The Global Market for Industrial Gases 2025-2035 (Oxygen, Nitrogen, Hydrogen, Helium, Carbon Dioxide, Argon, Other Types)

0

cover

cover

  • Published: September 2024
  • Pages: 790
  • Tables: 139
  • Figures: 188
  • Company profiles: 575+

 

The global industrial gases market is poised for significant growth and transformation in the period from 2025 to 2035. This report provides a comprehensive analysis of market trends, key players, technological advancements, and emerging applications that will shape the industry over the next decade. With a focus on sustainability, energy transition, and innovative technologies, the industrial gases sector is set to play a crucial role in various industries, from manufacturing and healthcare to emerging fields like hydrogen energy and carbon capture.

The industrial gases market is a critical component of the global economy, serving as an essential input for numerous industries. As of 2025, the market's importance is underpinned by several factors:

  • Manufacturing Support: Industrial gases are vital in manufacturing processes across sectors such as steel, chemicals, electronics, and food processing. They enable efficient production, improve product quality, and enhance process safety.
  • Healthcare Applications: Medical gases, including oxygen, nitrous oxide, and medical air, are crucial in healthcare settings for patient treatment, surgical procedures, and life support systems.
  • Environmental Solutions: Industrial gases play a key role in environmental applications, including water treatment, air pollution control, and greenhouse gas reduction technologies.
  • Energy Sector: The gases industry supports various aspects of the energy sector, from enhanced oil recovery to the emerging hydrogen economy.

 

The period from 2025 to 2035 is expected to see renewed interest in the industrial gases market, driven by several factors:

  • Energy Transition: The global push towards decarbonization and clean energy solutions has put a spotlight on industrial gases, particularly hydrogen and its role in the energy transition.
  • Sustainability Initiatives: Companies across industries are increasingly focusing on reducing their carbon footprint, leading to greater demand for industrial gases in carbon capture and utilization technologies.
  • Technological Advancements: Innovations in production, distribution, and application of industrial gases are opening new market opportunities and improving efficiency.
  • Healthcare Expansion: The ongoing global focus on healthcare infrastructure development, especially in emerging markets, is driving demand for medical gases and related technologies.
  • Space Exploration: Renewed interest in space missions and the potential for space industrialization is creating new demand for specialized industrial gases.

 

The industrial gases market is expanding into new territories and applications, which are expected to be significant growth drivers from 2025 to 2035:

  • Green Hydrogen: The production, storage, and distribution of green hydrogen for use in transportation, industry, and power generation represent a major new market for the industrial gases sector.
  • Carbon Capture, Utilization, and Storage (CCUS): As governments and industries seek to reduce greenhouse gas emissions, CCUS technologies are gaining traction, creating new opportunities for industrial gas companies.
  • 3D Printing/Additive Manufacturing: The growth of additive manufacturing is increasing demand for specialized gases used in the production process.
  • Electronics and Semiconductor Industry: The continued expansion of the electronics industry, including the development of advanced semiconductors and display technologies, is driving demand for high-purity gases.
  • Biotechnology and Life Sciences: The rapid growth of the biotechnology sector is creating new applications for industrial gases in research, production, and storage of biological materials.
  • Vertical Farming and Controlled Environment Agriculture: The expansion of indoor farming techniques is increasing demand for CO2 and other gases used to enhance plant growth.

 

As the nuclear industry faces challenges from the growth of renewable energy in conventional power production, it is increasingly looking towards industrial gas production as a potential new revenue stream and way to utilize its existing infrastructure and expertise. This trend is driven by several factors:

  • Hydrogen Production: Nuclear plants can use their excess heat and electricity to produce hydrogen through high-temperature electrolysis, potentially offering a cost-effective and low-carbon method of hydrogen production at scale.
  • Oxygen Production: The electrolysis process used for hydrogen production also generates pure oxygen as a by-product, which can be captured and sold for industrial use.
  • Utilization of Existing Infrastructure: Nuclear plants have extensive electrical and cooling infrastructure that can be leveraged for industrial gas production, potentially lowering capital costs.
  • Stable Baseload Power: Nuclear plants provide constant, reliable power that is well-suited to the continuous operation required for many industrial gas production processes.
  • Carbon-Free Production: As industries seek to decarbonize their supply chains, nuclear-powered industrial gas production offers a low-carbon alternative to traditional fossil fuel-based methods.

 

The report segments and analyzes the industrial gases market along several dimensions:

  • By Gas Type:
    • Nitrogen
    • Oxygen
    • Hydrogen
    • Carbon Dioxide
    • Argon
    • Helium
    • Specialty Gases
  • By End-Use Industry:
    • Manufacturing and Metallurgy
    • Chemicals and Petrochemicals
    • Healthcare and Pharmaceuticals
    • Food and Beverage
    • Electronics and Semiconductors
    • Energy and Power Generation
    • Aerospace and Aviation
    • Others (e.g., Environmental, Research)
  • By Production Method:
    • Air Separation Units (ASUs)
    • Steam Methane Reforming
    • Electrolysis
    • By-Product Recovery
    • Others (e.g., Nuclear-Powered Production)
  • By Distribution Mode:
    • On-Site/Pipeline
    • Bulk
    • Packaged Gas/Cylinders

 

The report examines key technological advancements that are shaping the future of the industrial gases market:

  • Advanced Air Separation Technologies: Improvements in cryogenic distillation and non-cryogenic separation methods are increasing efficiency and reducing energy consumption.
  • Hydrogen Production Technologies: Advancements in electrolysis, including high-temperature electrolysis and polymer electrolyte membrane (PEM) electrolysis, as well as emerging technologies like methane pyrolysis.
  • Carbon Capture and Utilization: Innovations in capture technologies, including direct air capture, and new applications for captured CO2.
  • IoT and Digital Technologies: Implementation of smart sensors, predictive maintenance, and digital supply chain management in gas production and distribution.
  • Advanced Materials: Development of new materials for gas storage, separation membranes, and catalysts.

 

The report provides an in-depth analysis of the competitive landscape, including:

  • Market Share Analysis: Examination of the global and regional market shares of key players.
  • 579 Company Profiles: Detailed profiles of major companies, including their product portfolios, financial performance, and strategic initiatives. Companies profiled include Air Liquide, Air Products and Chemicals, Inc., AspiraDAC, Carbofex Oy, CarbonCapture Inc., Charm Industrial, Climeworks, Everfuel, Generon, IACX Energy, Linde plc, Lhyfe, Messer Group, POSCO, and Taiyo Nippon Sanso Corporation. 
  • Competitive Strategies: Analysis of key strategies employed by market leaders, such as mergers and acquisitions, joint ventures, and product innovations.
  • Emerging Players: Identification and analysis of new entrants and innovative startups disrupting the market.

