Electrolyzer Technologies, Production, Storage, Transport and Utilization
- Published: March 2024
- Pages: 323
- Tables: 59
- Figures: 64
- Series: Bio-Economy, Energy
Green hydrogen refers to hydrogen produced through renewable energy powered electrolysis of water, rather than carbon-intensive methods like steam methane reforming. It has no associated carbon emissions. Electrolyzer technologies are crucial for scaling up production of green hydrogen. Electrolyzers use electricity to split water into hydrogen and oxygen gas streams. These electrochemical systems along with renewable energy sources like solar, wind or hydro power enable renewable hydrogen production. Cost declines through technology innovations, manufacturing scale-up and more renewable electricity integration are vital to displace existing fossil-based hydrogen supplying refining, fertilizer and chemical industries today. As green hydrogen scales, it can provide a sustainable energy storage vector and decarbonize sectors like steel, ammonia and transportation (through synthetic fuels) that lack easy electrification routes, playing a major role in achieving global net zero targets.
The Global Market for Green Hydrogen 2024-2035 provides a comprehensive overview of the emerging hydrogen economy and the pivotal role of green hydrogen production in enabling wider adoption across industrial applications. Spanning over 300 pages, the report analyzes global energy demand scenarios and the potential for hydrogen to deliver deep decarbonization across sectors from transportation to steel manufacturing.
Detailed technology analysis focuses on next generation electrolysis techniques for scalable green hydrogen generation from water and renewable electricity. Comparative assessment of alkaline, polymer electrolyte membrane, anion exchange membrane and solid oxide electrolysis systems explores component materials, system configurations, costs, manufacturing challenges and key innovative companies developing these technologies.
Additional sections profile developments around hydrogen storage and distribution infrastructure including pipelines, compression and liquefaction. The utilization segment covers fuel cell electric vehicles, synthetic fuel production, ammonia synthesis and other hydrogen end-uses across aviation, shipping and heat/power sectors.
The report covers 130 company profiles of major corporations, innovative start-ups and disruptive new entrants commercializing breakthroughs across the hydrogen value chain. Competencies span from advanced electrolyzer stacks to full solutions for onsite hydrogen generation, transportation fleets, renewable energy integration and industrial decarbonization projects. Report contents include:
- Overview of the hydrogen economy and production landscape
- Analysis of global energy demand scenarios and hydrogen's decarbonization potential
- Breakdown of the hydrogen value chain - production, storage/transport, utilization
- Details on green hydrogen production methods, projects, and role in energy transition
- In-depth technology analysis of next-gen electrolyzers:
- Alkaline (AWE)
- Polymer Electrolyte Membrane (PEMEL)
