The Global Market for Quantum Sensors 2025-2035

0

cover

cover

  • Published: September 2024
  • Pages: 145
  • Tables: 41
  • Figures: 26

 

Quantum sensing is an emerging technology that allows for extremely precise measurements at the atomic level. It offers advantages over traditional sensors in terms of accuracy, consistency, and measurement frequency. The technology has broad potential applications across industries like life sciences, energy, communications, logistics, and microelectronics. Key capabilities of quantum sensors include advanced monitoring, imaging, navigation, and identification. Specific use cases range from medical imaging and brain-computer interfaces to optimizing production lines and enhancing navigation systems. The market impact is expected to grow moderately approaching 2030, with potential for significant acceleration thereafter.

The current quantum sensing ecosystem is relatively small but developing. There are less than 50 quantum sensors start-ups, compared to over 250 in quantum computing. Most revenue currently comes from components and joint research projects rather than commercialized products. The ecosystem is most mature in equipment and components, with hardware products still in development. Major focus areas include finding the right balance of sensitivity, size, weight and other specifications for various applications. Challenges like shielding sensors from environmental noise are being addressed through methods like sensor arrays and AI-enhanced signal processing.

Investment in the field is growing, with over 80% coming from venture capital and corporate investors. The five most funded start- ups have received over 80% of total funding. However, the full value chain is still being built, leaving room for new entrants.

Report contents include: 

