The Global Market for Quantum Sensors 2025-2035

0

cover

cover

  • Published: September 2024
  • Pages: 154
  • Tables: 58
  • Figures: 31

 

Quantum sensing is an emerging technology that allows for extremely precise measurements at the atomic level. It offers advantages over traditional sensors in terms of accuracy, consistency, and measurement frequency. The technology has broad potential applications across industries like life sciences, energy, communications, logistics, and microelectronics. Key capabilities of quantum sensors include advanced monitoring, imaging, navigation, and identification. Specific use cases range from medical imaging and brain-computer interfaces to optimizing production lines and enhancing navigation systems. The market impact is expected to grow moderately approaching 2030, with potential for significant acceleration thereafter.

The current quantum sensing ecosystem is relatively small but developing. There are less than 50 quantum sensors start-ups, compared to over 250 in quantum computing. Most revenue currently comes from components and joint research projects rather than commercialized products. The ecosystem is most mature in equipment and components, with hardware products still in development. Major focus areas include finding the right balance of sensitivity, size, weight and other specifications for various applications. Challenges like shielding sensors from environmental noise are being addressed through methods like sensor arrays and AI-enhanced signal processing.

Investment in the field is growing, with over 80% coming from venture capital and corporate investors. The five most funded start- ups have received over 80% of total funding. However, the full value chain is still being built, leaving room for new entrants.

Report contents include: 

