……………………………………………………………………………………. 105
Applications…………………………………………………………………………………. 105
PATENTS AND PUBLICATIONS…………………………………………………….. 107
Carbon nanotubes………………………………………………………………………………. 107
Graphene………………………………………………………………………………………….. 108
Fabrication processes………………………………………………………………………. 109
Academia……………………………………………………………………………………….. 109
Regional leaders……………………………………………………………………………… 110
TECHNOLOGY READINESS LEVEL………………………………………………. 114
END USER MARKET SEGMENT ANALYSIS………………………………….. 116
Carbon nanotubes production volumes 2010-2025………………………………….. 117
Regional demand for carbon nanotubes……………………………………………… 118
Japan………………………………………………………………………………………….. 121
China………………………………………………………………………………………….. 122
Main carbon nanotubes producers…………………………………………………….. 123
SWNT production…………………………………………………………………………….. 124
OCSiAl………………………………………………………………………………………… 124
FGV Cambridge Nanosystems……………………………………………………….. 124
Zeon Corporation…………………………………………………………………………. 125
Price of carbon nanotubes-MWNTs, SWNTs and FWNTs……………………… 125
Graphene production volumes 2010-2025……………………………………………… 126
ELECTRONICS AND PHOTONICS………………………………………………………… 129
TRANSPARENT CONDUCTIVE FILMS AND DISPLAYS………………………… 131
MARKET DRIVERS AND TRENDS………………………………………………….. 131
MARKET SIZE AND OPPORTUNITY……………………………………………….. 134
Properties and applications……………………………………………………………. 135
CHALLENGES……………………………………………………………………………… 140
PRODUCT DEVELOPERS……………………………………………………………… 144
CONDUCTIVE INKS…………………………………………………………………………. 148
MARKET DRIVERS AND TRENDS………………………………………………….. 148
MARKET SIZE AND OPPORTUNITY……………………………………………….. 150
PROPERTIES AND APPLICATIONS………………………………………………… 151
PRODUCT DEVELOPERS……………………………………………………………… 154
TRANSISTORS AND INTEGRATED CIRCUITS……………………………………. 157
MARKET DRIVERS AND TRENDS………………………………………………….. 157
MARKET SIZE AND OPPORTUNITY……………………………………………….. 159
PROPERTIES AND APPLICATIONS………………………………………………… 159
CHALLENGES……………………………………………………………………………… 162
PRODUCT DEVELOPERS……………………………………………………………… 165
MEMORY DEVICES…………………………………………………………………………. 168
MARKET DRIVERS AND TRENDS………………………………………………….. 168
MARKET SIZE AND OPPORTUNITY……………………………………………….. 169
PROPERTIES AND APPLICATIONS………………………………………………… 170
PRODUCT DEVELOPERS……………………………………………………………… 176
PHOTONICS…………………………………………………………………………………… 177
Optical modulators………………………………………………………………………… 177
Photodetectors…………………………………………………………………………….. 178
Plasmonics………………………………………………………………………………….. 180
Challenges…………………………………………………………………………………… 180
CARBON NANOTUBES ELECTRONICS COMPANY PROFILES….. 181-215
GRAPHENE ELECTRONICS COMPANY PROFILES……………………… 216-246
REFERENCES………………………………………………………………………………….. 247
TABLES
Table 1: Properties of CNTs and comparable materials………………………………… 23
Table 2: Carbon nanotubes target markets-Applications, stage of commercialization and potential addressable market size…………………………………………………………………………………………. 24
Table 3: Annual production capacity of MWNT and SWNT producers……………… 27
Table 4: SWNT producers production capacities 2014………………………………….. 29
Table 5: Global production of carbon nanotubes, 2010-2025 in tons/year. Base year for projections is 2014. 31
Table 6: Graphene target markets-Applications, stage of commercialization and potential addressable market size……………………………………………………………………………………………………. 43
Table 7: Graphene producers annual production capacities…………………………… 45
Table 8: Global production of graphene, 2010-2025 in tons/year. Base year for projections is 2014. 47
Table 9: Graphene types and cost per kg……………………………………………………. 50
Table 10: Categorization of nanomaterials………………………………………………….. 57
Table 11: Comparison between single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes………………………………………………………………………………………………………….. 63
Table 12: Properties of carbon nanotubes…………………………………………………… 68
Table 13: Properties of graphene………………………………………………………………. 75
Table 14: Comparative properties of carbon materials………………………………….. 78
Table 15: Comparative properties of graphene with nanoclays and carbon nanotubes. 80
Table 16: Recent phosphorene research news……………………………………………. 84
Table 17: Recent silicene research news…………………………………………………….. 87
Table 18: Recent Molybdenum disulfide research news………………………………… 91
Table 19: Recent hexagonal boron nitride research news……………………………… 94
Table 20: Recent germanane research news………………………………………………. 96
Table 21: Comparative analysis of graphene and other 2-D nanomaterials……. 105
Table 22: Published patent publications for graphene, 2004-2014………………… 110
Table 23: Leading graphene patentees…………………………………………………….. 111
Table 24: Industrial graphene patents in 2014……………………………………………. 112
Table 25: Market penetration and volume estimates (tons) for carbon nanotubes and graphene in key applications………………………………………………………………………………………. 116
Table 26: Global production of carbon nanotubes, 2010-2025 in tons/year. Base year for projections is 2014………………………………………………………………………………………………………… 118
Table 34: Current carbon nanotubes prices……………………………………………….. 126
Table 28: Global production of graphene, 2010-2025 in tons/year. Base year for projections is 2014. 127
Table 29: Carbon nanotubes in the electronics and photonics market-applications, stage of commercialization and addressable market size………………………………………………………………. 129
Table 30: Graphene in the electronics and photonics market-applications, stage of commercialization and addressable market size…………………………………………………………………….. 130
Table 31: Comparison of ITO replacements………………………………………………. 132
