The Global Market for Green Hydrogen, Ammonia and Steel 2024-2034

0

Published August 2023 | 638 pages, 160 figures, 131 tables | Download table of contents

Green hydrogen, green ammonia, and green steel markets are interconnected in the broader energy transition, supporting each other's growth in helping decarbonize heavy industry. Green hydrogen and ammonia are essential to scale up in order to transition away from fossil fuels. Green ammonia acts as a key bridge between green hydrogen production and major end uses like green steel manufacturing. Green hydrogen, green ammonia, and green steel all rely on renewable energy sources like wind, solar, hydropower or biomass to produce hydrogen via electrolysis of water. Green ammonia is produced by using green hydrogen and nitrogen from air to make ammonia and is an efficient means to store and transport green hydrogen. Green steel production utilizes green hydrogen instead of coking coal to reduce iron ore into steel. This eliminates most emissions from traditional steelmaking.

Green ammonia is a vital link that connects the supply of green hydrogen with major industrial applications like green steel production as well as providing an exportable source of renewable hydrogen. The Global Market for Green Hydrogen, Ammonia and Steel 2024-2034 provides an in-depth analysis of these key energy transition markets. 

Report contents include: 

Green hydrogen

  • Analysis of current hydrogen production (grey, brown etc.) and demand forecasts to 2033. 
  • Market value chain and industry map. 
  • Market drivers, trends and challenges. 
  • Hydrogen production processes and costs. 
  • Recent industry developments and investments and start-up funding. 
  • Market analysis of hydrogen technology and production including blue hydrogen (from decarbonised natural gas), green hydrogen (from renewable power and electrolysis), carbon capture, hydrogen storage & transport, hydrogen fuel cells, hydrogen vehicles, alternative fuels, ammonia production, methanol production, steelmaking, power & heat generation, marine, and fuel cell trains.
  • Profiles of 244 companies including large corporations and start-ups. Companies profiled include Advanced Ionics, Aker Horizons, C-Zero, Dynelectro, Ekona Power, Electric Hydrogen, Enapter, EvoIOH, FuelCell Energy, Heliogen, HiiROC, Hystar, HydrogenPro, Innova Hydrogen, Ionomr Innovations, ITM Power, Jolt Electrodes, McPhy Energy SAS, Monolith Materials, NEL Hydrogen, Ohmium, Plug Power,  PowerCell Sweden, Sunfire, Syzgy Plasmonics, Thiozen, Thyssenkrupp Nucera and Verdagy. 

 

Green ammonia

  • Analysis of green ammonia production pathways and technologies.
  • Review of supportive regulations and policy mechanisms promoting renewable ammonia.
  • Evaluation of current and projected green ammonia production costs.
  • Life cycle analysis (LCA).
  • Detailed green ammonia market analysis covering:
    • Key growth drivers and market challenges.
    • Recent industry developments and project announcements.
    • Profiles of major green ammonia projects globally.
    • SWOT analysis of the market.
    • Assessment of market segments including transportation, fertilizers, hydrogen storage, and power generation.
    • Examination of the competitive landscape and value chain.
  • Global and regional market size estimates and forecasts to 2040. Segmented by end-use application and geography.
  • Future outlook for the emerging green ammonia market.
  • Profiles of 49 companies across the supply chain. Companies profiled include Engie, EverWind Fuels, Fuella, FuelPositive Corp., Green NortH2 Energy, Iberdrola, Jupiter Ionics, NEOM Green Hydrogen Company, SK Ecoplant Co.,  Sumitomo, and Yara. 

 

Green steel

  • Opportunities and challenges for green steel. 
  • The role of hydrogen in green steel production. 
  • Analysis of green steel production processes.
    • Hydrogen Direct Reduced Iron (DRI)
    • Electrolysis
    • Carbon Capture and Storage/Use 
    • Biochar replacing coke
    • Hydrogen Blast Furnace
    • Renewable energy powered processes
    • Flash ironmaking
    • Hydrogen Plasma Iron Ore Reduction
    • Ferrous Bioprocessing
    • Microwave Processing 
  • Analysis of advanced materials in green steel.
    • Composite electrodes
    • Solid oxide materials
    • Hydrogen storage metals
    • Carbon composite steels
    • Coatings and membranes
    • Sustainable binders
    • Iron ore catalysts
    • Biosteel metallics
    • Carbon capture materials
    • Waste gas utilization
  • Market analysis including prices, plants, market maps, SWOT analysis, market trends and opportunities, recent industry developments and innovations, market growth drivers, market challenges and end-use industries including automotive, construction, machinery, electronics etc. 
  • Global market revenues, historical and forecast to 2033, segmented by end-use industry and region. 
  • 44 company profiles. Company profiles include production processes, planned capacities, collaborations and agreements, future strategies. Companies profiled include ArcelorMittal, Blastr, Boston Metal, GravitHy, H2 Green Steel, Nippon Steel, SSAB and Thyssenkrupp.