  • Principles of quantum sensing:
    • Explanation of quantum superposition and entanglement
    • How quantum properties are leveraged for sensing
    • Comparison of quantum and classical measurement techniques
    • Key advantages: improved sensitivity, precision, and accuracy
  • Types of quantum sensors:
    • Atomic clocks:
      • Cesium fountain clocks
      • Optical lattice clocks
      • Ion-based atomic clocks
      • Applications in timekeeping, GPS, and financial trading
    • Magnetometers:
      • SQUID magnetometers
      • Optically pumped magnetometers
      • NV center magnetometers
      • Applications in medical imaging, geophysical surveys, and navigation
    • Gravimeters:
      • Atom interferometry-based gravimeters
      • Superconducting gravimeters
      • Applications in oil and mineral exploration, civil engineering, and climate studies
    • Electric field sensors:
      • Rydberg atom-based sensors
      • Single-electron transistor sensors
      • Applications in electronics testing and atmospheric science
    • Quantum imaging devices:
      • Ghost imaging systems
      • Quantum radar
      • Applications in biomedical imaging and stealth technology detection
  • Comparison with classical sensors:
    • Sensitivity improvements: orders of magnitude better in many cases
    • Size and power consumption advantages
    • Limitations and challenges compared to classical sensors
    • Cost considerations and potential for cost reduction
  • Current technological readiness levels:
    • Assessment of each quantum sensor type on the TRL scale
    • Identification of sensors closest to widespread commercial deployment
    • Areas requiring further research and development
  • Market drivers and Market restraints.
  • Market opportunities
  • Market challenges
  • Applications and End-use Industries
    • Healthcare and Life Sciences:
      • Medical imaging:
        • High-resolution MRI using quantum magnetometers
        • Single-molecule imaging for drug discovery
        • Brain activity mapping with increased spatial and temporal resolution
      • Drug discovery:
        • Quantum sensors for analyzing molecular interactions
        • Accelerated screening of potential drug candidates
        • Improved understanding of protein folding and dynamics
      • Biosensing:
        • Ultra-sensitive detection of biomarkers for early disease diagnosis
        • Real-time monitoring of biological processes
        • Quantum-enhanced DNA sequencing technologies
    • Defense and Military:
      • Navigation systems:
        • Quantum inertial measurement units for GPS-independent navigation
        • High-precision timing for synchronized operations
        • Underwater navigation using quantum gravimeters
      • Underwater detection:
        • Quantum magnetometers for submarine detection
        • Quantum gravity gradiometers for underwater mapping
        • Quantum sonar systems with improved range and resolution
      • Communication systems:
        • Quantum-secured communication networks
        • Long-distance quantum key distribution
        • Quantum radar for stealth technology detection
    • Information Technology:
      • Quantum computing:
        • Quantum sensors for error correction in quantum computers
        • Readout systems for quantum bits (qubits)
        • Quantum memory devices
      • Quantum communication:
        • Quantum repeaters for long-distance quantum networks
        • Entanglement distribution for quantum internet
        • Quantum-enhanced optical communication systems
      • Cybersecurity:
        • Quantum random number generators for encryption
        • Quantum key distribution for secure communication
        • Quantum sensing for detecting eavesdropping attempts
    • Environmental Monitoring:
      • Climate change research:
        • High-precision gravity measurements for ice mass changes
        • Quantum-enhanced atmospheric gas sensing
        • Ocean current mapping using quantum magnetometers
      • Geological surveys:
        • Quantum gravimetry for mineral and oil exploration
        • Earthquake prediction using quantum strain sensors
        • Groundwater mapping and monitoring
      • Natural disaster prediction:
        • Early warning systems using quantum gravity sensors
        • Improved weather forecasting with quantum-enhanced measurements
        • Volcanic activity monitoring using quantum gas sensors
    • Oil and Gas:
      • Exploration and surveying:
        • High-resolution underground mapping with quantum gravimeters
        • Improved oil reservoir characterization
        • Quantum magnetometers for pipeline inspection
      • Pipeline monitoring:
        • Leak detection using quantum gas sensors
        • Structural integrity assessment with quantum strain sensors
        • Real-time monitoring of oil and gas flow rates
    • Transportation and Automotive:
      • Autonomous vehicles:
        • Quantum-enhanced GPS-free navigation systems
        • Improved LiDAR systems using quantum sensing
        • Quantum radar for all-weather object detection
      • Aerospace navigation:
        • High-precision inertial measurement units for aircraft
        • Satellite-based quantum sensors for Earth observation
        • Quantum timing systems for improved air traffic control
    • Other Industries:
      • Finance and banking:
        • Ultra-precise timekeeping for high-frequency trading
        • Quantum random number generators for financial modeling
        • Quantum sensors for secure transactions and fraud detection
      • Agriculture:
        • Soil composition analysis using quantum sensors
        • Crop health monitoring with quantum-enhanced hyperspectral imaging
        • Precision agriculture using quantum-based positioning systems
      • Construction:
        • Structural health monitoring with quantum strain sensors
        • Underground utility mapping using quantum gravimetry
        • Improved surveying and land management technique
      • Mining
  • Competitive Landscape including detailed company profiles. Companies profiled include Airbus, Aquark Technologies, Atomionics, Bosch Quantum Sensing, Chipiron, Chiral Nano AG, ColdQuanta, Delta g, EuQlid, Exail Quantum Sensors, Genesis Quantum Technology, ID Quantique, Infleqtion, Ligentec, M Squared Lasers, Mag4Health, Mesa Quantum, Miraex, MuQuans, Nomad Atomics, Nu Quantum, NVision, PhotonForce, Q-CTRL, Qaisec, Qnami, Q.ANT, QuantaMap, QuantCAD LLC, Quantum Diamond Technologies Inc., QuantumDiamonds GmbH, Quantum Optus, Quantum Systems, etc.
  • Technology Trends and Innovations
    • Miniaturization of quantum sensors:
      • Progress in reducing size, weight, and power consumption
      • Challenges in maintaining performance with miniaturization
      • Potential for wearable and mobile quantum sensing devices
    • Room temperature quantum sensors:
      • Advancements in materials and designs for room temperature operation
      • Comparison of performance with cryogenic quantum sensors
      • Potential applications enabled by room temperature operation
    • Hybrid quantum-classical systems:
      • Integration of quantum sensors with classical readout electronics
      • Quantum-enhanced classical sensors
      • Synergies between quantum and classical sensing technologies
    • Quantum networks and distributed sensing:
      • Development of quantum sensor networks
      • Entanglement-based distributed sensing protocols
      • Applications in large-scale environmental and security monitoring
    • AI and machine learning integration:
      • Machine learning algorithms for quantum sensor data analysis
      • AI-driven optimization of quantum sensor operation
      • Predictive maintenance and calibration using AI
    • Quantum-enhanced metrology:
      • Advances in quantum metrology for fundamental constants
      • Quantum-enhanced calibration techniques
      • Impact on international measurement standards
  • Market Forecast and Future Outlook
  • Emerging applications and use cases:
    • Quantum sensors in brain-computer interfaces
    • Applications in anti-aging research and personalized medicine
    • Quantum-enhanced virtual and augmented reality systems
  • Potential disruptive technologies:
    • Hybrid quantum-photonic sensors
    • Topological quantum sensors
    • Quantum sensors based on exotic states of matter
  • Investment Landscape
  • Case Studies
    • Quantum sensors in healthcare: Early disease detection
      • Detailed examination of quantum magnetometer use in early Alzheimer's detection
      • Comparison of sensitivity and accuracy with traditional diagnostic methods
      • Cost-benefit analysis and potential impact on healthcare outcomes
    • Military applications: Enhanced navigation systems
      • Case study of quantum inertial measurement units in submarine navigation
      • Performance comparison with classical navigation systems
      • Implications for strategic defense capabilities
    • Environmental monitoring: Climate change research
      • Application of quantum gravity sensors in measuring ice mass changes
      • Integration with satellite data for comprehensive climate models
      • Impact on climate change predictions and policy decisions
    • Financial sector: High-frequency trading
      • Use of quantum timing systems in high-frequency trading platforms
      • Analysis of performance improvements and economic impact
      • Regulatory considerations and fairness issues
    • Quantum internet: Secure communication networks
      • Pilot project for quantum key distribution in a metropolitan area
      • Technical challenges and solutions in implementing quantum networks
      • Potential applications beyond secure communication

