- Published: March 2023
- Pages: 398
- Tables: 91
- Figures: 71
Quantum technologies leverage unique properties of quantum physics like superposition, entanglement, and interference to enable new paradigms for information processing, communications, and measurement. Major application areas and techniques currently being researched and developed include:
- Quantum computing - gate-based universal quantum computers, adiabatic quantum annealing, quantum simulators
- Quantum cryptography - quantum key distribution, quantum random number generation, post-quantum cryptography
- Quantum communication - quantum teleportation, quantum repeaters, quantum networks
- Quantum sensing - quantum LiDAR, atomic clocks, quantum radar, quantum imaging
The "Quantum Technologies Market Report 2023-2035" is a comprehensive analysis of the rapidly evolving quantum technologies market, covering the key segments of quantum computing, quantum communications, and quantum sensing. This in-depth report provides valuable insights into the market landscape, key players, technological advancements, and emerging opportunities in the quantum technologies industry.
The quantum technologies market is poised for significant growth in the coming years, driven by increasing investments from governments and private sector players, as well as the growing demand for advanced computing, secure communications, and high-precision sensing solutions across various industries.
The report begins with an overview of quantum technologies, discussing the first and second quantum revolutions, current market developments, investment landscape, and global government initiatives. It also highlights the key industry developments during the 2020-2024 period and the challenges for quantum technologies adoption.
The quantum computing section delves into the operating principles, types of quantum computers, quantum algorithms, hardware and software components, and the value chain. It also analyzes the markets and applications for quantum computing in industries such as pharmaceuticals, chemicals, transportation, and financial services.
The report further explores the intersection of quantum chemistry and artificial intelligence (AI), discussing the technology, applications, SWOT analysis, market challenges, and key players in this emerging field.
Quantum communications is another key focus area, with a detailed analysis of quantum random number generators (QRNG), quantum key distribution (QKD), post-quantum cryptography, quantum teleportation, and quantum networks. The report also examines the role of trusted nodes, entanglement swapping, multiplexing, and advanced optical fibers and interconnects in enabling global-scale quantum communication.
In the quantum sensing segment, the report covers various technologies, including atomic clocks, quantum magnetic field sensors, quantum gravimeters, quantum gyroscopes, quantum image sensors, and quantum radar. It also discusses the market and technology challenges and the potential applications of quantum sensing in different sectors. The report also includes a section on quantum batteries, covering the technology, types, applications, SWOT analysis, and market challenges.
A comprehensive market analysis is provided, including a market map for quantum technologies, key industry players (startups, tech giants, and national initiatives), investment funding, and global market revenue forecasts for quantum computing, quantum sensors, and QKD systems from 2018 to 2035. The report concludes with detailed profiles of over 200 companies active in the quantum technologies market, offering valuable information on their products, services, and strategic initiatives. A full list of companies profiled is provided in the table of contents.
