The Global Market for Green Hydrogen 2024-2035

0

Electrolyzer Technologies, Production, Storage, Transport and Utilization

  • Published: March 2024
  • Pages: 323
  • Tables: 59
  • Figures: 64
  • Series: Bio-Economy, Energy

 

Green hydrogen refers to hydrogen produced through renewable energy powered electrolysis of water, rather than carbon-intensive methods like steam methane reforming. It has no associated carbon emissions. Electrolyzer technologies are crucial for scaling up production of green hydrogen. Electrolyzers use electricity to split water into hydrogen and oxygen gas streams. These electrochemical systems along with renewable energy sources like solar, wind or hydro power enable renewable hydrogen production. Cost declines through technology innovations, manufacturing scale-up and more renewable electricity integration are vital to displace existing fossil-based hydrogen supplying refining, fertilizer and chemical industries today. As green hydrogen scales, it can provide a sustainable energy storage vector and decarbonize sectors like steel, ammonia and transportation (through synthetic fuels) that lack easy electrification routes, playing a major role in achieving global net zero targets.

The Global Market for Green Hydrogen 2024-2035 provides a comprehensive overview of the emerging hydrogen economy and the pivotal role of green hydrogen production in enabling wider adoption across industrial applications. Spanning over 300 pages, the report analyzes global energy demand scenarios and the potential for hydrogen to deliver deep decarbonization across sectors from transportation to steel manufacturing.

Detailed technology analysis focuses on next generation electrolysis techniques for scalable green hydrogen generation from water and renewable electricity. Comparative assessment of alkaline, polymer electrolyte membrane, anion exchange membrane and solid oxide electrolysis systems explores component materials, system configurations, costs, manufacturing challenges and key innovative companies developing these technologies.

Additional sections profile developments around hydrogen storage and distribution infrastructure including pipelines, compression and liquefaction. The utilization segment covers fuel cell electric vehicles, synthetic fuel production, ammonia synthesis and other hydrogen end-uses across aviation, shipping and heat/power sectors.

The report covers 130 company profiles of major corporations, innovative start-ups and disruptive new entrants commercializing breakthroughs across the hydrogen value chain. Competencies span from advanced electrolyzer stacks to full solutions for onsite hydrogen generation, transportation fleets, renewable energy integration and industrial decarbonization projects. Report contents include:

  • Overview of the hydrogen economy and production landscape
  • Analysis of global energy demand scenarios and hydrogen's decarbonization potential
  • Breakdown of the hydrogen value chain - production, storage/transport, utilization
  • Details on green hydrogen production methods, projects, and role in energy transition
  • In-depth technology analysis of next-gen electrolyzers:
    • Alkaline (AWE)
    • Polymer Electrolyte Membrane (PEMEL)
    • Anion Exchange Membrane (AEMEL)
    • Solid Oxide (SOEC)
  • Review of hydrogen storage and transportation infrastructure
  • Coverage of utilization applications:
    • Fuel cell electric vehicles
    • Synthetic e-fuel production
    • Green ammonia production
    • Renewable power and heat generation
  • Profiles of 130 key companies across the hydrogen value chain:
    • Industrial gas suppliers
    • Emerging electrolyzer manufacturers
    • Energy majors
    • Chemical/ammonia companies
    • Innovative start-ups
  • Hydrogen production analysis for global regions
  • Assessment of market challenges and growth drivers

 

1             RESEARCH METHODOLOGY   17

 

