The Global Market for MicroLED Displays 2024-2035

0

  • Published: May 2024
  • Pages: 337
  • Tables: 97
  • Figures: 129

 

The Global Market for MicroLED Displays 2024-20345 is an in-depth 330+ page market report providing a comprehensive analysis of emerging Micro-LED display technologies and markets. It evaluates the current status and future outlook for these next-generation LED displays across applications in consumer electronics, automotive, augmented reality, transparent displays, digital signage, and more.

MicroLEDs are a next-generation display technology that delivers superior performance compared to traditional LCD and OLED displays. With their high brightness, wide colour gamut, low power consumption, and long lifespan, microLEDs are set to revolutionize various industries, from consumer electronics and automotive to virtual reality and transparent displays.

This report provides a detailed overview of microLED technology, exploring its advantages, manufacturing processes, and key components such as epitaxy, chip processing, transfer and assembly techniques, and colour conversion methods. It also examines the challenges faced by the industry and the innovative solutions being developed to overcome them.

The Global Market for MicroLED Displays 2024-2035 offers valuable insights into the competitive landscape, with profiles of over 80 leading companies driving innovation in the microLED space. The report also features market forecasts, segmented by application and region, providing a clear picture of the future growth potential of this exciting technology.

Key applications covered in the report include consumer electronics, such as smartwatches, smartphones, and TVs, as well as automotive displays, AR/VR devices, transparent displays, and biotech and medical applications. The report also explores emerging trends, such as foldable and stretchable displays, and their potential impact on the microLED market.

With its comprehensive analysis and strategic insights, "The Global Market for MicroLED Displays 2024-2035" is an essential resource for display manufacturers, technology providers, investors, and researchers seeking to understand the future of the display industry and capitalize on the vast potential of microLED technology.

Report contents include:

  • Technology Introductions to MicroLED Displays
  • Comparative Analysis of Mini-LED vs Micro-LED
  • Manufacturing Processes for MicroLED Displays
  • Chip Fabrication, Epitaxial Growth, Wafer Production
  • Assembly, Hybrid Integration, Mass Transfer Techniques
  • Defect Management, Repair and Optimization
  • Colour Conversion Technologies for MicroLED
  • Analysis of MicroLED Performance Metrics
  • Assessment of Benefits and Drawbacks vs LCD and OLED
  • Emerging Innovations: Flexible, Transparent, 3D Displays
  • Adoption Roadmaps and Market Opportunities by Application:
    • Consumer Electronics, Automotive Displays, Signage
    • AR/VR Devices, Transparent Displays, Lighting, Medical
  • Supply Chain Ecosystems for  MicroLED Displays
  • Company Profiles of 80+ MicroLED Developers. Companies profiled include AUO, eLux, Innolux, Jade Bird Display, Kopin, Kubos Semiconductors, LG Display, MICLEDI, Mikro Mesa, Mojo Vision, PlayNitride, Porotech, Raysolve Technology, Q-Pixel, Samsung Electronics, Sitan Semiconductor International Co. Ltd., Tianma, and Sony.
  • 11-Year Market Forecasts for MicroLED Display Shipments and Revenues
  • Analysis of Market Drivers, Trends, and Technology Challenges
  • Regional Markets: North America, Asia-Pacific, Europe, ROW

 

 

1             REPORT AIMS AND OBJECTIVES            24

 

2             EXECUTIVE SUMMARY 25

  • 2.1         The MiniLED market     25
  • 2.2         The MicroLED market  26
  • 2.3         The global display market          28
    • 2.3.1     OLEDs 28
    • 2.3.2     Quantum dots  29
    • 2.3.3     Display technologies assessment         31
  • 2.4         Benefits of MicroLEDs 33
  • 2.5         Additive manufacturing for microLED micro-displays 34
  • 2.6         MicroLEDs applications             35
  • 2.7         Market and technology challenges        40
  • 2.8         Industry developments 2020-2024       42
  • 2.9         Recent microLED display innovations 47
  • 2.10       Market activity in China              51
  • 2.11       Global shipment forecasts for MicroLEDs to 2035         52
    • 2.11.1   Units     52
    • 2.11.2   Revenues           55