  • Principles of quantum sensing:
    • Explanation of quantum superposition and entanglement
    • How quantum properties are leveraged for sensing
    • Comparison of quantum and classical measurement techniques
    • Key advantages: improved sensitivity, precision, and accuracy
  • Types of quantum sensors:
    • Atomic clocks:
      • Cesium fountain clocks
      • Optical lattice clocks
      • Ion-based atomic clocks
      • Applications in timekeeping, GPS, and financial trading
    • Magnetometers:
      • SQUID magnetometers
      • Optically pumped magnetometers
      • NV center magnetometers
      • Applications in medical imaging, geophysical surveys, and navigation
    • Gravimeters:
      • Atom interferometry-based gravimeters
      • Superconducting gravimeters
      • Applications in oil and mineral exploration, civil engineering, and climate studies
    • Electric field sensors:
      • Rydberg atom-based sensors
      • Single-electron transistor sensors
      • Applications in electronics testing and atmospheric science
    • Quantum imaging devices:
      • Ghost imaging systems
      • Quantum radar
      • Applications in biomedical imaging and stealth technology detection
  • Comparison with classical sensors:
    • Sensitivity improvements: orders of magnitude better in many cases
    • Size and power consumption advantages
    • Limitations and challenges compared to classical sensors
    • Cost considerations and potential for cost reduction
  • Current technological readiness levels:
    • Assessment of each quantum sensor type on the TRL scale
    • Identification of sensors closest to widespread commercial deployment
    • Areas requiring further research and development
  • Market drivers and Market restraints.
  • Market opportunities
  • Market challenges
  • Applications and End-use Industries
    • Healthcare and Life Sciences:
      • Medical imaging:
        • High-resolution MRI using quantum magnetometers
        • Single-molecule imaging for drug discovery
        • Brain activity mapping with increased spatial and temporal resolution
      • Drug discovery:
        • Quantum sensors for analyzing molecular interactions
        • Accelerated screening of potential drug candidates
        • Improved understanding of protein folding and dynamics
      • Biosensing:
        • Ultra-sensitive detection of biomarkers for early disease diagnosis
        • Real-time monitoring of biological processes
        • Quantum-enhanced DNA sequencing technologies
    • Defense and Military:
      • Navigation systems:
        • Quantum inertial measurement units for GPS-independent navigation
        • High-precision timing for synchronized operations
        • Underwater navigation using quantum gravimeters
      • Underwater detection:
        • Quantum magnetometers for submarine detection
        • Quantum gravity gradiometers for underwater mapping
        • Quantum sonar systems with improved range and resolution
      • Communication systems:
        • Quantum-secured communication networks
        • Long-distance quantum key distribution
        • Quantum radar for stealth technology detection
    • Information Technology:
      • Quantum computing:
        • Quantum sensors for error correction in quantum computers
        • Readout systems for quantum bits (qubits)
        • Quantum memory devices
      • Quantum communication:
        • Quantum repeaters for long-distance quantum networks
        • Entanglement distribution for quantum internet
        • Quantum-enhanced optical communication systems
      • Cybersecurity:
        • Quantum random number generators for encryption
        • Quantum key distribution for secure communication
        • Quantum sensing for detecting eavesdropping attempts
    • Environmental Monitoring:
      • Climate change research:
        • High-precision gravity measurements for ice mass changes
        • Quantum-enhanced atmospheric gas sensing
        • Ocean current mapping using quantum magnetometers
      • Geological surveys:
        • Quantum gravimetry for mineral and oil exploration
        • Earthquake prediction using quantum strain sensors
        • Groundwater mapping and monitoring
      • Natural disaster prediction:
        • Early warning systems using quantum gravity sensors
        • Improved weather forecasting with quantum-enhanced measurements
        • Volcanic activity monitoring using quantum gas sensors
    • Oil and Gas:
      • Exploration and surveying:
        • High-resolution underground mapping with quantum gravimeters
        • Improved oil reservoir characterization
        • Quantum magnetometers for pipeline inspection
      • Pipeline monitoring:
        • Leak detection using quantum gas sensors
        • Structural integrity assessment with quantum strain sensors
        • Real-time monitoring of oil and gas flow rates
    • Transportation and Automotive:
      • Autonomous vehicles:
        • Quantum-enhanced GPS-free navigation systems
        • Improved LiDAR systems using quantum sensing
        • Quantum radar for all-weather object detection
      • Aerospace navigation:
        • High-precision inertial measurement units for aircraft
        • Satellite-based quantum sensors for Earth observation
        • Quantum timing systems for improved air traffic control
    • Other Industries:
      • Finance and banking:
        • Ultra-precise timekeeping for high-frequency trading
        • Quantum random number generators for financial modeling
        • Quantum sensors for secure transactions and fraud detection
      • Agriculture:
        • Soil composition analysis using quantum sensors
        • Crop health monitoring with quantum-enhanced hyperspectral imaging
        • Precision agriculture using quantum-based positioning systems
      • Construction:
        • Structural health monitoring with quantum strain sensors
        • Underground utility mapping using quantum gravimetry
        • Improved surveying and land management technique
  • Competitive Landscape including detailed company profiles. Companies profiled include Airbus, Aquark Technologies, Atomionics, Bosch Quantum Sensing, Chipiron, Chiral Nano AG, ColdQuanta, Delta g, EuQlid, Exail Quantum Sensors, Genesis Quantum Technology, ID Quantique, Infleqtion, Ligentec, M Squared Lasers, Mag4Health, Mesa Quantum, Miraex, MuQuans, Nomad Atomics, Nu Quantum, NVision, PhotonForce, Q-CTRL, Qaisec, Qnami, Q.ANT, QuantaMap, QuantCAD LLC, Quantum Diamond Technologies Inc., QuantumDiamonds GmbH, Quantum Optus, Quantum Systems, etc.
  • Technology Trends and Innovations
    • Miniaturization of quantum sensors:
      • Progress in reducing size, weight, and power consumption
      • Challenges in maintaining performance with miniaturization
      • Potential for wearable and mobile quantum sensing devices
    • Room temperature quantum sensors:
      • Advancements in materials and designs for room temperature operation
      • Comparison of performance with cryogenic quantum sensors
      • Potential applications enabled by room temperature operation
    • Hybrid quantum-classical systems:
      • Integration of quantum sensors with classical readout electronics
      • Quantum-enhanced classical sensors
      • Synergies between quantum and classical sensing technologies
    • Quantum networks and distributed sensing:
      • Development of quantum sensor networks
      • Entanglement-based distributed sensing protocols
      • Applications in large-scale environmental and security monitoring
    • AI and machine learning integration:
      • Machine learning algorithms for quantum sensor data analysis
      • AI-driven optimization of quantum sensor operation
      • Predictive maintenance and calibration using AI
    • Quantum-enhanced metrology:
      • Advances in quantum metrology for fundamental constants
      • Quantum-enhanced calibration techniques
      • Impact on international measurement standards
  • Market Forecast and Future Outlook
  • Emerging applications and use cases:
    • Quantum sensors in brain-computer interfaces
    • Applications in anti-aging research and personalized medicine
    • Quantum-enhanced virtual and augmented reality systems
  • Potential disruptive technologies:
    • Hybrid quantum-photonic sensors
    • Topological quantum sensors
    • Quantum sensors based on exotic states of matter
  • Investment Landscape
  • Case Studies
    • Quantum sensors in healthcare: Early disease detection
      • Detailed examination of quantum magnetometer use in early Alzheimer's detection
      • Comparison of sensitivity and accuracy with traditional diagnostic methods
      • Cost-benefit analysis and potential impact on healthcare outcomes
    • Military applications: Enhanced navigation systems
      • Case study of quantum inertial measurement units in submarine navigation
      • Performance comparison with classical navigation systems
      • Implications for strategic defense capabilities
    • Environmental monitoring: Climate change research
      • Application of quantum gravity sensors in measuring ice mass changes
      • Integration with satellite data for comprehensive climate models
      • Impact on climate change predictions and policy decisions
    • Financial sector: High-frequency trading
      • Use of quantum timing systems in high-frequency trading platforms
      • Analysis of performance improvements and economic impact
      • Regulatory considerations and fairness issues
    • Quantum internet: Secure communication networks
      • Pilot project for quantum key distribution in a metropolitan area
      • Technical challenges and solutions in implementing quantum networks
      • Potential applications beyond secure communication

