- Published: October 2023
- Pages: 400
- Tables: 47
- Figures: 95
- Companies profiled: 206
- Series: Advanced Materials
Passive cooling utilizes heat dissipation methods without external energy input, relying on conduction, convection and radiation processes. Major markets include building cooling, cold chain logistics, electronics cooling, textiles and personal comfort. Demand is driven by needs for energy efficiency, temperature controlled transport, and thermal management.
The Global Market for Passive Cooling Materials and Technologies 2024-2034 provides a comprehensive analysis of the global passive cooling materials and technologies landscape. It covers key principles like conduction, convection, and radiation that enable passive cooling as well as materials like phase change materials, graphene, carbon nanotubes, aerogels, hydrogels, and metamaterials.
Detailed ten-year market forecasts are segmented by end-use industry, material type, and region provide insights into revenue opportunities. Profiles of over 200 leading companies developing and supplying passive cooling solutions are included along with analyses of product portfolios, partnerships, and R&D priorities.
The report highlights high-potential applications in buildings, electronics, electric vehicles, apparel, cold chain, and energy storage. Comparisons of competing material technologies for thermal management are presented. Current commercial products are benchmarked and technical readiness of emerging solutions is assessed. Report contents include:
- Executive summary covering market overview, drivers, emerging materials, electrification impacts, and applications roadma
- Materials and technologies analysis of:
- Thermal interface materials
- Phase change materials
- Carbon materials like graphene, nanotubes, nanodiamonds
- Aerogels
- Hydrogels
- Metamaterials
- Heat pipes
- Radiative cooling
- Cooling paints and coatings
- Ten-year market forecasts segmented by:
- End use industry
- Material type
- Region
- Profiles of over 200 leading companies developing and supplying passive cooling solutions. Companies profiled include AOS Thermal Compounds, Aspen Aerogels, BioLife Solutions, Inc., Boyd Corproation, Cabot Corporation, Dow Corning, Enerdyne Solutions, Enersens, Fujipoly, Guangdong Alison Hi-Tech, Henkel, HyMet Thermal Interfaces SIA, i-TES, Momentive and Radi-Cool.
- Analysis of passive cooling applications in buildings, electronics, electric vehicles, apparel, cold chain, and energy storage
- Benchmarking of commercial products and assessment of technical readiness of emerging solutions
- Comparisons of competing material technologies for thermal management
1 RESEARCH METHODOLOGY 22
2 EXECUTIVE SUMMARY 23
- 2.1 The passive cooling market 23
- 2.1.1 Key materials and technologies 24
- 2.2 Market drivers 24
- 2.3 Electrification 25
- 2.4 Emerging materials 26
- 2.5 Passive versus active cooling 27
- 2.6 Applications roadmap 29
3 MATERIALS AND TECHNOLOGIES 29
- 3.1 Principles employed for cooling or prevention of heating 30
- 3.1.1 Conduction 30
- 3.1.2 Convection 31
- 3.1.3 Radiation 31
- 3.1.4 Evaporation 31
- 3.1.5 Insulation 31
- 3.1.6 Phase change 32
- 3.2 Thermal interface materials 33