 

3             TECHNOLOGY INTRODUCTION             56

  • 3.1         What are MicroLEDs?  56
  • 3.2         MiniLED (mLED) vs MicroLED (µLED)    58
    • 3.2.1     Display configurations 58
    • 3.2.2     Development   59
    • 3.2.2.1 So`ny     60
    • 3.2.3     Types    61
    • 3.2.4     Production        62
      • 3.2.4.1 Integration         62
      • 3.2.4.2 Transfer technologies  63
    • 3.2.5     Comparison to LCD, OLED AND QD     66
    • 3.2.6     MicroLED display specifications            67
    • 3.2.7     Advantages       68
      • 3.2.7.1 Transparency   69
      • 3.2.7.2 Borderless         70
      • 3.2.7.3 Flexibility           71
    • 3.2.8     Tiled microLED displays             72
    • 3.2.9     Costs    72
      • 3.2.9.1 Relationship between microLED cost and die size        73

 

4             MANUFACTURING        74

  • 4.1         Epitaxy and Chip Processing    74
    • 4.1.1     Materials            74
    • 4.1.2     Substrates         76
      • 4.1.2.1 Green gap          76
    • 4.1.3     Wafer patterning            77
    • 4.1.4     Metal organic chemical vapor deposition (MOCVD)     77
    • 4.1.5     Epitaxial growth requirement   78
    • 4.1.6     Molecular beam epitaxy (MBE) 79
    • 4.1.7     Uniformity         79
  • 4.2         Chip manufacturing     80
    • 4.2.1     RGB microLED designs               81
    • 4.2.2     Epi-film transfer             82
  • 4.3         MicroLED Performances            82
    • 4.3.1     Relationship between external quantum efficiency (EQE) and current density               83
    • 4.3.2     Stability and thermal management      83
    • 4.3.3     Size dependency            84
    • 4.3.4     Surface recombination of carriers        85
    • 4.3.5     Developing efficient high-performance RGB microLEDs            86
  • 4.4         Transfer, Assembly and Integration Technologies         87
    • 4.4.1     Monolithic integration 88
      • 4.4.1.1 Overview            88
      • 4.4.1.2 Companies       90
    • 4.4.2     Heterogeneous Wafers               90
      • 4.4.2.1 Array integration             90
      • 4.4.2.2 Wafer bonding 92
      • 4.4.2.3 Hybridization integration           92
      • 4.4.2.4 Companies       94
    • 4.4.3     Monolithic microLED arrays     94
    • 4.4.4     GaN on Silicon 95
      • 4.4.4.1 Overview            95
      • 4.4.4.2 Types    96
        • 4.4.4.2.1             GaN on sapphire            97
      • 4.4.4.3 Challenges        98
      • 4.4.4.4 Companies       99
    • 4.4.5     Mass transfer   99
      • 4.4.5.1 Chiplet Mass Transfer  103
      • 4.4.5.2 Elastomer Stamp Transfer (Fine pick and place)             104
        • 4.4.5.2.1             Overview            104
        • 4.4.5.2.2             Controlling kinetic adhesion forces      106
        • 4.4.5.2.3             Pixel pitch          106
        • 4.4.5.2.4             Micro-transfer printing 107
        • 4.4.5.2.5             Capillary-assisted transfer printing      108
        • 4.4.5.2.6             Electrostatic array         108
        • 4.4.5.2.7             Companies       108
      • 4.4.5.3 Roll-to-Roll or Roll-to-Panel Imprinting               109
      • 4.4.5.4 Laser enabled transfer 110
        • 4.4.5.4.1             Overview            110
          • 4.4.5.4.1.1         Selective transfer by selective bonding-debonding       112
        • 4.4.5.4.2             Companies       112
      • 4.4.5.5 Electrostatic Transfer  114
      • 4.4.5.6 Micro-transfer 115
        • 4.4.5.6.1             Overview            115
        • 4.4.5.6.2             Micro-Pick-and-Place Transfer               116
        • 4.4.5.6.3             Photo-Polymer Mass Transfer 116
        • 4.4.5.6.4             Companies       116
      • 4.4.5.7 Micro vacuum-based transfer 117
      • 4.4.5.8 Adhesive Stamp             117
      • 4.4.5.9 Self-Assembly 117
        • 4.4.5.9.1             Overview            117
        • 4.4.5.9.2             Fluidically Self-Assembled (FSA) technology   118
        • 4.4.5.9.3             Magnetically-assisted assembly           119
        • 4.4.5.9.4             Photoelectrochemically driven fluidic-assembly          120
        • 4.4.5.9.5             Electrophoretic fluidic-assembly          120
        • 4.4.5.9.6             Surface energy fluidic-assembly           121
        • 4.4.5.9.7             Shape-based self-assembly     121
        • 4.4.5.9.8             Companies       121
      • 4.4.5.10               All-In-One Transfer        122
        • 4.4.5.10.1           Overview            122
        • 4.4.5.10.2           Heterogeneous Wafers in All-in-One Integration            123
          • 4.4.5.10.2.1       Optoelectronic Array Integration           123
          • 4.4.5.10.2.2       Wafer Bonding Process and Hybridization        124
        • 4.4.5.10.3           Companies       124
    • 4.4.6     Nanowires         125
      • 4.4.6.1 Overview            125
        • 4.4.6.1.1             Nanowire Growth on Silicon     125
        • 4.4.6.1.2             Native EL RGB nanowires          126
        • 4.4.6.1.3             3D Integration  126
    • 4.4.7     Bonding and interconnection  128
      • 4.4.7.1 Overview            128
      • 4.4.7.2 Types of bonding             128
      • 4.4.7.3 Microtube Interconnections     129

