The Global Market for Optical Computing 2025-2035

0

cover

cover

 

The global optical computing market is poised for significant growth and transformation in the next decade, driven by the ever-increasing demands of artificial intelligence (AI) and machine learning (ML) for immense computational power and speed. As traditional electronic computing approaches its physical limits, optical computing emerges as a promising solution to meet the growing computational needs of the future. Optical computing leverages the power of photons instead of electrons to process and transmit information, offering numerous advantages over conventional electronic systems. These benefits include high-speed data processing, parallel processing capabilities, low power consumption, high bandwidth, and reduced heat generation. Recent technological advances in silicon photonics and quantum optics have further accelerated interest in optical computing solutions.

The success of silicon photonics in datacom, telecom, and optical I/O applications has paved the way for its adoption in computing. Additionally, advances in new high-performance materials such as thin-film lithium niobate (TFLN) and silicon nitride (SiN) have sparked growing interest in using photons for information processing. The optical computing market encompasses a wide range of technologies, including photonic integrated circuits (PICs), optical processors, and quantum optical computing systems. Furthermore, the rapid advancements in quantum computing have positioned photons as one of the most promising options for qubits. Optical technologies play an integral role in the development of quantum computing, with quantum optics and photonic qubits being extensively researched for their potential to outperform traditional methods in quantum computations.

The Global Market for Optical Computing 2025-2035 offers an in-depth analysis of the rapidly evolving optical computing industry, poised to revolutionize data processing, artificial intelligence, and quantum technologies. This cutting-edge research provides valuable insights into market trends, technological advancements, and growth opportunities in the optical computing sector over the next decade.

Report contents include: 

  • Market Analysis and Forecasts:
    • Detailed global optical computing market size projections from 2025 to 2035
    • Segmentation by technology type, application, and geography
    • Analysis of key growth drivers and inhibitors
    • Competitive landscape and market share analysis
  • Technology Overview:
    • In-depth exploration of optical computing principles and architectures
    • Comparison of electronic and photonic integrated circuits
    • Analysis of photonic integrated circuit (PIC) key concepts and components
    • Overview of quantum computing concepts and their integration with optical technologies
  • Materials and Manufacturing:
    • Comprehensive analysis of optical computing materials, including silicon photonics, indium phosphide, and emerging platforms
    • Examination of manufacturing processes, integration schemes, and heterogeneous integration techniques
    • Evaluation of key manufacturers and foundries in the optical computing ecosystem
  • Optical Computing Technologies:
    • Detailed analysis of photonic integrated circuits (PICs), optical processors, and quantum optical computing
    • Exploration of optical interconnects and advanced packaging technologies
    • Assessment of co-packaged optics (CPO) and its market implications
  • Applications and Use Cases:
    • In-depth examination of optical computing applications in data centers, telecommunications, quantum computing, automotive, aerospace, healthcare, and industrial sensing
    • Analysis of market potential and adoption trends across various sectors
    • Case studies highlighting successful implementations and research breakthroughs
  • Market Forecasts:
    • Granular market forecasts for PIC technologies, optical processors, and quantum optical computing
    • Segmentation by material platform, data rate, and application area
    • Regional market analysis covering North America, Europe, Asia-Pacific, and Rest of the World
  • Technology Trends and Future Outlook:
    • Exploration of emerging technologies in optical computing
    • Analysis of integration trends and scalability improvements
    • Roadmaps for various optical computing technologies, including PICs, optical processors, and quantum optical computing
  • Challenges and Opportunities:
    • Comprehensive analysis of technical and market challenges facing the optical computing industry
    • Identification of key opportunities in data center acceleration, 5G/6G communications, quantum technologies, and green computing initiatives
  • Company Profiles:
    • Detailed profiles of over 90 companies active in the optical computing market. Companies profiled include 3E8, AIM Photonics, Akhetonics, AMO, AQT, Astrape Networks, Atom computing, Black Semiconductor, Bosch, CamGraPhIC, Celestial AI, Cognifiber, Cornerstone, Crystal Quantum Computing, Dawn Semiconductor, Duality, DustPhotonics, EFFECT Photonics, eleQtron, Ephos, Exail Quantum Sensors, Finchetto, GlobalFoundries, Google, Heguang Microelectronics Technology, Hongguang Xiangshang, Hyperlight, IBM, ID Quantique, Infineon Technologies AG, Infleqtion, IonQ, Ipronics, Ligentec, Lightelligence, Lightium AG, LightMatter, LightON, Lightsolver, Liobate Technologies, LioniX, Lumai, Luminous Computing, Luxtelligence SA, Microsoft, Miraex, M Squared Lasers, Myrias Optics, Nanofiber Quantum Technologies, NcodiN, Neurophos, New Origin, NLM Photonics, NTT, Nvidia, Optalysys, ORCA Computing, Oriole Networks, ORI Chip, Oxford Ionics, Pasqal, PhotonDelta, Photonic, PhotonSpot, Planqc, Polaris Electro-Optics, PsiQuantum, Q.ANT, Qboson, QC82, QCI, Quandela, Quantinuum, Quantum Art, Quantum Opus, Quantum Transistors, Qudoor, Qudora Technologies, QuEra Computing, Qianmu Laser, Quix, Ranovus, Salience Labs, Scintil Photonics, SilTerra, Single Quantum, SMART Photonics, Sparrow Quantum ApS, SteerLight, Toshiba, Tower Semiconductors, TundraSystems, TuringQ, Universal Quantum, Vector Photonics, X fab, Xanadu, Xscape Photonics. 
    • Analysis of key players, start-ups, and emerging companies across the value chain

 

As the demand for high-performance computing, AI, and machine learning continues to grow exponentially, traditional electronic computing faces increasing limitations in speed, power consumption, and heat generation. Optical computing emerges as a promising solution to these challenges, offering the potential for faster data processing, improved energy efficiency, and enhanced performance in various applications.

