The Global Market for Conductive Plastics 2024-2034

0

  • Published: February 2024:
  • Pages: 215
  • Tables: 20
  • Figures: 14
  • Series: Plastics, Polymers

 

Electrically conductive plastics are polymer materials capable of conducting electrical current. Generally, plastics are not good conductors of electricity as they consist of non-conductive molecules. However, with the addition of conductive fillers or additives, some plastics can develop electrically conductive properties. Examples of conductive plastics include polyaniline, polypyrrole, polythiophene, and some carbon nanomaterials like graphene and carbon nanotubes.

Electrically conductive plastics already serve diverse commercial applications ranging from anti-static packaging to protect sensitive electronics during transport and storage to electromagnetic interference (EMI) shielding housings that block ambient signals which could disrupt electronic component operation. They are also increasingly used in automotive and advanced electronics applications. Emerging applications and markets include Electric vehicle systems, Stretchable electronics, Smart fabrics, Medical devices, 3D printed electronics, and Renewable energy and Flexible displays. 

The Global Market for Conductive Plastics 2024-2034 provides a comprehensive analysis of the global conductive plastics market, including market size valuations and growth projections. The report offers key insights into conductive polymer types, manufacturing processes, major end-use applications across electronics, automotive and aerospace sectors, regional demand trends, competitive landscape, and emerging growth opportunities.

Key growth factors analyzed include surging adoption across rapidly rising electronics and electric vehicle production, increased usage of tailored anti-static and EMI shielding compounds, and technology advances enabling enhanced intrinsically conductive polymer alternatives to metals.

Detailed qualitative and quantitative demand analyses are provided covering major geographic regions North America, Europe, Asia Pacific, and Rest of World. 16-year granular market size forecasts are presented globally by product type, key end-use application markets, and region.  Profiles for over 60 leading suppliers are included, focusing on their capabilities, conductive compounds portfolios, and recent strategic technology investments in areas such as graphene and nanotubes. Overall, with increasing performance requirements and environmental directives across sectors, electrically conductive plastics are emerging as smart eco-friendly alternatives to conventional materials - creating multi-billion dollar expansion opportunities.

Report contents include

  • Introduction to Conductive Polymers Market Size & Growth Potentials
  • Types of Conductive Plastic Materials: Composites, ICPs and Hybrids
  • Injection Molding, Extrusion and 3D Printing Manufacturing Processes
  • Comparison of conductive plastics types
  • Manufacturing Challenges
  • Applications in Electronics, Antistatic and Shielding Needs, Automotive Industry Components and Electric Vehicle Prospects, Aerospace Parts: Airframes, Interiors and Enclosures Advancements, Sensors and PCBs: Capacitive Films and Circuit Board Solutions
  • Regional Market Dynamics: North America, Europe, Asia, RoW
  • 2018-2034 Conductive Plastics Industry Quantitative Market Outlook
  • Emerging Trends & Developments
  • 60+ Company Profiles. Companies profiled include Avient Corporation, BASF, Birla Carbon, Cabot Corporation, Imerys, KH Chemicals Co., Ltd., LG Chem, Mitsubishi Chemical Corporation, N-ink, OCSiAl and PCBL Limited. 

 

 

Download table of contents (PDF)

1              RESEARCH METHODOLOGY         11

 