 

5             DEFECT MANAGEMENT             130

  • 5.1         Overview            130
  • 5.2         Defect types     130
  • 5.3         Redundancy techniques            131
  • 5.4         Repair  131
    • 5.4.1     Techniques       131
    • 5.4.2     Laser micro trimming  132

 

6             COLOUR CONVERSION             133

  • 6.1         Comparison of technologies    134
  • 6.2         Full colour conversion 134
  • 6.3         UV LED 136
  • 6.4         Colour filters    137
  • 6.5         Stacked RGB MicroLEDs            137
    • 6.5.1     Companies       138
  • 6.6         Three panel microLED projectors          138
  • 6.7         Phosphor Colour Conversion   139
    • 6.7.1     Overview            139
      • 6.7.1.1 Red-emitting phosphor materials          140
      • 6.7.1.2 Thermal stability            142
      • 6.7.1.3 Narrow-band green phosphors                143
      • 6.7.1.4 High performance organic phosphors  143
    • 6.7.2     Challenges        144
    • 6.7.3     Companies       144
  • 6.8         Quantum dots colour conversion          145
    • 6.8.1     Mode of operation         146
    • 6.8.2     Cadmium QDs 148
    • 6.8.3     Cadmium-free QDs      148
    • 6.8.4     Perovskite quantum dots           148
    • 6.8.5     Graphene quantum dots            152
    • 6.8.6     Phosphors and quantum dots  154
    • 6.8.7     Quantum dots in microLED displays    155
      • 6.8.7.1 Technology overview    155
      • 6.8.7.2 QD-based display types              156
      • 6.8.7.3 Quantum dot colour conversion (QDCC) technology for microLEDs    157
      • 6.8.7.4 Efficiency drop and red shift in quantum dot emission for displays      158
      • 6.8.7.5 High blue absorptive quantum dot materials for display            158
      • 6.8.7.6 QD display pixel patterning techniques              159
        • 6.8.7.6.1             Inkjet printing   160
        • 6.8.7.6.2             Photoresists     160
        • 6.8.7.6.3             Aerosol Jet Printing       161
    • 6.8.8     Challenges        161
    • 6.8.9     Companies       161
  • 6.9         Quantum wells                162
  • 6.10       Improving image quality             162

