The Global Market for Li-ion Battery Recycling 2024-2040

0

  • Published: October 2023
  • Pages: 168
  • Tables: 29
  • Figures: 28
  • Series: Bio-economy, Energy

 

The battery recycling industry is starting to take off. Originally, companies recycled Lithium-ion (Li-ion) batteries from mobile devices in relatively small quantities. While this still accounts for the majority of the market, the huge growth in EVs and increase in materials prices plus concerns regarding supply has driven development of Li-ion battery recycling technologies.  With new battery plants planned by companies including General Motors, Ford, Tesla, Toyota, Hyundai and Panasonic open over the next few years, lithium-ion battery production will increase greatly (with >1.2 million tons of lithium-ion batteries reaching end of life by 2030), presenting a significant opportunity for recycling. 

The Global Market for Li-ion Battery Recycling 2024-2040 provides an in-depth analysis of market drivers, challenges, value chain, technologies, and competitive landscape. 

This 168 page market report provides a comprehensive analysis of recycling technologies, value chain, regulations, sustainability impacts, and competitive landscape. Detailed regional analysis covers Europe, China, Asia Pacific, and North America. The report examines battery collection, discharging, dismantling, and mechanical pre-processing. The competitive landscape is analyzed including market leaders and start-ups. Extensive demand forecasts are presented along with growth opportunity analysis. The future technology roadmap compares emerging recycling approaches versus conventional methods.

Report contents include: 

  • Market Size by chemistry, ktonnes, revenues and region, forecast to 2040. 
  • Market trends, drivers and challenges analysis. 
  • In-depth analysis of recycling methods and technologies.
  • Recycling of beyond-lithium batteries,
  • Analysis of the current market and future outlook.
  • Recent news and market developments including funding and capacities.
  • Global production capacities current and planned.
  • Profiles of 88 companies. Companies profiled include Akkuser Oy, BASF, Battery Pollution Technologies, Circunomics, Cylib, Econili Battery, GEM Co., Ltd., Green Li-ion, Green Mineral, Li-Cycle, Neu Battery Materials, Redwood Materials, Renewable Metals, Sumitomo and Tozero. 

 

 

1              INTRODUCTION 

  • 1.1          Lithium-ion batteries      11
    • 1.1.1      What is a Li-ion battery?               13
    • 1.1.2      Li-ion cathode   16
    • 1.1.3      Li-ion anode       19
    • 1.1.4      Battery failure   20
    • 1.1.5      End-of-life          21
    • 1.1.6      Sustainability     23
  • 1.2          The Electric Vehicle (EV) market 23
    • 1.2.1      Emerging market for replacement battery packs 24
    • 1.2.2      Closed-loop value chain for EV batteries 25
  • 1.3          Lithium-Ion Battery recycling value chain               25
  • 1.4          Circular life cycle              26
  • 1.5          Global regulations and policies   28
    • 1.5.1      China     29
    • 1.5.2      EU          31
    • 1.5.3      US          32
    • 1.5.4      India      33
    • 1.5.5      South Korea       33
    • 1.5.6      Japan    33
    • 1.5.7      Australia              34
    • 1.5.8      Transportation  34
  • 1.6          Sustainability and environmental benefits            35

 

