The Global Market for Chemical Recycling and Dissolution of Plastics 2024-2040

0

  • Published: April 2024
  • Pages: 300
  • Tables: 71
  • Figures: 63
  • Companies profiled: 169

 

The global plastics industry is facing a growing challenge - the need to address the environmental impact of plastic waste. As traditional waste management methods struggle to keep pace, advanced chemical recycling and dissolution technologies have emerged as a crucial solution to transform the industry towards a more sustainable, circular model. This comprehensive market report provides an in-depth analysis of the rapidly evolving landscape of chemical recycling and dissolution, offering stakeholders a roadmap to navigate this transformative shift.

The report begins by examining the global production and use of plastics, highlighting the importance of this material in modern society, as well as the issues associated with its widespread adoption. It delves into the rise of bio-based and biodegradable plastics, as well as the growing problem of plastic pollution and the policy and regulatory responses shaping the industry. At the heart of this report lies a detailed analysis of the advanced chemical recycling market, exploring the key drivers and trends that are propelling its growth. The report tracks the industry's dynamic developments, funding, and capacity expansions from 2020 to 2024, painting a comprehensive picture of the competitive landscape.

A critical comparative analysis of mechanical and chemical recycling is presented, underscoring the advantages and limitations of each approach. The report then provides an in-depth forecast of global polymer demand segmented by recycling technology, polymer type, and geographic region, offering stakeholders valuable insights to guide their strategic decision-making.

The report delves into the various advanced recycling technologies, including pyrolysis, gasification, dissolution, and depolymerization, providing a thorough examination of their technical attributes, applications, market forecasts, and leading industry players. It also explores emerging trends, such as the recycling of thermoset materials and the chemical recycling of textiles, highlighting the industry's continuous evolution.

 The report provides an in-depth exploration of the key advanced recycling technologies, including:

  1. Pyrolysis: Leveraging thermal decomposition to convert plastic waste into valuable petrochemical products, along with the application of catalytic pyrolysis and the co-processing of biomass and plastic waste.
  2. Gasification: Employing high-temperature, oxygen-limited processes to convert plastic waste into synthesis gas, which can be further processed into fuels, chemicals, or renewable natural gas.
  3. Dissolution: Utilizing solvents to selectively dissolve and separate specific polymers from plastic waste, enabling the recovery of high-purity materials.
  4. Depolymerization: Utilizing various chemical processes, such as hydrolysis, enzymolysis, methanolysis, and glycolysis, to break down polymers into their constituent monomers for reuse.

For each technology, the report provides a technical overview, market forecasts, SWOT analysis, and the leading industry players and their current and planned capacities.Additionally, the report explores emerging advanced recycling approaches, including hydrothermal cracking, microwave-assisted pyrolysis, plasma technologies, and the recycling of thermoset materials and carbon fibers, highlighting the continued innovation in this dynamic market.

The report projects the global demand for chemically recycled plastics to grow significantly, outpacing the growth of mechanically recycled plastics in key applications. This trajectory is driven by the increasing adoption of advanced recycling technologies, the need for higher-quality recycled content, and the rising demand for sustainable materials across diverse industries.

The global demand for chemically recycled plastics is analyzed across key regions, including Europe, North America, South America, Asia, Oceania, and Africa. The report provides detailed forecasts of polymer demand by recycling technology for each region, equipping stakeholders with a comprehensive understanding of the geographic dynamics shaping the industry.

The report examines the life cycle assessments of advanced chemical recycling processes, comparing the environmental impacts and resource efficiency with traditional virgin plastic production and mechanical recycling. This analysis empowers stakeholders to make informed decisions and communicate the sustainability benefits of their products. The report also addresses the key challenges facing the advanced chemical recycling market, including technological limitations, feedstock availability, regulatory hurdles, and economic barriers, providing a balanced perspective on the industry's growth trajectory.