 

1             EXECUTIVE SUMMARY            11

  • 1.1        First and second quantum revolutions         11
  • 1.2        Current quantum technology market landscape   13
    • 1.2.1    Key developments      14
  • 1.3        Investment Landscape            15
  • 1.4        Global government initiatives             16
  • 1.5        Industry developments 2020-2024 17
  • 1.6        Challenges for quantum technologies adoption    26
  • 1.7        Market Drivers               27
  • 1.8        Market and technology challenges  29
  • 1.9        Technology Trends and Innovations                30
  • 1.10     Market Forecast and Future Outlook             31
    • 1.10.1 Short-term Outlook (2025-2027)      31
    • 1.10.2 Medium-term Outlook (2028-2031) 31
    • 1.10.3 Long-term Outlook (2032-2035)       32
  • 1.11     Emerging Applications and Use Cases         33
  • 1.12     Potential Disruptive Technologies    34
  • 1.13     Global market for quantum sensors               35
    • 1.13.1 By sensor type               35
    • 1.13.2 By volume        38
    • 1.13.3 By sensor price             38
    • 1.13.4 By end use industry   39

 

2             INTRODUCTION          40

  • 2.1        What is quantum sensing?   40
  • 2.2        Types of quantum sensors    41
    • 2.2.1    Comparison between classical and quantum sensors      42
  • 2.3        Quantum Sensing Principles               43
  • 2.4        Value proposition for quantum sensors       44
  • 2.5        Current Technological Readiness Levels     45
  • 2.6        SWOT analysis              46

 

3             ATOMIC CLOCKS        47

  • 3.1        Technology Overview                47
  • 3.2        High frequency oscillators    48
    • 3.2.1    Emerging oscillators  48
  • 3.3        Caesium atoms            49
  • 3.4        Self-calibration             49
  • 3.5        New atomic clock technologies        49
  • 3.6        Optical atomic clocks              50
    • 3.6.1    Chip-scale optical clocks      52
  • 3.7        Companies     54
  • 3.8        SWOT analysis              54
  • 3.9        Market forecasts         56

 

4             QUANTUM MAGNETIC FIELD SENSORS      57

  • 4.1        Technology overview 58
  • 4.2        Motivation for use       59
  • 4.3        Market opportunity    61
  • 4.4        Superconducting Quantum Interference Devices (Squids)             61
    • 4.4.1    Applications   63
    • 4.4.2    Key players      65
    • 4.4.3    SWOT analysis              65
  • 4.5        Optically Pumped Magnetometers (OPMs)               66
    • 4.5.1    Applications   66
    • 4.5.2    Key players      67
    • 4.5.3    SWOT analysis              67
  • 4.6        Tunneling Magneto Resistance Sensors (TMRs)     68
    • 4.6.1    Applications   69
    • 4.6.2    Key players      70
    • 4.6.3    SWOT analysis              70
  • 4.7        Nitrogen Vacancy Centers (N-V Centers)     71
    • 4.7.1    Applications   71
    • 4.7.2    Key players      72
    • 4.7.3    SWOT analysis              73
  • 4.8        Market forecasts         73

 

5             QUANTUM GRAVIMETERS     75

  • 5.1        Technology overview 75
  • 5.2        Applications   76
  • 5.3        Key players      78
  • 5.4        Market forecasts         79
  • 5.5        SWOT analysis              80

 

6             QUANTUM GYROSCOPES     82

  • 6.1        Technology description           82
    • 6.1.1    Inertial Measurement Units (IMUs) 83
    • 6.1.2    Atomic quantum gyroscopes              84
  • 6.2        Applications   85
  • 6.3        Key players      88
  • 6.4        SWOT analysis              88

 

7             QUANTUM IMAGE SENSORS               90

  • 7.1        Technology overview 90
  • 7.2        Applications   91
  • 7.3        SWOT analysis              92
  • 7.4        Market forecast            93
  • 7.5        Key players      94

 