 

1             EXECUTIVE SUMMARY            10

  • 1.1        First and second quantum revolutions         10
  • 1.2        Current quantum technology market landscape   11
    • 1.2.1    Key developments      12
  • 1.3        Investment Landscape            12
  • 1.4        Global government initiatives             13
  • 1.5        Industry developments 2020-2024 15
  • 1.6        Challenges for quantum technologies adoption    24
  • 1.7        Market Drivers               25
  • 1.8        Market and technology challenges  25
  • 1.9        Technology Trends and Innovations                26
  • 1.10     Market Forecast and Future Outlook             28
    • 1.10.1 Short-term Outlook (2025-2027)      29
    • 1.10.2 Medium-term Outlook (2028-2031) 29
    • 1.10.3 Long-term Outlook (2032-2035)       31
    • 1.10.4 Emerging Applications and Use Cases         32
    • 1.10.5 Potential Disruptive Technologies    33
    • 1.11     Global market for quantum sensors               34

 

2             INTRODUCTION          37

  • 2.1        What is quantum sensing?   37
  • 2.2        Types of quantum sensors    37
    • 2.2.1    Comparison between classical and quantum sensors      37
  • 2.3        Quantum Sensing Principles               39
  • 2.4        Value proposition for quantum sensors       40
  • 2.5        Current Technological Readiness Levels     41
  • 2.6        SWOT analysis              42

 

3             ATOMIC CLOCKS        43

  • 3.1        Technology Overview                43
  • 3.2        High frequency oscillators    44
    • 3.2.1    Emerging oscillators  44
  • 3.3        Caesium atoms            44
  • 3.4        Self-calibration             45
  • 3.5        Optical atomic clocks              45
    • 3.5.1    Chip-scale optical clocks      46
  • 3.6        Companies     47
  • 3.7        SWOT analysis              47
  • 3.8        Market forecasts         49

 

4             QUANTUM MAGNETIC FIELD SENSORS      50

  • 4.1        Technology overview 50
  • 4.2        Motivation for use       51
  • 4.3        Market opportunity    52
  • 4.4        Superconducting Quantum Interference Devices (Squids)             52
    • 4.4.1    Applications   53
    • 4.4.2    Key players      55
    • 4.4.3    SWOT analysis              55
  • 4.5        Optically Pumped Magnetometers (OPMs)               56
    • 4.5.1    Applications   56
    • 4.5.2    Key players      57
    • 4.5.3    SWOT analysis              58
  • 4.6        Tunneling Magneto Resistance Sensors (TMRs)     59
    • 4.6.1    Applications   59
    • 4.6.2    Key players      60
    • 4.6.3    SWOT analysis              60
  • 4.7        Nitrogen Vacancy Centers (N-V Centers)     61
    • 4.7.1    Applications   62
    • 4.7.2    Key players      62
    • 4.7.3    SWOT analysis              63
  • 4.8        Market forecasts         64

