Published October 2021 | 82 pages, 9 tables, 30figures | Table of contents
Due to its exceptional transport, mechanical and thermal properties, graphene has been at the forefront of nanomaterials research over the past few years. Its development has enabled researchers to explore other 2D layered materials, such as the transition metal dichalcogenides (TMD), a wide variety of oxides and nitrides and clays. Several types are now commercially available from advanced materials producers.
2D materials covered in this report include:
- transition metal dichalcogenides (TMD).
- hexagonal boron nitride (h-BN).
- MXenes.
- borophene.
- phosphorene.
- graphitic carbon nitride.
- germanene.
- graphane.
- graphdiyne.
- stanene/tinene.
- tungsten diselenide.
- rhenium disulfide.
- diamene.
- silicene.
- antimonene.
- indium selenide.
- layered double hydroxides.
Report contents include:
- Properties of 2D materials.
- Applications of 2D materials.
- Addressable markets for 2D materials.
- Production and pricing of 2D materials.
- Profiles of 2D materials producers and suppliers.
1 INTRODUCTION 9
- 1.1 What are 2D materials? 9
- 1.2 Comparative analysis of graphene and other 2D materials 12
2 2D MATERIALS PRODUCTION METHODS 14
- 2.1 Top-down exfoliation 14
- 2.1.1 Mechanical exfoliation method 15
- 2.1.2 Liquid exfoliation method 16
- 2.2 Bottom-up synthesis 16
- 2.2.1 Chemical synthesis in solution 16
- 2.2.2 Chemical vapor deposition 17
3 TYPES OF 2D MATERIALS 18
- 3.1 Hexagonal boron-nitride (h-BN)/Bboron nitride nanosheets (BNNSs) 18
- 3.1.1 Properties 18
- 3.1.2 Applications and markets 19
- 3.1.2.1 Electronics 19
- 3.1.2.2 Fuel cells 20
- 3.1.2.3 Adsorbents 20
- 3.1.2.4 Photodetectors 20
- 3.1.2.5 Textiles 20
- 3.1.2.6 Biomedical 21
- 3.2 MXenes 22
- 3.2.1 Properties 22
- 3.2.2 Applications 23
- 3.2.2.1 Catalysts 23
- 3.2.2.2 Hydrogels 23
- 3.2.2.3 Energy storage devices 23
- 3.2.2.4 Gas Separation 24
- 3.2.2.5 Liquid Separation 24
- 3.2.2.6 Antibacterials 24
- 3.3 Transition metal dichalcogenides (TMD) 25
- 3.3.1 Properties 25
- 3.3.1.1 Molybdenum disulphide (MoS2) 26
- 3.3.1.2 Tungsten ditelluride (WTe2) 27
- 3.3.2 Applications 27
- 3.3.2.1 Electronics 27
- 3.3.2.2 Optoelectronics 28
- 3.3.2.3 Biomedical 28
- 3.3.2.4 Piezoelectrics 28
- 3.3.2.5 Sensors 28
- 3.3.2.6 Filtration 29
- 3.3.2.7 Batteries and supercapacitors 29
- 3.3.2.8 Fiber lasers 29
- 3.3.1 Properties 25
- 3.4 Borophene 30
- 3.4.1 Properties 30
- 3.4.2 Applications 30
- 3.4.2.1 Energy storage 30
- 3.4.2.2 Hydrogen storage 31
- 3.4.2.3 Sensors 31
- 3.4.2.4 Electronics 31
- 3.5 Phosphorene/ Black phosphorus 32
- 3.5.1 Properties 32
- 3.5.2 Applications 33
- 3.5.2.1 Electronics 33
- 3.5.2.2 Field effect transistors 33
- 3.5.2.3 Thermoelectrics 34
- 3.5.2.4 Batteries 34
- 3.5.2.5 Supercapacitors 35
- 3.5.2.6 Photodetectors 35
- 3.5.2.7 Sensors 35
- 3.6 Graphitic carbon nitride (g-C3N4) 37
- 3.6.1 Properties 37
- 3.6.2 C2N 37
- 3.6.3 Applications 38
- 3.6.3.1 Electronics 38
- 3.6.3.2 Filtration membranes 38
- 3.6.3.3 Photocatalysts 38
- 3.6.3.4 Batteries 38
- 3.6.3.5 Sensors 38
- 3.7 Germanene 39
- 3.7.1 Properties 39
- 3.7.2 Applications 40
- 3.7.2.1 Electronics 41
- 3.7.2.2 Batteries 41
- 3.8 Graphdiyne 42
- 3.8.1 Properties 42
- 3.8.2 Applications 43
- 3.8.2.1 Electronics 43
- 3.8.2.2 Batteries 43
- 3.8.2.3 Separation membranes 44
- 3.8.2.4 Water filtration 44
- 3.8.2.5 Photocatalysts 44
- 3.8.2.6 Photovoltaics 44
- 3.8.2.7 Gas separation 44
- 3.9 Graphane 45
- 3.9.1 Properties 45
- 3.9.2 Applications 45
- 3.9.2.1 Electronics 46
