The Global Market for In-mold Electronics (IME) 2025-2035

0

cover

cover

  • Published: January 2025
  • Pages: 91
  • Tables: 48
  • Figures: 18

 

In-mold electronics (IME), also sometimes known as plastronics,  is an innovative technology that combines traditional injection molding with printed electronics. This process allows for the embedding of functional electronic elements, such as touch sensors, displays, and lighting, directly into plastic components during the molding process. This process allows for the creation of smart surfaces and complex electronic functionalities within a single manufacturing step. IME technology enables the embedding of touch sensors, lighting, and other electronic functionalities into 3D molded surfaces, resulting in streamlined manufacturing processes and reduced assembly costs. This not only enhances product performance but also improves aesthetics by removing the need for external components. 

The advantages of IME include:

  • Design Flexibility: IME enables the creation of complex shapes and designs that are not possible with traditional electronics integration methods.
  • Durability: The electronic components are protected within the molded plastic, making them more resistant to wear and environmental factors.
  • Cost Efficiency: By integrating multiple functions into a single part, IME can reduce assembly costs and improve manufacturing efficiency.

 

IME technology typically involves a three-step process:

  • Printing of Electronic Circuits: This step includes the application of conductive inks to create the necessary electronic pathways.
  • Forming: The printed circuits are then formed into the desired shape, which is crucial for ensuring that the electronics fit seamlessly into the final product.
  • Molding: Finally, the formed circuits are encapsulated within a molded part, creating a durable and functional electronic component that can be used in various applications, such as automotive interiors, consumer electronics, and medical devices.

 

IME products are particularly beneficial in industries such as automotive, consumer electronics, and medical devices, where space and weight savings are critical. The technology not only enhances product design but also improves durability and performance by eliminating the need for separate electronic assemblies, enabling the creation of user-friendly interfaces and complex electronic systems within a single molded part. IME products are designed to meet the growing demand for smart, connected devices, enabling manufacturers to innovate and differentiate their offerings in competitive markets. 

The Global Market for In-Mold Electronics (IME) 2025-2035 provides an in-depth analysis of the rapidly growing global in-mold electronics (IME) market, examining key trends, technologies, materials, applications, and market forecasts from 2025 to 2035. The study offers detailed insights into this transformative technology that integrates electronic functionality directly into molded plastic components, revolutionizing manufacturing across multiple industries. The report provides extensive coverage of IME manufacturing processes, including detailed analysis of production methods, component integration, and material requirements. Key focus areas include surface functionalization technologies, conductive inks, transparent conductors, and substrate materials essential for successful IME implementation.

Market analysis covers major application sectors including:

  • Automotive human-machine interfaces
  • White goods and appliances
  • Medical devices
  • Industrial controls
  • Wearable electronics

 

The study examines critical aspects of IME technology including:

  • Manufacturing processes and requirements
  • Component integration strategies
  • Materials development and selection
  • Quality control and testing
  • Regulatory considerations
  • Sustainability aspects

 

Technical coverage includes detailed analysis of:

  • Conductive ink formulations
  • Transparent conductive materials
  • Substrate and thermoplastic selection
  • Integration of electronic components
  • Surface treatment technologies
  • Testing and validation methods

 

The report features comprehensive market data including:

  • Market size and growth projections (2025-2035)
  • Revenue forecasts by application sector
  • Regional market analysis
  • Technology adoption trends
  • Competitive landscape assessment. The report profiles leading companies across the IME value chain, including Canatu, CHASM Technologies, Covestro, Dupont, E2IP Technologies, Elantas, Embega, FORVIA Faurecia, Genes'Ink, Henkel, Kimoto, Nissha, TactoTek Oy, and more. These companies represent various segments of the IME industry including material suppliers, equipment manufacturers, technology developers, and end-product manufacturers.