- 3.2.1 Types 35
- 3.2.2 Thermal conductivity 36
- 3.2.3 Comparative properties of TIMs 38
- 3.2.4 Advantages and disadvantages of TIMs, by type 38
- 3.2.5 Thermal greases and pastes 43
- 3.2.6 Thermal gap pads 45
- 3.2.7 Thermal gap fillers 46
- 3.2.8 Thermal adhesives and potting compounds 47
- 3.2.9 Metal-based TIMs 49
- 3.2.9.1 Solders and low melting temperature alloy TIMs 49
- 3.2.9.2 Liquid metals 51
- 3.2.9.3 Solid liquid hybrid (SLH) metals 51
- 3.2.9.4 Hybrid liquid metal pastes 52
- 3.2.9.5 SLH created during chip assembly (m2TIMs) 53
- 3.3 Phase change materials 54
- 3.3.1 Key properties 54
- 3.3.2 Classification 55
- 3.3.3 Phase change cooling modes 55
- 3.3.4 Types 55
- 3.3.4.1 Organic phase change materials 57
- 3.3.4.1.1 Paraffin wax 57
- 3.3.4.1.1.1 Properties 58
- 3.3.4.1.1.2 Advantages and disadvantages 58
- 3.3.4.1.1.3 Applications of paraffin PCMs 59
- 3.3.4.1.1.4 Commercial paraffin PCM products 59
- 3.3.4.1.2 Non-Paraffins (fatty acids, esters, alcohols) 60
- 3.3.4.1.2.1 Fatty Acids 60
- 3.3.4.1.2.2 Esters 60
- 3.3.4.1.2.3 Alcohols 61
- 3.3.4.1.2.4 Glycols 61
- 3.3.4.1.2.5 Advantages and disadvantages 62
- 3.3.4.1.3 Bio-based phase change materials 63
- 3.3.4.1.3.1 Fatty Acids 63
- 3.3.4.1.3.2 Plant Oils 64
- 3.3.4.1.3.3 Agricultural Byproducts 64
- 3.3.4.1.3.4 Advantages and disadvantages 65
- 3.3.4.1.3.5 Commercial development 65
- 3.3.4.1.1 Paraffin wax 57
- 3.3.4.2 Inorganic phase change materials 66
- 3.3.4.2.1 Salt hydrates 66
- 3.3.4.2.1.1 Properties 66
- 3.3.4.2.1.2 Applications of Salt Hyhydrate PCMs 67
- 3.3.4.2.1.3 Advantages and disadvantages 67
- 3.3.4.2.1.4 Commercial Salt Hydrate PCM Products 68
- 3.3.4.2.2 Metal and metal alloy PCMs (High-temperature) 69
- 3.3.4.2.2.1 Properties 69
- 3.3.4.2.2.2 Applications 69
- 3.3.4.2.2.3 Advantages and disadvantages 70
- 3.3.4.2.2.4 Recent developments 71
- 3.3.4.2.1 Salt hydrates 66
- 3.3.4.3 Eutectic PCMs 71
- 3.3.4.3.1 Eutectic Mixtures 71
- 3.3.4.3.2 Examples of Eutectic Inorganic PCMs 71
- 3.3.4.3.3 Benefits 72
- 3.3.4.3.4 Applications 73
- 3.3.4.3.5 Advantages and disadvantages of eutectics 73
- 3.3.4.3.6 Recent developments 73
- 3.3.4.4 Encapsulation of PCMs 74
- 3.3.4.4.1 Benefits 75
- 3.3.4.4.2 Macroencapsulation 76
- 3.3.4.4.3 Micro/nanoencapsulation 76
- 3.3.4.4.4 Shape Stabilized PCMs 78
- 3.3.4.4.5 Commercial Encapsulation Technologies 79
- 3.3.4.4.6 Self-Assembly Encapsulation 79
- 3.3.4.5 Nanomaterial phase change materials 80
- 3.3.4.1 Organic phase change materials 57
- 3.3.5 SWOT analysis 81
- 3.4 Carbon materials 82
- 3.4.1 Graphene 83
- 3.4.1.1 Properties 84
- 3.4.1.2 Graphene fillers 86
- 3.4.1.3 Graphene foam 86
- 3.4.1.4 Graphene aerogel 87
- 3.4.2 Carbon Nanotubes 87
- 3.4.2.1 Properties 88
- 3.4.3 Fullerenes 90
- 3.4.4 Nanodiamond 90
- 3.4.4.1 Properties 91
- 3.4.5 SWOT analysis 93
- 3.4.1 Graphene 83
- 3.5 Metal Organic Frameworks (MOFs) 94
- 3.5.1 SWOT analysis 94
- 3.6 Heat pipes 95
- 3.6.1 Technology description 96
- 3.6.2 Operation and use 96
- 3.6.3 Flat plate heat pipes and derivatives 97
- 3.6.4 Emerging heat pipes 97
- 3.7 Radiative cooling 98
- 3.7.1 Heat sinks 98
- 3.7.1.1 Conventional convective heat sinks 99
- 3.7.1.2 Benefits 99