2              INTRODUCTION 13

  • 2.1          Description         13
    • 2.1.1      Definitions          13
    • 2.1.2      Adding conductivity to plastics   14
  • 2.2          Types of conductive plastics         15
    • 2.2.1      Intrinsically Conducting Polymers (ICPs) 16
      • 2.2.1.1   Properties           16
      • 2.2.1.2   Polyaniline (PAni)            17
      • 2.2.1.3   Polypyrrole (PPy)             18
      • 2.2.1.4   Polythiophene (PT)         19
      • 2.2.1.5   Poly(3,4-ethylenedioxythiophene) (PEDOT)          20
      • 2.2.1.6   Polyacetylene   21
    • 2.2.2      Conductive Plastic Composites   22
      • 2.2.2.1   Carbon-based fillers        23
        • 2.2.2.1.1               Carbon black      24
          • 2.2.2.1.1.1           Description         24
          • 2.2.2.1.1.2           Applications       25
        • 2.2.2.1.2               Carbon fibers     29
          • 2.2.2.1.2.1           Description         29
          • 2.2.2.1.2.2           Conductive carbon fiber composites        29
        • 2.2.2.1.3               Carbon nanotubes           32
          • 2.2.2.1.3.1           Multi-walled Carbon Nanotubes (MWCNT)           32
          • 2.2.2.1.3.2           Single-walled Carbon Nanotubes (SWCNT)           33
          • 2.2.2.1.3.3           Few-walled carbon nanotubes (FWNTs) 34
        • 2.2.2.1.4               Graphene           36
          • 2.2.2.1.4.1           Usage   36
          • 2.2.2.1.4.2           Benefits               37
          • 2.2.2.1.4.3           Applications       38
      • 2.2.2.2   Metal fillers        40
        • 2.2.2.2.1               Types of Metal Fillers      40
        • 2.2.2.2.2               Properties           41
        • 2.2.2.2.3               Factors Determining Choice of Metal Fillers          41
        • 2.2.2.2.4               Common Resin Matrices Used with Metal Fillers 42
      • 2.2.2.3   Conductive polymer fillers            43
    • 2.2.3      Hybrid Conductive Composites  45
    • 2.2.4      Conductive Plastic Composites   48
  • 2.3          Manufacturing processes             51
    • 2.3.1      Injection Molding Conductive Plastics      51
    • 2.3.2      Extruding Conductive Polymers 52
    • 2.3.3      3D Printing Conductive Polymers              54
  • 2.4          Manufacturing challenges            56
  • 2.5          Emerging Trends & Developments           58
    • 2.5.1      Carbon nanomaterials    59
    • 2.5.2      3D & 4D printing               60
    • 2.5.3      Biodegradable conductive polymers        62

 

3              MARKETS AND APPLICATIONS    63

  • 3.1          Market growth drivers   63
  • 3.2          Market challenges           65
  • 3.3          Electronics          67
    • 3.3.1      Overview            67
    • 3.3.2      Applications       68
      • 3.3.2.1   EMI/RFI Shielding             70
      • 3.3.2.2   Printed Circuit Boards (PCBs)      71
      • 3.3.2.3   Capacitive Touch Interfaces        71
      • 3.3.2.4   Flexible Displays               72
      • 3.3.2.5   IC Packaging and Testing               72
      • 3.3.2.6   Thermal Management   73
      • 3.3.2.7   3D Printed Electronics    74
      • 3.3.2.8   Batteries              75
  • 3.4          Antistatic plastics             76
    • 3.4.1      Overview            76
    • 3.4.2      Applications       78
      • 3.4.2.1   Electronics Manufacturing & Packaging  78
      • 3.4.2.2   Automotive Composites 79
      • 3.4.2.3   Medical Components     80
      • 3.4.2.4   3D Printing Filaments     81
      • 3.4.2.5   Flexible Consumer Electronics    82
  • 3.5          EMI/RFI Shielding             83
    • 3.5.1      Overview            83
    • 3.5.2      Applications       84
      • 3.5.2.1   Electronics Enclosures    85
      • 3.5.2.2   Automotive Components             86
      • 3.5.2.3   Aerospace Parts               87
      • 3.5.2.4   Appliance Housings         88
      • 3.5.2.5   Medical Equipment         89
      • 3.5.2.6   Functional Apparels        90
  • 3.6          Thermally Conductive Plastics     90
    • 3.6.1      Overview            90
    • 3.6.2      Applications       91
      • 3.6.2.1   LED Lighting        92
      • 3.6.2.2   Automotive Components             93
      • 3.6.2.3   Consumer Electronics     94
      • 3.6.2.4   Power Electronics            95
      • 3.6.2.5   Energy Storage  95
      • 3.6.2.6   Medical Devices               96
  • 3.7          Sensors 97
    • 3.7.1      Overview            97
    • 3.7.2      Applications       97
      • 3.7.2.1   Wearable Sensors            98
      • 3.7.2.2   Touch Sensors   99
      • 3.7.2.3   Healthcare Sensors         100
      • 3.7.2.4   Smart Packaging               101
      • 3.7.2.5   3D Printed Sensors          103
      • 3.7.2.6   Injection Molded Sensors             104
      • 3.7.2.7   Stretchable Sensors        105
  • 3.8          Automotive        106
    • 3.8.1      Overview            106
    • 3.8.2      Applications       107
      • 3.8.2.1   Lighting 108
      • 3.8.2.2   Body Panels        109
      • 3.8.2.3   Cabin Controls   109
      • 3.8.2.4   Powertrain         110
      • 3.8.2.5   Electronic Control            111
      • 3.8.2.6   Electric Vehicles               112
      • 3.8.2.7   Paints and Coatings         113
      • 3.8.2.8   Sensors 114
  • 3.9          Aerospace          114
    • 3.9.1      Overview            114
    • 3.9.2      Applications       115
      • 3.9.2.1   Airframes            116
      • 3.9.2.2   Interiors               117
      • 3.9.2.3   Electronic Enclosures     118
      • 3.9.2.4   Antennas            119
      • 3.9.2.5   Engines 120
      • 3.9.2.6   Sensors 121
  • 3.10        Global market revenues 121
    • 3.10.1    Total      121
    • 3.10.2    By type 123
    • 3.10.3    By end use market           125
    • 3.10.4    By region             127
  • 3.11        Emerging Applications Areas       131
    • 3.11.1    Electric Vehicles (EVs)    131
    • 3.11.2    Renewable Energy          132
    • 3.11.3    Smart Textiles & Apparels            133
    • 3.11.4    Additive Manufacturing 134
    • 3.11.5    Flexible Hybrid Electronics (FHE)                134
    • 3.11.6    Biomedical Devices         135
  • 3.12        Competitive Landscape 135

 

4            PRODUCER PROFILES      137 (62 company profiles)

 

5             REFERENCES       212

 

List of Tables

  • Table 1. Comparison of types of Conductive Plastics.        15
  • Table 2. Carbon black non-tire applications.          25
  • Table 3. Typical properties of SWCNT and MWCNT.          31
  • Table 4. Markets and applications for few-walled carbon nanotubes (FWNTs).     34
  • Table 5. Manufacturing challenges in conductive plastics.               56
  • Table 6. Market growth drivers for conductive plastics.   63
  • Table 7. Market challenges in conductive plastics.              65
  • Table 8. Applications of conductive plastics and polymers in the electronics industry.        68
  • Table 9. Applications of conductive antistatic plastics.      77
  • Table 10. Comparison of conductive plastic shields with metal shields.     83
  • Table 11. Applications of conductive plastics and polymers in EMI/RFI shielding.  84
  • Table 12. Applications of thermally conductive plastics.   91
  • Table 13. Applications of conductive plastics and polymers in the sensors  industry.           97
  • Table 14. Applications of conductive plastics and polymers in the automotive industry.    107
  • Table 15. Applications of conductive plastics and polymers in the aerospace industry.       115
  • Table 16. Global market for conductive plastics 2018-2034 (Millions USD).             121
  • Table 17. Global market for conductive plastics 2018-2034, by type (Millions USD).            123
  • Table 18. Global market for conductive plastics 2018-2034, by end use market (Millions USD).      125
  • Table 19. Global market for conductive plastics 2018-2034, by region (Millions USD).        127
  • Table 20. Chasm SWCNT products.           154

 

List of Figures

  • Figure 1. Sequence of structure development of Carbon Black.    24
  • Figure 2. Applications of specialty carbon black.  26
  • Figure 3. TEM image of FWNTs. 34
  • Figure 4. Types of Metal Fillers.  40
  • Figure 5. Global market for conductive plastics 2018-2034 (Millions USD).              122
  • Figure 6. Global market for conductive plastics 2018-2034, by type (Millions USD).             124
  • Figure 7. Global market for conductive plastics 2018-2034, by end use market (Millions USD).       127
  • Figure 8. Global market for conductive plastics 2018-2034, by region (Millions USD).         131
  • Figure 9.BASF’s Elastostat antistatic masterbatches can achieve surface resistivity.             145
  • Figure 10. Schematic of a fluidized bed reactor which is able to scale up the generation of SWNTs using the CoMoCAT process.               155
  • Figure 11. Nanotech Energy battery.       182
  • Figure 12. PolyJoule batteries.   194
  • Figure 13. Thermal conductive graphene film.     201
  • Figure 14. Toray CNF printed RFID.           205

 

The Global Market for Conductive Plastics 2024-2034
The Global Market for Conductive Plastics 2024-2034
PDF download.

The Global Market for Conductive Plastics 2024-2034
The Global Market for Conductive Plastics 2024-2034
PDF and Print Edition (including tracked FEDEX delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.