 

Special focus is placed on emerging technologies and innovations:

  • Advanced material developments
  • Novel manufacturing processes
  • Integration strategies
  • Future technology roadmaps
  • Market opportunities and challenges

 

This comprehensive report serves as an essential resource for:

  • Material manufacturers
  • Electronics manufacturers
  • Automotive companies
  • Consumer electronics brands
  • Medical device manufacturers
  • Investment firms
  • R&D organizations
  • Strategic planners

 

 

1             EXECUTIVE SUMMARY            11

  • 1.1        Design limitations on surfaces           11
  • 1.2        Applications   13
  • 1.3        IME manufacturing    16
  • 1.4        Investments    18
  • 1.5        Sustainability 19
  • 1.6        Market outlook             19
  • 1.7        Market forecasts         22

 

2             INTRODUCTION          25

  • 2.1        Functionality Integration        25
  • 2.2        3D Electronics               26
    • 2.2.1    Printing of Electronics on Multiple Sides     28
    • 2.2.2    Conformal Electronics Printing on 3D Surfaces      28
    • 2.2.3    Electronics Printing in Hollow Objects          29
  • 2.3        IME Value Chain          29

 

3             IME MANUFACTURING            31

  • 3.1        IME components         31
  • 3.2        IME production             32
  • 3.3        Implementation approaches              32
    • 3.3.1    Hybrid 32
    • 3.3.2    One-film vs two-film  33
    • 3.3.3    Implementation of multilayer circuits           33
    • 3.3.4    Integration of integrated circuits in IME        33
    • 3.3.5    Print-then-plate            34
    • 3.3.6    Automation     34
    • 3.3.7    Transfer printing technology 35
    • 3.3.8    Evaporated line technology  35
    • 3.3.9    Capacitive touch functionality           35
  • 3.4        Other manufacturing methods          35
  • 3.5        Functional film bonding         36
  • 3.6        Metallization Methods             37
  • 3.7        MID technology            37
    • 3.7.1    Aerosol deposition     38
    • 3.7.2    Laser Direct Structuring (LDS)            38
    • 3.7.3    Two shot molding        39
    • 3.7.4    3D surfaces    39
    • 3.7.5    Impulse printing technology 40
    • 3.7.6    Pad printing     40
    • 3.7.7    Spray metallization    40
  • 3.8        Multifunctional composites 40
  • 3.9        Additive manufacturing          41

 

4             IME COMPONENTS INTEGRATION  42

  • 4.1        Capacitive sensing technology          42
    • 4.1.1    Overview           42
    • 4.1.2    Operation         42
  • 4.2        Lighting              43
  • 4.3        Haptics              44
  • 4.4        3D Displays     44
  • 4.5        Antenna            44

 

5             MATERIALS FOR IME 45

  • 5.1        Overview           45
  • 5.2        Conductive inks           46
    • 5.2.1    Materials           47
    • 5.2.2    Stretchable inks           47
    • 5.2.3    Inks for IME     49
  • 5.3        Dielectric inks               50
  • 5.4        Electrically conductive adhesives   50
  • 5.5        Transparent conductive materials   51
    • 5.5.1    Overview           51
    • 5.5.2    Types   51
    • 5.5.3    Carbon nanotube (CNT) films             52
    • 5.5.4    Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)  52
    • 5.5.5    Carbon nanobuds      53
    • 5.5.6    Metal mesh     53
  • 5.6        Substrate and thermoplastic materials        53

 

6             MARKETS FOR IME     55

  • 6.1        Automotive      55
    • 6.1.1    Overview           55
    • 6.1.2    Commercial applications      56
      • 6.1.2.1 Sensing              56
      • 6.1.2.2 Headlamp covers        57
      • 6.1.2.3 Steering Wheel              58
    • 6.1.3    Global market forecast           58
  • 6.2        White Goods  59
    • 6.2.1    Overview           59
    • 6.2.2    Applications   60
    • 6.2.3    Global market forecast           61
  • 6.3        Medical Devices           62
    • 6.3.1    Overview           62
    • 6.3.2    Applications   62
    • 6.3.3    Global market forecast           63
  • 6.4        Industrial          64
    • 6.4.1    Overview           64
    • 6.4.2    Applications   64
  • 6.5        Wearable Electronics               65
    • 6.5.1    Overview           65
    • 6.5.2    Applications   66
  • 6.6        Other Markets and Applications       66

 

7             COMPANY PROFILES                68 (28 company profiles)

 

8             REFERENCES 90

 

