The Global Market for Hydrogels 2024-2034

0

  • Published: October 2023
  • Pages: 274
  • Tables: 67
  • Figures: 65

 

The Global Market for Hydrogels 2024-2034 provides a comprehensive analysis of the global hydrogel landscape, technologies, companies, and applications across major industry verticals. It examines market drivers, trends, revenues, SWOT analyses, and hydrogel products across healthcare, water management, agriculture, construction, electronics, energy, and more.

The report profiles over 70 leading companies developing innovative hydrogel technologies and products. It covers natural and synthetic hydrogel chemistries, smart hydrogels, self-healing hydrogels, conductive hydrogels, 4D printing, and emerging chemistries.

Detailed application segments analyze hydrogels for wound care, drug delivery, medical implants, biosensors, flexible electronics, batteries, fuel cells, solar cells, self-healing concrete, lubricants, agriculture, food packaging, and water purification. Regional and global market forecasts are provided.

This study serves as a strategic guide for companies and investors looking to capitalize on the major growth opportunities for hydrogels across a diverse set of high-potential markets and applications. Report contents include:

  • Overview of hydrogel properties, classifications, synthesis methods, formulations
  • Analysis of natural vs synthetic hydrogels, emerging chemistries
  • Smart hydrogels: thermosensitive, pH-sensitive, self-healing, shape memory
  • Advanced hydrogels: luminescent, nanomaterial-based, 3D/4D printed
  • Hydrogel market size, growth forecasts across industries: healthcare, water, agriculture, construction, electronics, energy, sensors, membranes
  • Healthcare applications: wound care, drug delivery, implants, tissue engineering, cosmetics, biosensors
  • Water purification methods: adsorption, solar evaporation, filtration, magnetics
  • Agriculture uses: fertilizers, soil amendments, livestock feed, seed coatings
  • Construction applications: self-healing concrete, thermal management, humidity control
  • Flexible electronics uses: batteries, supercapacitors, printed circuits, transistors
  • Energy applications: battery electrodes & electrolytes, fuel cell membranes, solar cells
  • Sensors and membrane applications: chemical separation, bioreactors, drug delivery
  • Profiles of 70+ leading companies developing innovative hydrogel technologies and products. Companies profiled include AmacaThera, Amferia AB, Boston Scientific, Hydrogel Concrete Solutions, Nexgel, Polyrizon Ltd, PneumoNIX, Surge Therapeutics, and Ventrix Bio. 
  • SWOT analysis examining strengths, weaknesses, opportunities and threats for hydrogels in major application markets
  • Growth drivers, trends, and challenges in key hydrogel application areas

 

 

1              RESEARCH METHODOLOGY         17

 

2              TERMS AND DEFINITIONS             18

 