 

The Global Market for Green Hydrogen, Ammonia and Steel 2024-2034
The Global Market for Green Hydrogen, Ammonia and Steel 2024-2034
PDF download.

The Global Market for Green Hydrogen, Ammonia and Steel 2024-2034
The Global Market for Green Hydrogen, Ammonia and Steel 2024-2034
Print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout

 

1              RESEARCH METHODOLOGY         28

 

2              GREEN HYDROGEN, GREEN AMMONIA AND GREEN STEEL SYNERGIES       29

 

3              GREEN HYDROGEN          30

  • 3.1          Hydrogen classification  30
  • 3.2          Global energy demand and consumption              31
  • 3.3          The hydrogen economy and production 31
  • 3.4          Removing CO₂ emissions from hydrogen production        33
  • 3.5          Hydrogen value chain     34
    • 3.5.1      Production          34
    • 3.5.2      Transport and storage    34
    • 3.5.3      Utilization            34
  • 3.6          National hydrogen initiatives      36
  • 3.7          Market challenges           37
  • 3.8          Industry developments 2020-2023            39
  • 3.9          Market map       54
  • 3.10        GLOBAL HYDROGEN PRODUCTION           56
    • 3.10.1    Industrial applications    57
    • 3.10.2    Hydrogen energy             58
      • 3.10.2.1                Stationary use   58
      • 3.10.2.2                Hydrogen for mobility    58
    • 3.10.3    Current Annual H2 Production    59
    • 3.10.4    Hydrogen production processes 60
      • 3.10.4.1                Hydrogen as by-product 61
      • 3.10.4.2                Reforming           61
      • 3.10.4.3                Reforming or coal gasification with CO2 capture and storage        62
      • 3.10.4.4                Steam reforming of biomethane               62
      • 3.10.4.5                Water electrolysis            64
      • 3.10.4.6                The "Power-to-Gas" concept      65
      • 3.10.4.7                Fuel cell stack    66
      • 3.10.4.8                Electrolysers      67
      • 3.10.4.9                Other    68
    • 3.10.5    Production costs               72
    • 3.10.6    Global hydrogen demand forecasts         73
    • 3.10.7    Role in energy transition               74
    • 3.10.8    SWOT analysis   75
    • 3.10.9    Electrolyzer technologies             76
      • 3.10.9.1                Alkaline water electrolysis (AWE)              79
      • 3.10.9.2                Anion exchange membrane (AEM) water electrolysis       80
      • 3.10.9.3                PEM water electrolysis  81
      • 3.10.9.4                Solid oxide water electrolysis      82
    • 3.10.10  Market players  83
  • 3.11        BLUE HYDROGEN             84
    • 3.11.1    Advantages over green hydrogen             84
    • 3.11.2    SWOT analysis   85
    • 3.11.3    Production technologies               86
      • 3.11.3.1                Steam-methane reforming (SMR)             86
      • 3.11.3.2                Autothermal reforming (ATR)     87
      • 3.11.3.3                Partial oxidation (POX)  88
      • 3.11.3.4                Sorption Enhanced Steam Methane Reforming (SE-SMR) 89
      • 3.11.3.5                Methane pyrolysis (Turquoise hydrogen)              90
      • 3.11.3.6                Coal gasification                92
      • 3.11.3.7                Advanced autothermal gasification (AATG)           95
      • 3.11.3.8                Biomass processes          96
      • 3.11.3.9                Microwave technologies               99
      • 3.11.3.10              Dry reforming    99
      • 3.11.3.11              Plasma Reforming           99
      • 3.11.3.12              Solar SMR            100
      • 3.11.3.13              Tri-Reforming of Methane           100
      • 3.11.3.14              Membrane-assisted reforming   100
      • 3.11.3.15              Catalytic partial oxidation (CPOX)             100
      • 3.11.3.16              Chemical looping combustion (CLC)         101
    • 3.11.4    Carbon capture 101
      • 3.11.4.1                Pre-Combustion vs. Post-Combustion carbon capture      101
      • 3.11.4.2                What is CCUS?  102
      • 3.11.4.3                Carbon Utilization            113
      • 3.11.4.4                Carbon storage 115
      • 3.11.4.5                Transporting CO2             117
      • 3.11.4.6                Costs     121
      • 3.11.4.7                Market map       122
      • 3.11.4.8                Point-source carbon capture for blue hydrogen  125
      • 3.11.4.9                Carbon utilization             137
    • 3.11.5    Market players  164
  • 3.12        HYDROGEN STORAGE AND TRANSPORT 165
    • 3.12.1    Market overview             165
    • 3.12.2    Hydrogen transport methods     166
      • 3.12.2.1                Pipeline transportation  167
      • 3.12.2.2                Road or rail transport     167
      • 3.12.2.3                Maritime transportation               167
      • 3.12.2.4                On-board-vehicle transport         167
    • 3.12.3    Hydrogen compression, liquefaction, storage      168
      • 3.12.3.1                Solid storage      168
      • 3.12.3.2                Liquid storage on support             169
      • 3.12.3.3                Underground storage    169
    • 3.12.4    Market players  170
  • 3.13        HYDROGEN UTILIZATION              171
    • 3.13.1    Hydrogen Fuel Cells         171
      • 3.13.1.1                Market overview             171
    • 3.13.2    Alternative fuel production          173
      • 3.13.2.1                Solid Biofuels     174
      • 3.13.2.2                Liquid Biofuels  174
      • 3.13.2.3                Gaseous Biofuels             175
      • 3.13.2.4                Conventional Biofuels    175
      • 3.13.2.5                Advanced Biofuels           176
      • 3.13.2.6                Feedstocks         176
      • 3.13.2.7                Production of biodiesel and other biofuels            178
      • 3.13.2.8                Renewable diesel            179
      • 3.13.2.9                Biojet and sustainable aviation fuel (SAF)              180
      • 3.13.2.10              Electrofuels (E-fuels, power-to-gas/liquids/fuels)               184
    • 3.13.3    Hydrogen Vehicles          194
      • 3.13.3.1                Market overview             194
    • 3.13.4    Aviation               196
      • 3.13.4.1                Market overview             196
    • 3.13.5    Ammonia production     196
      • 3.13.5.1                Market overview             196
      • 3.13.5.2                Decarbonisation of ammonia production               198
      • 3.13.5.3                Green ammonia synthesis methods         200
      • 3.13.5.4                Blue ammonia   202
      • 3.13.5.5                Chemical energy storage              202
    • 3.13.6    Methanol production     207
      • 3.13.6.1                Market overview             207
      • 3.13.6.2                Methanol-to gasoline technology             208
    • 3.13.7    Steelmaking       212
      • 3.13.7.1                Market overview             212
      • 3.13.7.2                Comparative analysis      215
      • 3.13.7.3                Hydrogen Direct Reduced Iron (DRI)        216
    • 3.13.8    Power & heat generation             218
      • 3.13.8.1                Market overview             218
    • 3.13.9    Maritime             219
      • 3.13.9.1                Market overview             219
    • 3.13.10  Fuel cell trains   220
      • 3.13.10.1              Market overview             220
  • 3.14        COMPANY PROFILES       221 (247 company profiles)