List of Tables

  • Table 1. Surface Functionalization Technologies Comparison     11
  • Table 2. Electronics Manufacturing Technologies  12
  • Table 3. In-Mold Electronics Applications. 15
  • Table 4. IME Manufacturing Requirements.               16
  • Table 5. Competing Manufacturing Methods.          17
  • Table 6. Smart Surface Manufacturing Methods.   18
  • Table 7. Investment in In-Mold Electronics 18
  • Table 8. IME Applications and Stage of Development.        20
  • Table 9. IME Benefits and Challenges.          21
  • Table 10. Global Market Forecast for IME Component Area by Application, 2025-2035 (m²).  22
  • Table 11. Global Market Forecast for IME Revenue by Application, 2025-2035 (US$ Millions).               23
  • Table 12. In-mold Electronics Applications and Markets. 25
  • Table 13. Approaches to 3D Printed Electronics.   27
  • Table 14. Manufacturing of IME Components.         31
  • Table 15. Manufacturing Methods Comparison      32
  • Table 16. IME Production Equipment.           32
  • Table 17. IC Package Requirements for IME.             34
  • Table 18. Process Comparison.        36
  • Table 19. Comparison of Metallization Methods.   37
  • Table 20. MID Manufacturing Methods Comparison           37
  • Table 21. Applications of LDS.            38
  • Table 22. Applications for Printing Wiring onto 3D Surfaces.          39
  • Table 23. Processes for 3D Electronics.       41
  • Table 24. Printed Capacitive Sensor Technologies.              42
  • Table 25. Conventional Backlighting vs Integrated Lighting with IME.       43
  • Table 26. Materials for IME.  45
  • Table 27. Material Composition comparison of IME vs Conventional HMI.           45
  • Table 28. IME Materials companies.               46
  • Table 29. Conductive Ink Materials  47
  • Table 30. In-mold Conductive Inks. 49
  • Table 31. Conductive Ink Requirements for IME.    49
  • Table 32. Properties of Stretchable/Thermoformable Conductive Inks   49
  • Table 33. Types of Conductive Adhesives.  50
  • Table 34. Transparent Conductive Materials for IME.          51
  • Table 35. Carbon Nanotube In-mold Films.               52
  • Table 36. PEDOT:PSS Films  53
  • Table 37. Substrates and Thermoplastics for IME. 53
  • Table 38.IME in Automotive HMI.      55
  • Table 39. Commercial Automotive In-mold Decoration.   56
  • Table 40. Global market forecast for IME in the Automotive Market 2025-2035 (USD Millions).             58
  • Table 41. Applications of IME in White Goods.        60
  • Table 42. Example IME for White Goods products.               61
  • Table 43. Global market forecast for IME in White Goods Market 2025-2035 (USD Millions).  61
  • Table 44. Medical Device Applications.        62
  • Table 45. Global market forecast for IME in Medical Devices Market 2025-2035 (USD Millions).          63
  • Table 46. Industrial IME Applications             64
  • Table 47. Wearable IME Applications.           66
  • Table 48. Other markets and applications for IME.               67

 

List of Figures

  • Figure 1. Examples of Structural Electronics.           12
  • Figure 2. IME device. 14
  • Figure 3. Examples of various companies producing IME.               15
  • Figure 4. IME manufacturing process flow. 17
  • Figure 5. Global Market Forecast for IME Component Area by Application, 2025-2035 (m²).   23
  • Figure 6. Global Market Forecast for IME Revenue by Application, 2025-2035 (US$ Millions). 24
  • Figure 7. Structural Difference in 3D Printed Electronics. 27
  • Figure 8. Example Electronics on 3D Surfaces.       28
  • Figure 9. IME Value Chain.    30
  • Figure 10. LG Display stretchable display.  48
  • Figure 11. Cross-section of a capacitive touch sensor.      57
  • Figure 12. Thermally conductive automotive heat-sink with in-mold electronics.            58
  • Figure 13. Global market forecast for IME in the Automotive Market 2025-2035 (USD Millions).           59
  • Figure 14.  Top panel of the remote control, made with in-mold decoration (IMD).         60
  • Figure 15. Global market forecast for IME in White Goods Market 2025-2035 (USD Millions). 61
  • Figure 16. Global market forecast for IME in Medical Devices Market 2025-2035 (USD Millions).        64
  • Figure 17. 3D transparent touch panel produced by Canatu and Faurecia.         72
  • Figure 18. Origo Steering Wheel.       73

 

 

The Global Market for In-mold Electronics (IME) 2025-2035
The Global Market for In-mold Electronics (IME) 2025-2035
PDF download.

The Global Market for In-mold Electronics (IME) 2025-2035
The Global Market for In-mold Electronics (IME) 2025-2035
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com