3              INTRODUCTION 19

  • 3.1          What are hydrogels?      19
    • 3.1.1      Structure             20
    • 3.1.1.1   Hybrid hydrogels              21
      • 3.1.1.1.1               Nanocomposite hydrogels           21
      • 3.1.1.1.2               Macromolecular microsphere composite (MMC) hydrogels           21
      • 3.1.1.1.3               Interpenetrating Polymer Networks (IPN) hydrogels         22
      • 3.1.1.1.4               Double-network (DN) hydrogels 22
    • 3.1.2      Classification      22
      • 3.1.2.1   Based on source               23
      • 3.1.2.2   Based on composition    23
      • 3.1.2.3   Based on configuration  24
      • 3.1.2.4   Based on crosslinking     24
      • 3.1.2.5   Size        24
        • 3.1.2.5.1               Microgels            24
        • 3.1.2.5.2               Nanogels             25
      • 3.1.2.6   Environmental response               26
      • 3.1.2.7   Degradability     26
    • 3.1.3      Formulations     27
    • 3.1.4      Benefits of hydrogels     27
  • 3.2          Synthesis of hydrogels   28
    • 3.2.1      Chemical Crosslinking     31
        • 3.2.1.1   Via monomers  32
        • 3.2.1.2   Via polymers      33
        • 3.2.1.3   Enzymatic crosslinking   33
    • 3.2.2      Physical Crosslinking       34
  • 3.3          Molecular toolkits            36
  • 3.4          Natural vs synthetic        36
  • 3.5          Natural polymers             37
    • 3.5.1      Cellulose              38
    • 3.5.2      Alginate               39
    • 3.5.3      Agarose               39
    • 3.5.4      Carrageenan      40
    • 3.5.5      Chitosan              40
    • 3.5.6      Collagen               41
    • 3.5.7      Dextran 41
    • 3.5.8      Hyaluronic acid  42
    • 3.5.9      Lignin    42
    • 3.5.10    Engineered living materials (ELMs)           44
      • 3.5.10.1                Description         44
      • 3.5.10.2                Benefits               44
      • 3.5.10.3                Bio ELM vs hybrid ELM   45
      • 3.5.10.4                Funghi - mycelial materials           45
      • 3.5.10.5                Bacterial               46
  • 3.6          Synthetic (polymeric) hydrogels 47
    • 3.6.1      Polyacrylamide (PAAm) hydrogels            49
    • 3.6.2      Poly(N-isopropylacrylamide (PNIPAAm) hydrogels            49
    • 3.6.3      Sodium polyacrylate hydrogels  49
    • 3.6.4      Polyethylene glycol (PEG) hydrogels        50
    • 3.6.5      Poly(vinyl alcohol) (PVA) hydrogels          50
    • 3.6.6      Polyacrylate hydrogels   51
  • 3.7          Emerging hydrogel chemistries  51
  • 3.8          Smart Hydrogels               52
    • 3.8.1      Thermo-Sensitive Hydrogels       53
    • 3.8.2      pH-Sensitive Hydrogels 54
    • 3.8.3      Electro-Sensitive hydrogels         55
    • 3.8.4      Light-Responsive hydrogels         55
    • 3.8.5      Enzyme-Sensitive Hydrogels       56
  • 3.8.6      Shape memory hydrogels (SMH)               56
    • 3.8.6.1   Tough shape memory hydrogels 57
    • 3.8.6.2   Triple-/multi-shape memory hydrogels  57
  • 3.9          Luminescent hydrogels 58
  • 3.10        Nanomaterial based hydrogels   58
    • 3.10.1    Graphene           58
    • 3.10.2    Carbon nanotubes           60
    • 3.10.3    Nanoclays           60
    • 3.10.4    Cellulose nanofibers       61
    • 3.10.5    Cellulose nanocrystals    62
  • 3.11        Directly bonded hydrogels           62
  • 3.12        Interpenetrating network (IPN) hydrogels             62
  • 3.13        3D and 4D printed hydrogels      63
  • 3.14        Hydrogel toxigens            64
  • 3.15        Challenges          65

 