2              RECYCLING METHODS AND TECHNOLOGIES         37

  • 2.1          Black mass powder         38
  • 2.2          Recycling different cathode chemistries 39
  • 2.3          Preparation        40
  • 2.4          Pre-Treatment  40
    • 2.4.1      Discharging         40
    • 2.4.2      Mechanical Pre-Treatment          40
    • 2.4.3      Thermal Pre-Treatment 43
  • 2.5          Comparison of recycling techniques        44
  • 2.6          Hydrometallurgy              45
    • 2.6.1      Method overview            45
      • 2.6.1.1   Solvent extraction           47
    • 2.6.2      SWOT analysis   47
  • 2.7          Pyrometallurgy 49
    • 2.7.1      Method overview            49
    • 2.7.2      SWOT analysis   49
  • 2.8          Direct recycling 51
    • 2.8.1      Method overview            51
      • 2.8.1.1   Electrolyte separation    52
      • 2.8.1.2   Separating cathode and anode materials               53
      • 2.8.1.3   Binder removal 53
      • 2.8.1.4   Relithiation         53
      • 2.8.1.5   Cathode recovery and rejuvenation         54
      • 2.8.1.6   Hydrometallurgical-direct hybrid recycling            55
    • 2.8.2      SWOT analysis   56
  • 2.9          Other methods 57
    • 2.9.1      Mechanochemical Pretreatment              57
    • 2.9.2      Electrochemical Method               57
    • 2.9.3      Ionic Liquids       58
  • 2.10        Recycling of Specific Components             58
    • 2.10.1    Anode (Graphite)            58
    • 2.10.2    Cathode               58
    • 2.10.3    Electrolyte          59
  • 2.11        Recycling of Beyond Li-ion Batteries         59
    • 2.11.1    Conventional vs Emerging Processes       60
    • 2.11.2    Li-Metal batteries            61
    • 2.11.3    Lithium sulfur batteries (Li–S)     62
    • 2.11.4    All-solid-state batteries (ASSBs) 63

 

3              MARKET ANALYSIS          64

  • 3.1          Market drivers  64
  • 3.2          Market challenges           65
  • 3.3          The current market         65
  • 3.4          Recent market news, funding and developments               67
  • 3.5          Economic case for Li-ion battery recycling             70
    • 3.5.1      Metal prices       71
    • 3.5.2      Second-life energy storage          72
    • 3.5.3      LFP batteries      72
    • 3.5.4      Other components and materials              73
    • 3.5.5      Reducing costs  73
  • 3.6          Competitive landscape  74
  • 3.7          Global capacities, current and planned   76
  • 3.8          Future outlook  77
  • 3.9          Global market 2018-2040              78
    • 3.9.1      Chemistry           79
    • 3.9.2      Ktonnes               81
    • 3.9.3      Revenues            82
    • 3.9.4      Regional               84
      • 3.9.4.1   Europe 87
        • 3.9.4.1.1               Regional overview           87
      • 3.9.4.2   China     88
        • 3.9.4.2.1               Regional overview           88
      • 3.9.4.3   Rest of Asia-Pacific          90
        • 3.9.4.3.1               Regional overview           90
      • 3.9.4.4   North America   92
        • 3.9.4.4.1               Regional overview           92

 

4              COMPANY PROFILES       94

 

5              TERMS AND DEFINITIONS             162

 

6              RESEARCH METHODOLOGY         164

 

7              REFERENCES       165

 

List of Tables

  • Table 1.  Lithium-ion (Li-ion) battery supply chain.             13
  • Table 2. Commercial Li-ion battery cell composition.        13
  • Table 3. Key technology trends shaping lithium-ion battery cathode development.            17
  • Table 4. Cathode Materials Used in Commercial LIBs and Recycling Methods.       18
  • Table 5. Fate of end-of-life Li-ion batteries.          22
  • Table 6. Closed-loop value chain for electric vehicle (EV) batteries.            25
  • Table 7. Li-ion battery recycling value chain.         26
  • Table 8. Potential circular life cycle for lithium-ion batteries.        27
  • Table 9. Regulations pertaining to the recycling and treatment of EOL batteries in the EU, USA, and China               28
  • Table 10. China regulations and policies related to batteries.        30
  • Table 11. Sustainability and environmental benefits of Li-ion recycling.    35
  • Table 12. Typical lithium-ion battery recycling process flow.          38
  • Table 13. Main feedstock streams that can be recycled for lithium-ion batteries. 38
  • Table 14. Comparison of LIB recycling methods. 44
  • Table 15. Comparison of conventional and emerging processes for recycling beyond lithium-ion batteries.              60
  • Table 16. Market drivers for lithium-ion battery recycling.              64
  • Table 17. Market challenges in lithium-ion battery recycling.        65
  • Table 18. Recent market news, funding and developments in Li-ion battery recycling.        67
  • Table 19. Economic assessment of battery recycling options.        70
  • Table 20. Retired lithium-batteries.          74
  • Table 21. Global capacities, current and planned (tonnes/year). 76
  • Table 22. Global lithium-ion battery recycling market in tonnes segmented by cathode chemistry, 2018-2040.        79
  • Table 23. Global Li-ion battery recycling market, 2018-2040 (ktonnes)     81
  • Table 24. Global Li-ion battery recycling market, 2018-2040 (billions USD).             82
  • Table 25. Li-ion battery recycling market, by region, 2018-2040 (ktonnes).             85
  • Table 26. Li-ion battery recycling market, in Europe, 2018-2040 (ktonnes).            87
  • Table 27. Li-ion battery recycling market, in China, 2018-2040 (ktonnes). 89
  • Table 28. Li-ion battery recycling market, in Rest of Asia-Pacific, 2018-2040 (ktonnes).     91
  • Table 29. Li-ion battery recycling market, in North America, 2018-2040 (ktonnes).             92

