The Global Market for Quantum Technologies (Quantum Computing, Cryptography, Communications, Sensors, Batteries) 2024-2035

0

  • Published: March 2023
  • Pages: 398
  • Tables: 91
  • Figures: 71

 

Quantum technologies leverage unique properties of quantum physics like superposition, entanglement, and interference to enable new paradigms for information processing, communications, and measurement. Major application areas and techniques currently being researched and developed include:

  • Quantum computing - gate-based universal quantum computers, adiabatic quantum annealing, quantum simulators
  • Quantum cryptography - quantum key distribution, quantum random number generation, post-quantum cryptography
  • Quantum communication - quantum teleportation, quantum repeaters, quantum networks
  • Quantum sensing - quantum LiDAR, atomic clocks, quantum radar, quantum imaging

 

The "Quantum Technologies Market Report 2023-2035" is a comprehensive analysis of the rapidly evolving quantum technologies market, covering the key segments of quantum computing, quantum communications, and quantum sensing. This in-depth report provides valuable insights into the market landscape, key players, technological advancements, and emerging opportunities in the quantum technologies industry.

The quantum technologies market is poised for significant growth in the coming years, driven by increasing investments from governments and private sector players, as well as the growing demand for advanced computing, secure communications, and high-precision sensing solutions across various industries.

The report begins with an overview of quantum technologies, discussing the first and second quantum revolutions, current market developments, investment landscape, and global government initiatives. It also highlights the key industry developments during the 2020-2024 period and the challenges for quantum technologies adoption.

The quantum computing section delves into the operating principles, types of quantum computers, quantum algorithms, hardware and software components, and the value chain. It also analyzes the markets and applications for quantum computing in industries such as pharmaceuticals, chemicals, transportation, and financial services.

The report further explores the intersection of quantum chemistry and artificial intelligence (AI), discussing the technology, applications, SWOT analysis, market challenges, and key players in this emerging field.

Quantum communications is another key focus area, with a detailed analysis of quantum random number generators (QRNG), quantum key distribution (QKD), post-quantum cryptography, quantum teleportation, and quantum networks. The report also examines the role of trusted nodes, entanglement swapping, multiplexing, and advanced optical fibers and interconnects in enabling global-scale quantum communication.

In the quantum sensing segment, the report covers various technologies, including atomic clocks, quantum magnetic field sensors, quantum gravimeters, quantum gyroscopes, quantum image sensors, and quantum radar. It also discusses the market and technology challenges and the potential applications of quantum sensing in different sectors. The report also includes a section on quantum batteries, covering the technology, types, applications, SWOT analysis, and market challenges.

A comprehensive market analysis is provided, including a market map for quantum technologies, key industry players (startups, tech giants, and national initiatives), investment funding, and global market revenue forecasts for quantum computing, quantum sensors, and QKD systems from 2018 to 2035. The report concludes with detailed profiles of over 200 companies active in the quantum technologies market, offering valuable information on their products, services, and strategic initiatives. A full list of companies profiled is provided in the table of contents. 

With its in-depth coverage of the quantum technologies market, this report is an essential resource for businesses, investors, and stakeholders looking to understand the current landscape and future potential of this transformative industry.

 

 

 

Download table of contents (PDF)

1             RESEARCH METHODOLOGY   21

 

2             OVERVIEW OF QUANTUM TECHNOLOGIES     22

  • 2.1         First and second quantum revolutions 22
  • 2.2         Current market               23
    • 2.2.1     Key developments         24
  • 2.3         Investment Landscape               25
  • 2.4         Global government initiatives 26
  • 2.5         Industry developments 2020-2024       28
  • 2.6         Challenges for Quantum Technologies Adoption           37

 

