The Global Market for Power Electronics for Electric Vehicles (EVs) 2024-2035

0

  • Published: June 2024
  • Pages: 191
  • Tables: 79
  • Figures: 29

 

As we pivot towards a more sustainable energy landscape, electric vehicles (EVs) have emerged as a cornerstone of modern transportation. The role of power electronics in this revolution is paramount. With its ability to efficiently and swiftly control and convert electricity, power electronics provide the essential technological infrastructure that facilitates the widespread adoption and operation of EVs. As power electronics technology continues to advance, so does the performance and efficiency of EVs. Advancements in semiconductor materials, like Silicon Carbide (SiC) and Gallium Nitride (GaN), have led to the development of power electronics devices with higher efficiencies, smaller sizes, and better thermal properties. This comprehensive market report provides an in-depth analysis of the global market for power electronics in electric vehicles (EVs) from 2024 to 2035.

Report contents include: 

  • Definition of electric vehicles and their key specifications
  • Evolution of the powertrain in EVs and next-generation developments.
  • Role of power electronics in managing and controlling the flow of electrical energy within the vehicle, ensuring optimal performance and energy efficiency.
  • Types of power electronic components used in EVs, including inverters, DC-DC converters, and onboard chargers (OBCs). Each component is examined in detail, covering their functions, working principles, key specifications, and requirements. 
  • Critical components such as battery management systems (BMS), high-voltage distributors, auxiliary power modules (APMs), charging control units (CCUs), and DC charging inlets and connectors.
  • Primary drivers and trends influencing the power electronics market for EVs.
  • Power Electronics Value Chain highlighting the various stages and players involved in the production and distribution of power electronic components for EVs.
  • Global EV market is segmented by region, with detailed analyses of growth trends in China, Europe, and the USA. This section also covers hybrid car sales, emissions reduction through advanced powertrain technologies, the cost dynamics of EVs, and challenges related to chip supply for EV power electronics.
  • Integration of power electronics in EVs, the properties and applications of Insulated Gate Bipolar Transistors (IGBTs) and Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs), and the comparative advantages of Si, SiC, and GaN devices.
  • Overview of inverter technologies, including Pulse Width Modulation, traditional EV inverters, discretes and modules, and inverter printed circuit boards. The global market for inverters, projecting trends and market sizes from 2022 to 2035.
  • Onboard Chargers (OBC): components and functions of OBCs, including integrated solutions with DC-DC converters and high-power charging systems. Including market forecasts and analyses of global OBC markets segmented by semiconductor technology (Si, SiC, GaN) and power levels.
  • Emerging trends in power electronics driving improvements in efficiency and integration.
  • The transition from traditional 400V systems to higher-voltage 800V platforms  along with the implications for SiC and GaN technologies.
  • Advancements in DC fast charging and the integration of power electronics in various EV systems.
  • Analysis of the supply chain for power electronics in EVs identifies
  • Key suppliers of SiC MOSFETs and Si IGBTs, their market shares, and the activities of automotive OEMs.
  • Production and distribution network supporting the EV power electronics market.
  • Thermal Management for EV Power Electronics: cooling approaches, thermal interface materials (TIMs), and the transition from single-sided to double-sided liquid cooling technologies.
  • Emerging Technologies in power electronics, including advanced WBG materials, intelligent power modules with embedded sensing and control, and high-frequency switching technologies.
  • Detailed profiles of key companies in the EV power electronics market provide insights into their products, innovations, and market strategies. Companies profiled include Advanced Electric Machines Ltd, BMW, BYD Auto, Efficient Power Conversion Corporation (EPC), GaN Systems, General Motors, Infineon, Lucid Motors, and many others (Full list of companies profiled in the table of contents).

 

This market report is essential for stakeholders in the EV power electronics industry, offering a detailed and strategic analysis of the trends, technologies, and market dynamics shaping the future of power electronics for electric vehicles from 2024 to 2035.

