The Global Market for Carbon Nanotubes, Graphene and Other 2D Materials in Electronics

0

Cover 2D Electronics

Published October 2015 | 257 pages | £1000 (PDF download)

Table of contents

Due to their excellent optoelectrical performance, processability, stability, and high conductivity, CNT-based transparent electrode films have been put forward as a candidate to replace indium tin oxide (ITO) currently used in touchscreens and displays.

CNTs are deposited in thin films, leading to a conducting layer, which can also be transparent. In relation to ITO they are more cost effective, have higher resistivity and greater flexibility. Main applications of CNT in electronics are:

  • EMI shielding
  • Electronic textiles: Conductive and sensory textiles & fibers
  • Transparent conducting CNT-based coatings for lower cost and flexible displays and solar cells
  • Semiconducting materials in thin film transistors
  • Electronic circuits for lower power and higher speed enabling new device architectures
  • Improved heat dissipation in semiconductor chip packages
  • Conductive inks.

Graphene has remarkable electronic properties, with an extraordinarily high charge carrier mobility and conductivity. It is an excellent conductor, and transports electrons tens of times faster than silicon. These properties make it an ideal candidate for next generation electronic applications.

Near-medium term electronics applications for graphene are in radio-frequency identification tags, low-resolution displays and backlights, sensors, electrical contacts, analog signal processing and electronics packaging. Initially applications will be in low-end electronics, depending on the manufacturing cost. High-end electronics applications are more cost sensitive.

The scalability, reproducibility and cost effectiveness of integrating graphene into practical devices is currently under development. Graphene‘s success in transparent conductive films (TCFs) is also dependent on the development of competing alternative materials. The demand for TCFs is increasing significantly as electronic devices such as touch screens, displays, solid-state lighting and photovoltaics become ubiquitous.

The Global Market for Carbon Nanotubes, Graphene and Other 2D Materials in Electronics examines applications, opportunities, companies and products.

The Global Market for Carbon Nanotubes, Graphene and Other 2D Materials in Electronics
The Global Market for Carbon Nanotubes, Graphene and Other 2D Materials in Electronics
PDF download. 257 pages.
The Global Market for Carbon Nanotubes, Graphene and Other 2D Materials in Electronics
The Global Market for Carbon Nanotubes, Graphene and Other 2D Materials in Electronics
PDF and Print edition. Price includes postage and packing. 5-9 working days couriered delivery.
The Global Market for Carbon Nanotubes, Graphene and Other 2D Materials in Electronics
The Global Market for Carbon Nanotubes, Graphene and Other 2D Materials in Electronics
Multi-user/library subscription. PDF download plus one print edition.

 