- 3.7.1.3 Applications 100
- 3.7.1.4 Commercial PCM Heat Sinks 100
- 3.7.1.5 Advanced heat sinks 100
- 3.7.2 Traditional radiative cooling 101
- 3.7.3 Radiative cooling of buildings 102
- 3.7.3.1 Passive Daytime Radiative Cooling PDRC 103
- 3.7.4 Thermal louvers 103
- 3.7.5 Anti Stokes fluorescence cooling 104
- 3.7.1 Heat sinks 98
- 3.8 Hydrogels 104
- 3.8.1 Structure 106
- 3.8.1.1 Hybrid hydrogels 107
- 3.8.1.1.1 Nanocomposite hydrogels 107
- 3.8.1.1.2 Macromolecular microsphere composite (MMC) hydrogels 107
- 3.8.1.1.3 Interpenetrating Polymer Networks (IPN) hydrogels 108
- 3.8.1.1.4 Double-network (DN) hydrogels 108
- 3.8.1.1 Hybrid hydrogels 107
- 3.8.2 Classification 108
- 3.8.2.1 Based on source 109
- 3.8.2.2 Based on composition 109
- 3.8.2.3 Based on configuration 110
- 3.8.2.4 Based on crosslinking 110
- 3.8.2.5 Size 110
- 3.8.2.5.1 Microgels 110
- 3.8.2.5.2 Nanogels 111
- 3.8.2.6 Environmental response 112
- 3.8.2.7 Degradability 112
- 3.8.3 Formulations 113
- 3.8.4 Benefits of hydrogels 114
- 3.8.5 Hydrogels for heating and cooling systems (thermal management) 115
- 3.8.5.1 Evaporative cooling 115
- 3.8.5.2 Hydroceramic hydrogel cooling 116
- 3.8.5.3 Cooling of solar panels 117
- 3.8.5.4 Hydrogel windows 118
- 3.8.5.5 Thermal management in electronics 119
- 3.8.1 Structure 106
- 3.9 Metamaterials 120
- 3.9.1 Types and properties 121
- 3.9.1.1 Optical Metamaterials 121
- 3.9.1.1.1 Photonic metamaterials 121
- 3.9.1.1.2 Tunable metamaterials 122
- 3.9.1.1.3 Frequency selective surface (FSS) based metamaterials 122
- 3.9.1.1.4 Plasmonic metamaterials 123
- 3.9.1.1.5 Invisibility cloaks 123
- 3.9.1.1.6 Perfect absorbers 124
- 3.9.1.1.7 Optical nanocircuits 124
- 3.9.1.1.8 Metalenses 124
- 3.9.1.1.9 Holograms 125
- 3.9.1.1.10 Applications 125
- 3.9.1.2 Electromagnetic metamaterials 126
- 3.9.1.2.1 Double negative (DNG) metamaterials 126
- 3.9.1.2.2 Single negative metamaterials 127
- 3.9.1.2.3 Electromagnetic bandgap metamaterials (EBG) 127
- 3.9.1.2.4 Bi-isotropic and bianisotropic metamaterials 127
- 3.9.1.2.5 Chiral metamaterials 127
- 3.9.1.2.6 Electromagnetic Invisibility cloak 128
- 3.9.1.3 Radio frequency (RF) metamaterials 128
- 3.9.1.3.1 RF metasurfaces 129
- 3.9.1.3.2 Frequency selective surfaces 129
- 3.9.1.3.3 Tunable RF metamaterials 129
- 3.9.1.3.4 RF metamaterials antennas 129
- 3.9.1.3.5 Absorbers 130
- 3.9.1.3.6 Luneburg lens 130
- 3.9.1.3.7 RF filters 131
- 3.9.1.3.8 Applications 131
- 3.9.1.4 Terahertz metamaterials 132
- 3.9.1.4.1 THz metasurfaces 133
- 3.9.1.4.2 Quantum metamaterials 133
- 3.9.1.4.3 Graphene metamaterials 134
- 3.9.1.4.4 Flexible/wearable THz metamaterials 135
- 3.9.1.4.5 THz modulators 135
- 3.9.1.4.6 THz switches 135
- 3.9.1.4.7 THz absorbers 135
- 3.9.1.4.8 THz antennas 136
- 3.9.1.4.9 THz imaging components 136
- 3.9.1.5 Acoustic metamaterials 136
- 3.9.1.5.1 Sonic crystals 136
- 3.9.1.5.2 Acoustic metasurfaces 137
- 3.9.1.5.3 Locally resonant materials 137
- 3.9.1.5.4 Acoustic cloaks 137
- 3.9.1.5.5 Hyperlenses 138
- 3.9.1.5.6 Sonic one-way sheets 138
- 3.9.1.5.7 Acoustic diodes 138
- 3.9.1.5.8 Acoustic absorbers 139
- 3.9.1.5.9 Applications 139
- 3.9.1.6 Tunable Metamaterials 140
- 3.9.1.6.1 Tunable electromagnetic metamaterials 140