 

Download table of contents (PDF)

1             INTRODUCTION          12

  • 1.1        Electric Vehicle Definitions  12
  • 1.2        EV Specifications        13
  • 1.3        Evolution of the Powertrain in EVs    14
    • 1.3.1    Resurgence and Hybrid Technology                14
    • 1.3.2    Modern Electric Vehicles (2000s to Present)             15
    • 1.3.3    Next-Generation Developments        15
  • 1.4        Role of Power Electronics in EVs       16
  • 1.5        Types of Power Electronic Components in EVs       18
    • 1.5.1    Inverters            19
      • 1.5.1.1 Function and Working Principle         19
      • 1.5.1.2 Key Specifications and Requirements           19
      • 1.5.1.3 Discretes & Modules 20
      • 1.5.1.4 Inverter Printed Circuit Boards           20
    • 1.5.2    DC-DC Converters     20
      • 1.5.2.1 Function and Working Principle         20
      • 1.5.2.2 Key Specifications and Requirements           21
    • 1.5.3    Onboard Chargers (OBC)      21
      • 1.5.3.1 Function and Working Principle         21
      • 1.5.3.2 Key Specifications and Requirements           21
    • 1.5.4    Other Components   22
      • 1.5.4.1 Battery Management Systems (BMS)            22
      • 1.5.4.2 High-Voltage Distributors      22
      • 1.5.4.3 Auxiliary Power Modules (APMs)       22
      • 1.5.4.4 Charging Control Units (CCUs)          22
      • 1.5.4.5 DC Charging Inlet and Connector    23
  • 1.6        Key Market Drivers and Trends           23
  • 1.7        Power Electronics Value Chain          24

 

2             GLOBAL ELECTRIC VEHICLE MARKET TRENDS       25

  • 2.1        Growth in Regional EV Markets          25
  • 2.2        Regional Trends in Electric Vehicles (EVs)  26
    • 2.2.1    China  26
    • 2.2.2    Europe                26
    • 2.2.3    USA      27
  • 2.3        Hybrid Car Sales          28
  • 2.4        Emissions Reduction with Powertrain           29
  • 2.5        Costs of EVs   31
  • 2.6        Issues with Chip Supply for EV Power Electronics 32
  • 2.7        Global power electronics market size           35

 