 

4              GREEN AMMONIA           416

  • 4.1          INTRODUCTION 416
    • 4.1.1      Current global ammonia production        416
    • 4.1.2      Overview of renewable hydrogen and nitrogen production           417
    • 4.1.3      Sustainable ammonia production              418
    • 4.1.4      Decarbonisation of ammonia production               420
      • 4.1.4.1   Elimination of emissions               420
      • 4.1.4.2   Air Pollution Reduction  421
      • 4.1.4.3   Sustainable Development Goals 421
    • 4.1.5      Comparison with other types of ammonia             422
    • 4.1.6      Applications       424
    • 4.1.7      Life cycle analysis (LCA) 425
  • 4.2          PRODUCTION METHODS               426
    • 4.2.1      Analysis of production technologies         426
    • 4.2.2      Renewable Hydrogen Production             427
      • 4.2.2.1   Water Electrolysis            427
      • 4.2.2.2   Ammonia synthesis         428
      • 4.2.2.3   Haber-Bosch process      428
      • 4.2.2.4   Biological nitrogen fixation          429
      • 4.2.2.5   Electrochemical production         430
      • 4.2.2.6   Photoelectrochemical Process   430
      • 4.2.2.7   Chemical looping processes        430
      • 4.2.2.8   Plasma Electrolysis          431
    • 4.2.3      Retrofitting Existing Plants           432
    • 4.2.4      Small-Scale Modular Systems     432
  • 4.3          BLUE AMMONIA              433
    • 4.3.1      Blue ammonia projects, current & planned           433
  • 4.4          GLOBAL GREEN AMMONIA MARKET        435
    • 4.4.1      Market growth drivers   435
    • 4.4.2      Market challenges           436
    • 4.4.3      Regulatory landscape and policy support               437
    • 4.4.4      Recent industry news and developments              438
    • 4.4.5      Green ammonia projects, current and planned   440
    • 4.4.6      SWOT analysis   442
    • 4.4.7      Fuel cells              443
      • 4.4.7.1   Proton Exchange Membrane Ammonia Fuel Cell (PEM-AFC)          445
      • 4.4.7.2   Alkaline Ammonia Fuel Cell (AFC)             446
      • 4.4.7.3   Solid Oxide Ammonia Fuel Cell (SOFC)    447
      • 4.4.7.4   Direct Ammonia Fuel Cell (DAFC)              448
    • 4.4.8      Transportation fuel (shipping)    449
    • 4.4.9      Fertilizers            452
    • 4.4.10    Sustainable feedstock    453
    • 4.4.11    Energy storage  454
    • 4.4.12    Power generation            454
    • 4.4.13    Aviation               455
    • 4.4.14    Cost analysis      457
      • 4.4.14.1                Cost comparison              457
      • 4.4.14.2                Feedstock, production, transportation costs        457
      • 4.4.14.3                Cost projection forecasts              458
      • 4.4.14.4                Cost reduction pathways              459
    • 4.4.15    Competitive Landscape 460
      • 4.4.15.1                Value chain         460
      • 4.4.15.2                Key players         461
    • 4.4.16    GLOBAL MARKET SIZE     462
      • 4.4.16.1                Total market size              462
      • 4.4.16.2                By end-use market          465
      • 4.4.16.3                By region             469
    • 4.4.17    Future outlook  477
  • 4.5          COMPANY PROFILES       479 (49 company profiles)