3             QUANTUM COMPUTING            39

  • 3.1         What is quantum computing? 39
    • 3.1.1     Operating principle       39
    • 3.1.2     Classical vs quantum computing           41
    • 3.1.3     Quantum computing technology            43
      • 3.1.3.1 Quantum emulators     46
      • 3.1.3.2 Quantum inspired computing  47
      • 3.1.3.3 Quantum annealing computers              47
      • 3.1.3.4 Quantum simulators    47
      • 3.1.3.5 Digital quantum computers      47
      • 3.1.3.6 Continuous variables quantum computers      48
      • 3.1.3.7 Measurement Based Quantum Computing (MBQC)     48
      • 3.1.3.8 Topological quantum computing           48
      • 3.1.3.9 Quantum Accelerator  48
    • 3.1.4     Competition from other technologies  49
      • 3.1.5     Quantum algorithms    52
      • 3.1.5.1 Quantum Software Stack          53
      • 3.1.5.2 Quantum Machine Learning     53
      • 3.1.5.3 Quantum Simulation   54
      • 3.1.5.4 Quantum Optimization               54
      • 3.1.5.5 Quantum Cryptography              55
        • 3.1.5.5.1             Quantum Key Distribution (QKD)            55
        • 3.1.5.5.2             Post-Quantum Cryptography   56
    • 3.1.6     Hardware           57
      • 3.1.6.1 Qubit Technologies       58
        • 3.1.6.1.1             Superconducting Qubits            59
          • 3.1.6.1.1.1         Technology description               59
          • 3.1.6.1.1.2         Materials            60
          • 3.1.6.1.1.3         Market players 62
          • 3.1.6.1.1.4         Swot analysis   64
        • 3.1.6.1.2             Trapped Ion Qubits        65
          • 3.1.6.1.2.1         Technology description               65
          • 3.1.6.1.2.2         Materials            67
            • 3.1.6.1.2.2.1     Integrating optical components              67
            • 3.1.6.1.2.2.2     Incorporating high-quality mirrors and optical cavities               68
            • 3.1.6.1.2.2.3     Engineering the vacuum packaging and encapsulation              68
            • 3.1.6.1.2.2.4     Removal of waste heat 68
          • 3.1.6.1.2.3         Market players 69
          • 3.1.6.1.2.4         Swot analysis   70
        • 3.1.6.1.3             Silicon Spin Qubits        71
          • 3.1.6.1.3.1         Technology description               71
          • 3.1.6.1.3.2         Quantum dots  72
          • 3.1.6.1.3.3         Market players 74
          • 3.1.6.1.3.4         SWOT analysis 76
        • 3.1.6.1.4             Topological Qubits        77
          • 3.1.6.1.4.1         Technology description               77
            • 3.1.6.1.4.1.1     Cryogenic cooling          78
          • 3.1.6.1.4.2         Market players 78
          • 3.1.6.1.4.3         SWOT analysis 79
        • 3.1.6.1.5             Photonic Qubits              80
          • 3.1.6.1.5.1         Technology description               80
          • 3.1.6.1.5.2         Market players 83
          • 3.1.6.1.5.3         Swot analysis   84
        • 3.1.6.1.6             Neutral atom (cold atom) qubits             85
          • 3.1.6.1.6.1         Technology description               85
          • 3.1.6.1.6.2         Market players 87
          • 3.1.6.1.6.3         Swot analysis   88
        • 3.1.6.1.7             Diamond-defect qubits               89
          • 3.1.6.1.7.1         Technology description               89
          • 3.1.6.1.7.2         SWOT analysis 92
          • 3.1.6.1.7.3         Market players 93
        • 3.1.6.1.8             Quantum annealers      93
        • 3.1.6.1.8.1         Technology description               93
        • 3.1.6.1.8.2         SWOT analysis 96
        • 3.1.6.1.8.3         Market players 96
      • 3.1.6.2 Architectural Approaches         97
    • 3.1.7     Software            98
      • 3.1.7.1 Technology description               98
      • 3.1.7.2 Cloud-based services- QCaaS (Quantum Computing as a Service).    98
      • 3.1.7.3 Market players 99
  • 3.2         Market challenges         103
  • 3.3         SWOT analysis 105
  • 3.4         Quantum computing value chain           106
  • 3.5         Markets and applications for quantum computing        107
    • 3.5.1     Pharmaceuticals           108
      • 3.5.1.1 Market overview             108
        • 3.5.1.1.1             Drug discovery 108
        • 3.5.1.1.2             Diagnostics       108
        • 3.5.1.1.3             Molecular simulations 109
        • 3.5.1.1.4             Genomics          109
        • 3.5.1.1.5             Proteins and RNA folding           110
      • 3.5.1.2 Market players 110
    • 3.5.2     Chemicals         111
      • 3.5.2.1 Market overview             111
      • 3.5.2.2 Market players 112
    • 3.5.3     Transportation 112
      • 3.5.3.1 Market overview             112
      • 3.5.3.2 Market players 115
    • 3.5.4     Financial services         116
      • 3.5.4.1 Market overview             116
      • 3.5.4.2 Market players 116

 

4             QUANTUM CHEMISTRY AND ARTIFICAL INTELLIGENCE (AI)    118

  • 4.1         Technology description               118
  • 4.2         Applications     118
  • 4.3         SWOT analysis 119
  • 4.4         Market challenges         120
  • 4.5         Market players 121

 