3             EV POWER ELECTRONICS AND WBG SEMICONDUCTORS            37

  • 3.1        Power Semiconductor Devices in Electric Vehicles             37
    • 3.1.1    Integration of Power Electronics        37
  • 3.2        Insulated Gate Bipolar Transistors (IGBTs) 39
    • 3.2.1    Structure and Working Principle        39
    • 3.2.2    Key Properties and Applications       40
  • 3.3        Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs)              40
    • 3.3.1    Structure and Working Principle        40
    • 3.3.2    Key Properties and Applications       41
  • 3.4        Wide Bandgap (WBG) Semiconductors        42
    • 3.4.1    Silicon Carbide (SiC) 43
      • 3.4.1.1 Advantages     43
      • 3.4.1.2 SiC MOSFET   43
      • 3.4.1.3 SiC Schottky Diode    44
      • 3.4.1.4 Silicon Insulated Gate Bipolar Transistors (Si IGBTs)           44
      • 3.4.1.5 SiC in the automotive industry           46
      • 3.4.1.6 Costs  46
      • 3.4.1.7 High voltage charging platforms        47
      • 3.4.1.8 SiC Substrate Manufacturing Chain               50
      • 3.4.1.9 SiC Power Roadmap 57
    • 3.4.2    Gallium Nitride (GaN)              58
      • 3.4.2.1 Material Properties and Advantages               58
      • 3.4.2.2 GaN HEMT and GaN FET        60
      • 3.4.2.3 GaN for onboard chargers (OBCs) in EVs    61
      • 3.4.2.4 Challenges for GaN Devices                63
      • 3.4.2.5 Enhancement Mode vs Depletion Mode      64
      • 3.4.2.6 Power electronics inverters  64
      • 3.4.2.7 GaN Companies and Automotive Industry Suppliers          65
    • 3.4.3    Comparative Analysis of Si, SiC, and GaN Devices               67
  • 3.5        Inverters            71
    • 3.5.1    Overview           71
    • 3.5.2    Pulse Width Modulation         71
    • 3.5.3    Traditional EV Inverter               72
    • 3.5.4    Discretes & Modules 72
    • 3.5.5    Inverter Printed Circuit Boards           72
    • 3.5.6    Inverter Components and Cost         73
    • 3.5.7    Global market                74
      • 3.5.7.1 Inverters per Car          74
      • 3.5.7.2 Global Inverter Market 2022-2035 (GW)      75
      • 3.5.7.3 Global DC-DC Converter Market 2022-2035 (GW)               76
      • 3.5.7.4 Global Inverter Cooling Unit Sales 2022-2035        77
      • 3.5.7.5 Global Market for Discretes vs Power Modules for Inverters           79
  • 3.6        Onboard Chargers (OBC)      80
    • 3.6.1    Components  80
    • 3.6.2    DC-DC Converters     81
    • 3.6.3    Tesla Onboard Charger/DC-DC Converter  82
    • 3.6.4    OBC by Level: 4kW, 6-11.5kW, 16-22kW 2023-2035           83
    • 3.6.5    Global market                83
      • 3.6.5.1 Global OBC Market for Si, SiC, GaN 2022-2035     83
      • 3.6.5.2 Global OBC Market by Level 2023-2035.    84
      • 3.6.5.3 Global Inverter, OBC, DC-DC Converter Revenues 2022-2035    85
      • 3.6.5.4 Global Inverter, OBC, DC-DC Converter Unit Sales 2022-2035   86
      • 3.6.5.5 Global DC-DC Converter Market for Si, SiC, GaN 2022-2035 (GW)           87
      • 3.6.5.6 Global Inverter, OBC, DC-DC Converter Market 2022-2035 (GW)              88

 

4             TRENDS IN POWER ELECTRONICS FOR EVS            90

  • 4.1        Improving efficiency  90
    • 4.1.1    Transition from traditional 400V systems to higher-voltage 800V 90
      • 4.1.1.1 SiC and 800V 90
      • 4.1.1.2 800V charging speeds              91
      • 4.1.1.3 Split battery pack configurations      91
      • 4.1.1.4 Charging technology for 800V EVs   93
      • 4.1.1.5 400V SiC Platforms    94
      • 4.1.1.6 800V SiC and Si insulated-gate bipolar transistor (IGBT) inverters              95
      • 4.1.1.7 800V Adoption              95
      • 4.1.1.8 800V Pros and Cons  97
    • 4.1.2    DC fast charging (DCFC) for Li-ion cells       99
  • 4.2        Integration of Power Electronics        100
    • 4.2.1    Integrated OBC with DC-DC converter          100
    • 4.2.2    Traction Integrated Onboard charger (iOBC)             101
    • 4.2.3    Hyundai Electric Global Modular Platform (E-GMP)            102
    • 4.2.4    Combined Inverter and DC-DC Converter  103
    • 4.2.5    SiC Diodes       104
      • 4.2.5.1 Onboard Chargers      104
      • 4.2.5.2 Inverters            104
      • 4.2.5.3 Hybrid approach         104

 

5             SUPPLY CHAIN              107

  • 5.1        SiC MOSFET and Si IGBT Suppliers  107
  • 5.2        Automotive Power SC Suppliers        107
  • 5.3        SiC MOSFET   109
    • 5.3.1    Automotive OEMs and Suppliers      109
  • 5.4        Si IGBT                110
    • 5.4.1    Automotive OEMs and Suppliers      110
  • 5.5        SiC Fabrication Centres          111
  • 5.6        Device Suppliers         112
  • 5.7        Tier-1 Suppliers             113
  • 5.8        Automotive OEMs       114
  • 5.9        Power Electronics Packages by Automotive OEM  115

 