TABLE OF CONTENTS

RESEARCH METHODOLOGY…………………………………………………………… 20

EXECUTIVE SUMMARY…………………………………………………………………….. 21

CARBON NANOTUBES…………………………………………………………………………. 21

Exceptional properties…………………………………………………………………………… 22

Products and applications…………………………………………………………………… 24

Threat from the graphene market………………………………………………………… 26

Production………………………………………………………………………………………… 26

Multi-walled nanotube (MWNT) production………………………………………… 26

Single-walled nanotube (SWNT) production……………………………………….. 28

Global demand for carbon nanotubes…………………………………………………… 30

Current products…………………………………………………………………………….. 32

Future products……………………………………………………………………………… 33

Market drivers and trends…………………………………………………………………… 34

Electronics…………………………………………………………………………………….. 34

Market and production challenges……………………………………………………….. 36

Safety issues…………………………………………………………………………………. 36

Dispersion……………………………………………………………………………………… 37

Synthesis and supply quality…………………………………………………………….. 37

Cost……………………………………………………………………………………………… 38

Competition from other materials……………………………………………………… 38

GRAPHENE…………………………………………………………………………………………. 39

Remarkable properties……………………………………………………………………….. 41

Global funding…………………………………………………………………………………… 41

Products and applications…………………………………………………………………… 42

Production………………………………………………………………………………………… 45

Market drivers and trends…………………………………………………………………… 47

Production exceeds demand……………………………………………………………. 47

Market revenues remain small but are growing…………………………………… 48

Scalability and cost…………………………………………………………………………. 49

Applications hitting the market………………………………………………………….. 51

Wait and see?………………………………………………………………………………… 52

Asia and US lead the race……………………………………………………………….. 52

Competition from other materials……………………………………………………… 53

Market and technical challenges………………………………………………………….. 54

Supply quality………………………………………………………………………………… 54

Cost……………………………………………………………………………………………… 55

Product integration…………………………………………………………………………. 55

Regulation and standards………………………………………………………………… 55

INTRODUCTION…………………………………………………………………………………. 56

Properties of nanomaterials……………………………………………………………………. 56

Categorization……………………………………………………………………………………… 57

CARBON NANOTUBES…………………………………………………………………………. 59

Multi-walled nanotubes (MWNT)………………………………………………………….. 59

Single-wall carbon nanotubes (SWNT)…………………………………………………. 60

Single-chirality……………………………………………………………………………….. 62

Double-walled carbon nanotubes (DWNTs)…………………………………………… 63

Few-walled carbon nanotubes (FWNTs)……………………………………………….. 64

Carbon Nanohorns (CNHs)…………………………………………………………………. 65

Fullerenes………………………………………………………………………………………… 66

Boron Nitride nanotubes (BNNTs)………………………………………………………… 67

Properties…………………………………………………………………………………………. 68

Applications of carbon nanotubes………………………………………………………… 69

High volume applications…………………………………………………………………. 69

Low volume applications………………………………………………………………….. 69

Novel applications…………………………………………………………………………… 70

GRAPHENE…………………………………………………………………………………………. 70

3D Graphene……………………………………………………………………………………. 74

Graphene Quantum Dots……………………………………………………………………. 74

Properties…………………………………………………………………………………………. 74

CARBON NANOTUBES VERSUS GRAPHENE………………………………………….. 76

Cost and production…………………………………………………………………………… 79

Carbon nanotube-graphene hybrids…………………………………………………….. 80

OTHER 2D MATERIALS………………………………………………………………………… 81

Phosphorene…………………………………………………………………………………….. 82

Properties……………………………………………………………………………………… 83

Applications…………………………………………………………………………………… 83

Recent research news…………………………………………………………………….. 84

Silicene…………………………………………………………………………………………….. 85

Properties……………………………………………………………………………………… 86

Applications…………………………………………………………………………………… 86

Recent research news…………………………………………………………………….. 87

Molybdenum disulfide………………………………………………………………………… 87

Properties……………………………………………………………………………………… 88

Applications…………………………………………………………………………………… 89

Recent research news…………………………………………………………………….. 91

Hexagonal boron nitride……………………………………………………………………… 92

Properties……………………………………………………………………………………… 93

Applications…………………………………………………………………………………… 94

Recent research news…………………………………………………………………….. 94

Germanene………………………………………………………………………………………. 95

Properties……………………………………………………………………………………… 95

Applications…………………………………………………………………………………… 96

Recent research news…………………………………………………………………….. 96

Graphdiyne………………………………………………………………………………………. 96

Properties……………………………………………………………………………………… 97

Applications…………………………………………………………………………………… 98

Graphane…………………………………………………………………………………………. 99

Properties……………………………………………………………………………………. 100

Applications…………………………………………………………………………………. 100

Stanene/tinene………………………………………………………………………………… 101

Properties……………………………………………………………………………………. 102

Applications…………………………………………………………………………………. 102

Tungsten diselenide…………………………………………………………………………. 102

Properties……………………………………………………………………………………. 103

Applications…………………………………………………………………………………. 103

Rhenium disulphide………………………………………………………………………….. 104

Properties……………………………………………………………………………………. 105

Applications…………………………………………………………………………………. 105

PATENTS AND PUBLICATIONS…………………………………………………….. 107

Carbon nanotubes………………………………………………………………………………. 107

Graphene………………………………………………………………………………………….. 108

Fabrication processes………………………………………………………………………. 109

Academia……………………………………………………………………………………….. 109

Regional leaders……………………………………………………………………………… 110

TECHNOLOGY READINESS LEVEL………………………………………………. 114

END USER MARKET SEGMENT ANALYSIS………………………………….. 116

Carbon nanotubes production volumes 2010-2025………………………………….. 117

Regional demand for carbon nanotubes……………………………………………… 118

Japan………………………………………………………………………………………….. 121

China………………………………………………………………………………………….. 122