- Anion Exchange Membrane (AEMEL)
- Solid Oxide (SOEC)
- Review of hydrogen storage and transportation infrastructure
- Coverage of utilization applications:
- Fuel cell electric vehicles
- Synthetic e-fuel production
- Green ammonia production
- Renewable power and heat generation
- Profiles of 130 key companies across the hydrogen value chain:
- Industrial gas suppliers
- Emerging electrolyzer manufacturers
- Energy majors
- Chemical/ammonia companies
- Innovative start-ups
- Hydrogen production analysis for global regions
- Assessment of market challenges and growth drivers
1 RESEARCH METHODOLOGY 17
2 INTRODUCTION 19
- 2.1 Hydrogen classification 19
- 2.1.1 Hydrogen colour shades 20
- 2.2 Global energy demand and consumption 21
- 2.3 The hydrogen economy and production 21
- 2.4 Removing CO₂ emissions from hydrogen production 23
- 2.5 Hydrogen value chain 24
- 2.5.1 Production 25
- 2.5.2 Transport and storage 25
- 2.5.3 Utilization 26
- 2.6 National hydrogen initiatives, policy and regulation 28
- 2.7 Hydrogen certification 29
- 2.8 Carbon pricing 30
- 2.9 Market challenges 31
- 2.10 Industry developments 2020-2024 32
- 2.11 Market map 47
- 2.12 Global hydrogen production 49
- 2.12.1 Industrial applications 50
- 2.12.2 Hydrogen energy 51
- 2.12.2.1 Stationary use 51
- 2.12.2.2 Hydrogen for mobility 51
- 2.12.3 Current Annual H2 Production 52
- 2.12.4 Hydrogen production processes 53
- 2.12.4.1 Hydrogen as by-product 54
- 2.12.4.2 Reforming 54
- 2.12.4.2.1 SMR wet method 54
- 2.12.4.2.2 Oxidation of petroleum fractions 55
- 2.12.4.2.3 Coal gasification 55
- 2.12.4.3 Reforming or coal gasification with CO2 capture and storage 55
- 2.12.4.4 Steam reforming of biomethane 55
- 2.12.4.5 Water electrolysis 56
- 2.12.4.6 The "Power-to-Gas" concept 58
- 2.12.4.7 Fuel cell stack 59
- 2.12.4.8 Electrolysers 60
- 2.12.4.9 Other 61
- 2.12.4.9.1 Plasma technologies 61
- 2.12.4.9.2 Photosynthesis 62
- 2.12.4.9.3 Bacterial or biological processes 63
- 2.12.4.9.4 Oxidation (biomimicry) 64
- 2.12.5 Production costs 64
- 2.12.6 Global hydrogen demand forecasts 66
- 2.12.7 Hydrogen Production in the United States 67
- 2.12.7.1 Gulf Coast 67
- 2.12.7.2 California 68
- 2.12.7.3 Midwest 68
- 2.12.7.4 Northeast 68
- 2.12.7.5 Northwest 68
- 2.12.8 DOE Hydrogen Hubs 69
- 2.12.9 US Hydrogen Electrolyzer Capacities, Planned and Installed 70
3 GREEN HYDROGEN PRODUCTION 73
- 3.1 Overview 73
- 3.2 Green hydrogen projects 74
- 3.3 Motivation for use 74
- 3.4 Decarbonization 75
- 3.5 Comparative analysis 76
- 3.6 Role in energy transition 77
- 3.7 Renewable energy sources 78
- 3.7.1 Wind power 78
- 3.7.2 Solar Power 79
- 3.7.3 Nuclear 79
- 3.7.4 Capacities 79
- 3.7.5 Costs 80
- 3.8 SWOT analysis 81
4 ELECTROLYZER TECHNOLOGIES 83
- 4.1 Introduction 83
- 4.2 Main types 84
- 4.3 Balance of Plant 84
- 4.4 Characteristics 87
- 4.5 Advantages and disadvantages 89
- 4.6 Electrolyzer market 90
- 4.6.1 Market trends 90
- 4.6.2 Market landscape 91
- 4.6.3 Innovations 92
- 4.6.4 Cost challenges 93
- 4.6.5 Scale-up 94
- 4.6.6 Manufacturing challenges 95
- 4.6.7 Market opportunity and outlook 95
- 4.7 Alkaline water electrolyzers (AWE) 97