6             THERMAL MANAGEMENT FOR EV POWER ELECTRONICS              118

  • 6.1        Overview           118
    • 6.1.1    Cooling approaches  118
    • 6.1.2    Key thermal management strategies used in power electronics  119
  • 6.2        Thermal Interface Materials (TIMs)  121
    • 6.2.1    TIM1 and TIM2 in power electrics      122
    • 6.2.2    Application of TIMs in EV Power Electronics              122
    • 6.2.3    Flip Chip Packaging   124
    • 6.2.4    Solders               124
    • 6.2.5    Die-Attach Solution   125
      • 6.2.5.1 Sintering            125
    • 6.2.6    Companies     126
  • 6.3        Liquid cooling - single and double sided      130
    • 6.3.1    Single-Sided Cooling 131
      • 6.3.1.1 Direct Single-Sided Cooling 131
      • 6.3.1.2 Indirect Single-Sided Cooling             132
      • 6.3.1.3 TIM2     133
    • 6.3.2    Double-Sided Cooling (DSC)               134
      • 6.3.2.1 Direct Double-Sided Cooling              134
      • 6.3.2.2 Indirect Double-Sided Cooling           136
      • 6.3.2.3 Advantages     137
      • 6.3.2.4 Transition from single-sided to double-sided liquid cooling in power electronics            137
      • 6.3.2.5 OEMs and suppliers implementing double-sided cooling               139

 

7             EMERGING TECHNOLOGIES               140

  • 7.1        Advanced WBG Materials      140
  • 7.2        Intelligent Power Modules with Embedded Sensing and Control 142
  • 7.3        High-Frequency Switching Technologies     142

 

8             COMPANY PROFILES                144

  • 8.1        Advanced Electric Machines Ltd       144
  • 8.2        Arteco 145
  • 8.3        BMW    147
  • 8.4        BYD Auto           148
  • 8.5        Diamond Foundry       149
  • 8.6        Dynex Semiconductor (CRRC)           150
  • 8.7        Efficient Power Conversion Corporation (EPC)        150
  • 8.8        Elaphe 151
  • 8.9        Equipmake      152
  • 8.10     Fengzhi Ruilian             154
  • 8.11     GaN Systems 155
  • 8.12     General Motors            156
  • 8.13     Heraeus             158
  • 8.14     Hyundai             159
  • 8.15     Infineon             161
  • 8.16     Integral e-Drive              162
  • 8.17     Lotus   164
  • 8.18     Lucid Motors  165
  • 8.19     Magna International  166
  • 8.20     McLaren Automotive 168
  • 8.21     Nexperia            169
  • 8.22     NXP Semiconductors               171
  • 8.23     Qorvo (QPT)    173
  • 8.24     Renesas Electronics Corporation     174
  • 8.25     Rivian  175
  • 8.26     ROHM Semiconductor            176
  • 8.27     STMicroelectronics    178
  • 8.28     Transphorm    179
  • 8.29     Valeo   180
  • 8.30     Wolfspeed       182
  • 8.31     ZF Friedrichshafen AG              183

 

9             RESEARCH METHODOLOGY              185

 

10          REFERENCES 186

 