With its in-depth coverage of the quantum technologies market, this report is an essential resource for businesses, investors, and stakeholders looking to understand the current landscape and future potential of this transformative industry.
Download table of contents (PDF)
1 RESEARCH METHODOLOGY 21
2 OVERVIEW OF QUANTUM TECHNOLOGIES 22
- 2.1 First and second quantum revolutions 22
- 2.2 Current market 23
- 2.2.1 Key developments 24
- 2.3 Investment Landscape 25
- 2.4 Global government initiatives 26
- 2.5 Industry developments 2020-2024 28
- 2.6 Challenges for Quantum Technologies Adoption 37
3 QUANTUM COMPUTING 39
- 3.1 What is quantum computing? 39
- 3.1.1 Operating principle 39
- 3.1.2 Classical vs quantum computing 41
- 3.1.3 Quantum computing technology 43
- 3.1.3.1 Quantum emulators 46
- 3.1.3.2 Quantum inspired computing 47
- 3.1.3.3 Quantum annealing computers 47
- 3.1.3.4 Quantum simulators 47
- 3.1.3.5 Digital quantum computers 47
- 3.1.3.6 Continuous variables quantum computers 48
- 3.1.3.7 Measurement Based Quantum Computing (MBQC) 48
- 3.1.3.8 Topological quantum computing 48
- 3.1.3.9 Quantum Accelerator 48
- 3.1.4 Competition from other technologies 49
- 3.1.5 Quantum algorithms 52
- 3.1.5.1 Quantum Software Stack 53
- 3.1.5.2 Quantum Machine Learning 53
- 3.1.5.3 Quantum Simulation 54
- 3.1.5.4 Quantum Optimization 54
- 3.1.5.5 Quantum Cryptography 55
- 3.1.5.5.1 Quantum Key Distribution (QKD) 55
- 3.1.5.5.2 Post-Quantum Cryptography 56
- 3.1.6 Hardware 57
- 3.1.6.1 Qubit Technologies 58
- 3.1.6.1.1 Superconducting Qubits 59
- 3.1.6.1.1.1 Technology description 59
- 3.1.6.1.1.2 Materials 60
- 3.1.6.1.1.3 Market players 62
- 3.1.6.1.1.4 Swot analysis 64
- 3.1.6.1.2 Trapped Ion Qubits 65
- 3.1.6.1.2.1 Technology description 65
- 3.1.6.1.2.2 Materials 67
- 3.1.6.1.2.2.1 Integrating optical components 67
- 3.1.6.1.2.2.2 Incorporating high-quality mirrors and optical cavities 68
- 3.1.6.1.2.2.3 Engineering the vacuum packaging and encapsulation 68
- 3.1.6.1.2.2.4 Removal of waste heat 68
- 3.1.6.1.2.3 Market players 69
- 3.1.6.1.2.4 Swot analysis 70
- 3.1.6.1.3 Silicon Spin Qubits 71
- 3.1.6.1.3.1 Technology description 71
- 3.1.6.1.3.2 Quantum dots 72
- 3.1.6.1.3.3 Market players 74
- 3.1.6.1.3.4 SWOT analysis 76
- 3.1.6.1.4 Topological Qubits 77
- 3.1.6.1.4.1 Technology description 77
- 3.1.6.1.4.1.1 Cryogenic cooling 78
- 3.1.6.1.4.2 Market players 78
- 3.1.6.1.4.3 SWOT analysis 79
- 3.1.6.1.4.1 Technology description 77
- 3.1.6.1.5 Photonic Qubits 80
- 3.1.6.1.5.1 Technology description 80
- 3.1.6.1.5.2 Market players 83
- 3.1.6.1.5.3 Swot analysis 84
- 3.1.6.1.6 Neutral atom (cold atom) qubits 85
- 3.1.6.1.6.1 Technology description 85
- 3.1.6.1.6.2 Market players 87
- 3.1.6.1.6.3 Swot analysis 88
- 3.1.6.1.7 Diamond-defect qubits 89
- 3.1.6.1.7.1 Technology description 89
- 3.1.6.1.7.2 SWOT analysis 92
- 3.1.6.1.7.3 Market players 93
- 3.1.6.1.8 Quantum annealers 93
- 3.1.6.1.8.1 Technology description 93
- 3.1.6.1.8.2 SWOT analysis 96
- 3.1.6.1.8.3 Market players 96
- 3.1.6.1.1 Superconducting Qubits 59
- 3.1.6.2 Architectural Approaches 97
- 3.1.6.1 Qubit Technologies 58
- 3.1.7 Software 98
- 3.1.7.1 Technology description 98
- 3.1.7.2 Cloud-based services- QCaaS (Quantum Computing as a Service). 98
- 3.1.7.3 Market players 99