4              MARKETS AND APPLICATIONS    66

  • 4.1          Applications roadmap    66
  • 4.2          Materials hydrogels compete with, by industry   66
  • 4.3          Hydrogel revenues          68
    • 4.3.1      By market 2020-2034      68
    • 4.3.2      By hydrogel type 2020-2034         70
    • 4.3.3      By region 2020-2034        73
      • 4.3.3.1   North America   73
      • 4.3.3.2   Europe 73
      • 4.3.3.3   Asia-Pacific         73
  • 4.4          Healthcare and wellness               76
    • 4.4.1      Market overview             76
    • 4.4.2      Market drivers  77
    • 4.4.3      Hydrogel medical products          78
      • 4.4.3.1   Oral delivery      78
      • 4.4.3.2   Ocular (Contact lenses) 79
      • 4.4.3.3   Wound dressings             80
      • 4.4.3.4   Skin sensors       84
    • 4.4.4      Injectable hydrogels       84
      • 4.4.4.1   Overview            84
      • 4.4.4.2   Products              87
    • 4.4.5      Medical implants              94
      • 4.4.5.1   Overview            94
    • 4.4.6      Tissue engineering          95
      • 4.4.6.1   Overview            96
      • 4.4.6.2   Products              97
    • 4.4.7      Skin care and cosmetics 97
      • 4.4.7.1   Overview            97
      • 4.4.7.2   Products              98
    • 4.4.8      Facial correction/aesthetic products        99
      • 4.4.8.1   Overview            100
      • 4.4.8.2   Products              100
    • 4.4.9      Biosensors          102
      • 4.4.9.1   Market overview             102
    • 4.4.10    Other biomedical applications    104
    • 4.4.11    SWOT analysis   105
    • 4.4.12    Global revenues               106
  • 4.5          Water purification and capture  108
    • 4.5.1      Market overview             108
    • 4.5.2      Market drivers  109
    • 4.5.3      Applications       110
      • 4.5.3.1   Hydrogel water purification         110
        • 4.5.3.1.1               Magnetic hydrogels        110
        • 4.5.3.1.2               Smart hydrogels for bioseparation of proteins     110
        • 4.5.3.1.3               Adsorption         110
        • 4.5.3.1.4               Solar evaporation            111
        • 4.5.3.1.5               Filtration              112
    • 4.5.3.2   Water capture   113
    • 4.5.4      SWOT analysis   114
    • 4.5.5      Global revenues               116
  • 4.6          Agriculture          118
    • 4.6.1      Market overview             118
    • 4.6.2      Market drivers  118
    • 4.6.3      Applications       119
      • 4.6.3.1   Hydrogel fertilizers          119
      • 4.6.3.2   Super Absorbent Polymers (SAPs)            119
      • 4.6.3.3   Natural polymer hydrogels          121
      • 4.6.3.4   Nanomaterials hydrogels              121
      • 4.6.3.5   Methods for application                122
      • 4.6.3.6   Benefits and drawbacks 122
    • 4.6.4      SWOT analysis   124
    • 4.6.5      Global revenues               125
  • 4.7          Building and construction             127
    • 4.7.1      Market overview             127
    • 4.7.2      Market drivers  128
    • 4.7.3      Applications       128
      • 4.7.3.1   Cement and concrete     128
        • 4.7.3.1.1               Hydrogel nanosilica cement pastes          129
        • 4.7.3.1.2               Polyacrylic hydrogels in cement composites         129
        • 4.7.3.1.3               Hydrogel-based internal curing agents    130
      • 4.7.3.2   Hydrogels for heating and cooling systems (thermal management)           130
        • 4.7.3.2.1               Evaporative cooling         130
        • 4.7.3.2.2               Hydroceramic hydrogel cooling  132
        • 4.7.3.2.3               Cooling of solar panels   133
      • 4.7.3.3   Hydrogel windows           134
      • 4.7.3.4   Self-healing road surfaces and asphalt    134
    • 4.7.4      SWOT analysis   135
    • 4.7.5      Global revenues               136
  • 4.8          Electronics          138
    • 4.8.1      Market overview             138
    • 4.8.2      Market drivers  139
    • 4.8.3      Applications       139
      • 4.8.3.1   Conductive hydrogels for soft and flexible electronics      139
      • 4.8.3.2   Thermal management   141