 

7             LIGHT MANAGEMENT 165

  • 7.1         Overview            165
  • 7.2         Light capture methods 166
  • 7.3         Micro-catadioptric optical array            167
  • 7.4         Additive manufacturing (AM) for engineered directional emission profiles       168

 

8             BACKPLANES AND DRIVING    169

  • 8.1         Overview            169
  • 8.2         Technologies and materials     170
    • 8.2.1     TFT materials   170
    • 8.2.2     OLED Pixel Driving         170
    • 8.2.3     TFT Backplane 171
    • 8.2.4     Passive and active matrix addressing  171
      • 8.2.4.1 Passive Matrix Addressing         171
      • 8.2.4.2 Passive Driving Structure           172
      • 8.2.4.3 Active Matrix Addressing            172
      • 8.2.4.4 Pulse width modulation (PWM)               175
      • 8.2.4.5 Driving voltage considerations for microLEDs 176
    • 8.2.5     RGB Driving Schemes for MicroLED Displays  177
    • 8.2.6     Active Matrix MicroLED Displays with LTPS Backplanes            177

 

9             CONSUMER ELECTRONIC DISPLAYS  179

  • 9.1         Market map       179
  • 9.2         Market adoption roadmap         179
  • 9.3         Large flat panel displays and TVs           180
    • 9.3.1     Samsung            181
      • 9.3.1.1 Wall display      181
      • 9.3.1.2 Neo QLED TV range       182
      • 9.3.1.3 MicroLED CX TV line-up              183
    • 9.3.2     LG          184
      • 9.3.2.1 MAGNIT MicroLED TV  184
    • 9.3.3     TCL CSOT           185
  • 9.4         Smartwatches and wearables 185
    • 9.4.1     Apple’s planned microLED smartwatch             187
    • 9.4.2     Samsung            187
  • 9.5         Smartphones   187
  • 9.6         Laptops, monitors and tablets 188
  • 9.7         Foldable and stretchable displays         189
    • 9.7.1     The global foldable display market        192
    • 9.7.2     Applications     193
      • 9.7.2.1 Foldable TVs     193
      • 9.7.2.2 Stretchable microLED touch displays         193
      • 9.7.2.3 Product developers       194

 

10           BIOTECH AND MEDICAL            195

  • 10.1       The global medical display market        195
  • 10.2       Applications     195
    • 10.2.1   Implantable Devices    195
    • 10.2.2   Lab-on-a-Chip 196
    • 10.2.3   Endoscopy         196
    • 10.2.4   Surgical Displays           197
    • 10.2.5   Phototherapy   197
    • 10.2.6   Biosensing         198
    • 10.2.7   Brain Machine Interfaces           199
  • 10.3       Product developers       199

 

11           AUTOMOTIVE   200

  • 11.1       Global automotive displays market      200
  • 11.2       Applications     201
    • 11.2.1   Cabin Displays 204
    • 11.2.2   Head-up displays (HUD)             205
    • 11.2.3   Exterior Signaling and Lighting 206
  • 11.3       Product developers       207

 

12           VIRTUAL REALITY (VR), AUGMENTED REALITY (AR) AND MIXED REALITY (MR) 209

  • 12.1       Global market for virtual reality (VR), augmented reality (AR), and mixed reality (MR)  209
  • 12.2       Applications     210
    • 12.2.1   AR/VR Smart glasses and head-mounted displays (HMDs)       210
    • 12.2.2   MicroLED contact lenses           212
  • 12.3       Products developers    213

 

13           TRANSPARENT DISPLAYS         217

  • 13.1       Global transparent displays market     217
  • 13.2       Applications     217
  • 13.2.1 Display Glass Overlays               219
  • 13.3       Product developers       221

 

14           SUPPLY CHAINS            222

 

15           COMPANY PROFILES  224 (83 company profiles)

 

16           REFERENCES   325

 