 

5              GREEN STEEL      517

  • 5.1          INTRODUCTION 517
    • 5.1.1      Current Steelmaking processes  517
    • 5.1.2      What is green steel?       519
      • 5.1.2.1   Decarbonization target and policies         520
      • 5.1.2.2   Advances in clean production technologies          523
      • 5.1.2.3   Production technologies               523
      • 5.1.2.4   Properties           538
    • 5.1.3      Advanced materials in green steel            539
      • 5.1.3.1   Composite electrodes    539
      • 5.1.3.2   Solid oxide materials       540
      • 5.1.3.3   Hydrogen storage metals              540
      • 5.1.3.4   Carbon composite steels               541
      • 5.1.3.5   Coatings and membranes             541
      • 5.1.3.6   Sustainable binders         542
      • 5.1.3.7   Iron ore catalysts              542
      • 5.1.3.8   Carbon capture materials             543
      • 5.1.3.9   Waste gas utilization       544
    • 5.1.4      Advantages and disadvantages of green steel      544
    • 5.1.5      Markets and applications              545
  • 5.2          THE GLOBAL MARKET FOR GREEN STEEL 547
    • 5.2.1      Global steel production 547
      • 5.2.1.1   Steel prices         547
      • 5.2.1.2   Green steel prices            547
    • 5.2.2      Green steel plants and production, current and planned 548
    • 5.2.3      Market map       549
    • 5.2.4      SWOT analysis   550
    • 5.2.5      Market trends and opportunities              551
    • 5.2.6      Industry developments, funding and innovation 2022-2023            551
    • 5.2.7      Market growth drivers   559
    • 5.2.8      Market challenges           560
    • 5.2.9      End-use industries           561
      • 5.2.9.1   Automotive        561
      • 5.2.9.2   Construction      565
      • 5.2.9.3   Consumer appliances     567
      • 5.2.9.4   Machinery          569
      • 5.2.9.5   Rail         570
      • 5.2.9.6   Packaging            571
      • 5.2.9.7   Electronics          572
    • 5.2.10    Global market for demand and revenues 2018-2033         574
      • 5.2.10.1                Total market 2018-2033 574
      • 5.2.10.2                By end-use industry        577
      • 5.2.10.3                By region             579
    • 5.2.11    Competitive landscape  587
    • 5.2.12    Future market outlook   588
  • 5.3          COMPANY PROFILES       589 (44 company profiles)

 

6              REFERENCES       630

 