- 3.2 Market challenges 103
- 3.3 SWOT analysis 105
- 3.4 Quantum computing value chain 106
- 3.5 Markets and applications for quantum computing 107
- 3.5.1 Pharmaceuticals 108
- 3.5.1.1 Market overview 108
- 3.5.1.1.1 Drug discovery 108
- 3.5.1.1.2 Diagnostics 108
- 3.5.1.1.3 Molecular simulations 109
- 3.5.1.1.4 Genomics 109
- 3.5.1.1.5 Proteins and RNA folding 110
- 3.5.1.2 Market players 110
- 3.5.1.1 Market overview 108
- 3.5.2 Chemicals 111
- 3.5.2.1 Market overview 111
- 3.5.2.2 Market players 112
- 3.5.3 Transportation 112
- 3.5.3.1 Market overview 112
- 3.5.3.2 Market players 115
- 3.5.4 Financial services 116
- 3.5.4.1 Market overview 116
- 3.5.4.2 Market players 116
- 3.5.1 Pharmaceuticals 108
4 QUANTUM CHEMISTRY AND ARTIFICAL INTELLIGENCE (AI) 118
- 4.1 Technology description 118
- 4.2 Applications 118
- 4.3 SWOT analysis 119
- 4.4 Market challenges 120
- 4.5 Market players 121
5 QUANTUM COMMUNICATIONS 122
- 5.1 Technology description 122
- 5.1.1 Types 122
- 5.1.2 Quantum Random Numbers Generators (QRNG) 123
- 5.1.3 Quantum Key Distribution (QKD) 126
- 5.1.4 Post-quantum cryptography 126
- 5.1.5 Quantum homomorphic cryptography 130
- 5.1.6 Quantum Teleportation 130
- 5.1.7 Quantum Networks 130
- 5.1.7.1 Role of Trusted Nodes and Trusted Relays 131
- 5.1.7.2 Entanglement Swapping and Optical Switches 132
- 5.1.7.3 Multiplexing quantum signals with classical channels in the O-band 133
- 5.1.7.3.1 Wavelength-division multiplexing (WDM) and time-division multiplexing (TDM) 133
- 5.1.7.4 Twin-Field Quantum Key Distribution (TF-QKD) 134
- 5.1.7.5 Enabling global-scale quantum communication 134
- 5.1.7.6 Advanced optical fibers and interconnects 136
- 5.1.7.7 Photodetectors in quantum networks 137
- 5.1.7.7.1 Avalanche photodetectors (APDs) 137
- 5.1.7.7.2 Single-photon avalanche diodes (SPADs) 137
- 5.1.7.7.3 Silicon Photomultipliers (SiPMs) 138
- 5.1.7.8 Infrastructure requirements 139
- 5.1.7.9 SWOT analysis 141
- 5.1.8 Quantum Memory 142
- 5.1.9 Quantum Internet 142
- 5.2 Applications 143
- 5.3 SWOT analysis 143
- 5.4 Market challenges 145
- 5.5 Market players 145
6 QUANTUM SENSING 150
- 6.1 Technology description 150
- 6.1.1 Quantum Sensing Principles 152
- 6.1.2 SWOT analysis 155
- 6.1.3 Atomic Clocks 156
- 6.1.3.1 High frequency oscillators 157
- 6.1.3.1.1 Emerging oscillators 157
- 6.1.3.2 Caesium atoms 157
- 6.1.3.3 Self-calibration 157
- 6.1.3.4 Optical atomic clocks 158
- 6.1.3.4.1 Chip-scale optical clocks 159
- 6.1.3.5 Companies 160
- 6.1.3.6 SWOT analysis 161
- 6.1.3.1 High frequency oscillators 157
- 6.1.4 Quantum Magnetic Field Sensors 162
- 6.1.4.1 Introduction 162
- 6.1.4.2 Motivation for use 163
- 6.1.4.3 Market opportunity 165
- 6.1.4.4 Superconducting Quantum Interference Devices (Squids) 165
- 6.1.4.4.1 Applications 165
- 6.1.4.4.2 Key players 168
- 6.1.4.4.3 SWOT analysis 169
- 6.1.4.5 Optically Pumped Magnetometers (OPMs) 170
- 6.1.4.5.1 Applications 170
- 6.1.4.5.2 Key players 171
- 6.1.4.5.3 SWOT analysis 172
- 6.1.4.6 Tunneling Magneto Resistance Sensors (TMRs) 173
- 6.1.4.6.1 Applications 173
- 6.1.4.6.2 Key players 174
- 6.1.4.6.3 SWOT analysis 175
- 6.1.4.7 Nitrogen Vacancy Centers (N-V Centers) 176
- 6.1.4.7.1 Applications 176
- 6.1.4.7.2 Key players 177
- 6.1.4.7.3 SWOT analysis 178
- 6.1.5 Quantum Gravimeters 179
- 6.1.5.1 Technology description 179
- 6.1.5.2 Applications 180
- 6.1.5.3 Key players 183
- 6.1.5.4 SWOT analysis 184
- 6.1.6 Quantum Gyroscopes 185
- 6.1.6.1 Technology description 185
- 6.1.6.1.1 Inertial Measurement Units (IMUs) 186