 

The report provides detailed market forecasts for the period 2025-2035, including:

  • Market Size Projections: Overall market size and growth rates, segmented by gas type, end-use industry, and region.
  • Technology Adoption Trends: Forecasts for the adoption of new technologies and production methods.
  • Emerging Application Areas: Projections for growth in new and emerging applications of industrial gases.
  • Scenario Analysis: Multiple scenarios considering factors such as economic conditions, technological advancements, and regulatory changes.

 

The global industrial gases market is entering a period of significant transformation and growth from 2025 to 2035. Driven by the energy transition, technological advancements, and emerging applications, the industry is poised to play a crucial role in addressing global challenges such as climate change and sustainable industrial development. The involvement of the nuclear industry in gas production represents a notable shift, potentially offering new, low-carbon production methods at scale. As the market evolves, companies that can innovate, adapt to changing regulations, and capitalize on new opportunities will be well-positioned for success in this dynamic and essential industry.

 

 

1             INTRODUCTION TO INDUSTRIAL GASES     37

  • 1.1        Definition and Classification of Industrial Gases   37
  • 1.2        Major Types of Industrial Gases        38
    • 1.2.1    Oxygen               38
    • 1.2.2    Nitrogen            39
    • 1.2.3    Argon  40
    • 1.2.4    Hydrogen          41
    • 1.2.5    Carbon Dioxide            43
    • 1.2.6    Helium               44
    • 1.2.7    Acetylene          46
    • 1.2.8    Other Specialty Gases             47
  • 1.3        Key Applications and End-Use Industries   49
  • 1.4        Production Methods and Technologies        51
    • 1.4.1    Air Separation Units (ASUs)  52
    • 1.4.2    Steam Methane Reforming   53
    • 1.4.3    Electrolysis      54
    • 1.4.4    By-Product Recovery 55
  • 1.5        Distribution and Supply Chain Dynamics   56

 

2             GLOBAL MARKET OVERVIEW              58

  • 2.1        Global Industrial Gas Market Size    58
    • 2.1.1    By Gas Type     58
    • 2.1.2    By End-Use Industry  60
    • 2.1.3    By Supply Mode (On-site, Bulk, Cylinder)    61
  • 2.2        Regional Market Analysis      62
    • 2.2.1    North America              62
    • 2.2.2    Europe                64
    • 2.2.3    Asia-Pacific    65
    • 2.2.4    Latin America 66
    • 2.2.5    Middle East and Africa             67
  • 2.3        Market Drivers and Restraints            67
  • 2.4        Industry Trends and Developments 68

 

3             OXYGEN MARKET ANALYSIS 69

  • 3.1        Oxygen Classification and Purity Levels       69
  • 3.2        Main Markets and Typical Levels of Purity   70
    • 3.2.1    Steelmaking   70
    • 3.2.2    Chemicals Production             71
    • 3.2.3    Refining             72
    • 3.2.4    Glass & Ceramics Production             72
    • 3.2.5    Water Treatment          73
    • 3.2.6    Medical Oxygen            73
    • 3.2.7    Metal Fabrication        74
    • 3.2.8    Pulp & Paper   75
    • 3.2.9    Food Industry 75
  • 3.3        Production       76
    • 3.3.1    Cryogenic air separation        76
    • 3.3.2    Main domestic US oxygen suppliers               77
  • 3.4        Transportation              77
    • 3.4.1    Transportation Types 78
    • 3.4.2    Liquid Oxygen Transport         79
    • 3.4.3    Rail Transport 79
    • 3.4.4    Alternative Supply Modes      79
    • 3.4.5    LOX Transport Economics     80
    • 3.4.6    Industry Structure       80
    • 3.4.7    Regulations     80
    • 3.4.8    Outlook             81
  • 3.5        Storage              81
  • 3.6        Production and Consumption Trends            82
    • 3.6.1    By Region         82
    • 3.6.2    By Classification/purity           83
    • 3.6.3    By Industrial applications      84
    • 3.6.4    By Production costs  86
  • 3.7        Pricing 87
    • 3.7.1    By Classification/purity           88
    • 3.7.2    By Industrial applications      89
  • 3.8        The oxygen economy and production            93
    • 3.8.1    Dynamics shaping industrial oxygen outlook           93
      • 3.8.1.1 Steelmaking and Metals         93
      • 3.8.1.2 Chemicals       94
      • 3.8.1.3 Refining             94
      • 3.8.1.4 Glass & Ceramics Production             94
      • 3.8.1.5 Water treatment           95
      • 3.8.1.6 Medical oxygen             95
      • 3.8.1.7 Pulp & Paper   95
      • 3.8.1.8 Other   96
  • 3.9        Oxygen Market Value Chain 96
  • 3.10     Market Challenges and Opportunities          99

 

4             HELIUM MARKET ANALYSIS  100

  • 4.1        Global Helium Resources and Production 100
    • 4.1.1    Geographical Distribution of Helium Resources    100
    • 4.1.2    Major Helium Production Sites          101
    • 4.1.3    Production capacities              101
    • 4.1.4    Market by applications            103
  • 4.2        Helium Applications 106
    • 4.2.1    Semiconductor Manufacturing         106
    • 4.2.2    Magnetic Resonance Imaging (MRI)               108
    • 4.2.3    Fiber Optic Manufacturing    109
    • 4.2.4    Aerospace Applications         109
    • 4.2.5    Welding             111
    • 4.2.6    Leak Detection and Testing  112
    • 4.2.7    Lifting Applications    113
    • 4.2.8    Helium Mass Spectrometry  113
  • 4.3        Pricing and supply      113
    • 4.3.1    Supply Challenges and Price Volatility          113
    • 4.3.2    Geopolitical Factors Affecting Supply           114
    • 4.3.3    Impact of Supply Disruptions on End-Users             115
  • 4.4        Helium Separation Technologies      116
    • 4.4.1    Cryogenic Distillation               116
    • 4.4.2    5.4.2 Pressure Swing Adsorption (PSA)         117
    • 4.4.3    Membrane Separation             117
  • 4.5        Helium Substitutes and Reclamation            119
    • 4.5.1    Alternative Gases for Various Applications 120
    • 4.5.2    Helium Recycling and Recovery Systems   121
    • 4.5.3    Economic and Technical Feasibility of Substitutes               121

 