List of Tables

  • Table 1. Hydrogen colour shades, Technology, cost, and CO2 emissions.  30
  • Table 2. Overview of hydrogen production methods.       32
  • Table 3. National hydrogen initiatives.    36
  • Table 4. Market challenges in the hydrogen economy and production technologies.          37
  • Table 5. Hydrogen industry developments 2020-2023.     39
  • Table 6. Market map for hydrogen technology and production.   54
  • Table 7. Industrial applications of hydrogen.        57
  • Table 8. Hydrogen energy markets and applications.         58
  • Table 9. Hydrogen production processes and stage of development.        60
  • Table 10. Estimated costs of clean hydrogen production. 72
  • Table 11.  Characteristics of typical water electrolysis technologies            77
  • Table 12. Advantages and disadvantages of water electrolysis technologies.          78
  • Table 13. Market players in green hydrogen (electrolyzers).         83
  • Table 14. Technology Readiness Levels (TRL) of main production technologies for blue hydrogen. 86
  • Table 15. Key players in methane pyrolysis.          91
  • Table 16. Commercial coal gasifier technologies. 93
  • Table 17. Blue hydrogen projects using CG.          94
  • Table 18. Biomass processes summary, process description and TRL.         96
  • Table 19. Pathways for hydrogen production from biomass.          98
  • Table 20. CO2 utilization and removal pathways 105
  • Table 21. Approaches for capturing carbon dioxide (CO2) from point sources.       108
  • Table 22. CO2 capture technologies.       110
  • Table 23. Advantages and challenges of carbon capture technologies.      111
  • Table 24. Overview of commercial materials and processes utilized in carbon capture.      112
  • Table 25. Methods of CO2 transport.       118
  • Table 26. Carbon capture, transport, and storage cost per unit of CO2      121
  • Table 27. Estimated capital costs for commercial-scale carbon capture.   121
  • Table 28. Point source examples.              125
  • Table 29. Assessment of carbon capture materials             130
  • Table 30. Chemical solvents used in post-combustion.    134
  • Table 31. Commercially available physical solvents for pre-combustion carbon capture.   137
  • Table 32. Carbon utilization revenue forecast by product (US$).  141
  • Table 33. CO2 utilization and removal pathways.               142
  • Table 34. Market challenges for CO2 utilization.  144
  • Table 35. Example CO2 utilization pathways.       145
  • Table 36. CO2 derived products via Thermochemical conversion-applications, advantages and disadvantages.       148
  • Table 37. Electrochemical CO₂ reduction products.            152
  • Table 38. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages.        153
  • Table 39. CO2 derived products via biological conversion-applications, advantages and disadvantages.     158
  • Table 40. Companies developing and producing CO2-based polymers.     160
  • Table 41. Companies developing mineral carbonation technologies.          163
  • Table 42. Market players in blue hydrogen.          164
  • Table 43. Market overview-hydrogen storage and transport.        165
  • Table 44. Summary of different methods of hydrogen transport. 166
  • Table 45. Market players in hydrogen storage and transport.        170
  • Table 46. Market overview hydrogen fuel cells-applications, market players and market challenges.           171
  • Table 47. Categories and examples of solid biofuel.           174
  • Table 48. Comparison of biofuels and e-fuels to fossil and electricity.        176
  • Table 49. Classification of biomass feedstock.     177
  • Table 50. Biorefinery feedstocks.              177
  • Table 51. Feedstock conversion pathways.           178
  • Table 52. Biodiesel production techniques.          179
  • Table 53. Advantages and disadvantages of biojet fuel    180
  • Table 54. Production pathways for bio-jet fuel.   181
  • Table 55. Applications of e-fuels, by type.             185
  • Table 56. Overview of e-fuels.    186
  • Table 57. Benefits of e-fuels.      186
  • Table 58. eFuel production facilities, current and planned.            191
  • Table 59. Market overview for hydrogen vehicles-applications, market players and market challenges.      195
  • Table 60. Blue ammonia projects.             202
  • Table 61. Ammonia fuel cell technologies.            203
  • Table 62. Market overview of green ammonia in marine fuel.       204
  • Table 63. Summary of marine alternative fuels.  204
  • Table 64. Estimated costs for different types of ammonia.             206
  • Table 65. Comparison of biogas, biomethane and natural gas.      209
  • Table 66. Hydrogen-based steelmaking technologies.      215
  • Table 67. Comparison of green steel production technologies.     215
  • Table 68. Advantages and disadvantages of each potential hydrogen carrier.         217
  • Table 69. Sustainable feedstocks for producing green ammonia. 422