- 6.1.6.1.2 Atomic quantum gyroscopes 187
- 6.1.6.2 Applications 187
- 6.1.6.3 Key players 189
- 6.1.6.4 SWOT analysis 190
- 6.1.6.1 Technology description 185
- 6.1.7 Quantum Image Sensors 191
- 6.1.7.1 Technology description 191
- 6.1.7.2 Applications 192
- 6.1.7.3 SWOT analysis 193
- 6.1.7.4 Key players 194
- 6.1.8 Quantum Radar 196
- 6.1.8.1 Technology description 196
- 6.1.8.2 Applications 198
- 6.1.9 Quantum chemical sensors 198
- 6.1.10 Quantum NEM and MEMs 199
- 6.1.10.1 Technology description 199
- 6.2 Market and technology challenges 200
7 QUANTUM BATTERIES 202
- 7.1 Technology description 202
- 7.2 Types 203
- 7.3 Applications 204
- 7.4 SWOT analysis 205
- 7.5 Market challenges 206
- 7.6 Market players 206
8 MARKET ANALYSIS 207
- 8.1 Market map for quantum technologies 207
- 8.2 Key industry players 209
- 8.2.1 Start-ups 209
- 8.2.2 Tech Giants 210
- 8.2.3 National Initiatives 211
- 8.3 Investment funding 211
- 8.3.1 Venture Capital 213
- 8.3.2 M&A 214
- 8.3.3 Corporate Investment 214
- 8.3.4 Government Funding 215
- 8.4 Global market revenues 2018-2034 217
- 8.4.1 Quantum computing 217
- 8.4.2 Other segments 219
- 8.4.2.1 Quantum sensors 219
- 8.4.2.2 QKD systems 221
9 COMPANY PROFILES 223
- 9.1 A* Quantum 223
- 9.2 AbaQus 223
- 9.3 Adaptive Finance Technologies 224
- 9.4 Aegiq 224
- 9.5 Agnostiq GmbH 225
- 9.6 Algorithmiq Oy 226
- 9.7 Alpine Quantum Technologies GmbH (AQT) 227
- 9.8 Alice&Bob 228
- 9.9 Aliro Quantum 229
- 9.10 Anametric, Inc. 230
- 9.11 Anyon Systems Inc. 231
- 9.12 Aqarios GmbH 231
- 9.13 Aquark Technologies 232
- 9.14 Archer Materials 233
- 9.15 Arclight Quantum 234
- 9.16 Arqit Quantum Inc. 234
- 9.17 ARQUE SystemsGmbH 235
- 9.18 Artificial Brain 236
- 9.19 Atlantic Quantum 236
- 9.20 Atom Computing 237
- 9.21 Atom Quantum Labs 238
- 9.22 Atos Quantum 239
- 9.23 Baidu, Inc. 239
- 9.24 BEIT 240
- 9.25 Bleximo 240
- 9.26 BlueQubit 241
- 9.27 Bohr Quantum Technology 242
- 9.28 BosonQ Ps 242
- 9.29 C12 Quantum Electronics 243
- 9.30 Cambridge Quantum Computing (CQC) 244
- 9.31 CAS Cold Atom 244
- 9.32 CEW Systems Canada Inc. 245
- 9.33 Chiral Nano AG 245
- 9.34 ColibriTD 246
- 9.35 Classiq Technologies 247
- 9.36 Crypta Labs Ltd. 247
- 9.37 CryptoNext Security 248
- 9.38 D-Wave Systems 249
- 9.39 Dirac 249
- 9.40 Diraq 250
- 9.41 Delft Circuits 251
- 9.42 Delta g 251
- 9.43 Duality Quantum Photonics 252
- 9.44 EeroQ 252
- 9.45 eleQtron 253
- 9.46 Elyah 254
- 9.47 Entropica Labs 254
- 9.48 Equal1.labs 255
- 9.49 EvolutionQ 256
- 9.50 EYL 256
- 9.51 First Quantum, Inc. 257
- 9.52 Fujitsu 258
- 9.53 Good Chemistry 258
- 9.54 Google Quantum AI 259
- 9.55 Haiqu 260
- 9.56 Hefei Wanzheng Quantum Technology Co., Ltd. 261
- 9.57 High Q Technologies Inc. 261
- 9.58 Horizon Quantum Computing 262
- 9.59 HQS Quantum Simulations 263
- 9.60 HRL 263
- 9.61 Huayi Quantum 264
- 9.62 IBM 265
- 9.63 Icarus Quantum 266
- 9.64 Icosa Computing 267
- 9.65 ID Quantique 268
- 9.66 InfinityQ 268
- 9.67 Infineon Technologies AG 269
- 9.68 Infleqtion 270
- 9.69 Intel 271
- 9.70 IonQ 272
- 9.71 IQM Quantum Computers 274
- 9.72 JiJ 276
- 9.73 JoS QUANTUM GmbH 276
- 9.74 KEEQuant GmbH 277
- 9.75 KETS Quantum Security 277
- 9.76 Ki3 Photonics 278
- 9.77 Kipu Quantum 279
- 9.78 Kiutra GmbH 279
- 9.79 Kuano Limited 280
- 9.80 Kvantify 281
- 9.81 levelQuantum 281
- 9.82 LQUOM 282
- 9.83 Lux Quanta 283
- 9.84 Materials Nexus 283
- 9.85 Maybell Quantum Industries 284
- 9.86 memQ 285
- 9.87 Menlo Systems GmbH 286
- 9.88 Menten AI 287
- 9.89 Microsoft 287