5             NITROGEN MARKET ANALYSIS           122

  • 5.1        Production Methods 122
    • 5.1.1    Cryogenic Air Separation       122
    • 5.1.2    Pressure Swing Adsorption (PSA)     122
    • 5.1.3    Membrane Separation             123
    • 5.1.4    Comparison of Production Methods              124
  • 5.2        Raw Materials and Input Costs          125
    • 5.2.1    Supply Chain Analysis             125
  • 5.3        Key Markets and Applications            126
    • 5.3.1    Food Packaging and Preservation    126
    • 5.3.2    Chemical and Petroleum Industries               126
    • 5.3.3    Metal Processing and Fabrication    127
    • 5.3.4    Electronics Manufacturing   127
    • 5.3.5    Healthcare and Pharmaceuticals    128
  • 5.4        Other markets               129
  • 5.5        Market Size and Forecast       130
    • 5.5.1    Historical Market Trends (2015-2024)           130
    • 5.5.2    Current Market Size (2024)   130
    • 5.5.3    Market Forecast (2026-2035)             131
    • 5.5.4    Market Segmentation               131
      • 5.5.4.1 By Form (Liquid Nitrogen, Compressed Nitrogen Gas)       131
      • 5.5.4.2 By Grade (High Purity, Ultra-High Purity, Standard)               132
      • 5.5.4.3 By End-use Industry  133
      • 5.5.4.4 By Production Method             134

 

6             HYDROGEN MARKET ANALYSIS         136

  • 6.1        Hydrogen value chain              137
    • 6.1.1    Production       137
    • 6.1.2    Transport and storage              137
    • 6.1.3    Utilization         138
  • 6.2        National hydrogen initiatives               140
  • 6.3        Global hydrogen production 141
    • 6.3.1    Industrial applications            142
    • 6.3.2    Hydrogen energy          142
      • 6.3.2.1 Stationary use               143
      • 6.3.2.2 Hydrogen for mobility               143
    • 6.3.3    Current Annual H2 Production           144
    • 6.3.4    Hydrogen production processes       144
      • 6.3.4.1 Hydrogen as by-product         145
      • 6.3.4.2 Reforming        146
        • 6.3.4.2.1           SMR wet method         146
        • 6.3.4.2.2           Oxidation of petroleum fractions     146
        • 6.3.4.2.3           Coal gasification         146
      • 6.3.4.3 Reforming or coal gasification with CO2 capture and storage      146
      • 6.3.4.4 Steam reforming of biomethane       147
      • 6.3.4.5 Water electrolysis       148
      • 6.3.4.6 The "Power-to-Gas" concept                149
      • 6.3.4.7 Fuel cell stack               150
      • 6.3.4.8 Electrolysers   151
      • 6.3.4.9 Other   152
        • 6.3.4.9.1           Plasma technologies 152
        • 6.3.4.9.2           Photosynthesis            153
        • 6.3.4.9.3           Bacterial or biological processes     154
        • 6.3.4.9.4           Oxidation (biomimicry)           154
    • 6.3.5    Production costs         155
  • 6.4        Green hydrogen            156
  • 6.4.1    Overview           156
  • 6.4.2    Role in energy transition         156
  • 6.4.3    SWOT analysis              157
  • 6.4.4    Electrolyzer technologies      158
    • 6.4.4.1 Alkaline water electrolysis (AWE)     160
    • 6.4.4.2 Anion exchange membrane (AEM) water electrolysis          161
    • 6.4.4.3 PEM water electrolysis             162
    • 6.4.4.4 Solid oxide water electrolysis              163
    • 6.4.5    Market players               164
  • 6.5        Blue hydrogen (low-carbon hydrogen)          165
    • 6.5.1    Overview           166
    • 6.5.2    Advantages over green hydrogen      166
    • 6.5.3    SWOT analysis              166
    • 6.5.4    Production technologies        167
      • 6.5.4.1 Steam-methane reforming (SMR)    168
      • 6.5.4.2 Autothermal reforming (ATR)               168
      • 6.5.4.3 Partial oxidation (POX)             169
      • 6.5.4.4 Sorption Enhanced Steam Methane Reforming (SE-SMR)               170
      • 6.5.4.5 Methane pyrolysis (Turquoise hydrogen)     171
      • 6.5.4.6 Coal gasification         172
      • 6.5.4.7 Advanced autothermal gasification (AATG)               175
      • 6.5.4.8 Biomass processes   176
      • 6.5.4.9 Microwave technologies         178
      • 6.5.4.10            Dry reforming 178
      • 6.5.4.11            Plasma Reforming      179
      • 6.5.4.12            Solar SMR        179
      • 6.5.4.13            Tri-Reforming of Methane      179
      • 6.5.4.14            Membrane-assisted reforming           179
      • 6.5.4.15            Catalytic partial oxidation (CPOX)    179
      • 6.5.4.16            Chemical looping combustion (CLC)            180
  • 6.6        Pink hydrogen                180
    • 6.6.1    Overview           180
    • 6.6.2    Production       180
    • 6.6.3    Applications   181
    • 6.6.4    SWOT analysis              182
    • 6.6.5    Market players               183
  • 6.7        Turquoise hydrogen   183
    • 6.7.1    Overview           183
    • 6.7.2    Production       184
    • 6.7.3    Applications   184
    • 6.7.4    SWOT analysis              185
    • 6.7.5    Market players               186
  • 6.8        Key Markets and Applications            187
    • 6.8.1    Hydrogen Fuel Cells  187
      • 6.8.1.1 Market overview           187
      • 6.8.1.2 PEM fuel cells (PEMFCs)        188
      • 6.8.1.3 Solid oxide fuel cells (SOFCs)             188
      • 6.8.1.4 Alternative fuel cells  188
    • 6.8.2    Alternative fuel production   189
      • 6.8.2.1 Solid Biofuels 189
      • 6.8.2.2 Liquid Biofuels              190
      • 6.8.2.3 Gaseous Biofuels       190
      • 6.8.2.4 Conventional Biofuels             191
      • 6.8.2.5 Advanced Biofuels     191
      • 6.8.2.6 Feedstocks      192
      • 6.8.2.7 Production of biodiesel and other biofuels 193
      • 6.8.2.8 Renewable diesel        194
      • 6.8.2.9 Biojet and sustainable aviation fuel (SAF)   195
      • 6.8.2.10            Electrofuels (E-fuels, power-to-gas/liquids/fuels) 198
        • 6.8.2.10.1        Hydrogen electrolysis               201
        • 6.8.2.10.2        eFuel production facilities, current and planned   203
    • 6.8.3    Hydrogen Vehicles      207
      • 6.8.3.1 Market overview           207
    • 6.8.4    Aviation              208
      • 6.8.4.1 Market overview           208
    • 6.8.5    Ammonia production               208
      • 6.8.5.1 Market overview           209
      • 6.8.5.2 Decarbonisation of ammonia production  210
      • 6.8.5.3 Green ammonia synthesis methods              211
        • 6.8.5.3.1           Haber-Bosch process              212
        • 6.8.5.3.2           Biological nitrogen fixation   213
        • 6.8.5.3.3           Electrochemical production                213
        • 6.8.5.3.4           Chemical looping processes               213
      • 6.8.5.4 Blue ammonia              213
        • 6.8.5.4.1           Blue ammonia projects           213
      • 6.8.5.5 Chemical energy storage       214
        • 6.8.5.5.1           Ammonia fuel cells    214
        • 6.8.5.5.2           Marine fuel      215
    • 6.8.6    Methanol production                218
      • 6.8.6.1 Market overview           218
      • 6.8.6.2 Methanol-to gasoline technology     219
      • 6.8.6.3 Production processes              220
        • 6.8.6.3.1           Anaerobic digestion  221
        • 6.8.6.3.2           Biomass gasification 221
        • 6.8.6.3.3           Power to Methane       222
    • 6.8.7    Steelmaking   222
      • 6.8.7.1 Market overview           223
      • 6.8.7.2 Comparative analysis              225
      • 6.8.7.3 Hydrogen Direct Reduced Iron (DRI)              226
    • 6.8.8    Power & heat generation         228
      • 6.8.8.1 Market overview           228
        • 6.8.8.1.1           Power generation        228
        • 6.8.8.1.2           Heat Generation          228
    • 6.8.9    Maritime           228
      • 6.8.9.1 Market overview           228
      • 6.8.10 Fuel cell trains              229
          • 6.8.10.1            Market overview           229
          • 6.8.10.2            Market Trends and Forecast 230
  • 6.9        Global hydrogen demand forecasts               230
    • 6.9.1    Price Trends    231
    • 6.9.2    Market Outlook (2025-2035)               232