- 3.9.2.2 Hydrogen storage 46
- 3.10 Rhenium disulfide (ReS2) and diselenide (ReSe2) 47
- 3.10.1 Properties 47
- 3.10.2 Applications 47
- 3.11 Silicene 48
- 3.11.1 Properties 48
- 3.11.2 Applications 49
- 3.11.2.1 Electronics 49
- 3.11.2.2 Thermoelectrics 50
- 3.11.2.3 Batteries 50
- 3.11.2.4 Sensors 50
- 3.11.2.5 Biomedical 50
- 3.12 Stanene/tinene 51
- 3.12.1 Properties 51
- 3.12.2 Applications 52
- 3.12.2.1 Electronics 52
- 3.13 Antimonene 53
- 3.13.1 Properties 53
- 3.13.2 Applications 53
- 3.14 Indium selenide 54
- 3.14.1 Properties 54
- 3.14.2 Applications 54
- 3.14.2.1 Electronics 54
- 3.15 Layered double hydroxides (LDH) 55
- 3.15.1 Properties 55
- 3.15.2 Applications 55
- 3.15.2.1 Adsorbents 55
- 3.15.2.2 Catalyst 55
- 3.15.2.3 Sensors 55
- 3.15.2.4 Electrodes 56
- 3.15.2.5 Flame Retardants 56
- 3.15.2.6 Biosensors 56
- 3.15.2.7 Tissue engineering 57
- 3.15.2.8 Anti-Microbials 57
- 3.15.2.9 Drug Delivery 57
4 2D MATERIALS PRODUCER AND SUPPLIER PROFILES 58
5 RESEARCH METHODOLOGY 75
6 REFERENCES 76
List of Tables
- Table 1. 2D materials types. 11
- Table 2. Comparative analysis of graphene and other 2-D nanomaterials. 12
- Table 3. Comparison of top-down exfoliation methods to produce 2D materials. 14
- Table 4. Comparison of the bottom-up synthesis methods to produce 2D materials. 17
- Table 5. Properties of hexagonal boron nitride (h-BN). 19
- Table 6. Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2. 33
- Table 7. Properties and applications of functionalized germanene. 40
- Table 8. GDY-based anode materials in LIBs and SIBs 43
- Table 9. Physical and electronic properties of Stanene. 52
List of Figures
- Figure 1. Structures of nanomaterials based on dimensions. 9
- Figure 2. Schematic of 2-D materials. 11
- Figure 3. Diagram of the mechanical exfoliation method. 15
- Figure 4. Diagram of liquid exfoliation method 16
- Figure 5. Structure of hexagonal boron nitride. 18
- Figure 6. BN nanosheet textiles application. 21
- Figure 7. Structure diagram of Ti3C2Tx. 22
- Figure 8. Types and applications of 2D TMDCs. 25
- Figure 9. Left: Molybdenum disulphide (MoS2). Right: Tungsten ditelluride (WTe2) 26
- Figure 10. SEM image of MoS2. 26
- Figure 11. Atomic force microscopy image of a representative MoS2 thin-film transistor. 28
- Figure 12. Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge. 29
- Figure 13. Borophene schematic. 30
- Figure 14. Black phosphorus structure. 32
- Figure 15. Black Phosphorus crystal. 33
- Figure 16. Bottom gated flexible few-layer phosphorene transistors with the hydrophobic dielectric encapsulation. 34
- Figure 17: Graphitic carbon nitride. 37
- Figure 18. Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal. Credit: Ulsan National Institute of Science and Technology. 38
- Figure 19. Schematic of germanene. 39
- Figure 20. Graphdiyne structure. 42
- Figure 21. Schematic of Graphane crystal. 45
- Figure 22. Schematic of a monolayer of rhenium disulfide. 47
- Figure 23. Silicene structure. 48
- Figure 24. Monolayer silicene on a silver (111) substrate. 49
- Figure 25. Silicene transistor. 49
- Figure 26. Crystal structure for stanene. 51
- Figure 27. Atomic structure model for the 2D stanene on Bi2Te3(111). 52
- Figure 28. Schematic of Indium Selenide (InSe). 54
- Figure 29. Application of Li-Al LDH as CO2 sensor. 56
- Figure 30. Graphene-based membrane dehumidification test cell. 65
To purchase by invoice (bank transfer or cheque) please select this option after Add to Cart, or contact info@futuremarketsinc.com or use our Order Form.