- 4.7.1 Technology description 97
- 4.7.2 AWE plant 99
- 4.7.3 Components and materials 99
- 4.7.4 Costs 100
- 4.7.5 Companies 101
- 4.8 Anion exchange membrane electrolyzers (AEMEL) 103
- 4.8.1 Technology description 103
- 4.8.2 AEMEL plant 104
- 4.8.3 Components and materials 105
- 4.8.3.1 Catalysts 106
- 4.8.3.2 Anion exchange membranes (AEMs) 107
- 4.8.3.3 Materials 107
- 4.8.4 Costs 109
- 4.8.5 Companies 110
- 4.9 Proton exchange membrane electrolyzers (PEMEL) 112
- 4.9.1 Technology description 112
- 4.9.2 PEMEL plant 114
- 4.9.3 Components and materials 115
- 4.9.3.1 Membranes 116
- 4.9.3.2 Advanced PEMEL stack designs 117
- 4.9.3.3 Plug-and-Play & Customizable PEMEL Systems 118
- 4.9.3.4 PEMELs and proton exchange membrane fuel cells (PEMFCs) 118
- 4.9.4 Costs 119
- 4.9.5 Companies 120
- 4.10 Solid oxide water electrolyzers (SOEC) 122
- 4.10.1 Technology description 122
- 4.10.2 SOEC plant 124
- 4.10.3 Components and materials 125
- 4.10.3.1 External process heat 125
- 4.10.3.2 Clean Syngas Production 126
- 4.10.3.3 Nuclear power 126
- 4.10.3.4 SOEC and SOFC cells 127
- 4.10.3.4.1 Tubular cells 127
- 4.10.3.4.2 Planar cells 127
- 4.10.3.5 SOEC Electrolyte 128
- 4.10.4 Costs 129
- 4.10.5 Companies 130
- 4.11 Other types 131
- 4.11.1 Overview 131
- 4.11.2 CO₂ electrolysis 132
- 4.11.2.1 Electrochemical CO₂ Reduction 133
- 4.11.2.2 Electrochemical CO₂ Reduction Catalysts 134
- 4.11.2.3 Electrochemical CO₂ Reduction Technologies 135
- 4.11.2.4 Low-Temperature Electrochemical CO₂ Reduction 136
- 4.11.2.5 High-Temperature Solid Oxide Electrolyzers 137
- 4.11.2.6 Cost 137
- 4.11.2.7 Challenges 138
- 4.11.2.8 Coupling H₂ and Electrochemical CO₂ 139
- 4.11.2.9 Products 140
- 4.11.3 Seawater electrolysis 141
- 4.11.3.1 Direct Seawater vs Brine (Chlor-Alkali) Electrolysis 141
- 4.11.3.2 Key Challenges & Limitations 141
- 4.11.4 Protonic Ceramic Electrolyzers (PCE) 143
- 4.11.5 Microbial Electrolysis Cells (MEC) 144
- 4.11.6 Photoelectrochemical Cells (PEC) 145
- 4.11.7 Companies 146
- 4.12 Costs 147
- 4.13 Water and land use for green hydrogen production 150
- 4.14 Electrolyzer manufacturing capacities 152
5 HYDROGEN STORAGE AND TRANSPORT 155
- 5.1 Market overview 155
- 5.2 Hydrogen transport methods 156
- 5.2.1 Pipeline transportation 157
- 5.2.2 Road or rail transport 157
- 5.2.3 Maritime transportation 157
- 5.2.4 On-board-vehicle transport 157
- 5.3 Hydrogen compression, liquefaction, storage 158
- 5.3.1 Solid storage 158
- 5.3.2 Liquid storage on support 158
- 5.3.3 Underground storage 159
- 5.3.4 Subsea Hydrogen Storage 159
- 5.4 Market players 160
6 HYDROGEN UTILIZATION 162
- 6.1 Hydrogen Fuel Cells 162
- 6.2 Market overview 162
- 6.2.1 PEM fuel cells (PEMFCs) 163
- 6.2.2 Solid oxide fuel cells (SOFCs) 163
- 6.2.3 Alternative fuel cells 163
- 6.3 Alternative fuel production 164
- 6.3.1 Solid Biofuels 165
- 6.3.2 Liquid Biofuels 165
- 6.3.3 Gaseous Biofuels 166
- 6.3.4 Conventional Biofuels 166
- 6.3.5 Advanced Biofuels 166
- 6.3.6 Feedstocks 167
- 6.3.7 Production of biodiesel and other biofuels 169
- 6.3.8 Renewable diesel 170
- 6.3.9 Biojet and sustainable aviation fuel (SAF) 171