  • Table 70. Comparison of green ammonia with other types of ammonia.   422
  • Table 71. Applications of green ammonia.             424
  • Table 72. Comparative analysis of green ammonia production technologies.         426
  • Table 73. Blue ammonia projects, current and planned.  433
  • Table 74. Market growth drivers for green ammonia.       435
  • Table 75. Market challenges for green ammonia.               436
  • Table 76. Global regulatory landscape and policy support for green ammonia.      437
  • Table 77. Recent industry news and developments           438
  • Table 78. Green ammonia projects (current and planned).             440
  • Table 79. Comparative analysis of ammonia fuel cell technolgies.               443
  • Table 80. Ammonia fuel cell technologies.            444
  • Table 81. Market overview of green ammonia in marine fuel.       449
  • Table 82. Summary of marine alternative fuels.  450
  • Table 83. Green ammonia in chemicals production.          453
  • Table 84. Green ammonia in power generation. 455
  • Table 85. Production Cost Comparison (As of August 2023).           457
  • Table 86. Green Ammonia Production Costs by Renewable Power Source.             458
  • Table 87. Estimated costs for different types of ammonia.             459
  • Table 88. Key cost reduction pathways for green ammonia.           459
  • Table 89. Key players in green ammonia.               461
  • Table 90. Global market for green ammonia 2018-2034 (1,000 tons).        462
  • Table 91. Global market for green ammonia 2018-2034 (revenues, millions USD).               463
  • Table 92. Global market revenues for green ammonia 2018-2034, by end-use market, (1,000 tons).           465
  • Table 93. Global market revenues for green ammonia 2018-2034, by end-use market, (millions USD).       467
  • Table 94. Global market revenues for green ammonia 2018-2034, by region, (1,000 tons).              469
  • Table 95. Global market revenues for green ammonia 2018-2034, by region, (millions USD).          471
  • Table 96. Green and blue ammonia projects & plants in North America, current and planned.       473
  • Table 97. Green and blue ammonia projects & plants in Asia Pacific, current and planned.              474
  • Table 98. Green and blue ammonia projects & plants in Europe, current and planned.      475
  • Table 99. Green and blue ammonia projects & plants in the Middle East & Africa, current and planned.    476
  • Table 100. Global Decarbonization Targets and Policies related to Green Steel.    520
  • Table 101. Estimated cost for iron and steel industry under the Carbon Border Adjustment Mechanism (CBAM).  522
  • Table 102. Hydrogen-based steelmaking technologies.   524
  • Table 103. Comparison of green steel production technologies.  525
  • Table 104. Advantages and disadvantages of each potential hydrogen carrier.      526
  • Table 105. CCUS in green steel production.           528
  • Table 106. Biochar in steel and metal.     531
  • Table 107. Hydrogen blast furnace schematic.     532
  • Table 108. Applications of microwave processing in green steelmaking.   536
  • Table 109. Applications of additive manufacturing (AM) in steelmaking.  537
  • Table 110.  Technology readiness level (TRL) for key green steel production technologies.               538
  • Table 111. Properties of Green steels.    538
  • Table 112. Coatings and membranes in green steel production.   541
  • Table 113. Advantages and disadvantages of green steel.               544
  • Table 114. Markets and applications: green steel.              545
  • Table 115. Green steel plants, current and planned.         548
  • Table 116. Industry developments and innovation in Green steel, 2022-2023.        551
  • Table 117. Summary of market growth drivers for Green steel.    559
  • Table 118. Market challenges in Green steel.       560
  • Table 119. Supply agreements between green steel producers and automakers. 561
  • Table 120. Applications of green steel in the automotive industry.             564
  • Table 121. Applications of green steel in the construction industry.           565
  • Table 122. Applications of green steel in the consumer appliances industry.          568
  • Table 123. Applications of green steel in machinery.         569
  • Table 124. Applications of green steel in the rail industry.              570
  • Table 125. Applications of green steel in the packaging industry. 571
  • Table 126. Applications of green steel in the electronics industry.               573
  • Table 127. Global market revenues for Green steel, 2018-2033 (Million Metric Tons).       574
  • Table 128. Global market revenues for Green steel, 2018-2033 (Billions USD).      575
  • Table 129. Global market revenues for Green steel, by end-use industry, 2018-2033 (Billions USD).            577
  • Table 130. Global market revenues for Green steel, by region, 2018-2033 (Billions USD). 579
  • Table 131. Key players in Green steel, location and production methods. 587