 

7             CARBON DIOXIDE MARKET ANALYSIS           232

  • 7.1        Main sources of carbon dioxide emissions 232
  • 7.2        CO2 as a commodity                234
    • 7.2.1    Carbon Capture           236
      • 7.2.1.1 Source Characterization        237
      • 7.2.1.2 Purification      237
      • 7.2.1.3 CO2 capture technologies    238
    • 7.2.2    Carbon Utilization      241
      • 7.2.2.1 CO2 utilization pathways       242
    • 7.2.3    Carbon storage            243
      • 7.2.3.1 Passive storage            243
      • 7.2.3.2 Enhanced oil recovery              244
  • 7.3        CO₂ capture technologies     244
  • 7.4        >90% capture rate      247
  • 7.5        99% capture rate         247
  • 7.6        CO2 capture from point sources      250
    • 7.6.1    Energy Availability and Costs              252
    • 7.6.2    Power plants with CCUS        253
    • 7.6.3    Transportation              254
    • 7.6.4    Global point source CO2 capture capacities           254
    • 7.6.5    By source          256
  • 7.7        Main carbon capture processes        257
    • 7.7.1    Materials           257
    • 7.7.2    Post-combustion        259
      • 7.7.2.1 Chemicals/Solvents  260
      • 7.7.2.2 Amine-based post-combustion CO₂ absorption    262
      • 7.7.2.3 Physical absorption solvents              263
    • 7.7.3    Oxy-fuel combustion                265
      • 7.7.3.1 Oxyfuel CCUS cement projects         266
      • 7.7.3.2 Chemical Looping-Based Capture  268
    • 7.7.4    Liquid or supercritical CO2: Allam-Fetvedt Cycle  269
    • 7.7.5    Pre-combustion           270
  • 7.8        Carbon separation technologies       271
    • 7.8.1    Absorption capture    272
    • 7.8.2    Adsorption capture    276
      • 7.8.2.1 Solid sorbent-based CO₂ separation             278
      • 7.8.2.2 Metal organic framework (MOF) adsorbents             279
      • 7.8.2.3 Zeolite-based adsorbents     280
      • 7.8.2.4 Solid amine-based adsorbents         280
      • 7.8.2.5 Carbon-based adsorbents   280
      • 7.8.2.6 Polymer-based adsorbents  281
      • 7.8.2.7 Solid sorbents in pre-combustion   282
      • 7.8.2.8 Sorption Enhanced Water Gas Shift (SEWGS)          283
      • 7.8.2.9 Solid sorbents in post-combustion 283
    • 7.8.3    Membranes    286
      • 7.8.3.1 Membrane-based CO₂ separation   287
      • 7.8.3.2 Post-combustion CO₂ capture           290
        • 7.8.3.2.1           Facilitated transport membranes    290
      • 7.8.3.3 Pre-combustion capture        292
    • 7.8.4    Liquid or supercritical CO2 (Cryogenic) capture    292
      • 7.8.4.1 Cryogenic CO₂ capture            293
    • 7.8.5    Calcium Looping         295
      • 7.8.5.1 Calix Advanced Calciner        295
    • 7.8.6    Other technologies    296
      • 7.8.6.1 LEILAC process            296
      • 7.8.6.2 CO₂ capture with Solid Oxide Fuel Cells (SOFCs) 297
      • 7.8.6.3 CO₂ capture with Molten Carbonate Fuel Cells (MCFCs) 298
      • 7.8.6.4 Microalgae Carbon Capture 299
    • 7.8.7    Comparison of key separation technologies             300
    • 7.8.8    Technology readiness level (TRL) of gas separation technologies               301
  • 7.9        Bioenergy with carbon capture and storage (BECCS)         302
    • 7.9.1    Overview of technology           302
    • 7.9.2    Biomass conversion 303
    • 7.9.3    BECCS facilities           304
    • 7.9.4    Challenges      305
  • 7.10     Direct air capture (DAC)         305
    • 7.10.1 Technology description           305
      • 7.10.1.1            Sorbent-based CO2 Capture               306
      • 7.10.1.2            Solvent-based CO2 Capture                306
      • 7.10.1.3            DAC Solid Sorbent Swing Adsorption Processes    307
      • 7.10.1.4            Electro-Swing Adsorption (ESA) of CO2 for DAC     307
      • 7.10.1.5            Solid and liquid DAC 308
    • 7.10.2 Advantages of DAC    309
    • 7.10.3 Deployment    310
    • 7.10.4 Point source carbon capture versus Direct Air Capture     311
    • 7.10.5 Technologies  312
      • 7.10.5.1            Solid sorbents               313
      • 7.10.5.2            Liquid sorbents            315
      • 7.10.5.3            Liquid solvents             316
      • 7.10.5.4            Airflow equipment integration            316
      • 7.10.5.5            Passive Direct Air Capture (PDAC)   317
      • 7.10.5.6            Direct conversion        317
      • 7.10.5.7            Co-product generation            318
      • 7.10.5.8            Low Temperature DAC             318
      • 7.10.5.9            Regeneration methods            318
    • 7.10.6 Electricity and Heat Sources               319
    • 7.10.7 Commercialization and plants           319
    • 7.10.8 Metal-organic frameworks (MOFs) in DAC  320
    • 7.10.9 DAC plants and projects-current and planned        320
    • 7.10.10              Capacity forecasts     327
    • 7.10.11              Costs  328
    • 7.10.12              Market challenges for DAC   334
    • 7.10.13              Market prospects for direct air capture        335
    • 7.10.14              Players and production           337
  • 7.11     Global market forecasts         338
    • 7.11.1 CCUS capture capacity forecast by end point         338
    • 7.11.2 Capture capacity by region to 2045, Mtpa  339
    • 7.11.3 Revenues          340
    • 7.11.4 CCUS capacity forecast by capture type     340