- 6.3.10 Electrofuels (E-fuels, power-to-gas/liquids/fuels) 174
- 6.3.10.1 Hydrogen electrolysis 178
- 6.3.10.2 eFuel production facilities, current and planned 181
- 6.4 Hydrogen Vehicles 184
- 6.4.1 Market overview 184
- 6.5 Aviation 186
- 6.5.1 Market overview 186
- 6.6 Ammonia production 186
- 6.6.1 Market overview 186
- 6.6.2 Decarbonisation of ammonia production 188
- 6.6.3 Green ammonia synthesis methods 190
- 6.6.3.1 Haber-Bosch process 190
- 6.6.3.2 Biological nitrogen fixation 191
- 6.6.3.3 Electrochemical production 191
- 6.6.3.4 Chemical looping processes 191
- 6.6.4 Blue ammonia 192
- 6.6.4.1 Blue ammonia projects 192
- 6.6.5 Chemical energy storage 192
- 6.6.5.1 Ammonia fuel cells 192
- 6.6.5.2 Marine fuel 193
- 6.7 Methanol production 197
- 6.7.1 Market overview 197
- 6.7.2 Methanol-to gasoline technology 197
- 6.7.2.1 Production processes 198
- 6.7.2.1.1 Anaerobic digestion 199
- 6.7.2.1.2 Biomass gasification 200
- 6.7.2.1.3 Power to Methane 200
- 6.7.2.1 Production processes 198
- 6.8 Steelmaking 201
- 6.8.1 Market overview 201
- 6.8.2 Comparative analysis 204
- 6.8.3 Hydrogen Direct Reduced Iron (DRI) 205
- 6.9 Power & heat generation 207
- 6.9.1 Market overview 207
- 6.9.1.1 Power generation 207
- 6.9.1.2 Heat Generation 207
- 6.9.1 Market overview 207
- 6.10 Maritime 208
- 6.10.1 Market overview 208
- 6.11 Fuel cell trains 209
- 6.11.1 Market overview 209
7 COMPANY PROFILES 210
- 7.1 Adani Green Energy 210
- 7.2 Advanced Ionics 210
- 7.3 Aemetis, Inc. 211
- 7.4 Air Products 213
- 7.5 Aker Horizons ASA 213
- 7.6 Alchemr, Inc. 214
- 7.7 Arcadia eFuels 215
- 7.8 AREVA H2Gen 216
- 7.9 Asahi Kasei 217
- 7.10 Atmonia 217
- 7.11 Avantium 218
- 7.12 BASF 218
- 7.13 Battolyser Systems 219
- 7.14 Blastr Green Steel 220
- 7.15 Bloom Energy 220
- 7.16 Boson Energy Ltd. 221
- 7.17 BP 222
- 7.18 Carbon Sink LLC 222
- 7.19 Cavendish Renewable Technology 223
- 7.20 Ceres Power Holdings plc 224
- 7.21 Chevron Corporation 225
- 7.22 CHARBONE Hydrogen 226
- 7.23 Chiyoda Corporation 227
- 7.24 Cockerill Jingli Hydrogen 228
- 7.25 Convion Ltd. 229
- 7.26 Cummins, Inc. 229
- 7.27 C-Zero 230
- 7.28 Cipher Neutron 231
- 7.29 Dimensional Energy 231
- 7.30 Domsjö Fabriker AB 232
- 7.31 Dynelectro ApS 233
- 7.32 Elcogen AS 234
- 7.33 Electric Hydrogen 235
- 7.34 Elogen H2 235
- 7.35 Enapter 236
- 7.36 ENEOS Corporation 238
- 7.37 Equatic 240
- 7.38 Ergosup 241
- 7.39 Everfuel A/S 241
- 7.40 EvolOH, Inc. 242
- 7.41 Evonik Industries AG 243
- 7.42 Flexens Oy AB 243
- 7.43 FuelCell Energy 244
- 7.44 FuelPositive Corp. 245
- 7.45 Fusion Fuel 247
- 7.46 Genvia 247
- 7.47 Graforce 248
- 7.48 GeoPura 249
- 7.49 Greenlyte Carbon Technologies 250
- 7.50 Green Fuel 251
- 7.51 Green Hydrogen Systems 251
- 7.52 Heliogen 252
- 7.53 Hitachi Zosen 254
- 7.54 Hoeller Electrolyzer GmbH 254
- 7.55 Honda 255
- 7.56 H2B2 Electrolysis Technologies Inc 255
- 7.57 H2Electro 256
- 7.58 H2Greem 256
- 7.59 H2 Green Steel 257
- 7.60 H2Pro, Ltd. 258
- 7.61 H2U Technologies 260
- 7.62 H2Vector Energy Technologies, S.L. 260
- 7.63 Hycamite TCD Technologies Oy 261
- 7.64 HydroLite 262
- 7.65 HydrogenPro 262
- 7.66 Hygenco 263