List of Tables

  • Table 1. Announced MicroLED fabs.     27
  • Table 2. Summary of display technologies.       31
  • Table 3. Advantages of AM microLED micro-displays. 34
  • Table 4. MicroLED applications.             35
  • Table 5. Market and technology challenges for microLEDs.      40
  • Table 6. MicroLED industry developments 2020-2024.               42
  • Table 7. MicroLED product announcements at CES 2021.         48
  • Table 8. MicroLED product announcements at CES 2022 and Display Week 2022.      48
  • Table 9. MicroLED product announcements at CES 2023 and Display Week 2023.      49
  • Table 10. MicroLED product announcements at CES 2024 and Display Week 2024.    51
  • Table 11. MicroLED activity in China.   51
  • Table 12. Global MicroLED display market (thousands of units) 2020-2035.    52
  • Table 13. LED size definitions. 56
  • Table 14. Comparison between miniLED and microLED.           59
  • Table 15. Comparison to conventional LEDs.  60
  • Table 16. Types of MicroLED.   61
  • Table 17. Summary of monolithic integration, monolithic hybrid integration (flip-chip/wafer bonding), and mass transfer technologies. 62
  • Table 18. Summary of different mass transfer technologies.   64
  • Table 19. MicroLED Comparison to LCD, OLED and QD.            66
  • Table 20. Schematic comparison to LCD and OLED.    67
  • Table 21. Commercially available MicroLED products and specifications.      67
  • Table 22. Comparison of MicroLED with other display technologies.   68
  • Table 23. MicroLED-based display advantages and disadvantages.     68
  • Table 24. Materials for commercial LED chips.               75
  • Table 25. Bandgap vs lattice constant for common III-V semiconductors used in LEDs.            76
  • Table 26. Advantages and disadvantages of MOCVD.  78
  • Table 27.  Typical RGB microLED designs.         81
  • Table 28. Size dependence of key parameters in microLEDs   84
  • Table 29. Transfer, assembly and integration technologies.     88
  • Table 30. Companies utilizing monolithic integration for MicroLEDs.  90
  • Table 31. Advantages and disadvantages of heterogeneous wafers.    93
  • Table 32. Key players in heterogeneous wafers.             94
  • Table 33. Fabricating monolithic micro-displays.          94
  • Table 34. GaN-on-Si applications.        96
  • Table 35. Different epitaxial growth methods for GaN-on-Silicon.        96
  • Table 36. Comparison of GaN growth on sapphire vs silicon substrates.           97
  • Table 37. Cost comparison of sapphire versus silicon substrates for GaN epitaxy       98
  • Table 38. Challenges of GaN-on-Silicon epitaxy and mitigation strategies.      98
  • Table 39. Companies utilizing GaN microLEDs on silicon.        99
  • Table 40. Mass transfer methods, by company.              100
  • Table 41. Comparison of various mass transfer technologies. 101
  • Table 42. Factors affecting transfer yield for microLED mass assembly.           104
  • Table 43. Advantages and disadvantages of Elastomeric stamp for microLED mass transfer. 105
  • Table 44. Companies utilizing elastomeric stamp transfer.      109
  • Table 45. Laser beam requirement.      112
  • Table 46. Companies utilizing laser-enabled transfer technology.        112
  • Table 47. Companies developing micro-transfer printing technologies.            116