- 3.9.1.6.2 Tunable THz metamaterials 140
- 3.9.1.6.3 Tunable acoustic metamaterials 141
- 3.9.1.6.4 Tunable optical metamaterials 141
- 3.9.1.6.5 Applications 142
- 3.9.1.7 Nonlinear metamaterials 143
- 3.9.1.8 Self-Transforming Metamaterials 144
- 3.9.1.9 Topological Metamaterials 145
- 3.9.1.10 Materials used with metamaterials 145
- 3.9.1.1 Optical Metamaterials 121
- 3.9.2 Thermal management 147
- 3.9.3 Cooling films 148
- 3.9.4 Optical solar reflection coatings 149
- 3.9.1 Types and properties 121
- 3.10 Passive cooling paints and coatings 150
- 3.10.1 Overview 150
- 3.10.2 Applications 151
4 MARKETS 151
- 4.1 Global revenues 152
- 4.1.1 By end use market 152
- 4.1.2 By materials 154
- 4.1.3 By end use market 156
- 4.2 Building and construction 158
- 4.2.1 Improved energy efficiency 158
- 4.2.2 Concrete 161
- 4.2.2.1 Benefits 161
- 4.2.2.2 Commercial PCM Concrete Products 161
- 4.2.3 Wallboards 162
- 4.2.3.1 Benefits 162
- 4.2.3.2 Commercial PCM Wallboards 163
- 4.2.4 Trombe Walls 163
- 4.2.4.1 Benefits 164
- 4.2.4.2 Products 164
- 4.2.5 HVAC 165
- 4.2.6 Solar Heating 165
- 4.2.7 Solar panels 168
- 4.2.8 Multi-mode ICER passive cooling 169
- 4.2.9 Panels and blankets 170
- 4.2.10 Coatings and paints 170
- 4.3 Electronics 173
- 4.3.1 Consumer devices 173
- 4.3.1.1 Smartphones and tablets 174
- 4.3.1.2 Wearable electronics 175
- 4.3.2 5G/6G Communications 177
- 4.3.2.1 Antenna 177
- 4.3.2.2 Base Band Unit (BBU) 179
- 4.3.3 Data Centers 180
- 4.3.3.1 Router, switches and line cards 181
- 4.3.3.2 Servers 182
- 4.3.3.3 Power supply converters 183
- 4.3.1 Consumer devices 173
- 4.4 Apparel 184
- 4.4.1 Cooling vests 184
- 4.4.2 PCM Medical Textiles 186
- 4.5 Electric Vehicles (EV) 187
- 4.5.1 Applications 188
- 4.5.1.1 Lithium-ion batteries 189
- 4.5.1.1.1 Cell-to-pack designs 190
- 4.5.1.1.2 Cell-to-chassis/body 191
- 4.5.1.2 Power electronics 192
- 4.5.1.3 Charging stations 193
- 4.5.1.4 ADAS Sensors 194
- 4.5.1.4.1 ADAS Cameras 194
- 4.5.1.4.2 ADAS Radar 194
- 4.5.1.4.3 ADAS LiDAR 195
- 4.5.1.5 Paint additives 196
- 4.5.1.1 Lithium-ion batteries 189
- 4.5.1 Applications 188
- 4.6 Cold storage transport 196
- 4.6.1.1 Temperature-controlled shipping 196
- 4.6.1.2 Commercial refrigeration 198
- 4.7 Thermal storage systems 199
- 4.7.1 Water heaters 199
- 4.7.2 Thermal batteries for water heaters and EVs 200
- 4.8 Aerogels 201
- 4.8.1 Silica aerogels 201
- 4.8.1.1 Properties 202
- 4.8.1.1.1 Thermal conductivity 203
- 4.8.1.1.2 Mechanical 203
- 4.8.1.2 Silica aerogel precursors 203
- 4.8.1.3 Products 204
- 4.8.1.3.1 Monoliths 204
- 4.8.1.3.1.1 Properties 204
- 4.8.1.3.1.2 Applications 204
- 4.8.1.3.1.3 SWOT analysis 205
- 4.8.1.3.2 Powder 206
- 4.8.1.3.2.1 Properties 206
- 4.8.1.3.2.2 Applications 206
- 4.8.1.3.2.3 SWOT analysis 207
- 4.8.1.3.3 Granules 208
- 4.8.1.3.3.1 Properties 208
- 4.8.1.3.3.2 Applications 208
- 4.8.1.3.3.3 SWOT analysis 209
- 4.8.1.3.1 Monoliths 204
- 4.8.1.1 Properties 202
- 4.8.1 Silica aerogels 201
5 COMPANY PROFILES 210 (206 company profiles)
6 REFERENCES 388
List of Tables
- Table 1. Key materials and technologies in passive cooling. 24
- Table 2. Passive cooling market drivers. 24