- 9.90 Miraex 288
- 9.91 Molecular Quantum Solutions 288
- 9.92 Multiverse Computing 289
- 9.93 Nanofiber Quantum Technologies 290
- 9.94 Next Generation Quantum 290
- 9.95 Nomad Atomics 291
- 9.96 Nord Quantique 291
- 9.97 Nordic Quantum Computing Group AS 292
- 9.98 Nu Quantum 293
- 9.99 NVision 294
- 9.100 1Qbit 294
- 9.101 ORCA Computing 295
- 9.102 Orange Quantum Systems 296
- 9.103 Origin Quantum Computing Technology 297
- 9.104 Oxford Ionics 298
- 9.105 Oxford Quantum Circuits (OQC) 299
- 9.106 PacketLight Networks 300
- 9.107 ParityQC 301
- 9.108 Pasqal 302
- 9.109 Peptone 303
- 9.110 Phasecraft 303
- 9.111 Photonic, Inc. 304
- 9.112 Planqc GmbH 305
- 9.113 Planckian 306
- 9.114 Polaris Quantum Biotech (POLARISqb) 306
- 9.115 PQSecure 307
- 9.116 PQShield 308
- 9.117 ProteinQure 308
- 9.118 PsiQuantum 309
- 9.119 Q.ANT 311
- 9.120 Q* Bird 311
- 9.121 Qaisec 312
- 9.122 QBoson 312
- 9.123 Qblox 313
- 9.124 Q-CTRL 314
- 9.125 QC Design 315
- 9.126 QC Ware 315
- 9.127 QC82 316
- 9.128 Qilimanjaro Quantum Tech 317
- 9.129 QMware 318
- 9.130 Qnami 318
- 9.131 QphoX 319
- 9.132 Qrate Quantum Communications 320
- 9.133 Quantum Resistant Cryptography (QRC) 320
- 9.134 Qruise 321
- 9.135 QSIMPLUS 322
- 9.136 QSimulate 322
- 9.137 QTI s.r.l. 323
- 9.138 Quandela 323
- 9.139 Quanscient Oy 325
- 9.140 Quantagonia 325
- 9.141 QuantaMap 326
- 9.142 QuantiCor Security GmbH 327
- 9.143 Qunasys 327
- 9.144 QUANTier 328
- 9.145 Quantinuum 328
- 9.146 QuantrolOx 330
- 9.147 Quantropi 330
- 9.148 Quantum Benchmark 331
- 9.149 Quantum Bridge Technologies 332
- 9.150 Quantum Brilliance 332
- 9.151 Quantum Computing Inc. 334
- 9.152 QuantumCTek 334
- 9.153 Quantum Diamond Technologies, Inc. 335
- 9.154 QuantumDiamonds GmbH 336
- 9.155 Quantum Dice 337
- 9.156 Quantum Flytrap 337
- 9.157 Quantum Generative Materials LLC 338
- 9.158 Quantum Machines 338
- 9.159 Quantum Motion Technology 339
- 9.160 Quantum Optics Jena GmbH 340
- 9.161 Quantum Source 341
- 9.162 Quantum Systems 342
- 9.163 Quantum Transistors 342
- 9.164 Quantum Xchange 343
- 9.165 QuantrolOx 344
- 9.166 Qubitekk 344
- 9.167 Qubit Pharmaceuticals 345
- 9.168 Qubrid LLC 346
- 9.169 QUDORA Technologies 346
- 9.170 QuEL, Inc. 347
- 9.171 QuEra Computing 347
- 9.172 Quintessence Labs 348
- 9.173 QuantGates 348
- 9.174 QuantWare 349
- 9.175 Quobly 349
- 9.176 Quoherent 350
- 9.177 QUDOOR 351
- 9.178 QuiX Quantum 351
- 9.179 QunaSys 352
- 9.180 QuantLR 353
- 9.181 QuantWare 353
- 9.182 Qunova Computing 354
- 9.183 Qunnect 355
- 9.184 QuSecure 355
- 9.185 Quside Technologies S.L. 356
- 9.186 Qutronix 357
- 9.187 Randaemon 357
- 9.188 Resquant 358
- 9.189 Rigetti Computing 358
- 9.190 Riverlane 359
- 9.191 Rotonium 360
- 9.192 Sandbox AQ 360
- 9.193 SaxonQ 361
- 9.194 SBQuantum 362
- 9.195 SCALINQ 362
- 9.196 Seeqc 363
- 9.197 Senko Advance Components Ltd 364
- 9.198 SemiQon Technologies Oy 364
- 9.199 Silicon Extreme 366
- 9.200 Silicon Quantum Computing 366
- 9.201 Solid State AI 367
- 9.202 softwareQ 367
- 9.203 Sparrow Quantum ApS 368
- 9.204 SpeQtral 369
- 9.205 SpinQ Technology 369
- 9.206 Stafford Computing 370
- 9.207 Strangeworks, Inc. 370
- 9.208 sureCore Ltd. 371
- 9.209 Synergy Quantum SA 372
- 9.210 Terra Quantum 373
- 9.211 ThinkQuantum 374
- 9.212 t0.technology 374
- 9.213 Tokyo Quantum Computing 375
- 9.214 Toshiba Digital Solutions 375
- 9.215 TuringQ 377
- 9.216 Universal Quantum 378
- 9.217 VeriQloud 379
- 9.218 Vexlum Oy 380
- 9.219 Wave Photonics 381
- 9.220 Welinq 382
- 9.221 Xanadu 383
- 9.222 XeedQ GmbH 384