 

8             ARGON MARKET ANALYSIS   342

  • 8.1        Overview of Argon      342
    • 8.1.1    Chemical Properties and Characteristics   342
    • 8.1.2    Natural Occurrence and Abundance             342
    • 8.1.3    Importance of Argon in Various Industries  343
  • 8.2        Raw Materials and Input Costs          344
  • 8.3        Global Production Capacity 345
  • 8.4        Supply Chain Analysis             345
  • 8.5        Production Methods 345
    • 8.5.1    Air Separation Units (ASUs)  345
    • 8.5.2    Cryogenic Distillation               347
    • 8.5.3    Pressure Swing Adsorption (PSA)     348
  • 8.6        Key Applications          348
    • 8.6.1    Metal Production and Fabrication    348
    • 8.6.2    Welding and Cutting 349
    • 8.6.3    Electronics and Semiconductor Manufacturing    350
    • 8.6.4    Lighting Industry          351
    • 8.6.5    Other markets               351
  • 8.7        Market Trends and Forecast 352
    • 8.7.1    Historical Market Trends (2015-2024)           352
    • 8.7.2    Current Market Size (2025)   353
    • 8.7.3    Market Forecast (2026-2035)             353
    • 8.7.4    Market Segmentation               354
      • 8.7.4.1 By Form (Liquid Argon, Compressed Argon Gas)    354
      • 8.7.4.2 By Grade (Ultra-High Purity, High Purity, Standard)               355
      • 8.7.4.3 By End-use Industry. 356
      • 8.7.4.4 By Production Method             357
    • 8.7.5    Pricing Analysis            358
      • 8.7.5.1 Historical Price Trends             358
      • 8.7.5.2 Current Pricing Patterns          358
      • 8.7.5.3 Factors Affecting Argon Prices            359

 

9             OTHER SPECIALTY GASES MARKET ANALYSIS         360

 

10          END-USE INDUSTRY ANALYSIS          362

  • 10.1     Manufacturing and Metallurgy            362
  • 10.2     Chemicals and Petrochemicals        363
  • 10.3     Healthcare and Pharmaceuticals    364
  • 10.4     Food and Beverage    365
  • 10.5     Electronics and Semiconductor        366
  • 10.6     Energy and Power Generation             367
  • 10.7     Aerospace and Aviation          367
  • 10.8     Environmental and Water Treatment              368
  • 10.9     Technology and Innovation   368
    • 10.9.1 Advancements in Production Technologies               369
    • 10.9.2 Smart Manufacturing and Industry 4.0 in Gas Production               369
    • 10.9.3 Digitalization and IoT in Supply Chain Management            370
    • 10.9.4 Emerging Applications and Novel Uses of Industrial Gases            371

 

11          COMPETITIVE LANDSCAPE  373

  • 11.1     Market Structure and Concentration              373
  • 11.2     Key Players and Market Share Analysis        373
  • 11.3     Competitive Strategies            375
  • 11.4     SWOT Analysis of Major Players         376
  • 11.5     Market Dynamics and Trends              377
    • 11.5.1 Pricing Trends and Factors Affecting Pricing             377
    • 11.5.2 Supply-Demand Balance and Trade Dynamics       379
    • 11.5.3 Impact of Energy Prices on Production Costs          379
  • 11.6     Regulatory Environment and Compliance Issues  380
  • 11.7     Sustainability Initiatives in the Industry        381
  • 11.8     Impact of Global Events on the Industrial Gas Market        381
  • 11.9     Future Outlook and Market Forecast              382
  • 11.10  Long-term Market Projections (2025-2035)              382
  • 11.11  Emerging Applications and Potential Game-Changers      383
  • 11.12  Investment Opportunities and Recommendations              384

 

12          COMPANY PROFILES                386 (579 company profiles)

 

13          APPENDIX        783

  • 13.1     RESEARCH METHODOLOGY              783
  • 13.2     Glossary of Terms       784
  • 13.3     List of Abbreviations  784

 

14          REFERENCES 785

 