8             QUANTUM RADAR      95

  • 8.1        Technology overview 95
  • 8.2        Applications   96

 

9             QUANTUM CHEMICAL SENSORS     98

  • 9.1        Technology overview 98
  • 9.2        Commercial activities              98

 

10          QUANTUM NEMS AND MEMS             99

  • 10.1     Technology overview 99
  • 10.2     Types   99
  • 10.3     Applications   100
  • 10.4     Challenges      100

 

11          CASE STUDIES              102

  • 11.1     Quantum Sensors in Healthcare: Early Disease Detection             102
  • 11.2     Military Applications: Enhanced Navigation Systems         102
  • 11.3     Environmental Monitoring     103
  • 11.4     Financial Sector: High-Frequency Trading  103
  • 11.5     Quantum Internet: Secure Communication Networks       103

 

12          END-USE INDUSTRIES            105

  • 12.1     Healthcare and Life Sciences             105
    • 12.1.1 Medical Imaging          105
    • 12.1.2 Drug Discovery             105
    • 12.1.3 Biosensing      106
  • 12.2     Defense and Military 106
    • 12.2.1 Navigation Systems   106
    • 12.2.2 Underwater Detection             107
    • 12.2.3 Communication Systems      107
  • 12.3     Environmental Monitoring     108
    • 12.3.1 Climate Change Research    108
    • 12.3.2 Geological Surveys    109
    • 12.3.3 Natural Disaster Prediction  109
    • 12.3.4 Other Applications     109
  • 12.4     Oil and Gas     110
    • 12.4.1 Exploration and Surveying     110
    • 12.4.2 Pipeline Monitoring   111
    • 12.4.3 Other Applications     111
  • 12.5     Transportation and Automotive         112
    • 12.5.1 Autonomous Vehicles              113
    • 12.5.2 Aerospace Navigation              113
    • 12.5.3 Other Applications     114
  • 12.6     Other Industries           114
    • 12.6.1 Finance and Banking 114
    • 12.6.2 Agriculture       114
    • 12.6.3 Construction  114
    • 12.6.4 Mining 115

 

13          COMPANY PROFILES                116 (44 company profiles)

 

14          APPENDICES  147

  • 14.1     Research Methodology           147
  • 14.2     Glossary of Terms       148
  • 14.3     List of Abbreviations  151

 

15          REFERENCES 152

 

List of Tables

  • Table 1. First and second quantum revolutions.     11
  • Table 2. Quantum Sensing Technologies and Applications.           12
  • Table 3. Global government initiatives in quantum technologies.               16
  • Table 4. Quantum technologies industry developments 2020-2024.       17
  • Table 5. Challenges for quantum technologies adoption. 27
  • Table 6. Market Drivers for Quantum Sensors.        27
  • Table 7. Market and technology challenges in quantum sensing.               29
  • Table 8. Technology Trends and Innovations in Quantum Sensors.           30
  • Table 9. Emerging Applications and Use Cases      33
  • Table 10. Potential Disruptive Technologies.             34
  • Table 11. Global market for quantum sensors, by types, 2018-2035 (Millions USD).     35
  • Table 12. Global market for quantum sensors, by volume, 2018-2035.  38
  • Table 13. Global market for quantum sensors, by sensor price, 2018-2035.      38
  • Table 14. Global market for quantum sensors, by end use industry, 2018-2035 (Millions USD).            39
  • Table 15.Types of Quantum Sensors              41
  • Table 16.  Comparison between classical and quantum sensors.             42
  • Table 17. Applications in quantum sensors.             42
  • Table 18. Technology approaches for enabling quantum sensing               44
  • Table 19. Value proposition for quantum sensors. 45
  • Table 20. Key challenges and limitations of quartz crystal clocks vs. atomic clocks.    48
  • Table 21.  New modalities being researched to improve the fractional uncertainty of atomic clocks. 52
  • Table 22. Companies developing high-precision quantum time measurement 54
  • Table 23. Key players in atomic clocks.        55
  • Table 24. Global market for atomic clocks 2025-2035 (Billions USD).     56
  • Table 25. Comparative analysis of key performance parameters and metrics of magnetic field sensors.                59
  • Table 26. Types of magnetic field sensors. 60
  • Table 27. Market opportunity for different types of quantum magnetic field sensors.   61
  • Table 28. Applications of SQUIDs.   63
  • Table 29. Market opportunities for SQUIDs (Superconducting Quantum Interference Devices).           64
  • Table 30. Key players in SQUIDs.      65
  • Table 31. Applications of optically pumped magnetometers (OPMs).     66
  • Table 32. Key players in Optically Pumped Magnetometers (OPMs).        67
  • Table 33. Applications for TMR (Tunneling Magnetoresistance) sensors.               69
  • Table 34. Market players in TMR (Tunneling Magnetoresistance) sensors.            70
  • Table 35. Applications of N-V center magnetic field centers           71
  • Table 36. Key players in N-V center magnetic field sensors.           72
  • Table 37. Global market forecasts for quantum magnetic field sensors, by type, 2025-2035 (Millions USD).  73
  • Table 38. Applications of quantum gravimeters      76
  • Table 39. Comparative table between quantum gravity sensing and some other technologies commonly used for underground mapping.       76
  • Table 40. Key players in quantum gravimeters.        78
  • Table 41. Global market for Quantum gravimeters 2025-2035 (Millions USD).  79
  • Table 42. Comparison of quantum gyroscopes with MEMs gyroscopes and optical gyroscopes.         82
  • Table 43. Markets and applications for quantum gyroscopes.      87
  • Table 44. Key players in quantum gyroscopes.        88
  • Table 45. Types of quantum image sensors and their key features.            90
  • Table 46. Applications of quantum image sensors.              91
  • Table 47. Global market for quantum image sensors 2025-2035 (Millions USD).             93
  • Table 48. Key players in quantum image sensors. 94
  • Table 49. Comparison of quantum radar versus conventional radar and lidar technologies.   96
  • Table 50. Applications of quantum radar.   97
  • Table 51.Types of Quantum NEMS and MEMS.        99
  • Table 52. Quantum Sensors in Healthcare and Life Sciences.      105
  • Table 53. Quantum Sensors in Defense and Military           106
  • Table 54. Quantum Sensors in Environmental Monitoring               108
  • Table 55. Quantum Sensors in Oil and Gas                110
  • Table 56. Quantum Sensors in Transportation.       112
  • Table 57.Glossary of terms.  148
  • Table 58. List of Abbreviations.          151