The report concludes with an extensive company profiling section, featuring over 160 leading players in the chemical recycling and dissolution market. This comprehensive industry landscape covers the technology developers, equipment manufacturers, chemical producers, and waste management companies driving the transformation of the plastics value chain. Each company profile provides detailed information on the organization's technology, capacity, strategic initiatives, and market positioning, equipping stakeholders with the necessary insights to identify potential partners, competitors, and investment opportunities. Companies profiled include Agilyx, APK AG, Aquafil, Carbios, Eastman, Extracthive, Fych Technologies, Garbo, gr3n SA, Hyundai Chemical Ioniqa, Itero, Licella, Mura Technology, revalyu Resources GmbH, Plastogaz SA, Plastic Energy, Polystyvert, Pyrowave, RePEaT Co., Ltd., Synova and SABIC (full list of companies profiled in table of contents). 

 

1             CLASSIFICATION OF RECYCLING TECHNOLOGIES     17

 

2             RESEARCH METHODOLOGY   18

 

3             INTRODUCTION             19

  • 3.1         Global production of plastics   19
  • 3.2         The importance of plastic          20
  • 3.3         Issues with plastics use              20
  • 3.4         Bio-based or renewable plastics            21
    • 3.4.1     Drop-in bio-based plastics        21
    • 3.4.2     Novel bio-based plastics            22
  • 3.5         Biodegradable and compostable plastics         23
    • 3.5.1     Biodegradability             23
    • 3.5.2     Compostability               25
  • 3.6         Plastic pollution             25
  • 3.7         Policy and regulations 26
  • 3.8         The circular economy  27
  • 3.9         Plastic recycling             28
    • 3.9.1     Mechanical recycling  31
      • 3.9.1.1 Closed-loop mechanical recycling       31
      • 3.9.1.2 Open-loop mechanical recycling          32
      • 3.9.1.3 Polymer types, use, and recovery          32
    • 3.9.2     Advanced recycling (molecular recycling, chemical recycling)              33
      • 3.9.2.1 Main streams of plastic waste 33
      • 3.9.2.2 Comparison of mechanical and advanced chemical recycling              34
  • 3.10       Life cycle assessment 35

 

4             CHEMICAL RECYCLING MARKET       36

  • 4.1         Market drivers and trends          36
  • 4.2         Industry news, funding and developments 2020-2024 37
  • 4.3         Capacities         47
  • 4.4         Mechanical vs. Chemical Recycling     50
  • 4.5         Global polymer demand 2022-2040, segmented by recycling technology        51
    • 4.5.1     PE          51
    • 4.5.2     PP          52
    • 4.5.3     PET        54
    • 4.5.4     PS          55
    • 4.5.5     Nylon   56
    • 4.5.6     Others 58
  • 4.6         Mechanical vs chemical recycled packaging consumption by material, 2024-2040    60
    • 4.6.1     PET        60
    • 4.6.2     HDPE   61
    • 4.6.3     LDPE    62
    • 4.6.4     PP          63
    • 4.6.5     PS          64
  • 4.7         Global polymer demand 2022-2040, segmented by recycling technology, by region   65
    • 4.7.1     Europe 65
    • 4.7.2     North America 66
    • 4.7.3     South America 67
    • 4.7.4     Asia       69
    • 4.7.5     Oceania              70
    • 4.7.6     Africa   72
  • 4.8         Chemically recycled plastic products 74
  • 4.9         Market map       76
  • 4.10       Value chain       77
  • 4.11       Life Cycle Assessments (LCA) of advanced plastics recycling processes         78
    • 4.11.1   PE          79
    • 4.11.2   PP          79
    • 4.11.3   PET        80
  • 4.12       Recycled plastic yield and cost               80
    • 4.12.1   Plastic yield of each chemical recycling technologies 80
    • 4.12.2   Prices  81
  • 4.13       Market challenges         81

 