List of Tables

  • Table 1. Classification of Industrial Gases. 37
  • Table 2. Other specialty gases.          47
  • Table 3. Key Applications and End-Use Industries.               49
  • Table 4. Comparison of production methods and technologies. 51
  • Table 5. Global Industrial Gas Market Size, by Gas Type (2015-2035).    58
  • Table 6.Global Industrial Gas Market Size, by End-Use Industry (2015-2035)    60
  • Table 7. Industrial Gas Market Size, by Supply Mode (2015-2035).            61
  • Table 8. North America Industrial Gas Market Size, by Type (2015-2035).            62
  • Table 9. Europe Industrial Gas Market Size, by Type (2015-2035).              64
  • Table 10. Asia-Pacific Industrial Gas Market Size, by Type (2015-2035). 65
  • Table 11. Latin America Industrial Gas Market Size, by Type (2015-2035).           65
  • Table 12. Middle East and Africa Industrial Gas Market Size, by Type (2015-2035).        66
  • Table 13. Industrial Gases Market Drivers and Restraints.              67
  • Table 14.  Industrial oxygen by purity levels and corresponding applications     69
  • Table 15. Comparison of different oxygen storage mediums.        81
  • Table 16. Global production and consumption of industrial oxygen by region-2020-2035 (million metric tons).  81
  • Table 17. Current and projected annual production of industrial oxygen, by purity, 2019-2035 (million metric tons).  82
  • Table 18. Global industrial oxygen production from 2019-2035 by industrial application area (million metric tons).  83
  • Table 19. Global annual production of industrial oxygen, by production costs, 2019-2035 (million metric tons).  86
  • Table 20. Pricing matrix for commercial oxygen based on purity level and industrial application.         89
  • Table 21. 27 NSF/ANSI Standard 60 Certified suppliers and locations.   97
  • Table 22. Major Global Helium Production Sites.   101
  • Table 23. Global Helium Production Capacity (2005-2023).          101
  • Table 24. Forecast for Yearly Global Helium Production Capacity (2020-2035).               102
  • Table 25. Global helium market by applications 2020-3035.         103
  • Table 26. Comparison of Helium Production Capacity and Demand Forecast (2024-2035).   104
  • Table 27. Demand Trends in Semiconductor Industry.       107
  • Table 28. Historical Price Trends.     115
  • Table 29. Comparison of Helium Separation Technologies.            116
  • Table 30. Technology Readiness of Helium Reclamation in Key Markets.              119
  • Table 31. Global Nitrogen Market 2020-2035, By Form.     131
  • Table 32. Global Nitrogen Market 2020-2035, By Grade (High Purity, Ultra-High Purity, Standard).      132
  • Table 33. Global Nitrogen Market 2020-2035, By End-use Industry.          133
  • Table 34. Global Nitrogen Market 2020-2035, By Production Method.     134
  • Table 35. Hydrogen colour shades, Technology, cost, and CO2 emissions.        136
  • Table 36. National hydrogen initiatives.        140
  • Table 37. Industrial applications of hydrogen.         142
  • Table 38. Hydrogen energy markets and applications.       143
  • Table 39. Hydrogen production processes and stage of development.   145
  • Table 40. Estimated costs of clean hydrogen production.                155
  • Table 41.  Characteristics of typical water electrolysis technologies        159
  • Table 42. Advantages and disadvantages of water electrolysis technologies.    160
  • Table 43. Market players in green hydrogen (electrolyzers).             164
  • Table 44. Technology Readiness Levels (TRL) of main production technologies for blue hydrogen.     167
  • Table 45. Key players in methane pyrolysis.              172
  • Table 46. Commercial coal gasifier technologies. 173
  • Table 47. Blue hydrogen projects using CG.              174
  • Table 48. Biomass processes summary, process description and TRL.  176
  • Table 49. Pathways for hydrogen production from biomass.          177
  • Table 50. Market players in pink hydrogen. 183
  • Table 51. Market players in turquoise hydrogen.    186
  • Table 52. Market overview hydrogen fuel cells-applications, market players and market challenges.                187
  • Table 53. Categories and examples of solid biofuel.            189
  • Table 54. Comparison of biofuels and e-fuels to fossil and electricity.     191
  • Table 55. Classification of biomass feedstock.       192
  • Table 56. Biorefinery feedstocks.     192
  • Table 57. Feedstock conversion pathways.                193
  • Table 58. Biodiesel production techniques.              193
  • Table 59. Advantages and disadvantages of biojet fuel      195
  • Table 60. Production pathways for bio-jet fuel.       196
  • Table 61. Applications of e-fuels, by type.   199
  • Table 62. Overview of e-fuels.             200
  • Table 63. Benefits of e-fuels.               200
  • Table 64. eFuel production facilities, current and planned.            203
  • Table 65. Market overview for hydrogen vehicles-applications, market players and market challenges.                207
  • Table 66. Blue ammonia projects.   213
  • Table 67. Ammonia fuel cell technologies. 214
  • Table 68. Market overview of green ammonia in marine fuel.         215
  • Table 69. Summary of marine alternative fuels.      216
  • Table 70. Estimated costs for different types of ammonia.             217
  • Table 71. Comparison of biogas, biomethane and natural gas.   220
  • Table 72. Hydrogen-based steelmaking technologies.       225
  • Table 73. Comparison of green steel production technologies.   225
  • Table 74. Advantages and disadvantages of each potential hydrogen carrier.    227
  • Table 75. Approaches for capturing carbon dioxide (CO2) from point sources. 237
  • Table 76. CO2 capture technologies.             238
  • Table 77. Advantages and challenges of carbon capture technologies. 239
  • Table 78. Overview of commercial materials and processes utilized in carbon capture.             240
  • Table 79. Comparison of CO₂ capture technologies.           244
  • Table 80. Typical conditions and performance for different capture technologies.         246
  • Table 81. PSCC technologies.             250
  • Table 82. Point source examples.     250
  • Table 83. Comparison of point-source CO₂ capture systems        251
  • Table 84. Assessment of carbon capture materials              257
  • Table 85. Chemical solvents used in post-combustion.   260
  • Table 86. Comparison of key chemical solvent-based systems. 262
  • Table 87. Chemical absorption solvents used in current operational CCUS point-source projects.    262
  • Table 88.Comparison of key physical absorption solvents.             263
  • Table 89.Physical solvents used in current operational CCUS point-source projects.  263
  • Table 90.Emerging solvents for carbon capture      265
  • Table 91. Oxygen separation technologies for oxy-fuel combustion.        265
  • Table 92. Large-scale oxyfuel CCUS cement projects.       267
  • Table 93. Commercially available physical solvents for pre-combustion carbon capture.        271
  • Table 94. Main capture processes and their separation technologies.    271
  • Table 95. Absorption methods for CO2 capture overview.               273
  • Table 96. Commercially available physical solvents used in CO2 absorption.  275
  • Table 97. Adsorption methods for CO2 capture overview.               276
  • Table 98. Solid sorbents explored for carbon capture.       278
  • Table 99. Carbon-based adsorbents for CO₂ capture.        281
  • Table 100. Polymer-based adsorbents.        281
  • Table 101. Solid sorbents for post-combustion CO₂ capture.       284
  • Table 102. Emerging Solid Sorbent Systems.            284
  • Table 103. Membrane-based methods for CO2 capture overview.             286
  • Table 104. Comparison of membrane materials for CCUS              288
  • Table 105.Commercial status of membranes in carbon capture 289
  • Table 106. Membranes for pre-combustion capture.          292
  • Table 107. Status of cryogenic CO₂ capture technologies.              293
  • Table 108. Benefits and drawbacks of microalgae carbon capture.           299
  • Table 109. Comparison of main separation technologies.               300
  • Table 110. Technology readiness level (TRL) of gas separation technologies       301
  • Table 111. Existing and planned capacity for sequestration of biogenic carbon.              304
  • Table 112. Existing facilities with capture and/or geologic sequestration of biogenic CO2.       304
  • Table 113. DAC technologies.             306
  • Table 114. Advantages and disadvantages of DAC.              309
  • Table 115. Advantages of DAC as a CO2 removal strategy.              310
  • Table 116. Companies developing airflow equipment integration with DAC.      317
  • Table 117. Companies developing Passive Direct Air Capture (PDAC) technologies.    317
  • Table 118. Companies developing regeneration methods for DAC technologies.            318
  • Table 119. DAC companies and technologies.        320
  • Table 120. DAC technology developers and production.  321
  • Table 121. DAC projects in development.   326
  • Table 122. DACCS carbon removal capacity forecast (million metric tons of CO₂ per year), 2024-2045, base case.       327
  • Table 123. DACCS carbon removal capacity forecast (million metric tons of CO₂ per year), 2030-2045, optimistic case.           328
  • Table 124. Costs summary for DAC.               328
  • Table 125. Typical cost contributions of the main components of a DACCS system.    330
  • Table 126. Cost estimates of DAC.  333
  • Table 127. Challenges for DAC technology.               334
  • Table 128. DAC companies and technologies.        337
  • Table 129. CCUS capture capacity forecast by CO₂ endpoint, Mtpa of CO₂, to 2045.   339
  • Table 130. Capture capacity by region to 2045, Mtpa.        339
  • Table 131. CCUS revenue potential for captured CO₂ offtaker, billion US $ to 2045.     340
  • Table 132. CCUS capacity forecast by capture type, Mtpa of CO₂, to 2045.        340
  • Table 133. Point-source CCUS capture capacity forecast by CO₂ source sector, Mtpa of CO₂, to 2045.                340
  • Table 134. Argon Market 2020-2035, By Form.        354
  • Table 135. Argon Market 2020-2035, By Grade.      355
  • Table 136. Argon Market 2020-2035, By End-use Industry.              356
  • Table 137. Argon Market 2020-2035, By Production Method.         357
  • Table 138. Argon Price Forecast (2026-2035).         360
  • Table 139. Summary of markets for other specialty gases.             360
  •  