This report is essential for:

  • Technology Companies: Gain insights into the latest advancements in optical computing and identify potential partnership or investment opportunities.
  • Investors: Understand market trends, growth projections, and key players in the optical computing ecosystem to make informed investment decisions.
  • Data Center Operators: Explore how optical computing technologies can enhance data center performance, reduce energy consumption, and meet growing computational demands.
  • Telecommunications Companies: Learn about the role of optical computing in advancing 5G and 6G technologies and improving network infrastructure.
  • Automotive and Aerospace Industries: Discover how optical computing can revolutionize LiDAR systems, autonomous vehicles, and aerospace applications.
  • Healthcare and Biomedical Sectors: Understand the potential of optical computing in advancing medical imaging, biosensors, and point-of-care diagnostics.
  • Research Institutions: Stay informed about the latest developments in quantum optical computing and identify areas for future research and collaboration.
  • Policy Makers: Gain insights into the regulatory landscape surrounding optical computing and its potential impact on various industries.

 

By providing a comprehensive analysis of the global optical computing market from 2025 to 2035, this report equips stakeholders with the knowledge and insights needed to navigate the rapidly evolving landscape of photonic and quantum technologies. From market forecasts and technology trends to challenges and opportunities, The Global Market for Optical Computing 2025-2035 is an indispensable resource for anyone looking to understand and capitalize on the transformative potential of optical computing in the coming decade.

 

 

Download Table of Contents (PDF)

1             EXECUTIVE SUMMARY            21

  • 1.1        Market snapshot         21
  • 1.2        Market map    23
  • 1.3        Technology Status      25
    • 1.3.1    Current Market State of Optical Computing              25
    • 1.3.2    Photonic Integrated Circuits (PICs) Maturity             26
  • 1.4        Future Outlook             27
    • 1.4.1    Short-term Projections (2025-2027)              27
    • 1.4.2    Medium-term Outlook (2028-2031) 28
    • 1.4.3    Long-term Vision (2032-2035)           29

 

2             INTRODUCTION AND KEY CONCEPTS          30

  • 2.1        Technology Background         30
    • 2.1.1    What is Optical Computing?               31
      • 2.1.1.1 Historical Context       32
      • 2.1.1.2 Basic Principles of Optical Computing         32
    • 2.1.2    Photonics versus Electronics              33
      • 2.1.2.1 Speed and Bandwidth Comparison 34
      • 2.1.2.2 Energy Efficiency Considerations     35
      • 2.1.2.3 Integration Challenges            36
    • 2.1.3    Electronic and Photonic Integrated Circuits Compared    37
      • 2.1.3.1 Architectural Differences       37
      • 2.1.3.2 Performance Characteristics              38
      • 2.1.3.3 Manufacturing Considerations          39
    • 2.1.4    Advantages and Challenges of Optical Computing              40
      • 2.1.4.1 Speed and Bandwidth Advantages 40
      • 2.1.4.2 Energy Efficiency Benefits     41
      • 2.1.4.3 Integration and Miniaturization Challenges               42
      • 2.1.4.4 Cost Considerations 43
  • 2.2        Photonic Integrated Circuit (PIC) Key Concepts      44
    • 2.2.1    Optical IO, Coupling and Couplers  45
      • 2.2.1.1 Fiber-to-Chip Coupling           46
      • 2.2.1.2 On-Chip Optical Couplers    47
    • 2.2.2    Emission and Photon Sources/Lasers           48
      • 2.2.2.1 Semiconductor Lasers            49
      • 2.2.2.2 Integration of Light Sources on PICs               50
    • 2.2.3    Detection and Photodetectors           51
      • 2.2.3.1 Types of Photodetectors         52
      • 2.2.3.2 Integration Challenges for Detectors              53
    • 2.2.4    Modulation and Modulators 54
      • 2.2.4.1 Electro-optic Modulators      55
      • 2.2.4.2 Thermo-optic Modulators     56
      • 2.2.4.3 All-optical Modulators             57
    • 2.2.5    Light Propagation and Waveguides 58
      • 2.2.5.1 Waveguide Structures              58
      • 2.2.5.2 Loss Mechanisms in Optical Waveguides   59
    • 2.2.6    PIC Architecture           60
      • 2.2.6.1 Monolithic Integration              61
      • 2.2.6.2 Hybrid Integration       62
      • 2.2.6.3 Heterogeneous Integration   63
  • 2.3        Quantum Computing Concepts        64
    • 2.3.1    Introduction to Quantum Computing            64
      • 2.3.1.1 Quantum Bits (Qubits)            65
      • 2.3.1.2 Quantum Gates and Circuits              66
    • 2.3.2    Quantum Computing Architectures Overview         67
      • 2.3.2.1 Superconducting Qubits        67
        • 2.3.2.1.1           Technology description           67
        • 2.3.2.1.2           Materials           68
        • 2.3.2.1.3           Market players               70
      • 2.3.2.2 Trapped Ions  72
        • 2.3.2.2.1           Technology description           72
        • 2.3.2.2.2           Materials           74
          • 2.3.2.2.2.1      Integrating optical components        74
          • 2.3.2.2.2.2      Incorporating high-quality mirrors and optical cavities      75
          • 2.3.2.2.2.3      Engineering the vacuum packaging and encapsulation     75
          • 2.3.2.2.2.4      Removal of waste heat            76
        • 2.3.2.2.3           Market players               76
      • 2.3.2.3 Photonic Qubits           78
        • 2.3.2.3.1           Technology description           78
        • 2.3.2.3.2           Market players               81
      • 2.3.2.4 Neutral Atoms               83
        • 2.3.2.4.1.1      Technology description           83
        • 2.3.2.4.1.2      Market players               85
      • 2.3.2.5 Topological Qubits     87
        • 2.3.2.5.1           Technology description           87
        • 2.3.2.5.2           Market players               88