5             CHEMICAL RECYCLING TECHNOLOGIES     83

  • 5.1         Applications     83
  • 5.2         Pyrolysis             84
    • 5.2.1     Feedstocks       85
    • 5.2.2     Non-catalytic  85
    • 5.2.3     Catalytic            87
      • 5.2.3.1 Polystyrene pyrolysis   89
      • 5.2.3.2 Pyrolysis for production of bio fuel        89
      • 5.2.3.3 Used tires pyrolysis       93
        • 5.2.3.3.1             Conversion to biofuel   94
    • 5.2.3.4 Co-pyrolysis of biomass and plastic wastes     95
    • 5.2.4     SWOT analysis 96
    • 5.2.5     Market forecast by polymer type            97
    • 5.2.6     Companies and capacities       98
  • 5.3         Gasification     100
    • 5.3.1     Technology overview    100
      • 5.3.1.1 Syngas conversion to methanol              101
      • 5.3.1.2 Biomass gasification and syngas fermentation              105
      • 5.3.1.3 Biomass gasification and syngas thermochemical conversion              105
    • 5.3.2     Market forecast by polymer type            106
    • 5.3.3     SWOT analysis 107
    • 5.3.4     Companies and capacities (current and planned)         108
  • 5.4         Dissolution        109
    • 5.4.1     Technology overview    109
    • 5.4.2     SWOT analysis 110
    • 5.4.3     Market forecast by polymer type            111
    • 5.4.4     Companies and capacities (current and planned)         112
  • 5.5         Depolymerisation          113
    • 5.5.1     Hydrolysis         115
      • 5.5.1.1 Technology overview    115
      • 5.5.1.2 SWOT analysis 117
    • 5.5.2     Enzymolysis     117
      • 5.5.2.1 Technology overview    117
      • 5.5.2.2 SWOT analysis 118
    • 5.5.3     Methanolysis   119
      • 5.5.3.1 Technology overview    119
      • 5.5.3.2 SWOT analysis 120
    • 5.5.4     Glycolysis          121
      • 5.5.4.1 Technology overview    121
      • 5.5.4.2 SWOT analysis 123
    • 5.5.5     Aminolysis        124
      • 5.5.5.1 Technology overview    124
      • 5.5.5.2 SWOT analysis 125
    • 5.5.6     Market forecast by polymer type            125
    • 5.5.7     Companies and capacities (current and planned)         127
  • 5.6         Other advanced chemical recycling technologies        128
    • 5.6.1     Hydrothermal cracking               128
    • 5.6.2     Pyrolysis with in-line reforming               129
    • 5.6.3     Microwave-assisted pyrolysis 129
    • 5.6.4     Plasma pyrolysis            130
    • 5.6.5     Plasma gasification      131
    • 5.6.6     Supercritical fluids       131
    • 5.6.7     Carbon fiber recycling 132
      • 5.6.7.1 Processes          132
      • 5.6.7.2 Companies       135
    • 5.6.8     PHA chemical recycling             136
  • 5.7         Advanced recycling of thermoset materials     136
    • 5.7.1     Thermal recycling          137
      • 5.7.1.1 Energy Recovery Combustion  137
      • 5.7.1.2 Anaerobic Digestion     138
      • 5.7.1.3 Pyrolysis Processing    139
      • 5.7.1.4 Microwave Pyrolysis    139
    • 5.7.2     Solvolysis          140
    • 5.7.3     Catalyzed Glycolysis   141
    • 5.7.4     Alcoholysis and Hydrolysis       142
    • 5.7.5     Ionic liquids      143
    • 5.7.6     Supercritical fluids       144
    • 5.7.7     Plasma 145
    • 5.7.8     Companies       146
  • 5.8         Chemical recycling of textiles 148
    • 5.8.1     Overview            148
    • 5.8.2     Commercial activity     149

 