- Table 3. Formats of emerging carbon materials and inorganic compounds for passive thermal cooling applications. 26
- Table 4. Passive versus active cooling. 28
- Table 5. Functions and materials format. 29
- Table 6. Thermal conductivities (κ) of common metallic, carbon, and ceramic fillers employed in TIMs. 37
- Table 7. Commercial TIMs and their properties. 38
- Table 8. Advantages and disadvantages of TIMs, by type. 38
- Table 9. Characteristics of some typical TIMs. 42
- Table 10. PCM Types and properties. 56
- Table 11. Advantages and disadvantages of parafiin wax PCMs. 58
- Table 12. Advantages and disadvantages of non-paraffins. 62
- Table 13. Advantages and disadvantages of Bio-based phase change materials. 65
- Table 14. Advantages and disadvantages of salt hydrates 67
- Table 15. Advantages and disadvantages of low melting point metals. 70
- Table 16. Advantages and disadvantages of eutectics. 73
- Table 17. Comparions of silicone vs. carbon-based polymers for passive cooling. 82
- Table 18. Properties of graphene, properties of competing materials, applications thereof. 84
- Table 19. Properties of CNTs and comparable materials. 88
- Table 20. Properties of nanodiamonds. 92
- Table 21. Common hydrogel formulations. 113
- Table 22. Benefits of hydrogels. 114
- Table 23. Hydrogel panel. 115
- Table 24. Optical Metamaterial Applications. 125
- Table 25. Applications of radio frequency metamaterials. 131
- Table 26. Applications of acoustic metamaterials. 139
- Table 27. Types of tunable terahertz (THz) metamaterials and their tuning mechanisms. 140
- Table 28. Tunable acoustic metamaterials and their tuning mechanisms. 141
- Table 29. Types of tunable optical metamaterials and their tuning mechanisms. 142
- Table 30. Markets and applications for tunable metamaterials. 142
- Table 31. Types of self-transforming metamaterials and their transformation mechanisms. 144
- Table 32. Key materials used with different types of metamaterials. 146
- Table 33. Global revenues for passive cooling materials, 2018-2034, by market (billion USD). 152
- Table 34. Global revenues for passive cooling materials, 2018-2034, by materials (billion USD). 154
- Table 35. Global revenues for passive cooling materials, 2018-2034, by region (billion USD). 156
- Table 36. Market assessment for PCMs in building and construction-market age, applications, key benefits and motivation for use, market drivers and trends, market challenges. 166
- Table 37. Market overview of aerogels in paints and coatings-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 171
- Table 38. Commercially available PCM cooling vest products. 185
- Table 39. PCMs used in cold chain applications. 196
- Table 40. Market assessment for phase change materials in packaging and cold chain logistics-market age, applications, key benefits and motivation for use, market drivers and trends, market challenges. 197
- Table 41. Market assessment for PCMs in refrigeration systems -market age, applications, key benefits and motivation for use, market drivers and trends, market challenges. 198
- Table 42. Key properties of silica aerogels. 202
- Table 43. Chemical precursors used to synthesize silica aerogels. 203
- Table 44. Carbodeon Ltd. Oy nanodiamond product list. 250