- 9.223 Xofia 385
- 9.224 Zapata Computing 385
- 9.225 Zhongwei Daxin Technology 387
10 TERMS AND DEFINITIONS 388
11 REFERENCES 391
List of Tables
- Table 1. First and second quantum revolutions. 22
- Table 2. Global government initiatives in quantum technologies. 26
- Table 3. Quantum technologies industry developments 2020-2023. 28
- Table 4. Applications for quantum computing 40
- Table 5. Comparison of classical versus quantum computing. 42
- Table 6. Key quantum mechanical phenomena utilized in quantum computing. 43
- Table 7. Types of quantum computers. 43
- Table 8. Comparative analysis of quantum computing with classical computing, quantum-inspired computing, and neuromorphic computing. 49
- Table 9. Different computing paradigms beyond conventional CMOS. 50
- Table 10. Applications of quantum algorithms. 52
- Table 11. QML approaches. 53
- Table 12. Coherence times for different qubit implementations. 59
- Table 13. Superconducting qubit market players. 62
- Table 14. Initialization, manipulation and readout for trapped ion quantum computers. 66
- Table 15. Ion trap market players. 69
- Table 16. Initialization, manipulation, and readout methods for silicon-spin qubits. 74
- Table 17. Silicon spin qubits market players. 74
- Table 18. Initialization, manipulation and readout of topological qubits. 77
- Table 19. Topological qubits market players. 78
- Table 20. Pros and cons of photon qubits. 80
- Table 21. Comparison of photon polarization and squeezed states. 81
- Table 22. Initialization, manipulation and readout of photonic platform quantum computers. 82
- Table 23. Photonic qubit market players. 83
- Table 24. Initialization, manipulation and readout for neutral-atom quantum computers. 86
- Table 25. Pros and cons of cold atoms quantum computers and simulators 87
- Table 26. Neural atom qubit market players. 87
- Table 27. Initialization, manipulation and readout of Diamond-Defect Spin-Based Computing. 89
- Table 28. Key materials for developing diamond-defect spin-based quantum computers. 90
- Table 29. Diamond-defect qubits market players. 93
- Table 30. Pros and cons of quantum annealers. 94
- Table 31. Quantum annealers market players. 96
- Table 32. Quantum computing software market players. 99
- Table 33. Market challenges in quantum computing. 103
- Table 34. Quantum computing value chain. 106
- Table 35. Markets and applications for quantum computing. 107
- Table 36. Market players in quantum technologies for pharmaceuticals. 110
- Table 37. Market players in quantum computing for chemicals. 112
- Table 38. Automotive applications of quantum computing, 112
- Table 39. Market players in quantum computing for transportation. 115
- Table 40. Market players in quantum computing for financial services 116
- Table 41. Applications in quantum chemistry and artificial intelligence (AI). 118
- Table 42. Market challenges in quantum chemistry and Artificial Intelligence (AI). 120
- Table 43. Market players in quantum chemistry and AI. 121
- Table 44. main types of quantum communications. 122
- Table 45. QRNG applications. 125
- Table 46. Market players in post-quantum cryptography. 127
- Table 47. Applications in quantum communications. 143
- Table 48. Market challenges in quantum communications. 145
- Table 49. Market players in quantum communications. 145
- Table 50. Comparison between classical and quantum sensors. 150
- Table 51. Applications in quantum sensors. 151
- Table 52. Technology approaches for enabling quantum sensing 153
- Table 53. Value proposition for quantum sensors. 154