6             COMPANY PROFILES  150

  • 6.1         Aduro Clean Technologies, Inc.              150
  • 6.2         Aeternal Upcycling        151
  • 6.3         Agilyx   151
  • 6.4         Alpha Recyclage Composites  153
  • 6.5         Alterra Energy  153
  • 6.6         Ambercycle, Inc.            154
  • 6.7         Anellotech, Inc.               155
  • 6.8         Anhui Oursun Resource Technology Co., Ltd   156
  • 6.9         APChemi Pvt. Ltd.          157
  • 6.10       APK AG 157
  • 6.11       Aquafil S.p.A.   158
  • 6.12       ARCUS Greencycling GmbH    159
  • 6.13       Arkema               160
  • 6.14       Axens SA            160
  • 6.15       BASF    161
  • 6.16       Bcircular            163
  • 6.17       BioBTX B.V.        164
  • 6.18       Biofabrik Technologies GmbH 165
  • 6.19       Blest (Microengineer Co., Ltd.) 166
  • 6.20       Blue Cycle         166
  • 6.21       BlueAlp Technology      167
  • 6.22       Borealis AG       167
  • 6.23       Boston Materials LLC  168
  • 6.24       Braven Environmental, LLC      169
  • 6.25       Brightmark        170
  • 6.26       Cadel Deinking S.L.       171
  • 6.27       Carbios               172
  • 6.28       Carboliq GmbH              173
  • 6.29       Carbon Fiber Recycling LLC     173
  • 6.30       Cassandra Oil AB           174
  • 6.31       CIRC     176
  • 6.32       Chian Tianying 176
  • 6.33       Chevron Phillips Chemical       177
  • 6.34       Clariter 178
  • 6.35       Clean Planet Energy     179
  • 6.36       Corsair Group International      180
  • 6.37       Covestro             180
  • 6.38       CreaCycle GmbH          181
  • 6.39       CuRe Technology BV    182
  • 6.40       Cyclic Materials             184
  • 6.41       Cyclize 184
  • 6.42       DePoly SA          185
  • 6.43       Dow Chemical Company           186
  • 6.44       DyeRecycle      187
  • 6.45       Eastman Chemical Company  187
  • 6.46       Eco Fuel Technology, Inc            189
  • 6.47       Ecopek S.A.       190
  • 6.48       Eeden GmbH   190
  • 6.49       Emery Oleochemicals 191
  • 6.50       Encina Development Group, LLC           191
  • 6.51       Enerkem, Inc.   192
  • 6.52       Enval Ltd.           193
  • 6.53       Environmental Solutions (Asia) Pte Ltd               194
  • 6.54       Epoch Biodesign             195
  • 6.55       Equipolymers GmbH    195
  • 6.56       Evonik Industries AG    196
  • 6.57       Evrnu    197
  • 6.58       Extracthive        198
  • 6.59       ExxonMobil       198
  • 6.60       Fairmat               199
  • 6.61       Fulcrum BioEnergy        200
  • 6.62       Futerro 201
  • 6.63       Fych Technologies         202
  • 6.64       Garbo S.r.l.        202
  • 6.65       GreenMantra Technologies      203
  • 6.66       Gr3n SA               204
  • 6.67       Handerek Technologies              205
  • 6.68       Hanwha Solutions         206
  • 6.69       Honeywell         207
  • 6.70       Hyundai Chemical        207
  • 6.71       Indaver nv          208
  • 6.72       InEnTec, Inc.     209
  • 6.73       INEOS Styrolution         209
  • 6.74       Infinited Fiber Company Oy      210
  • 6.75       Ioncell Oy           212
  • 6.76       Ioniqa Technologies B.V.            212
  • 6.77       Itero Technologies         213
  • 6.78       Itelyum 214
  • 6.79       Jeplan, Inc.        215
  • 6.80       JFE Chemical Corporation         216
  • 6.81       Kaneka Corporation      216
  • 6.82       Khepra 217