List of Tables

  • Table 1. Electric Vehicle Definitions.              12
  • Table 2.  Typical EV Specifications.  13
  • Table 3. Key Components of Modern EV Powertrains.        16
  • Table 4. Types of Power Electronic Components in EVs.   18
  • Table 5. Key Market Drivers and Trends in Power Electronics for EVs.      23
  • Table 6. Key Trends in China in EVs. 26
  • Table 7. Regional Trends in Europe for Electric Vehicles.  26
  • Table 8. EU Emissions and Targets. 27
  • Table 9. Regional Trends in the USA for Electric Vehicles. 27
  • Table 10. Powertrain Tailpipe Emissions Comparison        30
  • Table 11. Tailpipe emissions of different vehicle powertrains.       30
  • Table 12. Global power electronics market 2022-2035 (Billions USD).   35
  • Table 13. Power electronics in EVs. 38
  • Table 14. Applications for WBG Devices.     38
  • Table 15. Wide Bandgap (WBG) Semiconductor Advantages & Disadvantages, by type.             42
  • Table 16. Advantages of SiC Material.            43
  • Table 17. Comparison of Si IGBTs and SiC MOSFETs:         45
  • Table 18. Examples of SiC in the automotive industry.       46
  • Table 19. Si IGBT and SiC MOSFET Cost Comparison.       46
  • Table 20. SiC and GaN Device Cost Comparison. 46
  • Table 21. Si IGBT and SiC MOSFET Price Comparison.      47
  • Table 22. OEMs Adopting 800V Platforms. 48
  • Table 23. Automotive OEMs Using Si IGBTs.              50
  • Table 24. Suppliers of Si IGBTs.          51
  • Table 25. Automotive OEMs Using SiC MOSFETs. 52
  • Table 26. Suppliers of SiC MOSFETs.             52
  • Table 27. SiC-Specific Equipment.  52
  • Table 28. Players in 200mm SiC Wafer Production.              53
  • Table 29. Global 200mm SiC Wafer Production.     54
  • Table 30. Limitations of SiC Power Devices.              57
  • Table 31. Benefits of GaN in Automotive Applications.      58
  • Table 32. Challenges for GaN Devices.         63
  • Table 33. GaN vs. SiC in power electronics inverters.          64
  • Table 34. GaN companies.   65
  • Table 35. Major Players in GaN devices for the automotive sector.            67
  • Table 36. Benchmarking Silicon, Silicon Carbide & Gallium Nitride Semiconductors   67
  • Table 37. Performance Metrics of Si, SiC, and GaN Devices.         69
  • Table 38. Cost Comparison of Si, SiC, and GaN Devices. 69
  • Table 39. Suitability for Different EV Applications. 69
  • Table 40. Electric Vehicle Inverter Benchmarking. 71
  • Table 41. Inverter Components and Cost.  73
  • Table 42. Inverter, OBC & Converter, Si, SiC, GaN Cost Assumptions (US$ per kW).     74
  • Table 43. Inverters per Car 2022-2035.        74
  • Table 44. Global Inverter Market 2022-2035 (GW): GaN 600V, Si IGBT 600V, SiC MOSFET 600V, 1200V.                75
  • Table 45. Global DC-DC Converter Market: Si, SiC, GaN 2022-2035 (GW).         76
  • Table 46. Global Inverter Cooling Strategy Market 2022-2035 (Units).     77
  • Table 47. Global Market for Discretes vs Power Modules for Inverters 2022-2035 (Units).         79
  • Table 48. Expected onboard charger (OBC) circuit levels and their corresponding power ranges from 2023 to 2035. 83
  • Table 49. Global OBC Market: Si, SiC, GaN, 2022-2035 (GW).     83
  • Table 50. Global OBC Market by Level: 4kW, 6-11.5kW, 16-22kW 2023-2035.   84
  • Table 51. Global Inverter, OBC, DC-DC Converter Revenues 2022-2035 (US$ billion). 85
  • Table 52.Global Inverter, OBC, DC-DC Converter Sales 2022-2035 (Units).        86
  • Table 53. Global DC-DC Converter Market: Si, SiC, GaN 2022-2035 (GW).         87
  • Table 54. Global DC-DC Converter Market: Si, SiC, GaN 2022-2035 (GW).         88
  • Table 55. Global Inverter, OBC, DC-DC Converter Market 2022-2035 (GW).       88
  • Table 56. 400V SiC Platforms, by company.              94
  • Table 57. 800V Models in China.       96
  • Table 58. 800V Pros and Cons.          97
  • Table 59. DC Fast Charging Levels. 100
  • Table 60. Traction iOBC suppliers.   101
  • Table 61. Hybrid SiC Suppliers.          105
  • Table 62. SiC MOSFET vs Si IGBT: Overall Vehicle Cost.    106
  • Table 63. SiC MOSFET and Si IGBT Suppliers.          107
  • Table 64. Automotive Power SC Supplier Market Shares 2023.    107
  • Table 65. Automotive Power SC Supplier activities.             108
  • Table 66. Automotive OEMs and Their SiC MOSFET Suppliers.     109
  • Table 67. Automotive OEMs and Their Si IGBT Suppliers   110
  • Table 68. Recently established and planned SiC Fabrication Centres.    111
  • Table 69. Tier-1 Suppliers       113
  • Table 70. Power Electronics Packages by Automotive OEM.          115
  • Table 71. Summary of Cooling Approaches.             118
  • Table 72. Application of TIMs in EV Power Electronics.       123
  • Table 73. Comparison of Single-Sided Cooling and Double-Sided Cooling.        130
  • Table 74. Summary of Single-Sided Cooling.            131
  • Table 75. Benefits and Drawbacks of Single-Sided Cooling.          132
  • Table 76. Summary of Double-Sided Cooling (DSC).           134
  • Table 77. Double-Sided cooling examples 137
  • Table 78. Comparison of Advanced WBG Materials for Power Electronics.          140
  • Table 79. Technical Specifications of Arteco EV-Specific Water-Glycol Coolants            146