  • Table 48. Types of self-assembly technologies.             117
  • Table 49. Companies utilizing self-assembly. 121
  • Table 50. Advantages and disadvantages of all-in-one CMOS driving technique.          123
  • Table 51. Companies utilizing All-in-one transfer.         124
  • Table 52. Comparison between 2D and 3D microLEDs.             126
  • Table 53. Classification of key microLED bonding and interconnection techniques.   128
  • Table 54. Types of bonding.       129
  • Table 55. Strategies for full colour realization. 133
  • Table 56.  Comparison of colour conversion technologies for microLED displays.        134
  • Table 57. Companies developing stacked RGB microLEDs.     138
  • Table 58. Phosphor materials used for LED colour conversion.              139
  • Table 59. Requirements for phosphors in LEDs.             140
  • Table 60. Standard and emerging red-emitting phosphors.       141
  • Table 61. Challenges with phosphor colour conversion.            144
  • Table 62. Companies developing phosphors for MicroLEDs.   144
  • Table 63. Comparative properties of conventional QDs and Perovskite QDs.  149
  • Table 64. Properties of perovskite QLEDs comparative to OLED and QLED.     150
  • Table 65. Perovskite-based QD producers.       150
  • Table 66. Comparison between carbon quantum dots and graphene quantum dots.  152
  • Table 67. Comparison of graphene QDs and semiconductor QDs.       153
  • Table 68. Graphene quantum dots producers. 153
  • Table 69. QDs vs phosphors.    155
  • Table 70. QD-based display types.        156
  • Table 71. Quantum dot (QD) patterning techniques.    159
  • Table 72. Pros and cons of ink-jet printing for manufacturing displays.              160
  • Table 73. Challenges with QD colour conversion.          161
  • Table 74. Companies utilizing quantum dots in MicroLEDs.     161
  • Table 75. Methods to capture light output.        166
  • Table 76. Backplane and driving options for MicroLED displays.            169
  • Table 77. Comparison between PM and AM addressing.            173
  • Table 78. PAM vs PWM.               175
  • Table 79. . Driving vs. EQE.        176
  • Table 80. Comparison of LED TV technologies.               180
  • Table 81. Samsung Neo QLED TV range.             183
  • Table 82. LG mini QNED range 184
  • Table 83. Flexible, stretchable and foldable MicroLED products.           194
  • Table 84. Medical display MicroLED products.                199
  • Table 85. Automotive display & backlight architectures             200
  • Table 86. Applications of MicroLED in automotive.       202
  • Table 87. Automotive display MicroLED products.        207
  • Table 88. Comparison of AR Display Light Engines.       210
  • Table 89. MicroLED based smart glass products.           213
  • Table 90. MicroLED transparent displays.          217
  • Table 91. Companies developing MicroLED transparent displays.        221
  • Table 92. MicroLED supply chain.          222
  • Table 93. LG mini QNED range 269
  • Table 94. Samsung Neo QLED TV range.             298
  • Table 95. San’an Mini and MicroLED Production annual target.              299
  • Table 96. NPQDTM vs Traditional QD based MicroLEDs.            301
  • Table 97. TCL MiniLED product range. 311