 

List of Figures

  • Figure 1. Li-ion battery cell pack.               12
  • Figure 2. Lithium Cell Design.      15
  • Figure 3. Functioning of a lithium-ion battery.     16
  • Figure 4. LIB cathode recycling routes.    19
  • Figure 5. Process for recycling lithium-ion batteries from EVs.      24
  • Figure 6. Circular life cycle of lithium ion-batteries.           28
  • Figure 7. Typical direct, pyrometallurgical, and hydrometallurgical recycling methods for recovery of Li-ion battery active materials.               37
  • Figure 8. Mechanical separation flow diagram.    41
  • Figure 9. Recupyl mechanical separation flow diagram.   42
  • Figure 10. Flow chart of recycling processes of lithium-ion batteries (LIBs).             45
  • Figure 11. Hydrometallurgical recycling flow sheet.          46
  • Figure 12. SWOT analysis for Hydrometallurgy Li-ion Battery Recycling.    48
  • Figure 13. Umicore recycling flow diagram.           49
  • Figure 14. SWOT analysis for Pyrometallurgy Li-ion Battery Recycling.       50
  • Figure 15. Schematic of direct recyling process.  52
  • Figure 16. SWOT analysis for Direct Li-ion Battery Recycling.         56
  • Figure 17. Schematic diagram of a Li-metal battery.          62
  • Figure 18. Schematic diagram of Lithium–sulfur battery. 62
  • Figure 19. Schematic illustration of all-solid-state lithium battery.              63
  • Figure 20.  Global scrapped EV (BEV+PHEV) forecast to 2040.        78
  • Figure 21. Global Li-ion battery recycling market, 2018-2040 (chemistry).               80
  • Figure 22. Global Li-ion battery recycling market, 2018-2040 (ktonnes)    82
  • Figure 23. Global Li-ion battery recycling market, 2018-2040 (Billion USD).             83
  • Figure 24. Global Li-ion battery recycling market, by region, 2018-2040 (ktonnes).             86
  • Figure 25. Li-ion battery recycling market, in Europe, 2018-2040 (ktonnes).           88
  • Figure 26. Li-ion battery recycling market, in China, 2018-2040 (ktonnes).              90
  • Figure 27. Li-ion battery recycling market, in Rest of Asia-Pacific, 2018-2040 (ktonnes).    92
  • Figure 28. Li-ion battery recycling market, in North America, 2018-2040 (ktonnes).            93

 

 

 

 

Start-up and academic discounts available. Contact info@futuremarketsinc.com

The Global Market for Li-ion Battery Recycling 2024-2040
The Global Market for Li-ion Battery Recycling 2024-2040
eBook

The Global Market for Li-ion Battery Recycling 2024-2040
The Global Market for Li-ion Battery Recycling 2024-2040
eBook and Hard Copy (including tracked FEDEX delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.