2             INTRODUCTION             19

  • 2.1         Hydrogen classification             19
    • 2.1.1     Hydrogen colour shades             20
  • 2.2         Global energy demand and consumption          21
  • 2.3         The hydrogen economy and production              21
  • 2.4         Removing CO₂ emissions from hydrogen production   23
  • 2.5         Hydrogen value chain  24
    • 2.5.1     Production        25
    • 2.5.2     Transport and storage  25
    • 2.5.3     Utilization          26
  • 2.6         National hydrogen initiatives, policy and regulation     28
  • 2.7         Hydrogen certification 29
  • 2.8         Carbon pricing 30
  • 2.9         Market challenges         31
  • 2.10       Industry developments 2020-2024       32
  • 2.11       Market map       47
  • 2.12       Global hydrogen production     49
    • 2.12.1   Industrial applications 50
    • 2.12.2   Hydrogen energy            51
      • 2.12.2.1               Stationary use 51
      • 2.12.2.2               Hydrogen for mobility  51
    • 2.12.3   Current Annual H2 Production 52
    • 2.12.4   Hydrogen production processes            53
      • 2.12.4.1               Hydrogen as by-product             54
      • 2.12.4.2               Reforming          54
        • 2.12.4.2.1           SMR wet method            54
        • 2.12.4.2.2           Oxidation of petroleum fractions           55
        • 2.12.4.2.3           Coal gasification            55
      • 2.12.4.3               Reforming or coal gasification with CO2 capture and storage 55
      • 2.12.4.4               Steam reforming of biomethane            55
      • 2.12.4.5               Water electrolysis         56
      • 2.12.4.6               The "Power-to-Gas" concept   58
      • 2.12.4.7               Fuel cell stack  59
      • 2.12.4.8               Electrolysers    60
      • 2.12.4.9               Other    61
        • 2.12.4.9.1           Plasma technologies   61
        • 2.12.4.9.2           Photosynthesis               62
        • 2.12.4.9.3           Bacterial or biological processes           63
        • 2.12.4.9.4           Oxidation (biomimicry) 64
    • 2.12.5   Production costs            64
    • 2.12.6   Global hydrogen demand forecasts      66
    • 2.12.7   Hydrogen Production in the United States        67
      • 2.12.7.1               Gulf Coast         67
      • 2.12.7.2               California           68
      • 2.12.7.3               Midwest              68
      • 2.12.7.4               Northeast          68
      • 2.12.7.5               Northwest         68
    • 2.12.8   DOE Hydrogen Hubs     69
    • 2.12.9   US Hydrogen Electrolyzer Capacities, Planned and Installed  70

 

3             GREEN HYDROGEN PRODUCTION      73

  • 3.1         Overview            73
  • 3.2         Green hydrogen projects            74
  • 3.3         Motivation for use          74
  • 3.4         Decarbonization            75
  • 3.5         Comparative analysis  76
  • 3.6         Role in energy transition             77
  • 3.7         Renewable energy sources       78
  • 3.7.1     Wind power       78
  • 3.7.2     Solar Power      79
  • 3.7.3     Nuclear               79
  • 3.7.4     Capacities         79
  • 3.7.5     Costs    80
  • 3.8         SWOT analysis 81

 