 

3             MATERIALS AND MANUFACTURING               89

  • 3.1        Optical Computing Materials              89
    • 3.1.1    Silicon and Silicon-on-Insulator (SOI)           90
      • 3.1.1.1 Properties and Advantages  91
      • 3.1.1.2 Limitations and Challenges 92
      • 3.1.1.3 Key Players and Developments          92
    • 3.1.2    Silicon Nitride (SiN)   93
      • 3.1.2.1 Optical Properties       94
      • 3.1.2.2 Manufacturing Processes      95
      • 3.1.2.3 Applications and Market Adoption  96
    • 3.1.3    Indium Phosphide      96
      • 3.1.3.1 Material Characteristics         97
      • 3.1.3.2 Integration Challenges            98
      • 3.1.3.3 Market Players and Products               98
    • 3.1.4    Organic Polymer on Silicon  99
      • 3.1.4.1 Advantages of Polymer-based PICs 100
      • 3.1.4.2 Manufacturing Techniques   101
    • 3.1.5    Thin Film Lithium Niobate      102
      • 3.1.5.1 Electro-optic Properties         103
      • 3.1.5.2 Fabrication Methods 104
      • 3.1.5.3 Emerging Applications             105
    • 3.1.6    Barium Titanate and Rare Earth Metals        105
      • 3.1.6.1 Novel Properties for Optical Computing      106
      • 3.1.6.2 Integration Challenges            107
      • 3.1.6.3 Future Prospects         108
    • 3.1.7    Emerging PIC materials           109
    • 3.1.8    Metasurfaces 111
    • 3.1.9    Neuromorphic photonics      113
    • 3.1.10 Materials Comparison and Benchmarking 113
      • 3.1.10.1            Performance Metrics 114
      • 3.1.10.2            Cost Analysis 115
    • 3.1.11 Wafer Sizes and Processing 116
      • 3.1.11.1            Current Wafer Size Trends     117
      • 3.1.11.2            Scaling Challenges    117
    • 3.1.12 Integration Schemes 118
      • 3.1.12.1            Monolithic Integration              119
      • 3.1.12.2            Hybrid Integration       120
      • 3.1.12.3            Heterogeneous Integration   120
    • 3.1.13 Heterogeneous Integration Techniques        121
      • 3.1.13.1            Wafer Bonding              122
      • 3.1.13.2            Flip-Chip Bonding      123
      • 3.1.13.3            Micro-Transfer Printing            123
    • 3.1.14 The PIC Design Cycle: Multi-Project Wafers              124
      • 3.1.14.1            Design Tools and Software    125
      • 3.1.14.2            Fabrication Services  126
      • 3.1.14.3            Testing and Packaging             126
  • 3.2        Key Manufacturers and Foundries   127
    • 3.2.1    Pure-Play PIC Foundries         128
    • 3.2.2    Integrated Device Manufacturers (IDMs)     130

 