      • 4.8.3.3   Ionic conductors for electronic textiles   142
      • 4.8.3.4   Electronic textile sensors              142
      • 4.8.3.5   Transistors          143
    • 4.8.4      SWOT analysis   144
    • 4.8.5      Global revenues               145
  • 4.9          Energy  147
    • 4.9.1      Market overview             147
    • 4.9.2      Market drivers  148
    • 4.9.3      Applications       148
      • 4.9.3.1   Flexible and solid-state energy storage   148
      • 4.9.3.2   Electrolytes and electrodes         152
      • 4.9.3.3   Conductive hydrogels    153
      • 4.9.3.4   Batteries              154
      • 4.9.3.5   Supercapacitors 155
      • 4.9.3.6   Photovoltaics     156
    • 4.9.4      SWOT analysis   157
    • 4.9.5      Global revenues               158
  • 4.10        Sensors 160
    • 4.10.1    Market overview             160
    • 4.10.2    Market drivers  160
    • 4.10.3    Applications       161
      • 4.10.3.1                Strain/pressure sensors 161
      • 4.10.3.2                Biosensors          161
      • 4.10.3.3                Food quality sensors       161
    • 4.10.4    SWOT analysis   163
    • 4.10.5    Global revenues               164
  • 4.11        Membranes and films    166
    • 4.11.1    Market overview             166
    • 4.11.2    Market drivers  166
    • 4.11.3    Production          167
    • 4.11.4    Applications       168
      • 4.11.4.1                Self-healing membranes               168
      • 4.11.4.2                Biomedical membranes 169
        • 4.11.4.2.1             Tissue engineering          169
        • 4.11.4.2.2             Drug delivery     170
        • 4.11.4.2.3             Organ-on-a-chip devices               172
      • 4.11.4.3                Filtration membranes    173
        • 4.11.4.3.1             Gas separation  173
        • 4.11.4.3.2             Oil/water             173
        • 4.11.4.3.3             Water/wastewater treatment    173
      • 4.11.4.4                Architectural and acoustic membranes  174
      • 4.11.4.5                Energy storage membranes         175
    • 4.11.5    SWOT analysi     175
    • 4.11.6    Global revenues               176
  • 4.12        Self-healing hydrogels   178
    • 4.12.1    Self-healing mechanisms              178
      • 4.12.1.1                Hydrogen Bonding           179
      • 4.12.1.2                Ionic Bonds         179
      • 4.12.1.3                Host-Guest Interactions 179
      • 4.12.1.4                Hydrophobic Bonds         179
      • 4.12.1.5                Imine Bonds       180
      • 4.12.1.6                Arylhydrazone bonds     180
      • 4.12.1.7                Diels-Alder Reaction       180
    • 4.12.2    Types and materials        181
      • 4.12.2.1                Natural Polymers             182
      • 4.12.2.2                Synthetic polymers         183
      • 4.12.2.3                Polyampholyte self-healing hydrogels     183
        • 4.12.2.3.1             Reversible polymer self-healing hydrogels            183
      • 4.12.2.4                Peptides              184
      • 4.12.2.5                Mussel-inspired proteins              184
      • 4.12.2.6                Bacterial cellulose            184
      • 4.12.2.7                Conductive polymers     185
      • 4.12.2.8                Zwitterionic polymers    187
      • 4.12.2.9                Nanomaterial self-healing hydrogels       187
        • 4.12.2.9.1             Graphene           187
        • 4.12.2.9.2             Carbon nanotubes           188
        • 4.12.2.9.3             Nanoclays           189
        • 4.12.2.9.4             Silicate nanoparticles     189
        • 4.12.2.9.5             Magnetic nanoparticles 189
    • 4.12.3    Applications       189
      • 4.12.3.1                Anti-fouling coatings       190
      • 4.12.3.2                Tissue engineering          191
      • 4.12.3.3                Soft robotics       192
      • 4.12.3.4                Triboelectric nanogenerators     192
      • 4.12.3.5                Self-healable hydrogel dressings               193
      • 4.12.3.6                Bone regeneration          194
      • 4.12.3.7                Self-healing artificial muscles      195