 

List of Figures

  • Figure 1. Hydrogen value chain. 35
  • Figure 2. Current Annual H2 Production. 60
  • Figure 3. Principle of a PEM electrolyser.               64
  • Figure 4. Power-to-gas concept. 66
  • Figure 5. Schematic of a fuel cell stack.   67
  • Figure 6. High pressure electrolyser - 1 MW.        68
  • Figure 7. Global hydrogen demand forecast.        73
  • Figure 8. SWOT analysis for green hydrogen.       76
  • Figure 9. Types of electrolysis technologies.         76
  • Figure 10. Schematic of alkaline water electrolysis working principle.        80
  • Figure 11. Schematic of PEM water electrolysis working principle.              82
  • Figure 12. Schematic of solid oxide water electrolysis working principle.  83
  • Figure 13. SWOT analysis for blue hydrogen.       86
  • Figure 14. SMR process flow diagram of steam methane reforming with carbon capture and storage (SMR-CCS).  87
  • Figure 15. Process flow diagram of autothermal reforming with a carbon capture and storage (ATR-CCS) plant.     88
  • Figure 16. POX process flow diagram.      89
  • Figure 17. Process flow diagram for a typical SE-SMR.      90
  • Figure 18. HiiROC’s methane pyrolysis reactor.   91
  • Figure 19. Coal gasification (CG) process.               93
  • Figure 20. Flow diagram of Advanced autothermal gasification (AATG).   96
  • Figure 21. Schematic of CCUS process.    103
  • Figure 22. Pathways for CO2 utilization and removal.       104
  • Figure 23. A pre-combustion capture system.      110
  • Figure 24. Carbon dioxide utilization and removal cycle.  114
  • Figure 25. Various pathways for CO2 utilization. 115
  • Figure 26. Example of underground carbon dioxide storage.         116
  • Figure 27. Transport of CCS technologies.              118
  • Figure 28. Railroad car for liquid CO₂ transport    120
  • Figure 29. Estimated costs of capture of one metric ton of carbon dioxide (Co2) by sector.              122
  • Figure 30. CCUS market map.      124
  • Figure 31. Global capacity of point-source carbon capture and storage facilities.  127
  • Figure 32. Global carbon capture capacity by CO2 source, 2021.   128
  • Figure 33. Global carbon capture capacity by CO2 source, 2030.   129
  • Figure 34. Global carbon capture capacity by CO2 endpoint, 2021 and 2030.          130
  • Figure 35. Post-combustion carbon capture process.        133
  • Figure 36. Postcombustion CO2 Capture in a Coal-Fired Power Plant.        133
  • Figure 37. Oxy-combustion carbon capture process.         135
  • Figure 38. Liquid or supercritical CO2 carbon capture process.     136
  • Figure 39. Pre-combustion carbon capture process.          137
  • Figure 40. CO2 non-conversion and conversion technology, advantages and disadvantages.           138
  • Figure 41. Applications for CO2. 140
  • Figure 42. Cost to capture one metric ton of carbon, by sector.    141
  • Figure 43. Life cycle of CO2-derived products and services.            143
  • Figure 44. Co2 utilization pathways and products.             147
  • Figure 45. Plasma technology configurations and their advantages and disadvantages for CO2 conversion.              151
  • Figure 46. LanzaTech gas-fermentation process. 156
  • Figure 47. Schematic of biological CO2 conversion into e-fuels.   157
  • Figure 48. Econic catalyst systems.           160
  • Figure 49. Mineral carbonation processes.            162
  • Figure 50. Process steps in the production of electrofuels.             184
  • Figure 51. Mapping storage technologies according to performance characteristics.           185
  • Figure 52. Production process for green hydrogen.           188
  • Figure 53. E-liquids production routes.   189
  • Figure 54. Fischer-Tropsch liquid e-fuel products.              190
  • Figure 55. Resources required for liquid e-fuel production.            190
  • Figure 56. Levelized cost and fuel-switching CO2 prices of e-fuels.             192
  • Figure 57. Cost breakdown for e-fuels.   194
  • Figure 58. Hydrogen fuel cell powered EV.            195
  • Figure 59. Green ammonia production and use. 198
  • Figure 60. Classification and process technology according to carbon emission in ammonia production.    199
  • Figure 61. Schematic of the Haber Bosch ammonia synthesis reaction.     200
  • Figure 62. Schematic of hydrogen production via steam methane reformation.    201
  • Figure 63. Estimated production cost of green ammonia.               206
  • Figure 64. Renewable Methanol Production Processes from Different Feedstocks.              208
  • Figure 65. Production of biomethane through anaerobic digestion and upgrading.              210
  • Figure 66. Production of biomethane through biomass gasification and methanation.       211
  • Figure 67. Production of biomethane through the Power to methane process.     211
  • Figure 68. Transition to hydrogen-based production.       213
  • Figure 69. CO2 emissions from steelmaking (tCO2/ton crude steel).          214
  • Figure 70. Hydrogen Direct Reduced Iron (DRI) process.  217
  • Figure 71. Three Gorges Hydrogen Boat No. 1.     219
  • Figure 72. PESA hydrogen-powered shunting locomotive.              220
  • Figure 73. Symbiotic™ technology process.           221
  • Figure 74. Alchemr AEM electrolyzer cell.              229
  • Figure 75. HyCS® technology system.      231
  • Figure 76. Fuel cell module FCwave™.    239
  • Figure 77. Direct Air Capture Process.     246
  • Figure 78. CRI process.   248
  • Figure 79. Croft system. 258
  • Figure 80. ECFORM electrolysis reactor schematic.            264
  • Figure 81. Domsjö process.          265
  • Figure 82. EH Fuel Cell Stack.       268
  • Figure 83. Direct MCH® process. 272
  • Figure 84. Electriq's dehydrogenation system.    275
  • Figure 85. Endua Power Bank.    278
  • Figure 86. EL 2.1 AEM Electrolyser.           279
  • Figure 87. Enapter – Anion Exchange Membrane (AEM) Water Electrolysis.            280