 

5             QUANTUM GRAVIMETERS     65

  • 5.1        Technology overview 65
  • 5.2        Applications   66
  • 5.3        Key players      69
  • 5.4        Market forecasts         70
  • 5.5        SWOT analysis              71

 

6             QUANTUM GYROSCOPES     72

  • 6.1        Technology description           72
    • 6.1.1    Inertial Measurement Units (IMUs) 73
    • 6.1.2    Atomic quantum gyroscopes              73
  • 6.2        Applications   74
  • 6.3        Key players      75
  • 6.4        SWOT analysis              76

 

7             QUANTUM IMAGE SENSORS               77

  • 7.1        Technology overview 77
  • 7.2        Applications   78
  • 7.3        SWOT analysis              78
  • 7.4        Market forecast            80
  • 7.5        Key players      82

 

8             QUANTUM RADAR      83

  • 8.1        Technology overview 83
  • 8.2        Applications   84

 

9             QUANTUM CHEMICAL SENSORS     85

  • 9.1        Technology overview 85
  • 9.2        Commercial activities              85

 

10          QUANTUM NEMS AND MEMS             86

  • 10.1     Technology overview 86

 

11          CASE STUDIES              88

  • 11.1     Quantum Sensors in Healthcare: Early Disease Detection             88
  • 11.2     Military Applications: Enhanced Navigation Systems         89
  • 11.3     Environmental Monitoring     89
  • 11.4     Financial Sector: High-Frequency Trading  90
  • 11.5     Quantum Internet: Secure Communication Networks       91

 

12          END-USE INDUSTRIES            92

  • 12.1     Healthcare and Life Sciences             92
    • 12.1.1 Medical Imaging          92
    • 12.1.2 Drug Discovery             93
    • 12.1.3 Biosensing      93
  • 12.2     Defense and Military 94
    • 12.2.1 Navigation Systems   94
    • 12.2.2 Underwater Detection             95
    • 12.2.3 Communication Systems      96
  • 12.3     Environmental Monitoring     97
    • 12.3.1 Climate Change Research    97
    • 12.3.2 Geological Surveys    98
    • 12.3.3 Natural Disaster Prediction  99
  • 12.4     Oil and Gas     100
    • 12.4.1 Exploration and Surveying     100
    • 12.4.2 Pipeline Monitoring   100
  • 12.5     Transportation and Automotive         101
    • 12.5.1 Autonomous Vehicles              101
    • 12.5.2 Aerospace Navigation              102
  • 12.6     Other Industries           103
    • 12.6.1 Finance and Banking 103
    • 12.6.2 Agriculture       104
    • 12.6.3 Construction  105

 

13          COMPANY PROFILES                106 (45 company profiles)

 

14          APPENDICES  139

  • 14.1     Research Methodology           139
  • 14.2     Glossary of Terms       139
  • 14.3     List of Abbreviations  140

 

15          REFERENCES 144

 