Main carbon nanotubes producers…………………………………………………….. 123

SWNT production…………………………………………………………………………….. 124

OCSiAl………………………………………………………………………………………… 124

FGV Cambridge Nanosystems……………………………………………………….. 124

Zeon Corporation…………………………………………………………………………. 125

Price of carbon nanotubes-MWNTs, SWNTs and FWNTs……………………… 125

Graphene production volumes 2010-2025……………………………………………… 126

ELECTRONICS AND PHOTONICS………………………………………………………… 129

TRANSPARENT CONDUCTIVE FILMS AND DISPLAYS………………………… 131

MARKET DRIVERS AND TRENDS………………………………………………….. 131

MARKET SIZE AND OPPORTUNITY……………………………………………….. 134

Properties and applications……………………………………………………………. 135

CHALLENGES……………………………………………………………………………… 140

PRODUCT DEVELOPERS……………………………………………………………… 144

CONDUCTIVE INKS…………………………………………………………………………. 148

MARKET DRIVERS AND TRENDS………………………………………………….. 148

MARKET SIZE AND OPPORTUNITY……………………………………………….. 150

PROPERTIES AND APPLICATIONS………………………………………………… 151

PRODUCT DEVELOPERS……………………………………………………………… 154

TRANSISTORS AND INTEGRATED CIRCUITS……………………………………. 157

MARKET DRIVERS AND TRENDS………………………………………………….. 157

MARKET SIZE AND OPPORTUNITY……………………………………………….. 159

PROPERTIES AND APPLICATIONS………………………………………………… 159

CHALLENGES……………………………………………………………………………… 162

PRODUCT DEVELOPERS……………………………………………………………… 165

MEMORY DEVICES…………………………………………………………………………. 168

MARKET DRIVERS AND TRENDS………………………………………………….. 168

MARKET SIZE AND OPPORTUNITY……………………………………………….. 169

PROPERTIES AND APPLICATIONS………………………………………………… 170

PRODUCT DEVELOPERS……………………………………………………………… 176

PHOTONICS…………………………………………………………………………………… 177

Optical modulators………………………………………………………………………… 177

Photodetectors…………………………………………………………………………….. 178

Plasmonics………………………………………………………………………………….. 180

Challenges…………………………………………………………………………………… 180

CARBON NANOTUBES ELECTRONICS COMPANY PROFILES….. 181-215

GRAPHENE ELECTRONICS COMPANY PROFILES……………………… 216-246

REFERENCES………………………………………………………………………………….. 247

 

TABLES

Table 1: Properties of CNTs and comparable materials………………………………… 23

Table 2: Carbon nanotubes target markets-Applications, stage of commercialization and potential addressable market size…………………………………………………………………………………………. 24

Table 3: Annual production capacity of MWNT and SWNT producers……………… 27

Table 4: SWNT producers production capacities 2014………………………………….. 29

Table 5: Global production of carbon nanotubes, 2010-2025 in tons/year. Base year for projections is 2014.  31

Table 6: Graphene target markets-Applications, stage of commercialization and potential addressable market size……………………………………………………………………………………………………. 43

Table 7: Graphene producers annual production capacities…………………………… 45

Table 8: Global production of graphene, 2010-2025 in tons/year. Base year for projections is 2014.      47

Table 9: Graphene types and cost per kg……………………………………………………. 50

Table 10: Categorization of nanomaterials………………………………………………….. 57

Table 11: Comparison between single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes………………………………………………………………………………………………………….. 63

Table 12: Properties of carbon nanotubes…………………………………………………… 68

Table 13: Properties of graphene………………………………………………………………. 75

Table 14: Comparative properties of carbon materials………………………………….. 78

Table 15: Comparative properties of graphene with nanoclays and carbon nanotubes.         80

Table 16: Recent phosphorene research news……………………………………………. 84

Table 17: Recent silicene research news…………………………………………………….. 87

Table 18: Recent Molybdenum disulfide research news………………………………… 91

Table 19: Recent hexagonal boron nitride research news……………………………… 94

Table 20: Recent germanane research news………………………………………………. 96

Table 21: Comparative analysis of graphene and other 2-D nanomaterials……. 105

Table 22: Published patent publications for graphene, 2004-2014………………… 110

Table 23: Leading graphene patentees…………………………………………………….. 111

Table 24: Industrial graphene patents in 2014……………………………………………. 112

Table 25: Market penetration and volume estimates (tons) for carbon nanotubes and graphene in key applications………………………………………………………………………………………. 116

Table 26: Global production of carbon nanotubes, 2010-2025 in tons/year. Base year for projections is 2014………………………………………………………………………………………………………… 118

Table 34: Current carbon nanotubes prices……………………………………………….. 126

Table 28: Global production of graphene, 2010-2025 in tons/year. Base year for projections is 2014.    127

Table 29: Carbon nanotubes in the electronics and photonics market-applications, stage of commercialization and addressable market size………………………………………………………………. 129

Table 30: Graphene in the electronics and photonics market-applications, stage of commercialization and addressable market size…………………………………………………………………….. 130

Table 31: Comparison of ITO replacements………………………………………………. 132

Table 32: Carbon nanotubes product and application developers in transparent conductive films and displays………………………………………………………………………………………………………… 144

Table 33: Graphene product and application developers in transparent conductive films.     146

Table 34: Comparative properties of conductive inks………………………………….. 149

Table 35: Carbon nanotubes product and application developers in conductive inks.   154

Table 36: Graphene product and application developers in conductive inks…… 155

Table 37: Carbon nanotubes product and application developers in transistors and integrated circuits.  165

Table 38: Graphene product and application developers in transistors and integrated circuits.      166

Table 39: Carbon nanotubes product and application developers in memory devices. 176

Table 40: Graphene product and application developers in memory devices….. 176

Table 41: Graphene properties relevant to application in optical modulators….. 178