Table 32: Carbon nanotubes product and application developers in transparent conductive films and displays………………………………………………………………………………………………………… 144
Table 33: Graphene product and application developers in transparent conductive films. 146
Table 34: Comparative properties of conductive inks………………………………….. 149
Table 35: Carbon nanotubes product and application developers in conductive inks. 154
Table 36: Graphene product and application developers in conductive inks…… 155
Table 37: Carbon nanotubes product and application developers in transistors and integrated circuits. 165
Table 38: Graphene product and application developers in transistors and integrated circuits. 166
Table 39: Carbon nanotubes product and application developers in memory devices. 176
Table 40: Graphene product and application developers in memory devices….. 176
Table 41: Graphene properties relevant to application in optical modulators….. 178
FIGURES
Figure 1: Molecular structures of SWNT and MWNT…………………………………….. 22
Figure 2: Production capacities for SWNTs in kilograms, 2005-2014………………. 30
Figure 3: Global production of carbon nanotubes, 2010-2025 in tons/year. Base year for projections is 2014. 32
Figure 4: Global government funding for graphene………………………………………. 42
Figure 5: Global market for graphene 2010-2025 in tons/year……………………….. 48
Figure 6: Conceptual diagram of single-walled carbon nanotube (SWNT) (A) and multi-walled carbon nanotubes (MWNT) (B) showing typical dimensions of length, width, and separation distance between graphene layers in MWNTs………………………………………………………………………………………….. 60
Figure 7: Schematic of single-walled carbon nanotube………………………………….. 61
Figure 8: Figure 8: Double-walled carbon nanotube bundle cross-section micrograph and model. 64
Figure 9: Schematic representation of carbon nanohorns……………………………… 65
Figure 10: Fullerene schematic………………………………………………………………….. 66
Figure 11: Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red…………………………………………………………………………………………………….. 67
Figure 12: Graphene layer structure schematic……………………………………………. 70
Figure 13: Graphite and graphene……………………………………………………………… 71
Figure 14: Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene. . 73
Figure 15: Graphene can be rolled up into a carbon nanotube, wrapped into a fullerene, and stacked into graphite……………………………………………………………………………………………… 77
Figure 16: Phosphorene structure……………………………………………………………… 83
Figure 17: Silicene structure……………………………………………………………………… 86
Figure 18: Structure of 2D molybdenum disulfide…………………………………………. 88
Figure 19: Atomic force microscopy image of a representative MoS2 thin-film transistor. 90
Figure 20: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge……………………………………………………………………….. 91
Figure 21: Structure of hexagonal boron nitride……………………………………………. 93
Figure 22: Schematic of germanane…………………………………………………………… 95
Figure 23: Graphdiyne structure………………………………………………………………… 97
Figure 24: Schematic of Graphane crystal…………………………………………………… 99
Figure 25: Crystal structure for stanene…………………………………………………….. 101
Figure 26: Schematic of tungsten diselenide……………………………………………… 103
Figure 27: Schematic of a monolayer of rhenium disulphide………………………… 104
Figure 28: CNT patents filed 2000-2014……………………………………………………. 107
Figure 29: Patent distribution of CNT application areas to 2014……………………. 108
Figure 30: Published patent publications for graphene, 2004-2014……………….. 111
Figure 31: Technology Readiness Level (TRL) for Carbon Nanotubes………….. 114
Figure 32: Technology Readiness Level (TRL) for graphene……………………….. 115
Figure 33: Regional demand for CNTs utilized in transparent conductive films and displays. 119
Figure 34: Regional demand for CNTs utilized in batteries…………………………… 120
Figure 35: Regional demand for CNTs utilized in Polymer reinforcement……….. 120
Figure 36: Global production of graphene, 2010-2025 in tons/year. Base year for projections is 2014. 128
Figure 37: A large transparent conductive graphene film (about 20 × 20 cm2) manufactured by 2D Carbon Tech………………………………………………………………………………………………… 135
Figure 38: CNT transparent conductive film formed on glass and schematic diagram of its structure. 136
Figure 39: Graphene electrochromic devices…………………………………………….. 138
Figure 40: Flexible transistor sheet…………………………………………………………… 139
Figure 41: The transmittance of glass/ITO, glass/ITO/four organic layers, and glass/ITO/four organic layers/4-layer graphene………………………………………………………………………………….. 143
Figure 42: Vorbeck Materials conductive ink products…………………………………. 150
Figure 43: Nanotube inks………………………………………………………………………… 152
Figure 44: Graphene printed antenna……………………………………………………….. 153
Figure 45: BGT Materials graphene ink product…………………………………………. 154
Figure 46: Schematic cross-section of a graphene base transistor (GBT, left) and a graphene field-effect transistor (GFET, right)………………………………………………………………………. 158
Figure 47: Thin film transistor incorporating CNTs………………………………………. 161
Figure 48: Graphene IC in wafer tester……………………………………………………… 162
Figure 49: Stretchable CNT memory and logic devices for wearable electronics. 169
Figure 50: SEM image of the deposited film (or fabric) of crossed nanotubes that can be either touching or slightly separated depending on their position……………………………………….. 172
Figure 51: Schematic of NRAM………………………………………………………………… 172
Figure 52: Schematic of NRAM cell…………………………………………………………… 173
Figure 53: Carbon nanotubes NRAM chip…………………………………………………. 174
Figure 54: A schematic diagram for the mechanism of the resistive switching in metal/GO/Pt. 175
Figure 55: Hybrid graphene phototransistors……………………………………………… 179