4             OPTICAL COMPUTING TECHNOLOGIES     132

  • 4.1        Photonic Integrated Circuits (PICs) 132
    • 4.1.1    PIC Architectures        132
      • 4.1.1.1 Planar Lightwave Circuits      132
      • 4.1.1.2 3D Integrated Photonics         133
    • 4.1.2    Integration Schemes of PICs               134
      • 4.1.2.1 Monolithic Integration              135
      • 4.1.2.2 Hybrid Integration       135
      • 4.1.2.3 Heterogeneous Integration   136
    • 4.1.3    Operational Frequency Windows of Optical Materials       137
      • 4.1.3.1 Visible Light PICs         138
      • 4.1.3.2 Near-Infrared PICs      138
      • 4.1.3.3 Mid-Infrared PICs        139
  • 4.2        Optical Processors    140
    • 4.2.1    Digital Optical Computing    140
      • 4.2.1.1 All-Optical Logic Gates            141
      • 4.2.1.2 Optical Flip-Flops and Memory         142
    • 4.2.2    Analog Optical Computing   143
      • 4.2.2.1 Optical Matrix Multiplication               143
      • 4.2.2.2 Fourier Optics and Signal Processing            144
    • 4.2.3    Neuromorphic Photonics      145
      • 4.2.3.1 Optical Neural Networks        146
      • 4.2.3.2 Reservoir Computing               146
  • 4.3        Quantum Optical Computing             147
    • 4.3.1    Photonic Platform for Quantum Computing             148
      • 4.3.1.1 Single-Photon Sources            149
      • 4.3.1.2 Quantum Gates and Circuits              149
      • 4.3.1.3 Photon Detection Technologies         149
    • 4.3.2    Comparison with Other Quantum Computing Architectures         150
      • 4.3.2.1 Advantages of Photonic Qubits         150
      • 4.3.2.2 Scaling Challenges    151
      • 4.3.2.3 Error Correction in Photonic Quantum Computing              152
    • 4.3.3    Quantum PIC Requirements and Roadmap             153
      • 4.3.3.1 Current State of Quantum PICs         154
  • 4.4        Optical Interconnects              156
    • 4.4.1    On-Device Interconnects       156
      • 4.4.1.1 Chip-to-Chip Optical Interconnects               156
      • 4.4.1.2 On-Chip Optical Interconnects          157
    • 4.4.2    Data Center Interconnects   158
      • 4.4.2.1 Rack-to-Rack Interconnects                158
      • 4.4.2.2 Inter-Data Center Interconnects       160
  • 4.5        Advanced Packaging and Co-Packaged Optics       161
    • 4.5.1    Evolution of Semiconductor Packaging       161
      • 4.5.1.1 2D to 2.5D Packaging               161
        • 4.5.1.1.1           Silicon Interposer 2.5D           163
          • 4.5.1.1.1.1      Through Si Via (TSV)   163
          • 4.5.1.1.1.2      (SiO2) based redistribution layers (RDLs)   164
        • 4.5.1.1.2           2.5D Organic-based packaging         165
          • 4.5.1.1.2.1      Chip-first and chip-last fan-out packaging 166
          • 4.5.1.1.2.2      Organic substrates     168
          • 4.5.1.1.2.3      Organic RDL   169
        • 4.5.1.1.3           2.5D glass-based packaging               170
          • 4.5.1.1.3.1      Benefits             171
          • 4.5.1.1.3.2      Glass Si interposers in advanced packaging            172
          • 4.5.1.1.3.3      Glass material properties      173
          • 4.5.1.1.3.4      2/2 μm line/space metal pitch on glass substrates              174
          • 4.5.1.1.3.5      3D Glass Panel Embedding (GPE) packaging           175
          • 4.5.1.1.3.6      Thermal management             177
          • 4.5.1.1.3.7      Polymer dielectric films          177
          • 4.5.1.1.3.8      Challenges      178
          • 4.5.1.1.3.9      Comparison with other substrates  179
        • 4.5.1.1.4           2.5D vs. 3D Packaging             180
        • 4.5.1.1.5           Benefits             180
        • 4.5.1.1.6           Challenges      181
        • 4.5.1.1.7           Trends 181
        • 4.5.1.1.8           Market players               182
      • 4.5.1.2 3D Packaging Technologies  182
        • 4.5.1.2.1           Overview           184
          • 4.5.1.2.1.1      Conventional 3D packaging 184
          • 4.5.1.2.1.2      Advanced 3D Packaging with through-silicon vias (TSVs) 185
          • 4.5.1.2.1.3      Three-dimensional (3D) hybrid bonding       186
          • 4.5.1.2.1.4      Devices using hybrid bonding             187
        • 4.5.1.2.2           3D Microbump technology    188
          • 4.5.1.2.2.1      Technologies  188
          • 4.5.1.2.2.2      Challenges      190
          • 4.5.1.2.2.3      Bumpless copper-to-copper (Cu-Cu) hybrid bonding        190
          • 4.5.1.2.2.4      Trends 192
    • 4.5.2    Co-Packaged Optics (CPO) Technology       194
      • 4.5.2.1 CPO Architectures      194
      • 4.5.2.2 Benefits and Challenges of CPO       195
    • 4.5.3    CPO Market Players and Developments      197

 

5             MARKETS AND APPLICATIONS           199

  • 5.1        Data Centers and High-Performance Computing  199
    • 5.1.1    Optical Transceivers for Data Centers           199
      • 5.1.1.1 Current and Future Data Rates          199
      • 5.1.1.2 Form Factors and Standards               200
    • 5.1.2    PIC-based Transceivers for AI and Machine Learning         201
      • 5.1.2.1 AI Accelerator Interconnects               201
      • 5.1.2.2 High-Bandwidth Memory Interfaces               203
    • 5.1.3    Photonic Engines and Accelerators for AI    204
      • 5.1.3.1 Optical Matrix Multiplication Engines            204
      • 5.1.3.2 Photonic Tensor Processing Units    205
  • 5.2        Telecommunications                207
    • 5.2.1    5G and Beyond             207
      • 5.2.1.1 Fronthaul and Backhaul Networks  207
      • 5.2.1.2 Millimeter-Wave Photonics  208
    • 5.2.2    Optical Networking Equipment         209
      • 5.2.2.1 Optical Switches and Routers            209
      • 5.2.2.2 Wavelength Division Multiplexing (WDM) Systems               210
  • 5.3        Quantum Computing and Communication               211
    • 5.3.1    Quantum Key Distribution    211
      • 5.3.1.1 Discrete Variable vs. Continuous Variable QKD Protocols               212
    • 5.3.2    Quantum Sensing       214
      • 5.3.2.1 Quantum Magnetometers     214
      • 5.3.2.2 Quantum Gravimeters             217
        • 5.3.2.2.1           Applications   218
        • 5.3.2.2.2           Key players      221
  • 5.4        Automotive and LiDAR             223
    • 5.4.1    PIC-based LiDAR Systems    223
      • 5.4.1.1 Coherent LiDAR           223
      • 5.4.1.2 Flash LiDAR    224
    • 5.4.2    Autonomous Vehicle Applications  226
      • 5.4.2.1 Object Detection and Tracking          226
      • 5.4.2.2 HD Mapping and Localization             228
  • 5.5        Aerospace and Defense         229
    • 5.5.1    Optical Gyroscopes   229
    • 5.5.2    Free-Space Optical Communications          231
  • 5.6        Healthcare and Biomedical 233
    • 5.6.1    PIC-based Biosensors             233
      • 5.6.1.1 Lab-on-a-Chip Devices           233
      • 5.6.1.2 Point-of-Care Diagnostics    234
    • 5.6.2    Medical Imaging          235
      • 5.6.2.1 Optical Coherence Tomography (OCT)         235
      • 5.6.2.2 Photoacoustic Imaging           236
  • 5.7        Industrial Sensing and IoT     238
    • 5.7.1    Gas and Chemical Sensors  238
      • 5.7.1.1 Environmental Monitoring     239
      • 5.7.1.2 Process Control in Manufacturing   239
      • 5.7.1.3 Structural Health Monitoring               240
      • 5.7.1.4 Fiber Optic Sensors for Infrastructure           240
      • 5.7.1.5 Distributed Acoustic Sensing              240

 

6             MARKET ANALYSIS AND FORECASTS             242

  • 6.1        Global Optical Computing Market Overview             242
    • 6.1.1    Historical Market Trends        242
    • 6.1.2    Market Size and Growth Projections (2025-2035) 243
    • 6.1.3    Key Growth Drivers and Inhibitors    244
  • 6.2        Market Segmentation               246
    • 6.2.1    By Technology Type    246
      • 6.2.1.1 Photonic Integrated Circuits 246
      • 6.2.1.2 Optical Processors    247
      • 6.2.1.3 Quantum Optical Computing             249
    • 6.2.2    By Application               250
      • 6.2.2.1 Data Centers and HPC            250
      • 6.2.2.2 Telecommunications                251
      • 6.2.2.3 Automotive and LiDAR             252
      • 6.2.2.4 Healthcare and Biomedical 253
    • 6.2.3    By Geography 254
      • 6.2.3.1 North America              254
      • 6.2.3.2 Europe                255
      • 6.2.3.3 Asia-Pacific    256
      • 6.2.3.4 Rest of the World         257
  • 6.3        PIC Market Forecasts               259
    • 6.3.1    PIC Market by Material Platform        259
      • 6.3.1.1 Silicon Photonics        259
      • 6.3.1.2 Indium Phosphide      259
      • 6.3.1.3 Silicon Nitride                260
      • 6.3.1.4 Others 262
    • 6.3.2    PIC-based Transceiver Market            263
      • 6.3.2.1 By Data Rate   263
      • 6.3.2.2 By Application               264
    • 6.3.3    PIC for AI and Data Centers  265
      • 6.3.3.1 AI Accelerator Interconnects               265
      • 6.3.3.2 High-Performance Computing           266
    • 6.3.4    PIC for Telecommunications               267
      • 6.3.4.1 5G and Beyond             267
      • 6.3.4.2 Optical Networking Equipment         268
    • 6.3.5    Quantum PIC Market                269
      • 6.3.5.1 Quantum Computing               269
      • 6.3.5.2 Quantum Communications 270
    • 6.3.6    PIC-based Sensor and LiDAR Markets          270
      • 6.3.6.1 Automotive LiDAR       270
      • 6.3.6.2 Industrial Sensing       272
  • 6.4        Optical Processor Market Forecasts              273
    • 6.4.1    By Type (Digital, Analog, Neuromorphic)     273
    • 6.4.2    By Application               274
  • 6.5        Quantum Optical Computing Market Forecasts     276
    • 6.5.1    By Type of Quantum Technology       276
    • 6.5.2    By Application Area   276

 

7             TECHNOLOGY TRENDS AND FUTURE OUTLOOK  278

  • 7.1        Emerging Technologies in Optical Computing         278
    • 7.1.1    All-Optical Computing            278
    • 7.1.2    Neuromorphic Photonics      279
    • 7.1.3    Quantum Photonics  280
  • 7.2        Integration Trends       281
    • 7.2.1    Photonic-Electronic Integration         281
    • 7.2.2    3D Integration for Optical Computing           282
  • 7.3        Scalability and Manufacturability Improvements  283
    • 7.3.1    Advanced Manufacturing Techniques           283
    • 7.3.2    Automated Testing and Packaging  284
  • 7.4        Advances in Quantum Optical Computing 285
    • 7.4.1    Scalable Quantum Photonic Architectures                286
    • 7.4.2    Quantum Error Correction in Optical Systems        287
  • 7.5        The Role of AI in Optical Computing Design              288
    • 7.5.1    AI-assisted PIC Design            289
    • 7.5.2    Optimization of Optical Neural Networks   290
  • 7.6        Roadmaps for Various Optical Computing Technologies  291
    • 7.6.1    PIC Technology Roadmap     292
    • 7.6.2    Optical Processor Roadmap               293
    • 7.6.3    Quantum Optical Computing Roadmap     295

 

8             CHALLENGES AND OPPORTUNITES              296

  • 8.1        Technical Challenges               296
    • 8.1.1    Efficiency and Power Consumption               298
    • 8.1.2    Integration and Packaging    299
    • 8.1.3    Scalability and Yield  300
  • 8.2        Market Challenges     301
    • 8.2.1    Cost Competitiveness             302
    • 8.2.2    Adoption Barriers        303
    • 8.2.3    Standardization Issues            304
  • 8.3        Opportunities 306
    • 8.3.1    Data Center and AI/ML Acceleration               306
    • 8.3.2    5G and 6G Communications              307
    • 8.3.3    Quantum Technologies           308
    • 8.3.4    Green Computing Initiatives 309
  • 8.4        Environmental Regulations and Sustainability        310
    • 8.4.1    Energy Efficiency Standards 310
    • 8.4.2    Material Usage and Recycling Policies          312

 

9             COMPANY PROFILES                314 (98 company profiles)

 

10          APPENDICES  426

  • 10.1     Glossary of Terms       426
  • 10.2     List of Abbreviations  429
  • 10.3     Research Methodology           431

 

11          REFERENCES 434

 

List of Tables

  • Table 1. Market snapshot for Optical Computing. 20
  • Table 2. Comparison of Key Parameters: Electronic vs. Photonic Computing.   32
  • Table 3. Energy Efficiency Considerations. 34
  • Table 4. Integration Challenges.        35
  • Table 5. Electronic and Photonic Integrated Circuits Manufacturing Considerations.  38
  • Table 6. Comparison of Different Laser Types for PICs.     47
  • Table 7. Types of Photodetectors.    51
  • Table 8. Integration Challenges for Detectors.         52
  • Table 9. Waveguide Structures and Their Characteristics.               57
  • Table 10. Superconducting qubit market players.  69
  • Table 11. Initialization, manipulation and readout for trapped ion quantum computers.            73
  • Table 12. Ion trap market players.     75
  • Table 13. Pros and cons of photon qubits. 77
  • Table 14. Comparison of photon polarization and squeezed states.         78
  • Table 15. Initialization, manipulation and readout of photonic platform quantum computers.               79
  • Table 16. Photonic qubit market players.     80
  • Table 17. Initialization, manipulation and readout for neutral-atom quantum computers.        83
  • Table 18. Pros and cons of cold atoms quantum computers and simulators      84
  • Table 19. Neural atom qubit market players.             84
  • Table 20. Initialization, manipulation and readout of topological qubits.              86
  • Table 21. Topological qubits market players.            87
  • Table 22. Properties of Key Materials Used in Optical Computing.            88
  • Table 23. SIO Properties and Advantages.  90
  • Table 24. SIO Limitations and Challenges. 91
  • Table 25.  Comparison of SOI and SiN Platforms.  92
  • Table 26. Silicon Nitride (SiN) Manufacturing Processes. 94
  • Table 27. Indium Phosphide Material Characteristics.       96
  • Table 28. Indium Phosphide Integration Challenges.          97
  • Table 29. Advantages of Polymer-based PICs.         99
  • Table 30. Organic Polymer on Silicon Manufacturing Techniques.              100
  • Table 31. Thin Film Lithium Niobate Fabrication Methods.              103
  • Table 32. Thin Film Lithium Niobate Emerging Applications.          104
  • Table 33. Barium Titanate and Rare Earth Metals Integration Challenges.            106
  • Table 34. Materials Cost Analysis.   114
  • Table 35. Wafer Sizes by PIC Platform.          115
  • Table 36. Scaling Challenges.             116
  • Table 37. Heterogeneous Integration Techniques Comparison.  120
  • Table 38. Top PIC Foundries and Their Capabilities.            127
  • Table 39. Integrated Device Manufacturers (IDMs).             129
  • Table 40. Integration Schemes of PICs: Pros and Cons.    133
  • Table 41. All-Optical Logic Gates and Their Operations.   140
  • Table 42. Comparison of Quantum Computing Architectures.     146
  • Table 43. Photon Detection Technologies.  148
  • Table 44. Advantages of Photonic Qubits.  149
  • Table 45. Quantum PIC Components and Their Functions.            152
  • Table 46. Data Center Interconnect Standards and Specifications.          159
  • Table 47. Fan-out packaging process overview.      164
  • Table 48. Comparison between mainstream silicon dioxide (SiO2) and leading organic dielectrics for electronic interconnect substrates.               168
  • Table 49. Benefits of glass in 2.5D glass-based packaging.            170
  • Table 50. Comparison between key properties of glass and polymer molding compounds commonly used in semiconductor packaging applications.   175
  • Table 51. Challenges of glass semiconductor packaging.               177
  • Table 52. Comparison between silicon, organic laminates and glass as packaging substrates.            178
  • Table 53. 2.5D vs. 3D packaging.      179
  • Table 54. 2.5D packaging challenges.           180
  • Table 55. Market players in 2.5D packaging.             181
  • Table 56. Advantages and disadvantages of 3D packaging.           183
  • Table 57. Comparison between 2.5D, 3D micro bump, and 3D hybrid bonding.               187
  • Table 58. Challenges in 3D Hybrid Bonding.             187
  • Table 59. Challenges in scaling bumps.       189
  • Table 60. Key methods for enabling copper-to-copper (Cu-Cu) hybrid bonding in advanced semiconductor packaging:  190
  • Table 61. Micro bumps vs Cu-Cu bumpless hybrid bonding.         190
  • Table 62. Benefits and Challenges of CPO. 194
  • Table 63. Key Companies in CPO.    196
  • Table 64. AI Accelerator Interconnect Bandwidth Trends. 200
  • Table 65. Comparative analysis of key performance parameters and metrics of magnetic field sensors.                213
  • Table 66. Types of magnetic field sensors. 214
  • Table 67. Market opportunity for different types of quantum magnetic field sensors.   215
  • Table 68. Applications of quantum gravimeters      217
  • Table 69. Comparative table between quantum gravity sensing and some other technologies commonly used for underground mapping.       218
  • Table 70. Key players in quantum gravimeters.        221
  • Table 71. Global Optical Computing Market Size and Growth Projections, 2025-2035 (Billions USD).                242
  • Table 72. Key Growth Drivers and Inhibitors.            243
  • Table 73. Global market for Photonic Integrated Circuits 2025-2035 (Billions USD).     245
  • Table 74. Global market for Optical Processors 2025-2035 (Billions USD).         246
  • Table 75. Global market for Quantum Optical Computing 2025-2035 (Billions USD).  248
  • Table 76. Global market for Optical Computing in Data Centers and HPC 2025-2035 (Billions USD). 249
  • Table 77. Global market for Optical Computing in Telecommunications 2025-2035 (Billions USD).   250
  • Table 78. Global market for Optical Computing in Automotive and LiDAR 2025-2035 (Billions USD). 251
  • Table 79. Global market for Optical Computing in Healthcare and Biomedical 2025-2035 (Billions USD).                252
  • Table 80. Global market for Optical Computing in North America 2025-2035 (Billions USD). 253
  • Table 81. Global market for Optical Computing in Europe 2025-2035 (Billions USD).  254
  • Table 82. Global market for Optical Computing in Asia-Pacific 2025-2035 (Billions USD).        255
  • Table 83. Global market for Optical Computing in Rest of the World 2025-2035 (Billions USD).            256
  • Table 84. PIC Market by Material Platform 2025-2035 (Millions USD): Silicon Photonics.           258
  • Table 85. PIC Market by Material Platform 2025-2035 (Millions USD): Indium Phosphide.         258
  • Table 86. PIC Market by Material Platform 2025-2035 (Millions USD): Silicon Nitride.   259
  • Table 87. PIC Market by Material Platform 2025-2035 (Millions USD): Others.   261
  • Table 88. PIC-based Transceiver Market 2025-2035 (Millions USD), By Data Rate.          262
  • Table 89. PIC-based Transceiver Market 2025-2035 (Millions USD), By Application.      263
  • Table 90. Market for PIC in AI Accelerator Interconnects, 2025-2035 (Millions USD).   264
  • Table 91. Market for PIC in High-Performance Computing, 2025-2035 (Millions USD). 265
  • Table 92. Market for PIC in 5G/6G, 2025-2035 (Millions USD).      266
  • Table 93. Market for PIC in Optical Networking Equipment, 2025-2035 (Millions USD).              267
  • Table 94. Market for PIC in Quantum Computing, 2025-2035.     268
  • Table 95. Market for PIC in Quantum Communications, 2025-2035.       269
  • Table 96. Market for PIC in Automotive LiDAR, 2025-2035 (Millions USD).           269
  • Table 97. Market for PIC in industrial Sensing, 2025-2035 (Millions USD).           271
  • Table 98. Optical Processor Market Forecasts By Type, 2025-2035 (Billions USD).        272
  • Table 99. Optical Processor Market Forecasts By Applications, 2025-2035 (Billions USD).      273
  • Table 100. Quantum Optical Computing Market Forecasts, By Type of Quantum Technology 2025-2035.                275
  • Table 101. Quantum Optical Computing Market Forecasts, By Application Area 2025-2035. 275
  • Table 102. Technical Challenges in Optical Computing and Potential Solutions.             295
  • Table 103. Cost Comparison: Optical vs. Electronic Computing Systems.           301
  • Table 104. Adoption Barriers by Application Area. 302
  • Table 105. Energy Efficiency Standards.      309
  • Table 106. Material Usage and Recycling Policies.                311
  • Table 107. Glossary of Terms.             425
  • Table 108. List of Abbreviations.        428
  •  

List of Figures

  • Figure 1. Global Optical Computing Market Size and Growth Projections, 2025-2035. 21
  • Figure 2. Market map for Optical Computing Technology Landscape.     23
  • Figure 3. Timeline of Major Milestones in Optical Computing.      31
  • Figure 4. Schematic of Various Optical Coupling Mechanisms.  44
  • Figure 5 . Basic Architecture of a Photonic Integrated Circuit (PIC).          59
  • Figure 6. Superconducting quantum computer.     67
  • Figure 7. Superconducting quantum computer schematic.            68
  • Figure 8.  Components and materials used in a superconducting qubit.               69
  • Figure 9. Ion-trap quantum computer.          71
  • Figure 10. Various ways to trap ions                72
  • Figure 11.  Universal Quantum’s shuttling ion architecture in their Penning traps.          73
  • Figure 12. Neutral atoms (green dots) arranged in various configurations            82
  • Figure 13. Material Platform Benchmarking Scorecard.     112
  • Figure 14. PIC Architecture Evolution, 2025-2035.               131
  • Figure 15. Quantum PIC Roadmap, 2025-2035.    154
  • Figure 16. 2D chip packaging.            161
  • Figure 17. Typical structure of 2.5D IC package utilizing interposer.          162
  • Figure 18. Fan-out chip-first process flow and Fan-out chip-last process flow. 166
  • Figure 19. Manufacturing process for glass interposers.   173
  • Figure 20. 3D Glass Panel Embedding (GPE) package.      175
  • Figure 21. Co-Packaged Optics (CPO) Technology Roadmap.      194
  • Figure 22. Data Center Transceiver Roadmap, 2025-2035.             198
  • Figure 23. Quantum Gravimeter.       217
  • Figure 24. Global Optical Computing Market Size and Growth Projections, 2025-2035 (Billions USD).                243
  • Figure 25. Global market for Photonic Integrated Circuits 2025-2035 (Billions USD).   246
  • Figure 26. Global market for Optical Processors 2025-2035 (Billions USD).       247
  • Figure 27. Global market for Quantum Optical Computing 2025-2035 (Billions USD). 248
  • Figure 28. Global market for Optical Computing in Data Centers and HPC 2025-2035 (Billions USD).                249
  • Figure 29. Global market for Optical Computing in Telecommunications 2025-2035 (Billions USD). 251
  • Figure 30. Global market for Optical Computing in Automotive and LiDAR 2025-2035 (Billions USD).                251
  • Figure 31. Global market for Optical Computing in Healthcare and Biomedical 2025-2035 (Billions USD).  252
  • Figure 32. Global market for Optical Computing in North America 2025-2035 (Billions USD). 254
  • Figure 33. Global market for Optical Computing in Europe 2025-2035 (Billions USD). 255
  • Figure 34. Global market for Optical Computing in Asia-Pacific 2025-2035 (Billions USD).      255
  • Figure 35. Global market for Optical Computing in Rest of the World 2025-2035 (Billions USD).          257
  • Figure 36. PIC Market by Material Platform 2025-2035 (Millions USD): Silicon Photonics.         258
  • Figure 37. PIC Market by Material Platform 2025-2035 (Millions USD): Indium Phosphide.       259
  • Figure 38. PIC Market by Material Platform 2025-2035 (Millions USD): Silicon Nitride. 260
  • Figure 39. PIC-based Transceiver Market 2025-2035 (Millions USD), By Data Rate.        262
  • Figure 40. PIC-based Transceiver Market 2025-2035 (Millions USD), By Application.    263
  • Figure 41. Market for PIC in AI Accelerator Interconnects, 2025-2035 (Millions USD). 264
  • Figure 42. Market for PIC in High-Performance Computing, 2025-2035 (Millions USD).              265
  • Figure 43. Market for PIC in 5G/6G, 2025-2035 (Millions USD).    266
  • Figure 44. Market for PIC in Optical Networking Equipment, 2025-2035 (Millions USD).            267
  • Figure 45. Market for PIC in Automotive LiDAR, 2025-2035 (Millions USD).         270
  • Figure 46. Market for PIC in industrial Sensing, 2025-2035 (Millions USD).          271
  • Figure 47. Optical Processor Market Forecasts By Type, 2025-2035 (Billions USD).      273
  • Figure 48. Optical Processor Market Forecasts By Applications, 2025-2035 (Billions USD).    274
  • Figure 49. Quantum Optical Computing Market Forecasts, By Type of Quantum Technology 2025-2035.                275
  • Figure 50. Quantum Optical Computing Market Forecasts, By Application Area 2025-2035.  276
  • Figure 51. Quantum Optical Computing: Technology Readiness Levels.               284
  • Figure 52.  IBM Q System One quantum computer.              341
  • Figure 53. ColdQuanta Quantum Core (left), Physics Station (middle) and the atoms control chip (right).                347
  • Figure 54. IonQ's ion trap       349
  • Figure 55. PsiQuantum’s modularized quantum computing system networks. 388

 

 

 

 

 

The Global Market for Optical Computing 2025-2035
The Global Market for Optical Computing 2025-2035
PDF download/by email.

The Global Market for Optical Computing 2025-2035
The Global Market for Optical Computing 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com