 

List of Figures

  • Figure 1. Quantum computing development timeline.       14
  • Figure 2.Quantum investments 2012-2024 (millions USD).            16
  • Figure 3.  National quantum initiatives and funding.           16
  • Figure 4. Quantum Sensors: Market and Technology Roadmap to 2040.              33
  • Figure 5. Global market for quantum sensors, by types, 2018-2035 (Millions USD).      37
  • Figure 6. Global market for quantum sensors, by volume, 2018-2035.   38
  • Figure 7. Global market for quantum sensors, by sensor price, 2018-2035.       39
  • Figure 8. Global market for quantum sensors, by end use industry, 2018-2035 (Millions USD).            40
  • Figure 9. Q.ANT quantum particle sensor.  45
  • Figure 10. Current Technological Readiness Levels: Quantum Sensors.               46
  • Figure 11. SWOT analysis for quantum sensors market.   47
  • Figure 12. Strontium lattice optical clock.  51
  • Figure 13. NIST's compact optical clock.    53
  • Figure 14. SWOT analysis for atomic clocks.            55
  • Figure 15. Global market for atomic clocks 2025-2035 (Billions USD).   57
  • Figure 16.Principle of SQUID magnetometer.           62
  • Figure 17. SWOT analysis for SQUIDS.          66
  • Figure 18. SWOT analysis for OPMs 68
  • Figure 19. Tunneling magnetoresistance mechanism and TMR ratio formats.   69
  • Figure 20. SWOT analysis for TMR (Tunneling Magnetoresistance) sensors.        71
  • Figure 21. SWOT analysis for N-V Center Magnetic Field Sensors.             73
  • Figure 22. Global market forecasts for quantum magnetic field sensors, by type, 2025-2035 (Millions USD).  74
  • Figure 23. Quantum Gravimeter.       75
  • Figure 24. Global market for Quantum gravimeters 2025-2035 (Millions USD). 80
  • Figure 25. SWOT analysis for Quantum Gravimeters.          81
  • Figure 26. SWOT analysis for Quantum Gyroscopes.          89
  • Figure 27. SWOT analysis for Quantum image sensing.    92
  • Figure 28. Global market for quantum image sensors 2025-2035 (Millions USD).           93
  • Figure 29. Principle of quantum radar.          95
  • Figure 30. Illustration of a quantum radar prototype.          96
  • Figure 31. ColdQuanta Quantum Core (left), Physics Station (middle) and the atoms control chip (right).                124

 

 

 

The Global Market for Quantum Sensors 2025-2035
The Global Market for Quantum Sensors 2025-2035
PDF download.

The Global Market for Quantum Sensors 2025-2035
The Global Market for Quantum Sensors 2025-2035
PDF and Print Edition (Including Tracked Delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com