 

FIGURES

Figure 1: Molecular structures of SWNT and MWNT…………………………………….. 22

Figure 2: Production capacities for SWNTs in kilograms, 2005-2014………………. 30

Figure 3: Global production of carbon nanotubes, 2010-2025 in tons/year. Base year for projections is 2014. 32

Figure 4: Global government funding for graphene………………………………………. 42

Figure 5: Global market for graphene 2010-2025 in tons/year……………………….. 48

Figure 6: Conceptual diagram of single-walled carbon nanotube (SWNT) (A) and multi-walled carbon nanotubes (MWNT) (B) showing typical dimensions of length, width, and separation distance between graphene layers in MWNTs………………………………………………………………………………………….. 60

Figure 7: Schematic of single-walled carbon nanotube………………………………….. 61

Figure 8: Figure 8: Double-walled carbon nanotube bundle cross-section micrograph and model. 64

Figure 9: Schematic representation of carbon nanohorns……………………………… 65

Figure 10: Fullerene schematic………………………………………………………………….. 66

Figure 11: Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red…………………………………………………………………………………………………….. 67

Figure 12: Graphene layer structure schematic……………………………………………. 70

Figure 13: Graphite and graphene……………………………………………………………… 71

Figure 14: Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene. . 73

Figure 15: Graphene can be rolled up into a carbon nanotube, wrapped into a fullerene, and stacked into graphite……………………………………………………………………………………………… 77

Figure 16: Phosphorene structure……………………………………………………………… 83

Figure 17: Silicene structure……………………………………………………………………… 86

Figure 18: Structure of 2D molybdenum disulfide…………………………………………. 88

Figure 19: Atomic force microscopy image of a representative MoS2 thin-film transistor.      90

Figure 20: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge……………………………………………………………………….. 91

Figure 21: Structure of hexagonal boron nitride……………………………………………. 93

Figure 22: Schematic of germanane…………………………………………………………… 95

Figure 23: Graphdiyne structure………………………………………………………………… 97

Figure 24: Schematic of Graphane crystal…………………………………………………… 99

Figure 25: Crystal structure for stanene…………………………………………………….. 101

Figure 26: Schematic of tungsten diselenide……………………………………………… 103

Figure 27: Schematic of a monolayer of rhenium disulphide………………………… 104

Figure 28: CNT patents filed 2000-2014……………………………………………………. 107

Figure 29: Patent distribution of CNT application areas to 2014……………………. 108

Figure 30: Published patent publications for graphene, 2004-2014……………….. 111

Figure 31: Technology Readiness Level (TRL) for Carbon Nanotubes………….. 114

Figure 32: Technology Readiness Level (TRL) for graphene……………………….. 115

Figure 33: Regional demand for CNTs utilized in transparent conductive films and displays. 119

Figure 34: Regional demand for CNTs utilized in batteries…………………………… 120

Figure 35: Regional demand for CNTs utilized in Polymer reinforcement……….. 120

Figure 36: Global production of graphene, 2010-2025 in tons/year. Base year for projections is 2014.   128

Figure 37: A large transparent conductive graphene film (about 20 × 20 cm2) manufactured by 2D Carbon Tech………………………………………………………………………………………………… 135

Figure 38: CNT transparent conductive film formed on glass and schematic diagram of its structure.     136

Figure 39: Graphene electrochromic devices…………………………………………….. 138

Figure 40: Flexible transistor sheet…………………………………………………………… 139

Figure 41: The transmittance of glass/ITO, glass/ITO/four organic layers, and glass/ITO/four organic layers/4-layer graphene………………………………………………………………………………….. 143

Figure 42: Vorbeck Materials conductive ink products…………………………………. 150

Figure 43: Nanotube inks………………………………………………………………………… 152

Figure 44: Graphene printed antenna……………………………………………………….. 153

Figure 45: BGT Materials graphene ink product…………………………………………. 154

Figure 46: Schematic cross-section of a graphene base transistor (GBT, left) and a graphene field-effect transistor (GFET, right)………………………………………………………………………. 158

Figure 47: Thin film transistor incorporating CNTs………………………………………. 161

Figure 48: Graphene IC in wafer tester……………………………………………………… 162

Figure 49: Stretchable CNT memory and logic devices for wearable electronics. 169

Figure 50: SEM image of the deposited film (or fabric) of crossed nanotubes that can be either touching or slightly separated depending on their position……………………………………….. 172

Figure 51: Schematic of NRAM………………………………………………………………… 172

Figure 52: Schematic of NRAM cell…………………………………………………………… 173

Figure 53: Carbon nanotubes NRAM chip…………………………………………………. 174

Figure 54: A schematic diagram for the mechanism of the resistive switching in metal/GO/Pt.       175

Figure 55: Hybrid graphene phototransistors……………………………………………… 179