  • 6.83       Klean Industries              218
  • 6.84       Lanzatech         218
  • 6.85       Licella 221
  • 6.86       Loop Industries, Inc.     221
  • 6.87       LOTTE Chemical             222
  • 6.88       Lummus Technology LLC           223
  • 6.89       LyondellBasell Industries Holdings B.V.             224
  • 6.90       Metaspectral   226
  • 6.91       Mint Innovation               227
  • 6.92       Microwave Chemical Co. Ltd.  227
  • 6.93       Mitsubishi Chemical    229
  • 6.94       MolyWorks Materials   230
  • 6.95       Mote, Inc.           230
  • 6.96       Mura Technology            231
  • 6.97       Nanya Plastics Corporation      232
  • 6.98       NatureWorks    233
  • 6.99       Neste Oyj           234
  • 6.100    New Hope Energy           235
  • 6.101    Nexus Circular LLC       235
  • 6.102    Next Generation Group (NGR) 236
  • 6.103    Novoloop           237
  • 6.104    Olefy Technologies       238
  • 6.105    OMV AG              239
  • 6.106    Orlen Unipetrol Rpa S.r.o.          240
  • 6.107    Österreichische Mineralölverwaltung (OMV)   241
  • 6.108    PETRONAS Chemicals Group Berhad  242
  • 6.109    Plastic Back      242
  • 6.110    Plastic Energy Limited 243
  • 6.111    Plastic2Oil, Inc.              244
  • 6.112    Plastogaz SA    245
  • 6.113    Poliloop              246
  • 6.114    Polycycl              246
  • 6.115    Polynate             247
  • 6.116    PolyStyreneLoop           248
  • 6.117    Polystyvert, Inc.              248
  • 6.118    Poseidon Plastics          249
  • 6.119    Premirr Plastics, Inc.    250
  • 6.120    Protein Evolution            251
  • 6.121    Pryme BV           251
  • 6.122    PureCycle Technologies             252
  • 6.123    Pyrowave           253
  • 6.124    Qairos Energies               254
  • 6.125    QuantaFuel ASA             254
  • 6.126    Recenso GmbH              256
  • 6.127    Recyc’ELIT        256
  • 6.128    Reliance Industries Limited      257
  • 6.129    ReNew ELP       257
  • 6.130    Re:newcell        258
  • 6.131    Renew One        259
  • 6.132    RePEaT Co., Ltd.             260
  • 6.133    Repsol 260
  • 6.134    Resiclo Oy         262
  • 6.135    Resynergi, Inc. 262
  • 6.136    revalyu Resources GmbH          263
  • 6.137    ReVital Polymers, Inc. 264
  • 6.138    Rittec Umwelttechnik GmbH   265
  • 6.139    Sabic    266
  • 6.140    Samsara Eco Pty Ltd.   267
  • 6.141    Saperatec GmbH           268
  • 6.142    Scindo 269
  • 6.143    SCG Chemicals              269
  • 6.144    Sekisui Chemical Co., Ltd.        270
  • 6.145    Shell     271
  • 6.146    Showa Denko K.K.         272
  • 6.147    Shuye Environmental Technology          273
  • 6.148    Sierra Energy    273
  • 6.149    SK Geo Centric (SKGC)               274
  • 6.150    SK Global Chemical Co., Ltd.   275
  • 6.151    Sulzer Chemtech AG    275
  • 6.152    Sumitomo Chemical    276
  • 6.153    Sweet Gazoil    277
  • 6.154    Synova 278
  • 6.155    Synpet Technologies    279
  • 6.156    Technisoil Industrial     280
  • 6.157    Teijin Frontier Co., Ltd. 281
  • 6.158    TotalEnergies   282
  • 6.159    Toyo Styrene Co., Ltd.  283
  • 6.160    Trinseo 284
  • 6.161    Triple Helix        285
  • 6.162    Uflex     285
  • 6.163    Valoren               286
  • 6.164    Vartega Inc.       286
  • 6.165    Velocys               287
  • 6.166    Versalis SpA     288
  • 6.167    Wastefront        290
  • 6.168    Worn Again Technologies           290
  • 6.169    Xycle    291