List of Tables

  • Table 1. First and second quantum revolutions.     10
  • Table 2. Global government initiatives in quantum technologies.               14
  • Table 3. Quantum technologies industry developments 2020-2024.       15
  • Table 4. Challenges for quantum technologies adoption. 24
  • Table 5. Market and technology challenges in quantum sensing.               26
  • Table 6. Global market for quantum sensors, by types, 2018-2035 (Millions USD).        34
  • Table 7.  Comparison between classical and quantum sensors. 37
  • Table 8. Applications in quantum sensors. 38
  • Table 9. Technology approaches for enabling quantum sensing  39
  • Table 10. Value proposition for quantum sensors. 40
  • Table 11. Key challenges and limitations of quartz crystal clocks vs. atomic clocks.    43
  • Table 12.  New modalities being researched to improve the fractional uncertainty of atomic clocks. 45
  • Table 13. Companies developing high-precision quantum time measurement 47
  • Table 14. Key players in atomic clocks.        48
  • Table 15. Global market for atomic clocks 2025-2035 (Billions USD).     49
  • Table 16. Comparative analysis of key performance parameters and metrics of magnetic field sensors.                50
  • Table 17. Types of magnetic field sensors. 51
  • Table 18. Market opportunity for different types of quantum magnetic field sensors.   52
  • Table 19. Applications of SQUIDs.   53
  • Table 20. Market opportunities for SQUIDs (Superconducting Quantum Interference Devices).           54
  • Table 21. Key players in SQUIDs.      55
  • Table 22. Applications of optically pumped magnetometers (OPMs).     56
  • Table 23. Key players in Optically Pumped Magnetometers (OPMs).        57
  • Table 24. Applications for TMR (Tunneling Magnetoresistance) sensors.               59
  • Table 25. Market players in TMR (Tunneling Magnetoresistance) sensors.            60
  • Table 26. Applications of N-V center magnetic field centers           62
  • Table 27. Key players in N-V center magnetic field sensors.           62
  • Table 28. Global market forecasts for quantum magnetic field sensors, by type, 2025-2035 (Millions USD).  64
  • Table 29. Applications of quantum gravimeters      66
  • Table 30. Comparative table between quantum gravity sensing and some other technologies commonly used for underground mapping.       67
  • Table 31. Key players in quantum gravimeters.        69
  • Table 32. Global market for Quantum gravimeters 2025-2035 (Millions USD).  70
  • Table 33. Comparison of quantum gyroscopes with MEMs gyroscopes and optical gyroscopes.         72
  • Table 34. Markets and applications for quantum gyroscopes.      74
  • Table 35. Key players in quantum gyroscopes.        75
  • Table 36. Types of quantum image sensors and their key features/.          77
  • Table 37. Applications of quantum image sensors.              78
  • Table 38. Global market for quantum image sensors 2025-2035 (Millions USD).             80
  • Table 39. Key players in quantum image sensors. 82
  • Table 40. Comparison of quantum radar versus conventional radar and lidar technologies.   84
  • Table 41. Applications of quantum radar.   84

 

List of Figures

  • Figure 1. Quantum computing development timeline.       11
  • Figure 2.Quantum investments 2012-2024 (millions USD).            13
  • Figure 3.  National quantum initiatives and funding.           14
  • Figure 4. Global market for quantum sensors, by types, 2018-2035 (Millions USD).      36
  • Figure 5. Q.ANT quantum particle sensor.  41
  • Figure 6. Current Technological Readiness Levels: Quantum Sensors.  42
  • Figure 7. SWOT analysis for quantum sensors market.      43
  • Figure 8. NIST's compact optical clock.       46
  • Figure 9. SWOT analysis for atomic clocks.               48
  • Figure 10. Global market for atomic clocks 2025-2035 (Billions USD).   50
  • Figure 11.Principle of SQUID magnetometer.           54
  • Figure 12. SWOT analysis for SQUIDS.          56
  • Figure 13. SWOT analysis for OPMs 58
  • Figure 14. Tunneling magnetoresistance mechanism and TMR ratio formats.   59
  • Figure 15. SWOT analysis for TMR (Tunneling Magnetoresistance) sensors.        61
  • Figure 16. SWOT analysis for N-V Center Magnetic Field Sensors.             64
  • Figure 17. Global market forecasts for quantum magnetic field sensors, by type, 2025-2035 (Millions USD).  65
  • Figure 18. Quantum Gravimeter.       66
  • Figure 19. Global market for Quantum gravimeters 2025-2035 (Millions USD). 71
  • Figure 20. SWOT analysis for Quantum Gravimeters.          72
  • Figure 21. SWOT analysis for Quantum Gyroscopes.          76
  • Figure 22. SWOT analysis for Quantum image sensing.    79
  • Figure 23. Global market for quantum image sensors 2025-2035 (Millions USD).           81
  • Figure 24. Principle of quantum radar.          83
  • Figure 25. Illustration of a quantum radar prototype.          84
  • Figure 26. ColdQuanta Quantum Core (left), Physics Station (middle) and the atoms control chip (right).                114

 

 

The Global Market for Quantum Sensors 2025-2035
The Global Market for Quantum Sensors 2025-2035
PDF download.

The Global Market for Quantum Sensors 2025-2035
The Global Market for Quantum Sensors 2025-2035
PDF and Print Edition (Including Tracked Delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart.