The Global Market for In-mold Electronics (IME) 2025-2035

0

cover

cover

  • Published: January 2025
  • Pages: 83
  • Tables: 47
  • Figures: 10

 

In-mold electronics (IME), also sometimes known as plastronics,  is an innovative technology that combines traditional injection molding with printed electronics. This process allows for the embedding of functional electronic elements, such as touch sensors, displays, and lighting, directly into plastic components during the molding process. This process allows for the creation of smart surfaces and complex electronic functionalities within a single manufacturing step. IME technology enables the embedding of touch sensors, lighting, and other electronic functionalities into 3D molded surfaces, resulting in streamlined manufacturing processes and reduced assembly costs. This not only enhances product performance but also improves aesthetics by removing the need for external components. 

The advantages of IME include:

  • Design Flexibility: IME enables the creation of complex shapes and designs that are not possible with traditional electronics integration methods.
  • Durability: The electronic components are protected within the molded plastic, making them more resistant to wear and environmental factors.
  • Cost Efficiency: By integrating multiple functions into a single part, IME can reduce assembly costs and improve manufacturing efficiency.

 

IME technology typically involves a three-step process:

  • Printing of Electronic Circuits: This step includes the application of conductive inks to create the necessary electronic pathways.
  • Forming: The printed circuits are then formed into the desired shape, which is crucial for ensuring that the electronics fit seamlessly into the final product.
  • Molding: Finally, the formed circuits are encapsulated within a molded part, creating a durable and functional electronic component that can be used in various applications, such as automotive interiors, consumer electronics, and medical devices.

 

IME products are particularly beneficial in industries such as automotive, consumer electronics, and medical devices, where space and weight savings are critical. The technology not only enhances product design but also improves durability and performance by eliminating the need for separate electronic assemblies, enabling the creation of user-friendly interfaces and complex electronic systems within a single molded part. IME products are designed to meet the growing demand for smart, connected devices, enabling manufacturers to innovate and differentiate their offerings in competitive markets. 

The Global Market for In-Mold Electronics (IME) 2025-2035 provides an in-depth analysis of the rapidly growing global in-mold electronics (IME) market, examining key trends, technologies, materials, applications, and market forecasts from 2025 to 2035. The study offers detailed insights into this transformative technology that integrates electronic functionality directly into molded plastic components, revolutionizing manufacturing across multiple industries. The report provides extensive coverage of IME manufacturing processes, including detailed analysis of production methods, component integration, and material requirements. Key focus areas include surface functionalization technologies, conductive inks, transparent conductors, and substrate materials essential for successful IME implementation.

Market analysis covers major application sectors including:

  • Automotive human-machine interfaces
  • White goods and appliances
  • Medical devices
  • Industrial controls
  • Wearable electronics

 

The study examines critical aspects of IME technology including:

  • Manufacturing processes and requirements
  • Component integration strategies
  • Materials development and selection
  • Quality control and testing
  • Regulatory considerations
  • Sustainability aspects

 

Technical coverage includes detailed analysis of:

  • Conductive ink formulations
  • Transparent conductive materials
  • Substrate and thermoplastic selection
  • Integration of electronic components
  • Surface treatment technologies
  • Testing and validation methods

 

The report features comprehensive market data including:

  • Market size and growth projections (2025-2035)
  • Revenue forecasts by application sector
  • Regional market analysis
  • Technology adoption trends
  • Competitive landscape assessment. The report profiles leading companies across the IME value chain, including Canatu, CHASM Technologies, Covestro, Dupont, E2IP Technologies, Elantas, Embega, FORVIA Faurecia, Genes'Ink, Henkel, Kimoto, Nissha, TactoTek Oy, and more. These companies represent various segments of the IME industry including material suppliers, equipment manufacturers, technology developers, and end-product manufacturers.