 

7             GLOSSARY OF TERMS 292

 

8             REFERENCES   294

 

List of Tables

  • Table 1. Types of recycling.       17
  • Table 2. Issues related to the use of plastics.  20
  • Table 3. Type of biodegradation.             24
  • Table 4. Overview of the recycling technologies.           31
  • Table 5. Polymer types, use, and recovery.       32
  • Table 6. Composition of plastic waste streams.             34
  • Table 7. Comparison of mechanical and advanced chemical recycling.           34
  • Table 8. Life cycle assessment of virgin plastic production, mechanical recycling and chemical recycling.   35
  • Table 9. Life cycle assessment of chemical recycling technologies (pyrolysis, gasification, depolymerization and dissolution).      35
  • Table 10. Market drivers and trends in the advanced chemical recycling market.         36
  • Table 11. Advanced chemical recycling industry news, funding and developments 2020-2024.            37
  • Table 12. Advanced plastics recycling capacities, by technology.        47
  • Table 13. Mechanical vs. Chemical Recycling.               50
  • Table 14. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes).    51
  • Table 15. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes).    52
  • Table 16. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes).  54
  • Table 17. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes).    55
  • Table 18. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes).                56
  • Table 19. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes).*            58
  • Table 20. Mechanical vs chemical recycled packaging consumption for PET, 2024-2040 (tonnes).      60
  • Table 21. Mechanical vs chemical recycled packaging consumption for HDPE, 2024-2040 (tonnes). 61
  • Table 22. Mechanical vs chemical recycled packaging consumption for LDPE, 2024-2040 (tonnes).  62
  • Table 23. Mechanical vs chemical recycled packaging consumption for PP, 2024-2040 (tonnes).        63
  • Table 24. Mechanical vs chemical recycled packaging consumption for PS, 2024-2040 (tonnes).        64
  • Table 25. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes).     65
  • Table 26. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes).     66
  • Table 27. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes).     67
  • Table 28. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes).           69
  • Table 29. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes).  70
  • Table 30. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes).        72
  • Table 31. Example chemically recycled plastic products.         74
  • Table 32. Life Cycle Assessments (LCA) of Advanced Chemical Recycling Processes.              78
  • Table 33. Life cycle assessment of mechanically versus chemically recycling polyethylene (PE).        79
  • Table 34. Life cycle assessment of mechanically versus chemically recycling polypropylene (PP).     79
  • Table 35. Life cycle assessment of mechanically versus chemically recycling polyethylene terephthalate (PET).                80
  • Table 36. Plastic yield of each chemical recycling technologies.           80
  • Table 37. Chemically recycled plastics prices in USD. 81
  • Table 38. Challenges in the advanced chemical recycling market.       81
  • Table 39. Applications of chemically recycled materials.          83
  • Table 40. Summary of non-catalytic pyrolysis technologies.   86
  • Table 41. Summary of catalytic pyrolysis technologies.             87
  • Table 42. Summary of pyrolysis technique under different operating conditions.          91
  • Table 43. Biomass materials and their bio-oil yield.      92
  • Table 44. Biofuel production cost from the biomass pyrolysis process.              93
  • Table 45. Pyrolysis market forecast by polymer type 2024-2040.           97
  • Table 46. Pyrolysis companies and plant capacities, current and planned.      98
  • Table 47. Summary of gasification technologies.          100
  • Table 48. Gasification market forecast by polymer type 2024-2040.    106
  • Table 49. Advanced recycling (Gasification) companies.          108
  • Table 50. Summary of dissolution technologies.            109
  • Table 51. Dissolution market forecast by polymer type 2024-2040.      112
  • Table 52. Advanced recycling (Dissolution) companies              112
  • Table 53. Depolymerisation processes for PET, PU, PC and PA, products and yields. 114
  • Table 54. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.               116
  • Table 55. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.               118
  • Table 56. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.               120
  • Table 57. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.               122
  • Table 58. Summary of aminolysis technologies.            125
  • Table 59. Depolymerization market forecast by polymer type 2024-2040.        126
  • Table 60. Advanced recycling (Depolymerisation) companies and capacities (current and planned). 127
  • Table 61. Overview of hydrothermal cracking for advanced chemical recycling.           128
  • Table 62. Overview of Pyrolysis with in-line reforming for advanced chemical recycling.          129
  • Table 63. Overview of microwave-assisted pyrolysis for advanced chemical recycling.            129
  • Table 64. Overview of plasma pyrolysis for advanced chemical recycling.       130
  • Table 65. Overview of plasma gasification for advanced chemical recycling. 131
  • Table 66. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages.        133
  • Table 67. Retention rate of tensile properties of recovered carbon fibres by different recycling processes.     134
  • Table 68. Recycled carbon fiber producers, technology and capacity.               135
  • Table 69.  Current thermoset recycling routes.               136
  • Table 70. Companies developing advanced thermoset recycing routes.            146
  • Table 71. Companies in chemical textile recycling.      149

 