 

List of Figures

  • Figure 1.  Blue GaN MicroLED arrays with 3um pixel pitch use polychromatic quantum dot integration to achieve full colour AR displays.                27
  • Figure 2: QLED TV from Samsung.         30
  • Figure 3. QD display products. 31
  • Figure 4. The progress of display technology, from LCD to MicroLED. 33
  • Figure 5. Head-up displays (HUD).         36
  • Figure 6. Public advertising displays.   36
  • Figure 7. Wearable biomedical devices.             37
  • Figure 8. Pico-projectors.          39
  • Figure 9. Mojo Vision's 300-mm GaN-on-silicon blue LED wafer for microLED displays.           50
  • Figure 10. Global MicroLED display market (thousands of units) 2020-2035.  54
  • Figure 11. Global MicroLED display market 2020-2035, by market (Million USD).          55
  • Figure 12. MicroLED display panel structure.   57
  • Figure 13. Display system configurations.         58
  • Figure 14. MicroLED schematic.            60
  • Figure 15. Pixels per inch roadmap of µ-LED displays from 2007 to 2019.         61
  • Figure 16. Mass transfer for µLED chips.            63
  • Figure 17. Schematic diagram of mass transfer technologies. 65
  • Figure 18. Lextar 10.6 inch transparent MicroLED display.        70
  • Figure 19. Transition to borderless design.        71
  • Figure 20. Process for LED Manufacturing.       80
  • Figure 21. Main application scenarios of microLED display and their characteristic display area and pixel density.                87
  • Figure 22. Conventional process used to fabricate microLED microdisplay devices.  91
  • Figure 23. Process flow of Silicon Display of Sharp.      91
  • Figure 24. JDB monolithic hybrid integration microLED chip fabrication process.         93
  • Figure 25. Monolithic microLED array. 95
  • Figure 26. Schematics of a elastomer stamping, b electrostatic/electromagnetic transfer, c laser-assisted transfer and d fluid self-assembly.        102
  • Figure 27. Transfer process flow.           105
  • Figure 28. XCeleprint Automated micro-transfer printing machinery. 107
  • Figure 29. Schematics of Roll-based mass transfer.    110
  • Figure 30. Schematic of laser-induced forward transfer technology.   111
  • Figure 31. Schematic of fluid self-assembly technology.           118
  • Figure 32. Fabrication of microLED chip array. 119
  • Figure 33. Schematic of colour conversion technology.             135
  • Figure 34. Process flow of a full-colour micro display. 136
  • Figure 35. GE inkjet-printed red phosphors.      142
  • Figure 36. Toray's organic colour conversion film.         144
  • Figure 37. Quantum dot schematic.     145
  • Figure 38. Quantum dot size and colour.            146
  • Figure 39. (a) Emission colour and wavelength of QDs corresponding to their sizes (b) InP QDs; (c) InP/ZnSe/ZnS core-shell QDs.               147
  • Figure 40. A pQLED device structure.   149
  • Figure 41. Perovskite quantum dots under UV light.     150
  • Figure 42. Market map for MicroLED displays. 179
  • Figure 43. Market adoption roadmap for microLED displays.   180
  • Figure 44. Samsung Wall display system.          182
  • Figure 45. Samsung Neo QLED 8K.        183
  • Figure 46. Samsung Electronics 89-inch microLED TV.               184
  • Figure 47. MAGNIT MicroLED TV.           185
  • Figure 48. MicroLED wearable display prototype.          186
  • Figure 49. APHAEA Watch.        186
  • Figure 50. AUO's 13.5-inch transparent RGB microLED display.            189
  • Figure 51. AU Optonics Flexible MicroLED Display.      190
  • Figure 52. Schematic of the TALT technique for wafer-level MicroLED transferring.     191
  • Figure 53. 55” flexible AM panel.            192
  • Figure 54. Foldable 4K C SEED M1.        193
  • Figure 55. Stretchable 12" microLED touch displays.  194
  • Figure 56. MicroLEDs for medical applications               199
  • Figure 57. 2023 Cadillac Lyriq EV incorporating miniLED display.         201
  • Figure 58. MicroLED automotive display.           202
  • Figure 59. Issues in current commercial automotive HUD.      205
  • Figure 60. Rear lamp utilizing flexible MicroLEDs.         207
  • Figure 61. LAWK ONE. 211
  • Figure 62. JioGlass.       211
  • Figure 63. Mojo Vision smart contact lens with an embedded MicroLED display.          213
  • Figure 64. Cellid AR glasses, Exploded version.              213
  • Figure 65. Air Glass.      214
  • Figure 66. Panasonic MeganeX.              214
  • Figure 67. Thunderbird Smart Glasses Pioneer Edition.              214