List of Figures

  • Figure 1.Global Industrial Gas Market Size, by Gas Type (2015-2035).    59
  • Figure 2. Global Industrial Gas Market Size, by End-Use Industry (2015-2035). 61
  • Figure 3. Industrial Gas Market Size, by Supply Mode (2015-2035).          61
  • Figure 4. North America Industrial Gas Market Size, by Type (2015-2035).           63
  • Figure 5. Europe Industrial Gas Market Size, by Type (2015-2035).            64
  • Figure 6. Asia-Pacific Industrial Gas Market Size, by Type (2015-2035). 65
  • Figure 7. Latin America Industrial Gas Market Size, by Type (2015-2035).            66
  • Figure 8. Middle East and Africa Industrial Gas Market Size, by Type (2015-2035).         67
  • Figure 9. Global production and consumption of industrial oxygen by region-2020-2035 (million metric tons).  82
  • Figure 10. Current and projected annual production of industrial oxygen, by purity, 2019-2035 (million metric tons).  83
  • Figure 11. Global industrial oxygen production from 2019-2035 by industrial application area (million metric tons).  85
  • Figure 12. Global annual production of industrial oxygen, by production costs, 2019-2035 (million metric tons).  87
  • Figure 13. Industrial Oxygen Market Value Chain. 97
  • Figure 14. Forecast for Yearly Global Helium Production Capacity (2020-2035).             102
  • Figure 15. Global helium market by applications 2020-3035.       104
  • Figure 16. Comparison of Helium Production Capacity and Demand Forecast (2024-2035). 105
  • Figure 17. Global Nitrogen Market 2020-2035, By Form.   132
  • Figure 18. Global Nitrogen Market 2020-2035, By Grade (High Purity, Ultra-High Purity, Standard).    132
  • Figure 19. Global Nitrogen Market 2020-2035, By End-use Industry.        133
  • Figure 20. Global Nitrogen Market 2020-2035, By Production Method.   135
  • Figure 21. Hydrogen value chain.     139
  • Figure 22. Current Annual H2 Production.  144
  • Figure 23. Principle of a PEM electrolyser.   148
  • Figure 24. Power-to-gas concept.     150
  • Figure 25. Schematic of a fuel cell stack.    151
  • Figure 26. High pressure electrolyser - 1 MW.          152
  • Figure 27. SWOT analysis: green hydrogen.               158
  • Figure 28. Types of electrolysis technologies.          158
  • Figure 29. Schematic of alkaline water electrolysis working principle.    161
  • Figure 30. Schematic of PEM water electrolysis working principle.            163
  • Figure 31. Schematic of solid oxide water electrolysis working principle.             164
  • Figure 32. SWOT analysis: blue hydrogen.  167
  • Figure 33. SMR process flow diagram of steam methane reforming with carbon capture and storage (SMR-CCS).    168
  • Figure 34. Process flow diagram of autothermal reforming with a carbon capture and storage (ATR-CCS) plant.  169
  • Figure 35. POX process flow diagram.          170
  • Figure 36. Process flow diagram for a typical SE-SMR.       171
  • Figure 37. HiiROC’s methane pyrolysis reactor.      172
  • Figure 38. Coal gasification (CG) process. 173
  • Figure 39. Flow diagram of Advanced autothermal gasification (AATG). 175
  • Figure 40. Pink hydrogen Production Pathway.         181
  • Figure 41. SWOT analysis: pink hydrogen    183
  • Figure 42. Turquoise hydrogen Production Pathway.            184
  • Figure 43. SWOT analysis: turquoise hydrogen        186
  • Figure 44. Process steps in the production of electrofuels.             198
  • Figure 45. Mapping storage technologies according to performance characteristics.  199
  • Figure 46. Production process for green hydrogen.              201
  • Figure 47. E-liquids production routes.        202
  • Figure 48. Fischer-Tropsch liquid e-fuel products. 202
  • Figure 49. Resources required for liquid e-fuel production.            203
  • Figure 50. Levelized cost and fuel-switching CO2 prices of e-fuels.          205
  • Figure 51. Cost breakdown for e-fuels.         206
  • Figure 52. Hydrogen fuel cell powered EV.  207
  • Figure 53. Green ammonia production and use.    210
  • Figure 54. Classification and process technology according to carbon emission in ammonia production.     211
  • Figure 55. Schematic of the Haber Bosch ammonia synthesis reaction.               212
  • Figure 56. Schematic of hydrogen production via steam methane reformation.               212
  • Figure 57. Estimated production cost of green ammonia.               218
  • Figure 58. Renewable Methanol Production Processes from Different Feedstocks.       220
  • Figure 59. Production of biomethane through anaerobic digestion and upgrading.        221
  • Figure 60. Production of biomethane through biomass gasification and methanation.               222
  • Figure 61. Production of biomethane through the Power to methane process.  222
  • Figure 62. Transition to hydrogen-based production.          224
  • Figure 63. CO2 emissions from steelmaking (tCO2/ton crude steel).       224
  • Figure 64. Hydrogen Direct Reduced Iron (DRI) process.  227
  • Figure 65. Three Gorges Hydrogen Boat No. 1.         229
  • Figure 66. PESA hydrogen-powered shunting locomotive.               230
  • Figure 67. Global hydrogen demand forecast.         231
  • Figure 68. Carbon emissions by sector.        233
  • Figure 69. Overview of CCUS market              234
  • Figure 70. CCUS business model.   236
  • Figure 71. Pathways for CO2 use.     236
  • Figure 72. A pre-combustion capture system.         238
  • Figure 73. Carbon dioxide utilization and removal cycle.  242
  • Figure 74. Various pathways for CO2 utilization.    243
  • Figure 75. Example of underground carbon dioxide storage.         244
  • Figure 76. CO2 capture and separation technology.            245
  • Figure 77. Global capacity of point-source carbon capture and storage facilities.          255
  • Figure 78. Global carbon capture capacity by CO2 source, 2023.             256
  • Figure 79. Global carbon capture capacity by CO2 source, 2040.             257
  • Figure 80. Post-combustion carbon capture process.        259
  • Figure 81. Post-combustion CO2 Capture in a Coal-Fired Power Plant. 260
  • Figure 82. Oxy-combustion carbon capture process.         266
  • Figure 83. Process schematic of chemical looping.             269
  • Figure 84. Liquid or supercritical CO2 carbon capture process.  270
  • Figure 85. Pre-combustion carbon capture process.          271
  • Figure 86. Amine-based absorption technology.    274
  • Figure 87. Pressure swing absorption technology. 278