List of Figures

  • Figure 1. Global plastics production 1950-2021, millions of tonnes.    19
  • Figure 2.  Coca-Cola PlantBottle®.        22
  • Figure 3. Interrelationship between conventional, bio-based and biodegradable plastics.       22
  • Figure 4. Global production, use, and fate of polymer resins, synthetic fibers, and additives. 25
  • Figure 5. The circular plastic economy.              27
  • Figure 6. Current management systems for waste plastics.     28
  • Figure 7. Overview of the different circular pathways for plastics.        30
  • Figure 8. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes).     52
  • Figure 9. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes).     53
  • Figure 10. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes). 55
  • Figure 11. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes).  56
  • Figure 12. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes).                57
  • Figure 13. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes).               59
  • Figure 14. Table 20. Mechanical vs chemical recycled packaging consumption for PET, 2024-2040 (tonnes).                60
  • Figure 15. Table 20. Mechanical vs chemical recycled packaging consumption for HDPE, 2024-2040 (tonnes).                61
  • Figure 16. Table 20. Mechanical vs chemical recycled packaging consumption for LDPE, 2024-2040 (tonnes).                62
  • Figure 17. Table 20. Mechanical vs chemical recycled packaging consumption for PP, 2024-2040 (tonnes).  63
  • Figure 18. Table 20. Mechanical vs chemical recycled packaging consumption for PS, 2024-2040 (tonnes).  64
  • Figure 19. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes).   66
  • Figure 20. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes).    67
  • Figure 21. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes).   69
  • Figure 22. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes).          70
  • Figure 23. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes). 71
  • Figure 24. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes).      73
  • Figure 25. Market map for advanced plastics recycling.             77
  • Figure 26. Value chain for advanced plastics recycling market.             78
  • Figure 27. Schematic layout of a pyrolysis plant.            84
  • Figure 28. Waste plastic production pathways to (A) diesel and (B) gasoline   90
  • Figure 29. Schematic for Pyrolysis of Scrap Tires.         94
  • Figure 30. Used tires conversion process.         95
  • Figure 31. SWOT analysis-pyrolysis for advanced recycling.    96
  • Figure 32. Pyrolysis market forecast by polymer type 2024-2040.         98
  • Figure 33. Total syngas market by product in MM Nm³/h of Syngas, 2021.         102
  • Figure 34. Overview of biogas utilization.           103
  • Figure 35. Biogas and biomethane pathways. 104
  • Figure 36. Gasification market forecast by polymer type 2024-2040.  107
  • Figure 37. SWOT analysis-gasification for advanced recycling.              108
  • Figure 38. SWOT analysis-dissoluton for advanced recycling. 111
  • Figure 39. Dissolution market forecast by polymer type 2024-2040.    112
  • Figure 40. Products obtained through the different solvolysis pathways of PET, PU, and PA.   114
  • Figure 41. SWOT analysis-Hydrolysis for advanced chemical recycling.            117
  • Figure 42. SWOT analysis-Enzymolysis for advanced chemical recycling.        119
  • Figure 43. SWOT analysis-Methanolysis for advanced chemical recycling.      121
  • Figure 44. SWOT analysis-Glycolysis for advanced chemical recycling.            123
  • Figure 45. SWOT analysis-Aminolysis for advanced chemical recycling.           125
  • Figure 46. Depolymerization market forecast by polymer type 2024-2040.       126
  • Figure 47. NewCycling process.             158
  • Figure 48. ChemCyclingTM prototypes.              162
  • Figure 49. ChemCycling circle by BASF.             162
  • Figure 50. Recycled carbon fibers obtained through the R3FIBER process.       164
  • Figure 51. Cassandra Oil  process.        175
  • Figure 52. CuRe Technology process.  183
  • Figure 53. MoReTec.     225
  • Figure 54. Chemical decomposition process of polyurethane foam.   228
  • Figure 55. OMV ReOil process. 239
  • Figure 56. Schematic Process of Plastic Energy’s TAC Chemical Recycling.   244
  • Figure 57. Easy-tear film material from recycled material.       261
  • Figure 58. Polyester fabric made from recycled monomers.    266
  • Figure 59. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right). 277
  • Figure 60. Teijin Frontier Co., Ltd. Depolymerisation process. 281
  • Figure 61. The Velocys process.              288
  • Figure 62. The Proesa® Process.             289
  • Figure 63. Worn Again products.             291

 

 

The Global Market for Chemical Recycling and Dissolution of Plastics 2024-2040
The Global Market for Chemical Recycling and Dissolution of Plastics 2024-2040
PDF download..

The Global Market for Chemical Recycling and Dissolution of Plastics 2024-2040
The Global Market for Chemical Recycling and Dissolution of Plastics 2024-2040
PDF and print edition.

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.