- Table 54. Key challenges and limitations of quartz crystal clocks vs. atomic clocks. 156
- Table 55. New modalities being researched to improve the fractional uncertainty of atomic clocks. 158
- Table 56. Companies developing high-precision quantum time measurement 160
- Table 57. Key players in atomic clocks. 162
- Table 58. Comparative analysis of key performance parameters and metrics of magnetic field sensors. 163
- Table 59. Types of magnetic field sensors. 164
- Table 60. Market opportunity for different types of quantum magnetic field sensors. 165
- Table 61. Applications of SQUIDs. 165
- Table 62. Market opportunities for SQUIDs (Superconducting Quantum Interference Devices). 167
- Table 63. Key players in SQUIDs. 168
- Table 64. Applications of optically pumped magnetometers (OPMs). 170
- Table 65. Key players in Optically Pumped Magnetometers (OPMs). 171
- Table 66. Applications for TMR (Tunneling Magnetoresistance) sensors. 174
- Table 67. Market players in TMR (Tunneling Magnetoresistance) sensors. 174
- Table 68. Applications of N-V center magnetic field centers 176
- Table 69. Key players in N-V center magnetic field sensors. 177
- Table 70. Applications of quantum gravimeters 180
- Table 71. Comparative table between quantum gravity sensing and some other technologies commonly used for underground mapping. 180
- Table 72. Key players in quantum gravimeters. 183
- Table 73. Comparison of quantum gyroscopes with MEMs gyroscopes and optical gyroscopes. 185
- Table 74. Markets and applications for quantum gyroscopes. 188
- Table 75. Key players in quantum gyroscopes. 189
- Table 76. Types of quantum image sensors and their key features/. 191
- Table 77. Applications of quantum image sensors. 192
- Table 78. Key players in quantum image sensors. 194
- Table 79. Comparison of quantum radar versus conventional radar and lidar technologies. 197
- Table 80. Applications of quantum radar. 198
- Table 81. Market and technology challenges in quantum sensing. 200
- Table 82. Comparison between quantum batteries and other conventional battery types. 202
- Table 83. Types of quantum batteries. 203
- Table 84. Applications of quantum batteries. 204
- Table 85. Market challenges in quantum batteries. 206
- Table 86. Market players in quantum batteries. 206
- Table 87. Quantum technologies investment funding. 212
- Table 88. Top funded quantum technology companies. 213
- Table 89. Global market for quantum computing-Hardware, Software & Services, 2023-2035 (billions USD). 217
- Table 90. Markets for quantum sensors, by types, 2018-2035 (Millions USD). 219
- Table 91. Markets for QKD systems, 2018-2035 (Millions USD). 221
List of Figures
- Figure 1. Quantum computing development timeline. 23
- Figure 2.Quantum investments 2012-2023 (millions USD). 25
- Figure 3. National quantum initiatives and funding. 26
- Figure 4. An early design of an IBM 7-qubit chip based on superconducting technology. 40
- Figure 5. Various 2D to 3D chips integration techniques into chiplets. 42
- Figure 6. IBM Q System One quantum computer. 46
- Figure 7. Unconventional computing approaches. 51
- Figure 8. 53-qubit Sycamore processor. 54
- Figure 9. Interior of IBM quantum computing system. The quantum chip is located in the small dark square at center bottom. 58
- Figure 10. Superconducting quantum computer. 60
- Figure 11. Superconducting quantum computer schematic. 61
- Figure 12. Components and materials used in a superconducting qubit. 62