- 7.67 HydGene Renewables 264
- 7.68 Hydrogenera 264
- 7.69 Hysata 265
- 7.70 Hystar AS 265
- 7.71 IdunnH2 266
- 7.72 Infinium Electrofuels 267
- 7.73 Ionomr Innovations 268
- 7.74 ITM Power 268
- 7.75 Kobelco 270
- 7.76 Kyros Hydrogen Solutions GmbH 270
- 7.77 Lhyfe S.A. 271
- 7.78 LONGi Hydrogen 272
- 7.79 McPhy Energy SAS 273
- 7.80 Matteco 274
- 7.81 NEL Hydrogen 275
- 7.82 NEOM Green Hydrogen Company 276
- 7.83 Newtrace 277
- 7.84 Next Hydrogen Solutions 277
- 7.85 Norsk e-Fuel AS 278
- 7.86 OCOchem 279
- 7.87 Ohmium International 280
- 7.88 1s1 Energy 280
- 7.89 Ossus Biorenewables 281
- 7.90 OXCCU Tech Ltd. 282
- 7.91 OxEon Energy, LLC 283
- 7.92 Parallel Carbon 284
- 7.93 Peregrine Hydrogen 284
- 7.94 PERIC Hydrogen Technologies Co. 285
- 7.95 Perpetual Next Technologies 286
- 7.96 Pherousa Green Shipping 287
- 7.97 Plagazi AB 287
- 7.98 Plenesys 288
- 7.99 Plug Power, Inc. 289
- 7.100 P2X Solutions Oy 290
- 7.101 QD-SOL Ltd. 291
- 7.102 Quantron AG 291
- 7.103 Qairos Energies 292
- 7.104 Resilient Energi 293
- 7.105 Ryze Hydrogen 293
- 7.106 SeeO2 Energy 294
- 7.107 Shell plc 294
- 7.108 sHYp 296
- 7.109 Siemens Energy AG 297
- 7.110 SoHHytec SA 297
- 7.111 Sparc Hydrogen 298
- 7.112 Stargate Hydrogen Solutions OÜ 298
- 7.113 Storegga Geotechnologies Limited 299
- 7.114 SunFire 300
- 7.115 SungreenH2 301
- 7.116 SunHydrogen 301
- 7.117 Syzygy Plasmonics 302
- 7.118 Thiozen 303
- 7.119 Thyssenkrupp Nucera 304
- 7.120 TFP Hydrogen Products 304
- 7.121 Tokuyama 305
- 7.122 Total Energies 306
- 7.123 Tractebel Engie 306
- 7.124 Travertine Technologies, Inc. 307
- 7.125 Tree Energy Solutions (TES-H2) 308
- 7.126 Twelve Corporation 308
- 7.127 Verdagy 311
- 7.128 Versogen LLC 311
- 7.129 Zhero 312
8 REFERENCES 313
List of Tables
- Table 1. Hydrogen colour shades, Technology, cost, and CO2 emissions. 20
- Table 2. Main applications of hydrogen. 21
- Table 3. Overview of hydrogen production methods. 22
- Table 4. National hydrogen initiatives. 28
- Table 5. Market challenges in the hydrogen economy and production technologies. 31
- Table 6. Green hydrogen industry developments 2020-2024. 32
- Table 7. Market map for hydrogen technology and production. 47
- Table 8. Industrial applications of hydrogen. 50
- Table 9. Hydrogen energy markets and applications. 51
- Table 10. Hydrogen production processes and stage of development. 53
- Table 11. Estimated costs of clean hydrogen production. 65
- Table 12. US Hydrogen Electrolyzer Capacities, current and planned, as of May 2023, by region. 71
- Table 13. Green hydrogen application markets. 73
- Table 14. Green hydrogen projects. 74
- Table 15. Traditional Hydrogen Production. 75
- Table 16. Hydrogen Production Processes. 76
- Table 17. Comparison of hydrogen types. 76
- Table 18. Characteristics of typical water electrolysis technologies 88
- Table 19. Advantages and disadvantages of water electrolysis technologies. 89
- Table 20. Classifications of Alkaline Electrolyzers. 97
- Table 21. Advantages & limitations of AWE. 97
- Table 22. Key performance characteristics of AWE. 98
- Table 23. Companies in the AWE market. 101
- Table 24. Comparison of Commercial AEM Materials. 108