  • Figure 88. Membrane separation technology.           287
  • Figure 89. Liquid or supercritical CO2 (cryogenic) distillation.      293
  • Figure 90. Cryocap™ process.             294
  • Figure 91. Calix advanced calcination reactor.        296
  • Figure 92. LEILAC process.   297
  • Figure 93. Fuel Cell CO2 Capture diagram.               298
  • Figure 94. Microalgal carbon capture.           299
  • Figure 95. Bioenergy with carbon capture and storage (BECCS) process.             303
  • Figure 96. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.        308
  • Figure 97. Global CO2 capture from biomass and DAC in the Net Zero Scenario.            309
  • Figure 98. Potential for DAC removal versus other carbon removal methods.    311
  • Figure 99.  DAC technologies.             312
  • Figure 100. Schematic of Climeworks DAC system.            313
  • Figure 101. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.                314
  • Figure 102.  Flow diagram for solid sorbent DAC.   315
  • Figure 103. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.        316
  • Figure 104. Global capacity of direct air capture facilities.             321
  • Figure 105. Global map of DAC and CCS plants.   327
  • Figure 106. Schematic of costs of DAC technologies.        331
  • Figure 107. DAC cost breakdown and comparison.             332
  • Figure 108. Operating costs of generic liquid and solid-based DAC systems.    334
  • Figure 109. Argon Market 2020-2035, By Form.       355
  • Figure 110. Argon Market 2020-2035, By Grade.     356
  • Figure 111. Argon Market 2020-2035, By End-use Industry.            357
  • Figure 112. Argon Market 2020-2035, By Production Method.       358
  • Figure 113. Symbiotic™ technology process.            387
  • Figure 114. Alchemr AEM electrolyzer cell. 396
  • Figure 115. HyCS® technology system.        398
  • Figure 116. Fuel cell module FCwave™.         405
  • Figure 117. Direct Air Capture Process.        413
  • Figure 118. CRI process.        415
  • Figure 119. Croft system.       425
  • Figure 120. ECFORM electrolysis reactor schematic.         431
  • Figure 121. Domsjö process.               432
  • Figure 122. EH Fuel Cell Stack.          434
  • Figure 123. Direct MCH® process.   438
  • Figure 124. Electriq's dehydrogenation system.     441
  • Figure 125. Endua Power Bank.         443
  • Figure 126. EL 2.1 AEM Electrolyser.               444
  • Figure 127. Enapter – Anion Exchange Membrane (AEM) Water Electrolysis.       445
  • Figure 128. Hyundai Class 8 truck fuels at a First Element high capacity mobile refueler.          451
  • Figure 129. FuelPositive system.       454
  • Figure 130. Using electricity from solar power to produce green hydrogen.         461
  • Figure 131. Hydrogen Storage Module.         472
  • Figure 132. Plug And Play Stationery Storage Units.             472
  • Figure 133. Left: a typical single-stage electrolyzer design, with a membrane separating the hydrogen and oxygen gasses. Right: the two-stage E-TAC process. 475
  • Figure 134. Hystar PEM electrolyser.               490
  • Figure 135. KEYOU-H2-Technology. 500
  • Figure 136. Audi/Krajete unit.              501
  • Figure 137. OCOchem’s Carbon Flux Electrolyzer.                519
  • Figure 138.  CO2 hydrogenation to jet fuel range hydrocarbons process.              523
  • Figure 139. The Plagazi ® process.    529
  • Figure 140. Proton Exchange Membrane Fuel Cell.               533
  • Figure 141. Sunfire process for Blue Crude production.    550
  • Figure 142. CALF-20 has been integrated into a rotating CO2 capture machine (left), which operates inside a CO2 plant module (right).   553
  • Figure 143. Tevva hydrogen truck.    559
  • Figure 144. Topsoe's SynCORTM autothermal reforming technology.      562
  • Figure 145. O12 Reactor.        567
  • Figure 146. Sunglasses with lenses made from CO2-derived materials.               567
  • Figure 147. CO2 made car part.        568
  • Figure 148. The Velocys process.     571
  • Figure 149. Air Products production process.          581
  • Figure 150. Aker carbon capture system.    586
  • Figure 151. ALGIECEL PhotoBioReactor.     588
  • Figure 152. Schematic of carbon capture solar project.    593
  • Figure 153. Aspiring Materials method.        594
  • Figure 154. Aymium’s Biocarbon production.          597
  • Figure 155. Capchar prototype pyrolysis kiln.          609
  • Figure 156. Carbonminer technology.           615
  • Figure 157. Carbon Blade system.   620
  • Figure 158. CarbonCure Technology.             626
  • Figure 159. Direct Air Capture Process.        628
  • Figure 160. CRI process.        631
  • Figure 161. PCCSD Project in China.             645
  • Figure 162. Orca facility.         646
  • Figure 163. Process flow scheme of Compact Carbon Capture Plant.    650
  • Figure 164. Colyser process.               652
  • Figure 165. ECFORM electrolysis reactor schematic.         659
  • Figure 166. Dioxycle modular electrolyzer. 660
  • Figure 167. Fuel Cell Carbon Capture.          677
  • Figure 168. Topsoe's SynCORTM autothermal reforming technology.      686
  • Figure 169. Carbon Capture balloon.            689
  • Figure 170. Holy Grail DAC system. 691
  • Figure 171. INERATEC unit.   696
  • Figure 172. Infinitree swing method.              697
  • Figure 173. Audi/Krajete unit.              702
  • Figure 174. Made of Air's HexChar panels. 711
  • Figure 175. Mosaic Materials MOFs.              719
  • Figure 176. Neustark modular plant.             722
  • Figure 177. OCOchem’s Carbon Flux Electrolyzer.                730
  • Figure 178. ZerCaL™ process.              732
  • Figure 179. CCS project at Arthit offshore gas field.             742
  • Figure 180. RepAir technology.           746
  • Figure 181. Soletair Power unit.         758
  • Figure 182. Sunfire process for Blue Crude production.    764
  • Figure 183. CALF-20 has been integrated into a rotating CO2 capture machine (left), which operates inside a CO2 plant module (right).   766
  • Figure 184. Takavator.               768
  • Figure 185. O12 Reactor.        773
  • Figure 186. Sunglasses with lenses made from CO2-derived materials.               773
  • Figure 187. CO2 made car part.        774
  • Figure 188. Molecular sieving membrane.  775

 

The Global Market for Industrial Gases 2025-2035
The Global Market for Industrial Gases 2025-2035
PDF download/by email.

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com