 

5              HYDROGEL COMPANY PROFILES 196 (71 company profiles)

 

6              REFERENCES       253

 

List of Tables

  • Table 1. Hydrogel terms and definitions. 18
  • Table 2. Common hydrogel formulations.              27
  • Table 3. Benefits of hydrogels.   27
  • Table 4. Synthesis methods for hydrogels.            29
  • Table 5. Comparative analysis: Natural vs synthetic hydrogels.     36
  • Table 6. Types of biobased aerogels.       38
  • Table 7. Example markets and applications for lignin.       42
  • Table 8. Emerging hydrogel chemistries. 51
  • Table 9. Applications of smart hydrogels by type.               52
  • Table 10. 4D printed hydrogels. 63
  • Table 11. Challenges with hydrogels.       65
  • Table 12. Materials hydrogels compete with, by industry.              67
  • Table 13. Hydrogel revenues, by market 2020-2034 (billions USD).             68
  • Table 14. Hydrogel revenues, by hydrogel type 2020-2034 (billions USD).               70
  • Table 15. Hydrogel revenues, by region 2020-2034 (billions USD).              73
  • Table 16. Market overview of hydrogels in biomedicine. 76
  • Table 17. Market drivers for hydrogels in healthcare and wellness.            77
  • Table 18. Clinically approved oral hydrogel products.       78
  • Table 19. Ocular hydrogel applications.   79
  • Table 20. Clinically approved ocular hydrogel products.  79
  • Table 21. Clinically approved wound dressing hydrogel products.               81
  • Table 22. Injectable hydrogels properties and applications.           85
  • Table 23. Clinically approved injectable hydrogels.            87
  • Table 24. Overview of hydrogels in medical implants.       94
  • Table 25. Market overview for hydrogels in tissue engineering.   96
  • Table 26. Hydrogel tissue engineering products. 97
  • Table 27. Commercially available hydrogel cosmetic products.     98
  • Table 28. Market overview of hydrogels in Facial correction/aesthetic products. 100
  • Table 29. Hydrogel Facial correction/aesthetic products. 100
  • Table 30. Market overview for hydrogels in biosensors.  103
  • Table 31. Hydrogel revenues, in healthcare & wellness, 2020-2034 (billions USD).               106
  • Table 32. Market overview for hydrogels in water purification and capture.           108
  • Table 33. Market drivers for hydrogels in water purification and capture.                109
  • Table 34. Hydrogel revenues, in water purification & capture 2020-2034 (billions USD).   116
  • Table 35. Market drivers for hydrogels in agriculture.       118
  • Table 36. Benefits and drawbacks of hydrogels in agriculture.       122
  • Table 37. Hydrogel revenues, in agriculture 2020-2034 (billions USD).      125
  • Table 38. Market overview of hydrogels in buildings and construction.     127
  • Table 39. Market drivers for hydrogels in buildings and construction.        128
  • Table 40. Hydrogel panel.             131
  • Table 41. Hydrogel revenues, in building & construction 2020-2034 (Billion USD).               136
  • Table 42. Market overview of hydrogels in electronics.    138
  • Table 43. Market drivers for hydrogels in electronics.       139
  • Table 44. Benefits of electronic skin patches as a form factor.       140
  • Table 45. Current and emerging applications for electronic skin patches. 141
  • Table 46. Hydrogel revenues, in electronics 2020-2034 (Billion USD).        145
  • Table 47. Market overview of hydrogels in energy storage and generation.            147
  • Table 48. Market drivers for hydrogels in energy.              148
  • Table 49. Comparison of prototype batteries (flexible, textile, and other) in terms of area-specific performance.  149
  • Table 50. Hydrogel tissue-like soft batteries.        153
  • Table 51. Properties and applications of conductive hydrogels.    153
  • Table 52. Hydrogels in batteries.               154
  • Table 53. Hydrogels in supercapacitors. 155
  • Table 54. Hydrogel revenues, in energy 2020-2034 (Billion USD). 158
  • Table 55. Hydrogels in the sensors market.           160
  • Table 56. Market drivers for hydrogels in sensors.             160
  • Table 57. Hydrogel revenues in sensors 2020-2034 (Billion USD). 164
  • Table 58. Market drivers for hydrogels in membranes.    166
  • Table 59. Hydrogels in tissue engineering .            169
  • Table 60. Applications of hydrogel membranes for tissue engineering and drug delivery. 171
  • Table 61.  Applications of hydrogel membranes for separation processes in water/wastewater treatment.              173
  • Table 62. Hydrogel revenues, in membranes 2020-2034 (Billion USD).      176
  • Table 63. Self-healing natural polymers. 182
  • Table 64. Synthetic polymers.     183
  • Table 65. Components, preparation and properties of representative conductive polymer hydrogels.        186
  • Table 66. Properties of graphene.             187
  • Table 67. Applications of self-healing hydrogels. 189

 