- Table 25. Companies in the AMEL market. 110
- Table 26. Companies in the PEMEL market. 120
- Table 27. Companies in the SOEC market. 130
- Table 28. Other types of electrolyzer technologies 131
- Table 29. Electrochemical CO₂ Reduction Technologies/ 135
- Table 30. Cost Comparison of CO₂ Electrochemical Technologies. 137
- Table 31. Companies developing other electrolyzer technologies. 146
- Table 32. Electrolyzer Installations Forecast (GW), 2020-2040. 152
- Table 33. Global market size for Electrolyzers, 2018-2035 (US$B). 153
- Table 34. Market overview-hydrogen storage and transport. 155
- Table 35. Summary of different methods of hydrogen transport. 156
- Table 36. Market players in hydrogen storage and transport. 160
- Table 37. Market overview hydrogen fuel cells-applications, market players and market challenges. 162
- Table 38. Categories and examples of solid biofuel. 165
- Table 39. Comparison of biofuels and e-fuels to fossil and electricity. 166
- Table 40. Classification of biomass feedstock. 167
- Table 41. Biorefinery feedstocks. 168
- Table 42. Feedstock conversion pathways. 169
- Table 43. Biodiesel production techniques. 169
- Table 44. Advantages and disadvantages of biojet fuel 171
- Table 45. Production pathways for bio-jet fuel. 172
- Table 46. Applications of e-fuels, by type. 176
- Table 47. Overview of e-fuels. 177
- Table 48. Benefits of e-fuels. 177
- Table 49. eFuel production facilities, current and planned. 181
- Table 50. Market overview for hydrogen vehicles-applications, market players and market challenges. 185
- Table 51. Blue ammonia projects. 192
- Table 52. Ammonia fuel cell technologies. 193
- Table 53. Market overview of green ammonia in marine fuel. 194
- Table 54. Summary of marine alternative fuels. 194
- Table 55. Estimated costs for different types of ammonia. 195
- Table 56. Comparison of biogas, biomethane and natural gas. 199
- Table 57. Hydrogen-based steelmaking technologies. 204
- Table 58. Comparison of green steel production technologies. 204
- Table 59. Advantages and disadvantages of each potential hydrogen carrier. 206
List of Figures
- Figure 1. Hydrogen value chain. 27
- Figure 2. Current Annual H2 Production. 53
- Figure 3. Principle of a PEM electrolyser. 57
- Figure 4. Power-to-gas concept. 59
- Figure 5. Schematic of a fuel cell stack. 60
- Figure 6. High pressure electrolyser - 1 MW. 61
- Figure 7. Global hydrogen demand forecast. 66
- Figure 8. U.S. Hydrogen Production by Producer Type. 67
- Figure 9. Segmentation of regional hydrogen production capacities in the US. 69
- Figure 10. Current of planned installations of Electrolyzers over 1MW in the US. 71
- Figure 11. SWOT analysis: green hydrogen. 82
- Figure 12. Types of electrolysis technologies. 83
- Figure 13. Typical Balance of Plant including Gas processing. 86
- Figure 14. Schematic of alkaline water electrolysis working principle. 98
- Figure 15. Alkaline water electrolyzer. 99
- Figure 16. Typical system design and balance of plant for an AEM electrolyser. 105
- Figure 17. Schematic of PEM water electrolysis working principle. 113