- Table 45. CrodaTherm Range. 254
- Table 46. Ray-Techniques Ltd. nanodiamonds product list. 341
- Table 47. Comparison of ND produced by detonation and laser synthesis. 342
List of Figures
- Figure 1. SWOT analysis for the passive cooling market. 26
- Figure 2. Passive cooling applications roadmap. 29
- Figure 3. SWOT analysis for Silicone thermal conduction materials for passive cooling. 33
- Figure 4. (L-R) Surface of a commercial heatsink surface at progressively higher magnifications, showing tool marks that create a rough surface and a need for a thermal interface material. 34
- Figure 5. Schematic of thermal interface materials used in a flip chip package. 34
- Figure 6. Thermal grease. 35
- Figure 7. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module. 36
- Figure 8. Application of thermal silicone grease. 44
- Figure 9. A range of thermal grease products. 44
- Figure 10. Thermal Pad. 46
- Figure 11. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module. 47
- Figure 12. Thermal tapes. 48
- Figure 13. Thermal adhesive products. 48
- Figure 14. Typical IC package construction identifying TIM1 and TIM2 50
- Figure 15. Liquid metal TIM product. 51
- Figure 16. Pre-mixed SLH. 52
- Figure 17. HLM paste and Liquid Metal Before and After Thermal Cycling. 53
- Figure 18. SLH with Solid Solder Preform. 53
- Figure 19. Automated process for SLH with solid solder preforms and liquid metal. 54
- Figure 20. Classification of PCMs. 56
- Figure 21. Phase-change materials in their original states. 56
- Figure 22. SWOT analysis for phase change materials for passive cooling. 82
- Figure 23. Graphene layer structure schematic. 83
- Figure 24. Illustrative procedure of the Scotch-tape based micromechanical cleavage of HOPG. 84
- Figure 25. Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene. 86
- Figure 26. Schematic diagram of a multi-walled carbon nanotube (MWCNT). 88
- Figure 27. Detonation Nanodiamond. 92
- Figure 28. DND primary particles and properties. 92
- Figure 29. SWOT analysis for carbon materials for passive cooling. 94
- Figure 30. SWOT analysis for Metal Organic Frameworks (MOFs) for passive cooling. 95
- Figure 31. Fujitsu loop heat pipe. 96
- Figure 32. Samsung Galaxy vapor chamber. 97
- Figure 33. Structure of hydrogel. 107
- Figure 34. Classification of hydrogels based on properties. 109
- Figure 35. Preparation and potential biomedical applications of click hydrogels, microgels and nanogels. 112
- Figure 36. Layered Hydrogel between Wall Panels. 116
- Figure 37. IaaC Students Develop a Passive Cooling System from Hydrogel and Ceramic. 117
- Figure 38. Classification of metamaterials based on functionalities. 121
- Figure 39. Invisibility cloak. 124
- Figure 40. Electromagnetic metamaterial. 126
- Figure 41. Schematic of Electromagnetic Band Gap (EBG) structure. 127
- Figure 42. Schematic of chiral metamaterials. 128
- Figure 43. Metamaterial antenna. 130
- Figure 44. Terahertz metamaterials. 132
- Figure 45. Schematic of the quantum plasmonic metamaterial. 134
- Figure 46. Properties and applications of graphene metamaterials. 135
- Figure 47. Nonlinear metamaterials- 400-nm thick nonlinear mirror that reflects frequency-doubled output using input light intensity as small as that of a laser pointer. 143