List of Figures

  • Figure 1. Structure of hydrogel. 21
  • Figure 2. Classification of hydrogels based on properties.               23
  • Figure 3. Preparation and potential biomedical applications of click hydrogels, microgels and nanogels.    25
  • Figure 4. Polymers and crosslinking physico-chemistry.   29
  • Figure 5. Schematic illustrations of chemical crosslinking mechanism.       32
  • Figure 6.  Four common free-radical polymerization methods.     33
  • Figure 7. Physically crosslinking stimuli sensitive to hydrogels.     35
  • Figure 8. Schematic of physical crosslinking mechanism. 36
  • Figure 9. Methods for producing bio-based aerogels.       37
  • Figure 10. Classification of polymer hydrogels.    47
  • Figure 11. Types of polymer hydrogels.  48
  • Figure 12. Schematic illustration smart hydrogels subjected to an external stimuli.              52
  • Figure 13. Schematic of thermogel application.   54
  • Figure 14. Applications of pH-sensitive hydrogel sensors in biomedicine. 55
  • Figure 15. Shape memory hydrogel.        57
  • Figure 16. Graphene aerogel.     60
  • Figure 17. Applications roadmap for hydrogels.  66
  • Figure 18. Hydrogel revenues, by market 2020-2034 (billions USD).           69
  • Figure 19. Hydrogel revenues, by hydrogel type 2020-2034 (billions USD).              72
  • Figure 20. Hydrogel revenues, by region 2020-2034 (billions USD).             75
  • Figure 21. Hydrogel wound dressing.       81
  • Figure 22. Injectable hydrogel.   85
  • Figure 23. Schematic illustration of approaches to make injectable hydrogels for cartilage- and bone tissue-engineering applications.              87
  • Figure 24. Hydrogel tissue engineering scaffold. 96
  • Figure 25. Hydrogel mask product.           98
  • Figure 26. Biosensor system structure.   103
  • Figure 27. SWOT analysis for hydrogels in healthcare & wellness.               105
  • Figure 28. Schematic of how hydrogels act in water purification by contaminant adsorption.          111
  • Figure 29. Schematic of hydrogels as the materials platform for highly efficient solar water purification.   112
  • Figure 30. Water harvesting with hydrogels.        113
  • Figure 31. SWOT analysis for hydrogels in water purification & capture.   115
  • Figure 32. Alsta Hydrogel.             120
  • Figure 33. Mechanism of action of hydrogel upon soil-based application. 121
  • Figure 34. SWOT analysis for hydrogels in agriculture.      124
  • Figure 35. Concrete Hydrogels.  129
  • Figure 36. Layered Hydrogel between Wall Panels.            131
  • Figure 37. IaaC Students Develop a Passive Cooling System from Hydrogel and Ceramic.   133
  • Figure 38. SWOT analysis for hydrogels in building & construction.             135
  • Figure 39. SWOT analysis for hydrogels in electronics.      144
  • Figure 40. Various architectures for flexible and stretchable electrochemical energy storage.        150
  • Figure 41. Types of flexible batteries.      152
  • Figure 42. Schematic of photovoltaic integrated water-electricity-crop co-production system.      156
  • Figure 43. SWOT analysis for hydrogels in energy.             157
  • Figure 44. SWOT analysis for hydrogels in sensors.            163
  • Figure 45. Processes for hydrogel membrane fabrication.              168
  • Figure 46. Hydrogel drug delivery membranes.   171
  • Figure 47. SWOT analysis for hydrogels in membranes.   176
  • Figure 48. Healing process in a hydrogel.               179
  • Figure 49. Chemical and noncovalent interactions behind self-healable hydrogels.             181
  • Figure 50. (A) Wound self-healing process (B) Different forms of wound dressings.             185
  • Figure 51. Hydrogel shown in orange strong affinity with water and creates a layer of water on the hull which lowers hull friction.        191
  • Figure 52. Organic hydrogel.       198
  • Figure 53. Anpoly cellulose nanofiber hydrogel.  202
  • Figure 54. MEDICELLU™.               202
  • Figure 55. Cellugy materials.        207
  • Figure 56. 2D paper batteries.    215
  • Figure 57. 3D Custom Format paper batteries.    215
  • Figure 58. GelSana Therapeutics hydrogel.           218
  • Figure 59. PeptiGels®.   225
  • Figure 60. MEDAGEL patch.         229
  • Figure 61. Nix Biosensors patch. 230
  • Figure 62. mediNiK® hydrogel with encapsulated kidney stone fragments following removal from the kidney.        238
  • Figure 63. GelrinC Procedure.     240
  • Figure 64. Spider silk production.              246
  • Figure 65. FibDex® wound dressing.        250

 

 

Start-up and academic discounts available. Contact info@futuremarketsinc.com

The Global Market for Hydrogels 2024-2034
The Global Market for Hydrogels 2024-2034
eBook.

The Global Market for Hydrogels 2024-2034
The Global Market for Hydrogels 2024-2034
eBook plus Hard Copy (Including tracked FEDEX delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.