 

List of Figures

  • Figure 1. Scheme of a battery electric vehicle.        14
  • Figure 2. Power Electronics Value Chain.    24
  • Figure 3. Global power electronics market 2022-2035 (Billions USD).    36
  • Figure 4. IGBT: Insulated Gate Bipolar Transistor.  40
  • Figure 5. onsemi SiC MOSFETs.         41
  • Figure 6. SOITEC's SmartSiC technology.    56
  • Figure 7. structure of QST engineered substrate.   60
  • Figure 8. Inverters per Car Forecast 2022-2035.    75
  • Figure 9. Global Inverter Forecast 2022-2035 (GW): GaN 600V, Si IGBT 600V, SiC MOSFET 600V, 1200V.                76
  • Figure 10. Global DC-DC Converter Forecast: Si, SiC, GaN 2022-2035 (GW).   77
  • Figure 11. Global Inverter Cooling Strategy Market 2022-2035 (Units).   78
  • Figure 12. Global Market for Discretes vs Power Modules for Inverters 2022-2035 (Units).       79
  • Figure 13. Global OBC Market: Si, SiC, GaN, 2022-2035 (GW).    84
  • Figure 14. Global OBC Market by Level: 4kW, 6-11.5kW, 16-22kW 2023-2035. 85
  • Figure 15. Inverter, OBC, DC-DC Converter Forecast 2022-2035 (US$ billion). 86
  • Figure 16. Global Inverter, OBC, DC-DC Converter Sales 2022-2035 (Units).     87
  • Figure 17. Tesla Cybertruck split battery pack.        92
  • Figure 18. Porsche Taycan battery pack.      93
  • Figure 19. Preh's 800V onboard charger.      94
  • Figure 20. Hyundai 800V E-GMP platform. 96
  • Figure 21. Hyundai Electric Global Modular Platform (E-GMP).   103
  • Figure 22. Hybrid inverter proposed by STMicroelectronics.           105
  • Figure 23. Application of thermal interface materials in EVs.         122
  • Figure 24. Thermal Interface Materials companies.             126
  • Figure 25. Market Share of Single and Double-Sided Cooling: 2024-2035.          131
  • Figure 26. EliteSiC series of power modules.            133
  • Figure 27. AEM's SSRD rare earth free electric motor.         144
  • Figure 28.  GD316x from NXP.             172
  • Figure 29. ZF Inverter with silicon carbide technology.       184

 

 

 

The Global Market for Power Electronics for Electric Vehicles (EVs) 2024-2035
The Global Market for Power Electronics for Electric Vehicles (EVs) 2024-2035
PDF download.

The Global Market for Power Electronics for Electric Vehicles (EVs) 2024-2035
The Global Market for Power Electronics for Electric Vehicles (EVs) 2024-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.