- Figure 18. Typical system design and balance of plant for a PEM electrolyser. 115
- Figure 19. Schematic of solid oxide water electrolysis working principle. 123
- Figure 20. Typical system design and balance of plant for a solid oxide electrolyser. 125
- Figure 21. Estimated annual electrolyser manufacturing capacity, by manufacture's headquarters (a) and by type and origin (b), 2021-2024. 152
- Figure 22. Electrolyzer Installations Forecast (GW), 2020-2040. 153
- Figure 23. Global market size for Electrolyzers, 2018-2035 (US$B) 154
- Figure 24. Process steps in the production of electrofuels. 175
- Figure 25. Mapping storage technologies according to performance characteristics. 176
- Figure 26. Production process for green hydrogen. 178
- Figure 27. E-liquids production routes. 179
- Figure 28. Fischer-Tropsch liquid e-fuel products. 180
- Figure 29. Resources required for liquid e-fuel production. 180
- Figure 30. Levelized cost and fuel-switching CO2 prices of e-fuels. 182
- Figure 31. Cost breakdown for e-fuels. 184
- Figure 32. Hydrogen fuel cell powered EV. 185
- Figure 33. Green ammonia production and use. 188
- Figure 34. Classification and process technology according to carbon emission in ammonia production. 189
- Figure 35. Schematic of the Haber Bosch ammonia synthesis reaction. 190
- Figure 36. Schematic of hydrogen production via steam methane reformation. 191
- Figure 37. Estimated production cost of green ammonia. 196
- Figure 38. Renewable Methanol Production Processes from Different Feedstocks. 198
- Figure 39. Production of biomethane through anaerobic digestion and upgrading. 199
- Figure 40. Production of biomethane through biomass gasification and methanation. 200
- Figure 41. Production of biomethane through the Power to methane process. 201
- Figure 42. Transition to hydrogen-based production. 202
- Figure 43. CO2 emissions from steelmaking (tCO2/ton crude steel). 203
- Figure 44. Hydrogen Direct Reduced Iron (DRI) process. 206
- Figure 45. Three Gorges Hydrogen Boat No. 1. 208
- Figure 46. PESA hydrogen-powered shunting locomotive. 209
- Figure 47. Symbiotic™ technology process. 211
- Figure 48. Alchemr AEM electrolyzer cell. 215
- Figure 49. Domsjö process. 233
- Figure 51. EL 2.1 AEM Electrolyser. 237
- Figure 52. Enapter – Anion Exchange Membrane (AEM) Water Electrolysis. 238
- Figure 50. Direct MCH® process. 239
- Figure 54. FuelPositive system. 246
- Figure 55. Using electricity from solar power to produce green hydrogen. 249
- Figure 56. Left: a typical single-stage electrolyzer design, with a membrane separating the hydrogen and oxygen gasses. Right: the two-stage E-TAC process. 259
- Figure 57. Hystar PEM electrolyser. 266
- Figure 58. OCOchem’s Carbon Flux Electrolyzer. 279
- Figure 59. CO2 hydrogenation to jet fuel range hydrocarbons process. 282
- Figure 60. The Plagazi ® process. 288
- Figure 61. Sunfire process for Blue Crude production. 300
- Figure 62. O12 Reactor. 309
- Figure 63. Sunglasses with lenses made from CO2-derived materials. 309
- Figure 64. CO2 made car part. 310
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer.
To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.