- Figure 48. Radi-cool metamaterial film. 148
- Figure 49. Schematic of dry-cooling technology. 149
- Figure 50. Global revenues for passive cooling materials, 2018-2034, by market (billion USD). 153
- Figure 51. Global revenues for passive cooling materials, 2018-2034, by materials (billion USD). 155
- Figure 52. Global revenues for passive cooling materials, 2018-2034, by region (billion USD). 157
- Figure 53. Global energy consumption growth of buildings. 158
- Figure 54. Energy consumption of residential building sector. 159
- Figure 55. Schematic of PCM use in buildings. 160
- Figure 56. Comparison of the maximum energy storage capacity of 10 mm thickness of different building materials operating between 18 °C and 26 °C for 24 h. 160
- Figure 57. Schematic of TIM operation in electronic devices. 174
- Figure 58. Schematic of Thermal Management Materials in smartphone. 175
- Figure 59. Wearable technology inventions. 176
- Figure 60. TIMs in Base Band Unit (BBU). 180
- Figure 61. Image of data center layout. 181
- Figure 62. Application of TIMs in line card. 182
- Figure 63. PCM cooling vest. 184
- Figure 64. Application of thermal interface materials in automobiles. 188
- Figure 65. EV battery components including TIMs. 190
- Figure 66. Battery pack with a cell-to-pack design and prismatic cells. 191
- Figure 67. Cell-to-chassis battery pack. 192
- Figure 68. TIMS in EV charging station. 193
- Figure 69. ADAS radar unit incorporating TIMs. 195
- Figure 70. Schematic of PCM in storage tank linked to solar collector. 200
- Figure 71. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner. 202
- Figure 72. Monolithic aerogel. 205
- Figure 73. SWOT analysis for monolith aerogels. 206
- Figure 74. SWOT analysis for powder aerogels. 207
- Figure 75. Aerogel granules. 208
- Figure 76. Internal aerogel granule applications. 209
- Figure 77. SWOT analysis for granule aerogels. 210
- Figure 78. Thermal Conductivity Performance of ArmaGel HT. 224
- Figure 79. SLENTEX® roll (piece). 236
- Figure 80. Ultraguard -70°C Phase Change Material (PCM) being loaded into a Stirling Ultracold ULT25NEU portable freezer. 238
- Figure 81. Solid State Reflective Display (SRD®) schematic. 240
- Figure 82. Transtherm® PCMs. 242
- Figure 83. Carbice carbon nanotubes. 247
- Figure 84. Internal structure of carbon nanotube adhesive sheet. 275
- Figure 85. Carbon nanotube adhesive sheet. 276
- Figure 86. HI-FLOW Phase Change Materials. 289
- Figure 87. Kaneka phase change materials. 301
- Figure 88. Thermoelectric foil, consists of a sequence of semiconductor elements connected with conductive metal. At the top (in red) is the thermal interface. 315
- Figure 89. Crēdo™ ProMed transport bags. 330
- Figure 90. Metamaterial structure used to control thermal emission. 333
- Figure 91. Shinko Carbon Nanotube TIM product. 357
- Figure 92. The Sixth Element graphene products. 362
- Figure 93. Thermal conductive graphene film. 363
- Figure 94. Quartzene®. 373
- Figure 95. VB Series of TIMS from Zeon. 388
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer.
To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.