  • Figure 68. RayNeo X2.  215
  • Figure 69. tooz technologies smart glasses.     215
  • Figure 70. Vuzix MicroLED micro display Smart Glasses.          216
  • Figure 71. Leopard demo glasses by WaveOptics.        216
  • Figure 72. Different transparent displays and transmittance limitations.          218
  • Figure 73. 7.56" high transparency & frameless MicroLED display.       220
  • Figure 74. 17.3-inch transparent microLED AI display in a Taiwan Ferry.            220
  • Figure 75. WireLED in 12” Silicon Wafer.            225
  • Figure 76. Typical GaN-on-Si LED structure.    226
  • Figure 77. 300 mm GaN-on-silicon epiwafer.  227
  • Figure 78. MicroLED chiplet architecture.         228
  • Figure 79. Concept Apple Vr Ar Mixed Reality Headset.              229
  • Figure 80. 1.39-inch full-circle MicroLED display           230
  • Figure 81. 9.4" flexible MicroLED display.          231
  • Figure 82. BOE MiniLED display TV.       233
  • Figure 83. BOE MiniLED automotive display.   234
  • Figure 84. Image obtained on a blue active-matrix WVGA (wide video graphics array) micro display.  236
  • Figure 85. Fabrication of the 10-µm pixel pitch LED array on sapphire.               236
  • Figure 86. A 200-mm wafer with CMOS active matrices for GaN 873 × 500-pixel micro display at 10-µm pitch.                237
  • Figure 87. IntelliPix™ design for 0.26″ 1080p MicroLED display.              239
  • Figure 88. C Seed 165-inch M1 MicroLED TV.   241
  • Figure 89. N1 folding MicroLED TV.       241
  • Figure 90.  C Seed outdoor TV. 242
  • Figure 91. Focally Universe AR glasses.              246
  • Figure 92. Flexible MicroLED.  254
  • Figure 93. Jade Bird Display micro displays.     257
  • Figure 94. JBD's 0.13-inch panel.            258
  • Figure 95. 0.22” Monolithic full colour MicroLED panel and inset shows a conceptual monolithic polychrome projector with a waveguide.      258
  • Figure 96. Prototype MicroLED display.              260
  • Figure 97. APHAEA MicroLED watch.   261
  • Figure 98. KONKA 59" tiled microLED TV prototype screen.      261
  • Figure 99. Lextar 2021 microLED and mini LED products.          267
  • Figure 100. LSAB009 MicroLED display.             269
  • Figure 101. LG MAGNIT 4K 136-inch TV.             270
  • Figure 102. 12" 100 PPI full-colour stretchable microLED display.        271
  • Figure 103. Schematic of Micro Nitride chip architecture.        275
  • Figure 104. Mojo Lens. 277
  • Figure 105. Nationstar Mini LED IMD Package P0.5mm.             280
  • Figure 106. 9.4" flexible MicroLED display.       283
  • Figure 107. 7.56-inch transparent MicroLED display.   284
  • Figure 108. PixeLED Matrix Modular MicroLED Display in 132-inch.     284
  • Figure 109. Dashboard - 11.6-inch 24:9 Automotive MicroLED Display.             285
  • Figure 110. Center Console - 9.38-inch Transparent MicroLED Display.            285
  • Figure 111. 48 x 36 Passive Matrix MicroLED display.  287
  • Figure 112. MicroLED micro display based on a native red InGaN LED.              288
  • Figure 113. MicroLED stretchable display.        295
  • Figure 114. The Wall.    296
  • Figure 115. Samsung Neo QLED 8K.     297
  • Figure 116. NPQD™ Technology for MicroLEDs.              300
  • Figure 117. Wicop technology. 303
  • Figure 118.  B-Series and C-Series displays.     307
  • Figure 119.  A micro-display with a stacked-RGB pixel array, where each pixel is an RGB-emitting stacked MicroLED device (left). The micro-display showing a video of fireworks at night, demonstrating the full-colour capability (right). N.B. Areas around the display/           309
  • Figure 120. TCL MiniLED TV schematic.              310
  • Figure 121. TCL 8K MiniLED TV.               311
  • Figure 122. The Cinema Wall MicroLED display.             312
  • Figure 123. Photo-polymer mass transfer process.       313
  • Figure 124. 7.56” Transparent Display.               315
  • Figure 125. 7.56" Flexible MicroLED.    316
  • Figure 126. 5.04" seamless splicing MicroLED.               316
  • Figure 127. 7.56" Transparent MicroLED.           317
  • Figure 128. VueReal Flipchip MicroLED (30x15 um2).  321
  • Figure 129. Vuzix uLED display engine.                322

 

 

The Global Market for MicroLED Displays 2024-2035
The Global Market for MicroLED Displays 2024-2035
PDF download/by email.

The Global Market for MicroLED Displays 2024-2035
The Global Market for MicroLED Displays 2024-2035
PDF and print edition.

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.