  • Figure 88. Hyundai Class 8 truck fuels at a First Element high capacity mobile refueler.     287
  • Figure 89. FuelPositive system.  290
  • Figure 90. Using electricity from solar power to produce green hydrogen.              296
  • Figure 91. Hydrogen Storage Module.     308
  • Figure 92. Plug And Play Stationery Storage Units.             308
  • Figure 93. Left: a typical single-stage electrolyzer design, with a membrane separating the hydrogen and oxygen gasses. Right: the two-stage E-TAC process.         312
  • Figure 94. Hystar PEM electrolyser.          327
  • Figure 95. KEYOU-H2-Technology.            337
  • Figure 96. Audi/Krajete unit.       338
  • Figure 97. OCOchem’s Carbon Flux Electrolyzer. 357
  • Figure 98.  CO2 hydrogenation to jet fuel range hydrocarbons process.    361
  • Figure 99. The Plagazi ® process.               367
  • Figure 100. Proton Exchange Membrane Fuel Cell.            371
  • Figure 101. Sunfire process for Blue Crude production.    389
  • Figure 102. CALF-20 has been integrated into a rotating CO2 capture machine (left), which operates inside a CO2 plant module (right).  392
  • Figure 103. Tevva hydrogen truck.            398
  • Figure 104. Topsoe's SynCORTM autothermal reforming technology.        401
  • Figure 105. O12 Reactor.              406
  • Figure 106. Sunglasses with lenses made from CO2-derived materials.     407
  • Figure 107. CO2 made car part.  407
  • Figure 108. The Velocys process.               409
  • Figure 109. Green Ammonia generation synthesis and use.           417
  • Figure 110. Classification and process technology according to carbon emission in ammonia production.  418
  • Figure 111. Green ammonia production and use.               420
  • Figure 112.  Life cycle analysis (LCA) for green ammonia. 426
  • Figure 113. A large scale electrolyzer facility.        428
  • Figure 114. Schematic of the Haber Bosch ammonia synthesis reaction.  429
  • Figure 115. Schematic of hydrogen production via steam methane reformation. 429
  • Figure 116. Plasma electrolysis for green ammonia synthesis.      431
  • Figure 117. SWOT analysis for green ammonia.   442
  • Figure 118. Proton Exchange Membrane Fuel Cell schematic representation.        446
  • Figure 119. Alkaline Ammonia Fuel Cell (AFC) schematic representation. 447
  • Figure 120. Schematic illustration of ammonia-fed SOFC-O.          448
  • Figure 121. FuelPositive green ammonia production system.        452
  • Figure 122. Green ammonia value chain.                460
  • Figure 123. Global market revenues for green ammonia 2018-2034 (tons).            463
  • Figure 124. Global market revenues for green ammonia 2018-2034 (revenues, millions USD).        464
  • Figure 125. Global market revenues for green ammonia 2018-2034, by end-use market, (1,000 tons).       466
  • Figure 126. Global market revenues for green ammonia 2018-2034, by end-use market, (millions USD).   468
  • Figure 127. Global market revenues for green ammonia 2018-2034, by region, (1,000 tons).          470
  • Figure 128. Global market revenues for green ammonia 2018-2034, by region, (millions USD).      472
  • Figure 129. Amogy Tractor.          482
  • Figure 130. FuelPositive system. 491
  • Figure 131. P2XFloater™.              494
  • Figure 132. Plasmleap Technology.           508
  • Figure 133. 3D model of a typical Stami Green Ammonia plant.   511
  • Figure 134. Yara green ammonia production facility.         516
  • Figure 135. Share of (a) production, (b) energy consumption and (c) CO2 emissions from different steel making routes.                518
  • Figure 136. Transition to hydrogen-based production.     518
  • Figure 137. CO2 emissions from steelmaking (tCO2/ton crude steel).        519
  • Figure 138. CO2 emissions of different process routes for liquid steel.      522
  • Figure 139. Hydrogen Direct Reduced Iron (DRI) process.               526
  • Figure 140. Molten oxide electrolysis process.     528
  • Figure 141. Steelmaking with CCS.            530
  • Figure 142. Flash ironmaking process.     534
  • Figure 143. Hydrogen Plasma Iron Ore Reduction process.             535
  • Figure 144. Green steel market map.       549
  • Figure 145. SWOT analysis: Green steel. 550
  • Figure 146. Global market revenues for Green steel, 2018-2033 (Million Metric Tons).      575
  • Figure 147. Global market revenues for Green steel, 2018-2033 (Billions USD).     576
  • Figure 148. Global market revenues for Green steel, by end-use industry,  2018-2033 (Billions USD).          578
  • Figure 149. Global market revenues for Green steel, by region, 2018-2033 (Billions USD). 580
  • Figure 150. Global market revenues for Green steel, in North America, 2018-2033 (Billions USD). 581
  • Figure 151. Global market revenues for Green steel, in Europe, 2018-2033 (Billions USD).               582
  • Figure 152. Global market revenues for Green steel, in China, 2018-2033 (Billions USD).  583
  • Figure 153. Global market revenues for Green steel, in India, 2018-2033 (Billions USD).    584
  • Figure 154. Global market revenues for Green steel, in Asia-Pacific, 2018-2033 (Billions USD).       585
  • Figure 155. Global market revenues for Green steel, in Middle East and Africa, 2018-2033 (Billions USD). 586
  • Figure 156. Global market revenues for Green steel, in South America, 2018-2033 (Billions USD). 586
  • Figure 157. ArcelorMittal decarbonization strategy.          591
  • Figure 158. HYBRIT process schematic.   602
  • Figure 159. Schematic of HyREX technology.        616
  • Figure 160. EAF Quantum.           618

 

The Global Market for Green Hydrogen, Ammonia and Steel 2024-2034
The Global Market for Green Hydrogen, Ammonia and Steel 2024-2034
PDF download.

The Global Market for Green Hydrogen, Ammonia and Steel 2024-2034
The Global Market for Green Hydrogen, Ammonia and Steel 2024-2034
Print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout