The Global Market for Passive Cooling Materials and Technologies 2024-2034

0

  • Published: October 2023
  • Pages: 400
  • Tables: 47
  • Figures: 95
  • Companies profiled: 206
  • Series: Advanced Materials

 

Passive cooling utilizes heat dissipation methods without external energy input, relying on conduction, convection and radiation processes. Major markets include building cooling, cold chain logistics, electronics cooling, textiles and personal comfort. Demand is driven by needs for energy efficiency, temperature controlled transport, and thermal management.

The Global Market for Passive Cooling Materials and Technologies 2024-2034 provides a comprehensive analysis of the global passive cooling materials and technologies landscape. It covers key principles like conduction, convection, and radiation that enable passive cooling as well as materials like phase change materials, graphene, carbon nanotubes, aerogels, hydrogels, and metamaterials.

Detailed ten-year market forecasts are segmented by end-use industry, material type, and region provide insights into revenue opportunities. Profiles of over 200 leading companies developing and supplying passive cooling solutions are included along with analyses of product portfolios, partnerships, and R&D priorities.

The report highlights high-potential applications in buildings, electronics, electric vehicles, apparel, cold chain, and energy storage. Comparisons of competing material technologies for thermal management are presented. Current commercial products are benchmarked and technical readiness of emerging solutions is assessed. Report contents include:

  • Executive summary covering market overview, drivers, emerging materials, electrification impacts, and applications roadma
  • Materials and technologies analysis of:
    • Thermal interface materials
    • Phase change materials
    • Carbon materials like graphene, nanotubes, nanodiamonds
    • Aerogels
    • Hydrogels
    • Metamaterials
    • Heat pipes
    • Radiative cooling
    • Cooling paints and coatings
  • Ten-year market forecasts segmented by:
    • End use industry
    • Material type
    • Region
  • Profiles of over 200 leading companies developing and supplying passive cooling solutions. Companies profiled include AOS Thermal Compounds, Aspen Aerogels, BioLife Solutions, Inc., Boyd Corproation, Cabot Corporation, Dow Corning, Enerdyne Solutions, Enersens, Fujipoly, Guangdong Alison Hi-Tech, Henkel, HyMet Thermal Interfaces SIA, i-TES, Momentive and Radi-Cool. 
  • Analysis of passive cooling applications in buildings, electronics, electric vehicles, apparel, cold chain, and energy storage
  • Benchmarking of commercial products and assessment of technical readiness of emerging solutions
  • Comparisons of competing material technologies for thermal management

 

 

1              RESEARCH METHODOLOGY         22

 

2              EXECUTIVE SUMMARY   23

  • 2.1          The passive cooling market          23
    • 2.1.1      Key materials and technologies 24
  • 2.2          Market drivers  24
  • 2.3          Electrification     25
  • 2.4          Emerging materials         26
  • 2.5          Passive versus active cooling       27
  • 2.6          Applications roadmap    29

 

3              MATERIALS AND TECHNOLOGIES              29

  • 3.1          Principles employed for cooling or prevention of heating               30
    • 3.1.1      Conduction         30
    • 3.1.2      Convection         31
    • 3.1.3      Radiation             31
    • 3.1.4      Evaporation        31
    • 3.1.5      Insulation            31
    • 3.1.6      Phase change    32
  • 3.2          Thermal interface materials         33
    • 3.2.1      Types    35
    • 3.2.2      Thermal conductivity      36
    • 3.2.3      Comparative properties of TIMs 38
    • 3.2.4      Advantages and disadvantages of TIMs, by type 38
    • 3.2.5      Thermal greases and pastes        43
    • 3.2.6      Thermal gap pads            45
    • 3.2.7      Thermal gap fillers           46
    • 3.2.8      Thermal adhesives and potting compounds          47
    • 3.2.9      Metal-based TIMs           49
      • 3.2.9.1   Solders and low melting temperature alloy TIMs 49
      • 3.2.9.2   Liquid metals     51
      • 3.2.9.3   Solid liquid hybrid (SLH) metals  51
      • 3.2.9.4   Hybrid liquid metal pastes           52
      • 3.2.9.5   SLH created during chip assembly (m2TIMs)        53
  • 3.3          Phase change materials 54
    • 3.3.1      Key properties  54
    • 3.3.2      Classification      55
    • 3.3.3      Phase change cooling modes      55
    • 3.3.4      Types    55
      • 3.3.4.1   Organic phase change materials 57
        • 3.3.4.1.1               Paraffin wax       57
          • 3.3.4.1.1.1           Properties           58
          • 3.3.4.1.1.2           Advantages and disadvantages  58
          • 3.3.4.1.1.3           Applications of paraffin PCMs     59
          • 3.3.4.1.1.4           Commercial paraffin PCM products          59
        • 3.3.4.1.2               Non-Paraffins (fatty acids, esters, alcohols)          60
          • 3.3.4.1.2.1           Fatty Acids          60
          • 3.3.4.1.2.2           Esters    60
          • 3.3.4.1.2.3           Alcohols               61
          • 3.3.4.1.2.4           Glycols  61
          • 3.3.4.1.2.5           Advantages and disadvantages  62
        • 3.3.4.1.3               Bio-based phase change materials            63
          • 3.3.4.1.3.1           Fatty Acids          63
          • 3.3.4.1.3.2           Plant Oils             64
          • 3.3.4.1.3.3           Agricultural Byproducts 64
          • 3.3.4.1.3.4           Advantages and disadvantages  65
          • 3.3.4.1.3.5           Commercial development            65
      • 3.3.4.2   Inorganic phase change materials             66
        • 3.3.4.2.1               Salt hydrates      66
          • 3.3.4.2.1.1           Properties           66
          • 3.3.4.2.1.2           Applications of Salt Hyhydrate PCMs       67
          • 3.3.4.2.1.3           Advantages and disadvantages  67
          • 3.3.4.2.1.4           Commercial Salt Hydrate PCM Products 68
        • 3.3.4.2.2               Metal and metal alloy PCMs (High-temperature) 69
          • 3.3.4.2.2.1           Properties           69
          • 3.3.4.2.2.2           Applications       69
          • 3.3.4.2.2.3           Advantages and disadvantages  70
          • 3.3.4.2.2.4           Recent developments    71
      • 3.3.4.3   Eutectic PCMs   71
        • 3.3.4.3.1               Eutectic Mixtures             71
        • 3.3.4.3.2               Examples of Eutectic Inorganic PCMs       71
        • 3.3.4.3.3               Benefits               72
        • 3.3.4.3.4               Applications       73
        • 3.3.4.3.5               Advantages and disadvantages of eutectics          73
        • 3.3.4.3.6               Recent developments    73
      • 3.3.4.4   Encapsulation of PCMs  74
        • 3.3.4.4.1               Benefits               75
        • 3.3.4.4.2               Macroencapsulation       76
        • 3.3.4.4.3               Micro/nanoencapsulation            76
        • 3.3.4.4.4               Shape Stabilized PCMs   78
        • 3.3.4.4.5               Commercial Encapsulation Technologies               79
        • 3.3.4.4.6               Self-Assembly Encapsulation       79
      • 3.3.4.5   Nanomaterial phase change materials     80
    • 3.3.5      SWOT analysis   81
  • 3.4          Carbon materials              82
    • 3.4.1      Graphene           83
      • 3.4.1.1   Properties           84
      • 3.4.1.2   Graphene fillers 86
      • 3.4.1.3   Graphene foam 86
      • 3.4.1.4   Graphene aerogel           87
    • 3.4.2      Carbon Nanotubes          87
      • 3.4.2.1   Properties           88
    • 3.4.3      Fullerenes           90
    • 3.4.4      Nanodiamond   90
      • 3.4.4.1   Properties           91
    • 3.4.5      SWOT analysis   93
  • 3.5          Metal Organic Frameworks (MOFs)         94
    • 3.5.1      SWOT analysis   94
  • 3.6          Heat pipes          95
    • 3.6.1      Technology description 96
    • 3.6.2      Operation and use           96
    • 3.6.3      Flat plate heat pipes and derivatives       97
    • 3.6.4      Emerging heat pipes       97
  • 3.7          Radiative cooling              98
    • 3.7.1      Heat sinks           98
      • 3.7.1.1   Conventional convective heat sinks          99
      • 3.7.1.2   Benefits               99
      • 3.7.1.3   Applications       100
      • 3.7.1.4   Commercial PCM Heat Sinks        100
      • 3.7.1.5   Advanced heat sinks       100
    • 3.7.2      Traditional radiative cooling        101
    • 3.7.3      Radiative cooling of buildings      102
      • 3.7.3.1   Passive Daytime Radiative Cooling PDRC 103
    • 3.7.4      Thermal louvers               103
    • 3.7.5      Anti Stokes fluorescence cooling               104
  • 3.8          Hydrogels            104
    • 3.8.1      Structure             106
      • 3.8.1.1   Hybrid hydrogels              107
        • 3.8.1.1.1               Nanocomposite hydrogels           107
        • 3.8.1.1.2               Macromolecular microsphere composite (MMC) hydrogels           107
        • 3.8.1.1.3               Interpenetrating Polymer Networks (IPN) hydrogels         108
        • 3.8.1.1.4               Double-network (DN) hydrogels 108
    • 3.8.2      Classification      108
      • 3.8.2.1   Based on source               109
      • 3.8.2.2   Based on composition    109
      • 3.8.2.3   Based on configuration  110
      • 3.8.2.4   Based on crosslinking     110
      • 3.8.2.5   Size        110
        • 3.8.2.5.1               Microgels            110
        • 3.8.2.5.2               Nanogels             111
      • 3.8.2.6   Environmental response               112
      • 3.8.2.7   Degradability     112
    • 3.8.3      Formulations     113
    • 3.8.4      Benefits of hydrogels     114
    • 3.8.5      Hydrogels for heating and cooling systems (thermal management)           115
      • 3.8.5.1   Evaporative cooling         115
      • 3.8.5.2   Hydroceramic hydrogel cooling  116
      • 3.8.5.3   Cooling of solar panels   117
      • 3.8.5.4   Hydrogel windows           118
      • 3.8.5.5   Thermal management in electronics        119
  • 3.9          Metamaterials  120
    • 3.9.1      Types and properties     121
      • 3.9.1.1   Optical Metamaterials   121
        • 3.9.1.1.1               Photonic metamaterials 121
        • 3.9.1.1.2               Tunable metamaterials  122
        • 3.9.1.1.3               Frequency selective surface (FSS) based metamaterials  122
        • 3.9.1.1.4               Plasmonic metamaterials             123
        • 3.9.1.1.5               Invisibility cloaks               123
        • 3.9.1.1.6               Perfect absorbers            124
        • 3.9.1.1.7               Optical nanocircuits        124
        • 3.9.1.1.8               Metalenses        124
        • 3.9.1.1.9               Holograms          125
        • 3.9.1.1.10             Applications       125
      • 3.9.1.2   Electromagnetic metamaterials 126
        • 3.9.1.2.1               Double negative (DNG) metamaterials   126
        • 3.9.1.2.2               Single negative metamaterials   127
        • 3.9.1.2.3               Electromagnetic bandgap metamaterials (EBG)  127
        • 3.9.1.2.4               Bi-isotropic and bianisotropic metamaterials       127
        • 3.9.1.2.5               Chiral metamaterials      127
        • 3.9.1.2.6               Electromagnetic Invisibility cloak               128
      • 3.9.1.3   Radio frequency (RF) metamaterials        128
        • 3.9.1.3.1               RF metasurfaces              129
        • 3.9.1.3.2               Frequency selective surfaces      129
        • 3.9.1.3.3               Tunable RF metamaterials            129
        • 3.9.1.3.4               RF metamaterials antennas         129
        • 3.9.1.3.5               Absorbers           130
        • 3.9.1.3.6               Luneburg lens    130
        • 3.9.1.3.7               RF filters              131
        • 3.9.1.3.8               Applications       131
      • 3.9.1.4   Terahertz metamaterials              132
        • 3.9.1.4.1               THz metasurfaces            133
        • 3.9.1.4.2               Quantum metamaterials               133
        • 3.9.1.4.3               Graphene metamaterials             134
        • 3.9.1.4.4               Flexible/wearable THz metamaterials     135
        • 3.9.1.4.5               THz modulators 135
        • 3.9.1.4.6               THz switches      135
        • 3.9.1.4.7               THz absorbers   135
        • 3.9.1.4.8               THz antennas     136
        • 3.9.1.4.9               THz imaging components             136
      • 3.9.1.5   Acoustic metamaterials 136
        • 3.9.1.5.1               Sonic crystals     136
        • 3.9.1.5.2               Acoustic metasurfaces  137
        • 3.9.1.5.3               Locally resonant materials            137
        • 3.9.1.5.4               Acoustic cloaks  137
        • 3.9.1.5.5               Hyperlenses       138
        • 3.9.1.5.6               Sonic one-way sheets    138
        • 3.9.1.5.7               Acoustic diodes 138
        • 3.9.1.5.8               Acoustic absorbers          139
        • 3.9.1.5.9               Applications       139
      • 3.9.1.6   Tunable Metamaterials 140
        • 3.9.1.6.1               Tunable electromagnetic metamaterials 140
        • 3.9.1.6.2               Tunable THz metamaterials         140
        • 3.9.1.6.3               Tunable acoustic metamaterials 141
        • 3.9.1.6.4               Tunable optical metamaterials   141
        • 3.9.1.6.5               Applications       142
      • 3.9.1.7   Nonlinear metamaterials              143
      • 3.9.1.8   Self-Transforming Metamaterials              144
      • 3.9.1.9   Topological Metamaterials          145
      • 3.9.1.10                Materials used with metamaterials          145
    • 3.9.2      Thermal management   147
    • 3.9.3      Cooling films      148
    • 3.9.4      Optical solar reflection coatings 149
  • 3.10        Passive cooling paints and coatings          150
    • 3.10.1    Overview            150
    • 3.10.2    Applications       151

 

4              MARKETS            151

  • 4.1          Global revenues               152
    • 4.1.1      By end use market           152
    • 4.1.2      By materials       154
    • 4.1.3      By end use market           156
  • 4.2          Building and construction             158
    • 4.2.1      Improved energy efficiency         158
    • 4.2.2      Concrete             161
      • 4.2.2.1   Benefits               161
      • 4.2.2.2   Commercial PCM Concrete Products       161
    • 4.2.3      Wallboards         162
      • 4.2.3.1   Benefits               162
      • 4.2.3.2   Commercial PCM Wallboards      163
    • 4.2.4      Trombe Walls     163
      • 4.2.4.1   Benefits               164
      • 4.2.4.2   Products              164
    • 4.2.5      HVAC    165
    • 4.2.6      Solar Heating     165
    • 4.2.7      Solar panels        168
    • 4.2.8      Multi-mode ICER passive cooling               169
    • 4.2.9      Panels and blankets        170
    • 4.2.10    Coatings and paints         170
  • 4.3          Electronics          173
    • 4.3.1      Consumer devices           173
      • 4.3.1.1   Smartphones and tablets              174
      • 4.3.1.2   Wearable electronics      175
    • 4.3.2      5G/6G Communications 177
      • 4.3.2.1   Antenna              177
      • 4.3.2.2   Base Band Unit (BBU)     179
    • 4.3.3      Data Centers      180
      • 4.3.3.1   Router, switches and line cards  181
      • 4.3.3.2   Servers 182
      • 4.3.3.3   Power supply converters              183
  • 4.4          Apparel 184
    • 4.4.1      Cooling vests     184
    • 4.4.2      PCM Medical Textiles     186
  • 4.5          Electric Vehicles (EV)      187
    • 4.5.1      Applications       188
      • 4.5.1.1   Lithium-ion batteries      189
        • 4.5.1.1.1               Cell-to-pack designs        190
        • 4.5.1.1.2               Cell-to-chassis/body       191
      • 4.5.1.2   Power electronics            192
      • 4.5.1.3   Charging stations             193
      • 4.5.1.4   ADAS Sensors    194
        • 4.5.1.4.1               ADAS Cameras  194
        • 4.5.1.4.2               ADAS Radar        194
        • 4.5.1.4.3               ADAS LiDAR        195
      • 4.5.1.5   Paint additives  196
  • 4.6          Cold storage transport   196
    • 4.6.1.1   Temperature-controlled shipping             196
    • 4.6.1.2   Commercial refrigeration             198
  • 4.7          Thermal storage systems              199
    • 4.7.1      Water heaters   199
    • 4.7.2      Thermal batteries for water heaters and EVs        200
  • 4.8          Aerogels              201
    • 4.8.1      Silica aerogels    201
      • 4.8.1.1   Properties           202
        • 4.8.1.1.1               Thermal conductivity      203
        • 4.8.1.1.2               Mechanical         203
      • 4.8.1.2   Silica aerogel precursors               203
      • 4.8.1.3   Products              204
        • 4.8.1.3.1               Monoliths           204
          • 4.8.1.3.1.1           Properties           204
          • 4.8.1.3.1.2           Applications       204
          • 4.8.1.3.1.3           SWOT analysis   205
        • 4.8.1.3.2               Powder 206
          • 4.8.1.3.2.1           Properties           206
          • 4.8.1.3.2.2           Applications       206
          • 4.8.1.3.2.3           SWOT analysis   207
        • 4.8.1.3.3               Granules              208
          • 4.8.1.3.3.1           Properties           208
          • 4.8.1.3.3.2           Applications       208
          • 4.8.1.3.3.3           SWOT analysis   209

 

5              COMPANY PROFILES       210 (206 company profiles)

 

6              REFERENCES       388

 

List of Tables

  • Table 1. Key materials and technologies in passive cooling.            24
  • Table 2. Passive cooling market drivers. 24
  • Table 3. Formats of emerging carbon materials and inorganic compounds for passive thermal cooling applications.                26
  • Table 4. Passive versus active cooling.     28
  • Table 5. Functions and materials format.               29
  • Table 6. Thermal conductivities (κ) of common metallic, carbon, and ceramic fillers employed in TIMs.      37
  • Table 7. Commercial TIMs and their properties.  38
  • Table 8. Advantages and disadvantages of TIMs, by type.               38
  • Table 9. Characteristics of some typical TIMs.      42
  • Table 10.  PCM Types and properties.     56
  • Table 11. Advantages and disadvantages of parafiin wax PCMs.   58
  • Table 12. Advantages and disadvantages of non-paraffins.            62
  • Table 13. Advantages and disadvantages of Bio-based phase change materials.    65
  • Table 14. Advantages and disadvantages of salt hydrates               67
  • Table 15. Advantages and disadvantages of low melting point metals.      70
  • Table 16. Advantages and disadvantages of eutectics.     73
  • Table 17. Comparions of silicone vs. carbon-based polymers for passive cooling.  82
  • Table 18. Properties of graphene, properties of competing materials, applications thereof.            84
  • Table 19. Properties of CNTs and comparable materials. 88
  • Table 20. Properties of nanodiamonds.  92
  • Table 21. Common hydrogel formulations.           113
  • Table 22. Benefits of hydrogels. 114
  • Table 23. Hydrogel panel.             115
  • Table 24. Optical Metamaterial Applications.       125
  • Table 25. Applications of radio frequency metamaterials.              131
  • Table 26. Applications of acoustic metamaterials.              139
  • Table 27. Types of tunable terahertz (THz) metamaterials and their tuning mechanisms.  140
  • Table 28. Tunable acoustic metamaterials and their tuning mechanisms. 141
  • Table 29.  Types of tunable optical metamaterials and their tuning mechanisms. 142
  • Table 30. Markets and applications for tunable metamaterials.   142
  • Table 31. Types of self-transforming metamaterials and their transformation mechanisms.            144
  • Table 32.  Key materials used with different types of metamaterials.        146
  • Table 33. Global revenues for passive cooling materials, 2018-2034, by market (billion USD).         152
  • Table 34. Global revenues for passive cooling materials, 2018-2034, by materials (billion USD).     154
  • Table 35. Global revenues for passive cooling materials, 2018-2034, by region (billion USD).          156
  • Table 36. Market assessment for PCMs in building and construction-market age, applications, key benefits and motivation for use, market drivers and trends, market challenges.             166
  • Table 37. Market overview of aerogels in paints and coatings-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL.             171
  • Table 38. Commercially available PCM cooling vest products.       185
  • Table 39. PCMs used in cold chain applications.  196
  • Table 40. Market assessment for phase change materials in packaging and cold chain logistics-market age, applications, key benefits and motivation for use, market drivers and trends, market challenges. 197
  • Table 41. Market assessment for PCMs in refrigeration systems -market age, applications, key benefits and motivation for use, market drivers and trends, market challenges.    198
  • Table 42. Key properties of silica aerogels.            202
  • Table 43. Chemical precursors used to synthesize silica aerogels. 203
  • Table 44. Carbodeon Ltd. Oy nanodiamond product list.  250
  • Table 45. CrodaTherm Range.     254
  • Table 46. Ray-Techniques Ltd. nanodiamonds product list.             341
  • Table 47. Comparison of ND produced by detonation and laser synthesis.              342

 

List of Figures

  • Figure 1. SWOT analysis for the passive cooling market.  26
  • Figure 2. Passive cooling applications roadmap.  29
  • Figure 3. SWOT analysis for Silicone thermal conduction materials for passive cooling.      33
  • Figure 4. (L-R) Surface of a commercial heatsink surface at progressively higher magnifications, showing tool marks that create a rough surface and a need for a thermal interface material.  34
  • Figure 5. Schematic of thermal interface materials used in a flip chip package.      34
  • Figure 6. Thermal grease.             35
  • Figure 7. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module. 36
  • Figure 8. Application of thermal silicone grease. 44
  • Figure 9. A range of thermal grease products.     44
  • Figure 10. Thermal Pad. 46
  • Figure 11. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module.             47
  • Figure 12. Thermal tapes.             48
  • Figure 13. Thermal adhesive products.   48
  • Figure 14. Typical IC package construction identifying TIM1 and TIM2       50
  • Figure 15. Liquid metal TIM product.       51
  • Figure 16. Pre-mixed SLH.            52
  • Figure 17. HLM paste and Liquid Metal Before and After Thermal Cycling.               53
  • Figure 18.  SLH with Solid Solder Preform.             53
  • Figure 19. Automated process for SLH with solid solder preforms and liquid metal.             54
  • Figure 20. Classification of PCMs.              56
  • Figure 21. Phase-change materials in their original states.              56
  • Figure 22. SWOT analysis for phase change materials for passive cooling. 82
  • Figure 23. Graphene layer structure schematic.  83
  • Figure 24. Illustrative procedure of the Scotch-tape based micromechanical cleavage of HOPG.    84
  • Figure 25. Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene.   86
  • Figure 26. Schematic diagram of a multi-walled carbon nanotube (MWCNT).        88
  • Figure 27. Detonation Nanodiamond.     92
  • Figure 28. DND primary particles and properties.               92
  • Figure 29. SWOT analysis for carbon materials for passive cooling.             94
  • Figure 30. SWOT analysis for Metal Organic Frameworks (MOFs) for passive cooling.         95
  • Figure 31. Fujitsu loop heat pipe.              96
  • Figure 32. Samsung Galaxy vapor chamber.          97
  • Figure 33. Structure of hydrogel.               107
  • Figure 34. Classification of hydrogels based on properties.            109
  • Figure 35. Preparation and potential biomedical applications of click hydrogels, microgels and nanogels. 112
  • Figure 36. Layered Hydrogel between Wall Panels.            116
  • Figure 37. IaaC Students Develop a Passive Cooling System from Hydrogel and Ceramic.   117
  • Figure 38. Classification of metamaterials based on functionalities.            121
  • Figure 39. Invisibility cloak.          124
  • Figure 40. Electromagnetic metamaterial.             126
  • Figure 41. Schematic of Electromagnetic Band Gap (EBG) structure.          127
  • Figure 42. Schematic of chiral metamaterials.      128
  • Figure 43. Metamaterial antenna.            130
  • Figure 44. Terahertz metamaterials.        132
  • Figure 45.  Schematic of the quantum plasmonic metamaterial.  134
  • Figure 46. Properties and applications of graphene metamaterials.           135
  • Figure 47. Nonlinear metamaterials- 400-nm thick nonlinear mirror that reflects frequency-doubled output using input light intensity as small as that of a laser pointer. 143
  • Figure 48. Radi-cool metamaterial film.  148
  • Figure 49. Schematic of dry-cooling technology. 149
  • Figure 50. Global revenues for passive cooling materials, 2018-2034, by market (billion USD).       153
  • Figure 51. Global revenues for passive cooling materials, 2018-2034, by materials (billion USD).   155
  • Figure 52. Global revenues for passive cooling materials, 2018-2034, by region (billion USD).         157
  • Figure 53. Global energy consumption growth of buildings.           158
  • Figure 54.  Energy consumption of residential building sector.      159
  • Figure 55. Schematic of PCM use in buildings.      160
  • Figure 56. Comparison of the maximum energy storage capacity of 10 mm thickness of different building materials operating between 18 °C and 26 °C for 24 h.        160
  • Figure 57. Schematic of TIM operation in electronic devices.        174
  • Figure 58. Schematic of Thermal Management Materials in smartphone. 175
  • Figure 59. Wearable technology inventions.         176
  • Figure 60. TIMs in Base Band Unit (BBU).               180
  • Figure 61. Image of data center layout.   181
  • Figure 62. Application of TIMs in line card.            182
  • Figure 63. PCM cooling vest.       184
  • Figure 64. Application of thermal interface materials in automobiles.       188
  • Figure 65. EV battery components including TIMs.             190
  • Figure 66. Battery pack with a cell-to-pack design and prismatic cells.       191
  • Figure 67. Cell-to-chassis battery pack.   192
  • Figure 68. TIMS in EV charging station.   193
  • Figure 69. ADAS radar unit incorporating TIMs.   195
  • Figure 70. Schematic of PCM in storage tank linked to solar collector.       200
  • Figure 71. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner.           202
  • Figure 72. Monolithic aerogel.    205
  • Figure 73.  SWOT analysis for monolith aerogels.               206
  • Figure 74.  SWOT analysis for powder aerogels.  207
  • Figure 75. Aerogel granules.        208
  • Figure 76. Internal aerogel granule applications. 209
  • Figure 77.  SWOT analysis for granule aerogels.  210
  • Figure 78. Thermal Conductivity Performance of ArmaGel HT.      224
  • Figure 79. SLENTEX® roll (piece).               236
  • Figure 80. Ultraguard -70°C Phase Change Material (PCM) being loaded into a Stirling Ultracold ULT25NEU portable freezer. 238
  • Figure 81. Solid State Reflective Display (SRD®) schematic.            240
  • Figure 82. Transtherm® PCMs.   242
  • Figure 83. Carbice carbon nanotubes.     247
  • Figure 84.  Internal structure of carbon nanotube adhesive sheet.             275
  • Figure 85. Carbon nanotube adhesive sheet.       276
  • Figure 86. HI-FLOW Phase Change Materials.       289
  • Figure 87. Kaneka phase change materials.           301
  • Figure 88. Thermoelectric foil, consists of a sequence of semiconductor elements connected with conductive metal. At the top (in red) is the thermal interface. 315
  • Figure 89. Crēdo™ ProMed transport bags.           330
  • Figure 90. Metamaterial structure used to control thermal emission.        333
  • Figure 91. Shinko Carbon Nanotube TIM product.              357
  • Figure 92. The Sixth Element graphene products.              362
  • Figure 93. Thermal conductive graphene film.     363
  • Figure 94. Quartzene®. 373
  • Figure 95. VB Series of TIMS from Zeon. 388

       

 

 

The Global Market for Passive Cooling Materials and Technologies 2024-2034
The Global Market for Passive Cooling Materials and Technologies 2024-2034
eBook (PDF).

The Global Market for Passive Cooling Materials and Technologies 2024-2034
The Global Market for Passive Cooling Materials and Technologies 2024-2034
eBook plus Hard Copy (including tracked FEDEX delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.