- Figure 13. SWOT analysis for superconducting quantum computers:. 64
- Figure 14. Ion-trap quantum computer. 65
- Figure 15. Various ways to trap ions 66
- Figure 16. Universal Quantum’s shuttling ion architecture in their Penning traps. 67
- Figure 17. SWOT analysis for trapped-ion quantum computing. 71
- Figure 18. CMOS silicon spin qubit. 71
- Figure 19. Silicon quantum dot qubits. 73
- Figure 20. SWOT analysis for silicon spin quantum computers. 76
- Figure 21. SWOT analysis for topological qubits 79
- Figure 22 . SWOT analysis for photonic quantum computers. 84
- Figure 23. Neutral atoms (green dots) arranged in various configurations 85
- Figure 24. SWOT analysis for neutral-atom quantum computers. 88
- Figure 25. NV center components. 89
- Figure 26. SWOT analysis for diamond-defect quantum computers. 92
- Figure 27. D-Wave quantum annealer. 95
- Figure 28. SWOT analysis for quantum annealers. 96
- Figure 29. Quantum software development platforms. 98
- Figure 30. SWOT analysis for quantum computing. 105
- Figure 32. SWOT analysis for quantum chemistry and AI. 120
- Figure 33. IDQ quantum number generators. 124
- Figure 34. SWOT Analysis: Post Quantum Cryptography (PQC). 129
- Figure 35. SWOT analysis for networks. 142
- Figure 36. SWOT analysis for quantum communications. 145
- Figure 37. SWOT analysis for quantum sensors market. 155
- Figure 38. NIST's compact optical clock. 159
- Figure 39. SWOT analysis for atomic clocks. 161
- Figure 40.Principle of SQUID magnetometer. 167
- Figure 41. SWOT analysis for SQUIDS. 169
- Figure 42. SWOT analysis for OPMs 173
- Figure 43. Tunneling magnetoresistance mechanism and TMR ratio formats. 173
- Figure 44. SWOT analysis for TMR (Tunneling Magnetoresistance) sensors. 176
- Figure 45. SWOT analysis for N-V Center Magnetic Field Sensors. 178
- Figure 46. Quantum Gravimeter. 179
- Figure 47. SWOT analysis for Quantum Gravimeters. 184
- Figure 48. SWOT analysis for Quantum Gyroscopes. 190
- Figure 49. SWOT analysis for Quantum image sensing. 194
- Figure 50. Principle of quantum radar. 196
- Figure 51. Illustration of a quantum radar prototype. 197
- Figure 52. Schematic of the flow of energy (blue) from a source to a battery made up of multiple cells. (left) 203
- Figure 53. SWOT analysis for quantum batteries. 205
- Figure 54. Market map for quantum technologies industry. 208
- Figure 55. Tech Giants quantum technologies activities. 210
- Figure 56. Quantum Technology investment by sector, 2023. 211
- Figure 57. Quantum computing public and industry funding to mid-2023, millions USD. 216
- Figure 58. Global market for quantum computing-Hardware, Software & Services, 2023-2035 (billions USD). 218
- Figure 59. Markets for quantum sensors, by types, 2018-2035 (Millions USD). 220
- Figure 60. Markets for QKD systems, 2018-2035 (Millions USD). 222
- Figure 61. Archer-EPFL spin-resonance circuit. 233
- Figure 62. IBM Q System One quantum computer. 266
- Figure 63. ColdQuanta Quantum Core (left), Physics Station (middle) and the atoms control chip (right). 270
- Figure 64. Intel Tunnel Falls 12-qubit chip. 272
- Figure 65. IonQ's ion trap 273
- Figure 66. 20-qubit quantum computer. 275
- Figure 67. Maybell Big Fridge. 285
- Figure 68. PsiQuantum’s modularized quantum computing system networks. 310
- Figure 69. SemiQ first chip prototype. 365
- Figure 70. Toshiba QKD Development Timeline. 376
- Figure 71. Toshiba Quantum Key Distribution technology. 377
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer.
To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.