4             ELECTROLYZER TECHNOLOGIES         83

  • 4.1         Introduction      83
  • 4.2         Main types         84
  • 4.3         Balance of Plant             84
  • 4.4         Characteristics               87
  • 4.5         Advantages and disadvantages              89
  • 4.6         Electrolyzer market      90
    • 4.6.1     Market trends   90
    • 4.6.2     Market landscape          91
    • 4.6.3     Innovations       92
    • 4.6.4     Cost challenges              93
    • 4.6.5     Scale-up             94
    • 4.6.6     Manufacturing challenges         95
    • 4.6.7     Market opportunity and outlook              95
  • 4.7         Alkaline water electrolyzers (AWE)        97
    • 4.7.1     Technology description               97
    • 4.7.2     AWE plant          99
    • 4.7.3     Components and materials      99
    • 4.7.4     Costs    100
    • 4.7.5     Companies       101
  • 4.8         Anion exchange membrane electrolyzers (AEMEL)       103
    • 4.8.1     Technology description               103
    • 4.8.2     AEMEL plant     104
    • 4.8.3     Components and materials      105
      • 4.8.3.1 Catalysts            106
      • 4.8.3.2 Anion exchange membranes (AEMs)    107
      • 4.8.3.3 Materials            107
    • 4.8.4     Costs    109
    • 4.8.5     Companies       110
  • 4.9         Proton exchange membrane electrolyzers (PEMEL)     112
    • 4.9.1     Technology description               112
    • 4.9.2     PEMEL plant     114
    • 4.9.3     Components and materials      115
      • 4.9.3.1 Membranes      116
      • 4.9.3.2 Advanced PEMEL stack designs              117
      • 4.9.3.3 Plug-and-Play & Customizable PEMEL Systems            118
      • 4.9.3.4 PEMELs and proton exchange membrane fuel cells (PEMFCs)                118
    • 4.9.4     Costs    119
    • 4.9.5     Companies       120
  • 4.10       Solid oxide water electrolyzers (SOEC)               122
    • 4.10.1   Technology description               122
    • 4.10.2   SOEC plant        124
    • 4.10.3   Components and materials      125
      • 4.10.3.1               External process heat  125
      • 4.10.3.2               Clean Syngas Production           126
      • 4.10.3.3               Nuclear power 126
      • 4.10.3.4               SOEC and SOFC cells  127
        • 4.10.3.4.1           Tubular cells     127
        • 4.10.3.4.2           Planar cells       127
      • 4.10.3.5               SOEC Electrolyte           128
    • 4.10.4   Costs    129
    • 4.10.5   Companies       130
  • 4.11       Other types       131
    • 4.11.1   Overview            131
    • 4.11.2   CO₂ electrolysis             132
      • 4.11.2.1               Electrochemical CO₂ Reduction            133
      • 4.11.2.2               Electrochemical CO₂ Reduction Catalysts       134
      • 4.11.2.3               Electrochemical CO₂ Reduction Technologies               135
      • 4.11.2.4               Low-Temperature Electrochemical CO₂ Reduction      136
      • 4.11.2.5               High-Temperature Solid Oxide Electrolyzers   137
      • 4.11.2.6               Cost      137
      • 4.11.2.7               Challenges        138
      • 4.11.2.8               Coupling H₂ and Electrochemical CO₂ 139
      • 4.11.2.9               Products             140
    • 4.11.3   Seawater electrolysis  141
      • 4.11.3.1               Direct Seawater vs Brine (Chlor-Alkali) Electrolysis      141
      • 4.11.3.2               Key Challenges & Limitations  141
    • 4.11.4   Protonic Ceramic Electrolyzers (PCE) 143
    • 4.11.5   Microbial Electrolysis Cells (MEC)         144
    • 4.11.6   Photoelectrochemical Cells (PEC)        145
    • 4.11.7   Companies       146
  • 4.12       Costs    147
  • 4.13       Water and land use for green hydrogen production       150
  • 4.14       Electrolyzer manufacturing capacities 152

 

5             HYDROGEN STORAGE AND TRANSPORT          155

  • 5.1         Market overview             155
  • 5.2         Hydrogen transport methods   156
    • 5.2.1     Pipeline transportation               157
    • 5.2.2     Road or rail transport   157
    • 5.2.3     Maritime transportation             157
    • 5.2.4     On-board-vehicle transport      157
  • 5.3         Hydrogen compression, liquefaction, storage 158
    • 5.3.1     Solid storage    158
    • 5.3.2     Liquid storage on support          158
    • 5.3.3     Underground storage   159
    • 5.3.4     Subsea Hydrogen Storage         159
  • 5.4         Market players 160

 

6             HYDROGEN UTILIZATION          162

  • 6.1         Hydrogen Fuel Cells     162
  • 6.2         Market overview             162
    • 6.2.1     PEM fuel cells (PEMFCs)             163
    • 6.2.2     Solid oxide fuel cells (SOFCs)  163
    • 6.2.3     Alternative fuel cells    163
  • 6.3         Alternative fuel production       164
    • 6.3.1     Solid Biofuels   165
    • 6.3.2     Liquid Biofuels 165
    • 6.3.3     Gaseous Biofuels           166
    • 6.3.4     Conventional Biofuels 166
    • 6.3.5     Advanced Biofuels        166
    • 6.3.6     Feedstocks       167
    • 6.3.7     Production of biodiesel and other biofuels        169
    • 6.3.8     Renewable diesel          170
    • 6.3.9     Biojet and sustainable aviation fuel (SAF)          171
    • 6.3.10   Electrofuels (E-fuels, power-to-gas/liquids/fuels)         174
      • 6.3.10.1               Hydrogen electrolysis  178
      • 6.3.10.2               eFuel production facilities, current and planned            181
  • 6.4         Hydrogen Vehicles        184
    • 6.4.1     Market overview             184
  • 6.5         Aviation              186
    • 6.5.1     Market overview             186
  • 6.6         Ammonia production   186
    • 6.6.1     Market overview             186
    • 6.6.2     Decarbonisation of ammonia production          188
    • 6.6.3     Green ammonia synthesis methods     190
      • 6.6.3.1 Haber-Bosch process  190
      • 6.6.3.2 Biological nitrogen fixation       191
      • 6.6.3.3 Electrochemical production    191
      • 6.6.3.4 Chemical looping processes    191
    • 6.6.4     Blue ammonia 192
      • 6.6.4.1 Blue ammonia projects              192
    • 6.6.5     Chemical energy storage           192
      • 6.6.5.1 Ammonia fuel cells       192
      • 6.6.5.2 Marine fuel        193
  • 6.7         Methanol production    197
    • 6.7.1     Market overview             197
    • 6.7.2     Methanol-to gasoline technology           197
      • 6.7.2.1 Production processes  198
        • 6.7.2.1.1             Anaerobic digestion      199
        • 6.7.2.1.2             Biomass gasification   200
        • 6.7.2.1.3             Power to Methane         200
  • 6.8         Steelmaking     201
    • 6.8.1     Market overview             201
    • 6.8.2     Comparative analysis  204
    • 6.8.3     Hydrogen Direct Reduced Iron (DRI)     205
  • 6.9         Power & heat generation            207
    • 6.9.1     Market overview             207
      • 6.9.1.1 Power generation           207
      • 6.9.1.2 Heat Generation            207
  • 6.10       Maritime            208
    • 6.10.1   Market overview             208
  • 6.11       Fuel cell trains 209
    • 6.11.1   Market overview             209

 

7             COMPANY PROFILES  210

  • 7.1         Adani Green Energy       210
  • 7.2         Advanced Ionics             210
  • 7.3         Aemetis, Inc.    211
  • 7.4         Air Products      213
  • 7.5         Aker Horizons ASA         213
  • 7.6         Alchemr, Inc.    214
  • 7.7         Arcadia eFuels 215
  • 7.8         AREVA H2Gen 216
  • 7.9         Asahi Kasei       217
  • 7.10       Atmonia              217
  • 7.11       Avantium           218
  • 7.12       BASF    218
  • 7.13       Battolyser Systems       219
  • 7.14       Blastr Green Steel         220
  • 7.15       Bloom Energy   220
  • 7.16       Boson Energy Ltd.          221
  • 7.17       BP          222
  • 7.18       Carbon Sink LLC             222
  • 7.19       Cavendish Renewable Technology        223
  • 7.20       Ceres Power Holdings plc          224
  • 7.21       Chevron Corporation   225
  • 7.22       CHARBONE Hydrogen 226
  • 7.23       Chiyoda Corporation    227
  • 7.24       Cockerill Jingli Hydrogen            228
  • 7.25       Convion Ltd.     229
  • 7.26       Cummins, Inc. 229
  • 7.27       C-Zero 230
  • 7.28       Cipher Neutron               231
  • 7.29       Dimensional Energy      231
  • 7.30       Domsjö Fabriker AB      232
  • 7.31       Dynelectro ApS               233
  • 7.32       Elcogen AS        234
  • 7.33       Electric Hydrogen          235
  • 7.34       Elogen H2          235
  • 7.35       Enapter               236
  • 7.36       ENEOS Corporation      238
  • 7.37       Equatic                240
  • 7.38       Ergosup               241
  • 7.39       Everfuel A/S      241
  • 7.40       EvolOH, Inc.      242
  • 7.41       Evonik Industries AG    243
  • 7.42       Flexens Oy AB  243
  • 7.43       FuelCell Energy               244
  • 7.44       FuelPositive Corp.         245
  • 7.45       Fusion Fuel       247
  • 7.46       Genvia 247
  • 7.47       Graforce             248
  • 7.48       GeoPura             249
  • 7.49       Greenlyte Carbon Technologies             250
  • 7.50       Green Fuel         251
  • 7.51       Green Hydrogen Systems          251
  • 7.52       Heliogen             252
  • 7.53       Hitachi Zosen  254
  • 7.54       Hoeller Electrolyzer GmbH       254
  • 7.55       Honda  255
  • 7.56       H2B2 Electrolysis Technologies Inc      255
  • 7.57       H2Electro          256
  • 7.58       H2Greem           256
  • 7.59       H2 Green Steel 257
  • 7.60       H2Pro, Ltd.        258
  • 7.61       H2U Technologies         260
  • 7.62       H2Vector Energy Technologies, S.L.     260
  • 7.63       Hycamite TCD Technologies Oy             261
  • 7.64       HydroLite           262
  • 7.65       HydrogenPro    262
  • 7.66       Hygenco             263
  • 7.67       HydGene Renewables 264
  • 7.68       Hydrogenera    264
  • 7.69       Hysata 265
  • 7.70       Hystar AS           265
  • 7.71       IdunnH2              266
  • 7.72       Infinium Electrofuels   267
  • 7.73       Ionomr Innovations       268
  • 7.74       ITM Power          268
  • 7.75       Kobelco              270
  • 7.76       Kyros Hydrogen Solutions GmbH           270
  • 7.77       Lhyfe S.A.           271
  • 7.78       LONGi Hydrogen            272
  • 7.79       McPhy Energy SAS         273
  • 7.80       Matteco              274
  • 7.81       NEL Hydrogen  275
  • 7.82       NEOM Green Hydrogen Company         276
  • 7.83       Newtrace           277
  • 7.84       Next Hydrogen Solutions           277
  • 7.85       Norsk e-Fuel AS              278
  • 7.86       OCOchem         279
  • 7.87       Ohmium International 280
  • 7.88       1s1 Energy         280
  • 7.89       Ossus Biorenewables  281
  • 7.90       OXCCU Tech Ltd.           282
  • 7.91       OxEon Energy, LLC        283
  • 7.92       Parallel Carbon               284
  • 7.93       Peregrine Hydrogen      284
  • 7.94       PERIC Hydrogen Technologies Co.        285
  • 7.95       Perpetual Next Technologies   286
  • 7.96       Pherousa Green Shipping          287
  • 7.97       Plagazi AB          287
  • 7.98       Plenesys             288
  • 7.99       Plug Power, Inc.              289
  • 7.100    P2X Solutions Oy            290
  • 7.101    QD-SOL Ltd.     291
  • 7.102    Quantron AG    291
  • 7.103    Qairos Energies               292
  • 7.104    Resilient Energi               293
  • 7.105    Ryze Hydrogen 293
  • 7.106    SeeO2 Energy  294
  • 7.107    Shell plc              294
  • 7.108    sHYp     296
  • 7.109    Siemens Energy AG       297
  • 7.110    SoHHytec SA   297
  • 7.111    Sparc Hydrogen              298
  • 7.112    Stargate Hydrogen Solutions OÜ            298
  • 7.113    Storegga Geotechnologies Limited       299
  • 7.114    SunFire               300
  • 7.115    SungreenH2     301
  • 7.116    SunHydrogen   301
  • 7.117    Syzygy Plasmonics       302
  • 7.118    Thiozen               303
  • 7.119    Thyssenkrupp Nucera  304
  • 7.120    TFP Hydrogen Products               304
  • 7.121    Tokuyama          305
  • 7.122    Total Energies  306
  • 7.123    Tractebel Engie               306
  • 7.124    Travertine Technologies, Inc.   307
  • 7.125    Tree Energy Solutions (TES-H2)               308
  • 7.126    Twelve Corporation       308
  • 7.127    Verdagy               311
  • 7.128    Versogen LLC   311
  • 7.129    Zhero    312
  •  

8             REFERENCES   313

 

List of Tables

  • Table 1. Hydrogen colour shades, Technology, cost, and CO2 emissions.        20
  • Table 2. Main applications of hydrogen.              21
  • Table 3. Overview of hydrogen production methods.    22
  • Table 4. National hydrogen initiatives. 28
  • Table 5. Market challenges in the hydrogen economy and production technologies.   31
  • Table 6. Green hydrogen industry developments 2020-2024.  32
  • Table 7. Market map for hydrogen technology and production.               47
  • Table 8. Industrial applications of hydrogen.    50
  • Table 9. Hydrogen energy markets and applications.   51
  • Table 10. Hydrogen production processes and stage of development.               53
  • Table 11. Estimated costs of clean hydrogen production.          65
  • Table 12. US Hydrogen Electrolyzer Capacities, current and planned, as of May 2023, by region.         71
  • Table 13. Green hydrogen application markets.             73
  • Table 14. Green hydrogen projects.      74
  • Table 15. Traditional Hydrogen Production.      75
  • Table 16. Hydrogen Production Processes.      76
  • Table 17. Comparison of hydrogen types.          76
  • Table 18.  Characteristics of typical water electrolysis technologies  88
  • Table 19. Advantages and disadvantages of water electrolysis technologies. 89
  • Table 20. Classifications of Alkaline Electrolyzers.       97
  • Table 21. Advantages & limitations of AWE.      97
  • Table 22. Key performance characteristics of AWE.     98
  • Table 23. Companies in the AWE market.          101
  • Table 24. Comparison of Commercial AEM Materials. 108
  • Table 25. Companies in the AMEL market.        110
  • Table 26. Companies in the PEMEL market.     120
  • Table 27. Companies in the SOEC market.        130
  • Table 28. Other types of electrolyzer technologies       131
  • Table 29. Electrochemical CO₂ Reduction Technologies/          135
  • Table 30. Cost Comparison of CO₂ Electrochemical Technologies.     137
  • Table 31. Companies developing other electrolyzer technologies.       146
  • Table 32. Electrolyzer Installations Forecast (GW), 2020-2040.              152
  • Table 33. Global market size for Electrolyzers, 2018-2035 (US$B).       153
  • Table 34. Market overview-hydrogen storage and transport.    155
  • Table 35. Summary of different methods of hydrogen transport.            156
  • Table 36. Market players in hydrogen storage and transport.   160
  • Table 37. Market overview hydrogen fuel cells-applications, market players and market challenges. 162
  • Table 38. Categories and examples of solid biofuel.     165
  • Table 39. Comparison of biofuels and e-fuels to fossil and electricity.               166
  • Table 40. Classification of biomass feedstock.               167
  • Table 41. Biorefinery feedstocks.           168
  • Table 42. Feedstock conversion pathways.      169
  • Table 43. Biodiesel production techniques.      169
  • Table 44. Advantages and disadvantages of biojet fuel               171
  • Table 45. Production pathways for bio-jet fuel.               172
  • Table 46. Applications of e-fuels, by type.          176
  • Table 47. Overview of e-fuels.  177
  • Table 48. Benefits of e-fuels.    177
  • Table 49. eFuel production facilities, current and planned.      181
  • Table 50. Market overview for hydrogen vehicles-applications, market players and market challenges.           185
  • Table 51. Blue ammonia projects.         192
  • Table 52. Ammonia fuel cell technologies.        193
  • Table 53. Market overview of green ammonia in marine fuel.   194
  • Table 54. Summary of marine alternative fuels.             194
  • Table 55. Estimated costs for different types of ammonia.       195
  • Table 56. Comparison of biogas, biomethane and natural gas.               199
  • Table 57. Hydrogen-based steelmaking technologies. 204
  • Table 58. Comparison of green steel production technologies.              204
  • Table 59. Advantages and disadvantages of each potential hydrogen carrier. 206

 

List of Figures

  • Figure 1. Hydrogen value chain.              27
  • Figure 2. Current Annual H2 Production.            53
  • Figure 3. Principle of a PEM electrolyser.           57
  • Figure 4. Power-to-gas concept.             59
  • Figure 5. Schematic of a fuel cell stack.              60
  • Figure 6. High pressure electrolyser - 1 MW.     61
  • Figure 7. Global hydrogen demand forecast.   66
  • Figure 8. U.S. Hydrogen Production by Producer Type.                67
  • Figure 9. Segmentation of regional hydrogen production capacities in the US.               69
  • Figure 10. Current of planned installations of Electrolyzers over 1MW in the US.           71
  • Figure 11. SWOT analysis: green hydrogen.       82
  • Figure 12. Types of electrolysis technologies. 83
  • Figure 13. Typical Balance of Plant including Gas processing. 86
  • Figure 14. Schematic of alkaline water electrolysis working principle. 98
  • Figure 15. Alkaline water electrolyzer. 99
  • Figure 16. Typical system design and balance of plant for an AEM electrolyser.            105
  • Figure 17. Schematic of PEM water electrolysis working principle.      113
  • Figure 18. Typical system design and balance of plant for a PEM electrolyser.               115
  • Figure 19. Schematic of solid oxide water electrolysis working principle.         123
  • Figure 20. Typical system design and balance of plant for a solid oxide electrolyser.  125
  • Figure 21. Estimated annual electrolyser manufacturing capacity, by manufacture's headquarters (a) and by type and origin (b), 2021-2024. 152
  • Figure 22. Electrolyzer Installations Forecast (GW), 2020-2040.            153
  • Figure 23. Global market size for Electrolyzers, 2018-2035 (US$B)       154
  • Figure 24. Process steps in the production of electrofuels.      175
  • Figure 25. Mapping storage technologies according to performance characteristics. 176
  • Figure 26. Production process for green hydrogen.       178
  • Figure 27. E-liquids production routes.               179
  • Figure 28. Fischer-Tropsch liquid e-fuel products.        180
  • Figure 29. Resources required for liquid e-fuel production.      180
  • Figure 30. Levelized cost and fuel-switching CO2 prices of e-fuels.     182
  • Figure 31. Cost breakdown for e-fuels.                184
  • Figure 32. Hydrogen fuel cell powered EV.         185
  • Figure 33. Green ammonia production and use.             188
  • Figure 34. Classification and process technology according to carbon emission in ammonia production.      189
  • Figure 35. Schematic of the Haber Bosch ammonia synthesis reaction.            190
  • Figure 36. Schematic of hydrogen production via steam methane reformation.            191
  • Figure 37. Estimated production cost of green ammonia.         196
  • Figure 38. Renewable Methanol Production Processes from Different Feedstocks.    198
  • Figure 39. Production of biomethane through anaerobic digestion and upgrading.       199
  • Figure 40. Production of biomethane through biomass gasification and methanation.              200
  • Figure 41. Production of biomethane through the Power to methane process.               201
  • Figure 42. Transition to hydrogen-based production.   202
  • Figure 43. CO2 emissions from steelmaking (tCO2/ton crude steel).   203
  • Figure 44. Hydrogen Direct Reduced Iron (DRI) process.            206
  • Figure 45. Three Gorges Hydrogen Boat No. 1. 208
  • Figure 46. PESA hydrogen-powered shunting locomotive.        209
  • Figure 47. Symbiotic™ technology process.      211
  • Figure 48. Alchemr AEM electrolyzer cell.         215
  • Figure 49. Domsjö process.      233
  • Figure 51. EL 2.1 AEM Electrolyser.       237
  • Figure 52. Enapter – Anion Exchange Membrane (AEM) Water Electrolysis.      238
  • Figure 50. Direct MCH® process.            239
  • Figure 54. FuelPositive system.              246
  • Figure 55. Using electricity from solar power to produce green hydrogen.         249
  • Figure 56. Left: a typical single-stage electrolyzer design, with a membrane separating the hydrogen and oxygen gasses. Right: the two-stage E-TAC process.    259
  • Figure 57. Hystar PEM electrolyser.      266
  • Figure 58. OCOchem’s Carbon Flux Electrolyzer.          279
  • Figure 59.  CO2 hydrogenation to jet fuel range hydrocarbons process.             282
  • Figure 60. The Plagazi ® process.            288
  • Figure 61. Sunfire process for Blue Crude production. 300
  • Figure 62. O12 Reactor.              309
  • Figure 63. Sunglasses with lenses made from CO2-derived materials.              309
  • Figure 64. CO2 made car part. 310

 

 

 

 

The Global Market for Green Hydrogen 2024-2035
The Global Market for Green Hydrogen 2024-2035
PDF download.

The Global Market for Green Hydrogen 2024-2035
The Global Market for Green Hydrogen 2024-2035
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.