 

Special focus is placed on emerging technologies and innovations:

  • Advanced material developments
  • Novel manufacturing processes
  • Integration strategies
  • Future technology roadmaps
  • Market opportunities and challenges

 

This comprehensive report serves as an essential resource for:

  • Material manufacturers
  • Electronics manufacturers
  • Automotive companies
  • Consumer electronics brands
  • Medical device manufacturers
  • Investment firms
  • R&D organizations
  • Strategic planners

 

 

1             EXECUTIVE SUMMARY            11

  • 1.1        Design limitations on surfaces           11
  • 1.2        Applications   12
  • 1.3        IME manufacturing    14
  • 1.4        Investments    16
  • 1.5        Sustainability 17
  • 1.6        Market outlook             17
  • 1.7        Market forecasts         20

 

2             INTRODUCTION          23

  • 2.1        Functionality Integration        23
  • 2.2        3D Electronics               24
  • 2.3        IME Value Chain          25

 

3             IME MANUFACTURING            26

  • 3.1        IME components         26
  • 3.2        IME production             27
  • 3.3        Implementation approaches              28
    • 3.3.1    Hybrid 28
    • 3.3.2    One-film vs two-film  28
    • 3.3.3    Implementation of multilayer circuits           28
    • 3.3.4    Integration of integrated circuits in IME        28
    • 3.3.5    Print-then-plate            29
    • 3.3.6    Automation     30
    • 3.3.7    Transfer printing technology 30
    • 3.3.8    Evaporated line technology  30
    • 3.3.9    Capacitive touch functionality           30
  • 3.4        Other manufacturing methods          30
  • 3.5        Functional film bonding         31
  • 3.6        Metallization Methods             32
  • 3.7        MID technology            32
    • 3.7.1    Aerosol deposition     33
    • 3.7.2    Laser Direct Structuring (LDS)            33
    • 3.7.3    Two shot molding        34
    • 3.7.4    3D surfaces    34
    • 3.7.5    Impulse printing technology 35
    • 3.7.6    Pad printing     35
    • 3.7.7    Spray metallization    35
  • 3.8        Multifunctional composites 36
  • 3.9        Additive manufacturing          36

 

4             IME COMPONENTS INTEGRATION  37

  • 4.1        Capacitive sensing technology          37
    • 4.1.1    Overview           37
    • 4.1.2    Operation         37
  • 4.2        Lighting              38
  • 4.3        Haptics              39
  • 4.4        3D Displays     39
  • 4.5        Antenna            39

 

5             MATERIALS FOR IME 40

  • 5.1        Overview           40
  • 5.2        Conductive inks           41
    • 5.2.1    Materials           42
    • 5.2.2    Stretchable inks           42
    • 5.2.3    Inks for IME     43
  • 5.3        Dielectric inks               44
  • 5.4        Electrically conductive adhesives   45
  • 5.5        Transparent conductive materials   46
    • 5.5.1    Overview           46
    • 5.5.2    Types   46
    • 5.5.3    Carbon nanotube (CNT) films             46
    • 5.5.4    Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)  47
    • 5.5.5    Carbon nanobuds      47
    • 5.5.6    Metal mesh     48
  • 5.6        Substrate and thermoplastic materials        48

 

6             MARKETS FOR IME     50

  • 6.1        Automotive      50
    • 6.1.1    Overview           50
    • 6.1.2    Commercial applications      51
      • 6.1.2.1 Sensing              51
      • 6.1.2.2 Headlamp covers        52
      • 6.1.2.3 Steering Wheel              52
    • 6.1.3    Global market forecast           52
  • 6.2        White Goods  53
    • 6.2.1    Overview           53
    • 6.2.2    Applications   53
    • 6.2.3    Global market forecast           55
  • 6.3        Medical Devices           56
    • 6.3.1    Overview           56
    • 6.3.2    Applications   56
    • 6.3.3    Global market forecast           57
  • 6.4        Industrial          58
    • 6.4.1    Overview           58
    • 6.4.2    Applications   58
  • 6.5        Wearable Electronics               59
    • 6.5.1    Overview           59
    • 6.5.2    Applications   60
  • 6.6        Other Markets and Applications       61

 

7             COMPANY PROFILES                62

 

8             REFERENCES 85

 

List of Tables

  • Table 1. Surface Functionalization Technologies Comparison     11
  • Table 2. In-Mold Electronics Applications. 13
  • Table 3. IME Manufacturing Requirements.               14
  • Table 4. Competing Manufacturing Methods.          15
  • Table 5. Smart Surface Manufacturing Methods.   16
  • Table 6. Investment in In-Mold Electronics 17
  • Table 7. IME Applications and Stage of Development.        18
  • Table 8. IME Benefits and Challenges.          19
  • Table 9. Global Market Forecast for IME Component Area by Application, 2025-2035 (m²).     21
  • Table 10. Global Market Forecast for IME Revenue by Application, 2025-2035 (US$ Millions).               21
  • Table 11. In-mold Electronics Applications and Markets. 23
  • Table 12. Approaches to 3D Printed Electronics.   25
  • Table 13. Manufacturing of IME Components.         26
  • Table 14. Manufacturing Methods Comparison      27
  • Table 15. IME Production Equipment.           27
  • Table 16. IC Package Requirements for IME.             29
  • Table 17. Process Comparison.        31
  • Table 18. Comparison of Metallization Methods.   32
  • Table 19. MID Manufacturing Methods Comparison           33
  • Table 20. Applications of LDS.            33
  • Table 21. Applications for Printing Wiring onto 3D Surfaces.          35
  • Table 22. Processes for 3D Electronics.       36
  • Table 23. Printed Capacitive Sensor Technologies.              37
  • Table 24. Conventional Backlighting vs Integrated Lighting with IME.       38
  • Table 25. Materials for IME.  40
  • Table 26. Material Composition comparison of IME vs Conventional HMI.           40
  • Table 27. IME Materials companies.               41
  • Table 28. Conductive Ink Materials  42
  • Table 29. In-mold Conductive Inks. 43
  • Table 30. Conductive Ink Requirements for IME.    44
  • Table 31. Properties of Stretchable/Thermoformable Conductive Inks   44
  • Table 32. Types of Conductive Adhesives.  45
  • Table 33. Transparent Conductive Materials for IME.          46
  • Table 34. Carbon Nanotube In-mold Films.               47
  • Table 35. PEDOT:PSS Films  47
  • Table 36. Substrates and Thermoplastics for IME. 48
  • Table 37.IME in Automotive HMI.      50
  • Table 38. Commercial Automotive In-mold Decoration.   51
  • Table 39. Global market forecast for IME in the Automotive Market 2025-2035 (USD Millions).             52
  • Table 40. Applications of IME in White Goods.        53
  • Table 41. Example IME for White Goods products.               54
  • Table 42. Global market forecast for IME in White Goods Market 2025-2035 (USD Millions).  55
  • Table 43. Medical Device Applications.        56
  • Table 44. Global market forecast for IME in Medical Devices Market 2025-2035 (USD Millions).          57
  • Table 45. Industrial IME Applications             58
  • Table 46. Wearable IME Applications.           60
  • Table 47. Other markets and applications for IME.               61

 

List of Figures

  • Figure 1. IME device. 12
  • Figure 2. IME manufacturing process flow. 15
  • Figure 3. Global Market Forecast for IME Component Area by Application, 2025-2035 (m²).   21
  • Figure 4. Global Market Forecast for IME Revenue by Application, 2025-2035 (US$ Millions). 22
  • Figure 5. IME Value Chain.    25
  • Figure 6. Global market forecast for IME in the Automotive Market 2025-2035 (USD Millions).              52
  • Figure 7.  Top panel of the remote control, made with in-mold decoration (IMD).            54
  • Figure 8. Global market forecast for IME in White Goods Market 2025-2035 (USD Millions).   55
  • Figure 9. Global market forecast for IME in Medical Devices Market 2025-2035 (USD Millions).           58
  • Figure 10. Origo Steering Wheel.       67

 

 

 

The Global Market for In-mold Electronics (IME) 2025-2035
The Global Market for In-mold Electronics (IME) 2025-2035
PDF download.

The Global Market for In-mold Electronics (IME) 2025-2035
The Global Market for In-mold Electronics (IME) 2025-2035
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com