5             QUANTUM COMMUNICATIONS             122

  • 5.1         Technology description               122
    • 5.1.1     Types    122
    • 5.1.2     Quantum Random Numbers Generators (QRNG)          123
    • 5.1.3     Quantum Key Distribution (QKD)            126
    • 5.1.4     Post-quantum cryptography     126
    • 5.1.5     Quantum homomorphic cryptography 130
    • 5.1.6     Quantum Teleportation              130
    • 5.1.7     Quantum Networks      130
      • 5.1.7.1 Role of Trusted Nodes and Trusted Relays        131
      • 5.1.7.2 Entanglement Swapping and Optical Switches              132
      • 5.1.7.3 Multiplexing quantum signals with classical channels in the O-band  133
        • 5.1.7.3.1             Wavelength-division multiplexing (WDM) and time-division multiplexing (TDM)             133
      • 5.1.7.4 Twin-Field Quantum Key Distribution (TF-QKD)              134
      • 5.1.7.5 Enabling global-scale quantum communication           134
      • 5.1.7.6 Advanced optical fibers and interconnects      136
      • 5.1.7.7 Photodetectors in quantum networks 137
        • 5.1.7.7.1             Avalanche photodetectors (APDs)         137
        • 5.1.7.7.2             Single-photon avalanche diodes (SPADs)          137
        • 5.1.7.7.3             Silicon Photomultipliers (SiPMs)            138
      • 5.1.7.8 Infrastructure requirements     139
      • 5.1.7.9 SWOT analysis 141
    • 5.1.8     Quantum Memory         142
    • 5.1.9     Quantum Internet          142
  • 5.2         Applications     143
  • 5.3         SWOT analysis 143
  • 5.4         Market challenges         145
  • 5.5         Market players 145

 

6             QUANTUM SENSING   150

  • 6.1         Technology description               150
    • 6.1.1     Quantum Sensing Principles    152
    • 6.1.2     SWOT analysis 155
    • 6.1.3     Atomic Clocks 156
      • 6.1.3.1 High frequency oscillators        157
        • 6.1.3.1.1             Emerging oscillators     157
      • 6.1.3.2 Caesium atoms              157
      • 6.1.3.3 Self-calibration               157
      • 6.1.3.4 Optical atomic clocks 158
        • 6.1.3.4.1             Chip-scale optical clocks          159
      • 6.1.3.5 Companies       160
      • 6.1.3.6 SWOT analysis 161
    • 6.1.4     Quantum Magnetic Field Sensors          162
      • 6.1.4.1 Introduction      162
      • 6.1.4.2 Motivation for use          163
      • 6.1.4.3 Market opportunity        165
      • 6.1.4.4 Superconducting Quantum Interference Devices (Squids)       165
        • 6.1.4.4.1             Applications     165
        • 6.1.4.4.2             Key players        168
        • 6.1.4.4.3             SWOT analysis 169
      • 6.1.4.5 Optically Pumped Magnetometers (OPMs)       170
        • 6.1.4.5.1             Applications     170
        • 6.1.4.5.2             Key players        171
        • 6.1.4.5.3             SWOT analysis 172
      • 6.1.4.6 Tunneling Magneto Resistance Sensors (TMRs)              173
        • 6.1.4.6.1             Applications     173
        • 6.1.4.6.2             Key players        174
        • 6.1.4.6.3             SWOT analysis 175
      • 6.1.4.7 Nitrogen Vacancy Centers (N-V Centers)           176
        • 6.1.4.7.1             Applications     176
        • 6.1.4.7.2             Key players        177
        • 6.1.4.7.3             SWOT analysis 178
    • 6.1.5     Quantum Gravimeters 179
      • 6.1.5.1 Technology description               179
      • 6.1.5.2 Applications     180
      • 6.1.5.3 Key players        183
      • 6.1.5.4 SWOT analysis 184
    • 6.1.6     Quantum Gyroscopes 185
      • 6.1.6.1 Technology description               185
        • 6.1.6.1.1             Inertial Measurement Units (IMUs)        186
        • 6.1.6.1.2             Atomic quantum gyroscopes   187
      • 6.1.6.2 Applications     187
      • 6.1.6.3 Key players        189
      • 6.1.6.4 SWOT analysis 190
    • 6.1.7     Quantum Image Sensors            191
      • 6.1.7.1 Technology description               191
      • 6.1.7.2 Applications     192
      • 6.1.7.3 SWOT analysis 193
      • 6.1.7.4 Key players        194
    • 6.1.8     Quantum Radar              196
      • 6.1.8.1 Technology description               196
      • 6.1.8.2 Applications     198
    • 6.1.9     Quantum chemical sensors     198
    • 6.1.10   Quantum NEM and MEMs          199
      • 6.1.10.1               Technology description               199
  • 6.2         Market and technology challenges        200

 

7             QUANTUM BATTERIES 202

  • 7.1         Technology description               202
  • 7.2         Types    203
  • 7.3         Applications     204
  • 7.4         SWOT analysis 205
  • 7.5         Market challenges         206
  • 7.6         Market players 206

 

8             MARKET ANALYSIS       207

  • 8.1         Market map for quantum technologies               207
  • 8.2         Key industry players      209
    • 8.2.1     Start-ups            209
    • 8.2.2     Tech Giants      210
    • 8.2.3     National Initiatives        211
  • 8.3         Investment funding       211
    • 8.3.1     Venture Capital               213
    • 8.3.2     M&A      214
  • 8.3.3     Corporate Investment 214
  • 8.3.4     Government Funding   215
  • 8.4         Global market revenues 2018-2034      217
    • 8.4.1     Quantum computing    217
    • 8.4.2     Other segments              219
      • 8.4.2.1 Quantum sensors          219
      • 8.4.2.2 QKD systems   221

 

9             COMPANY PROFILES  223

  • 9.1         A* Quantum      223
  • 9.2         AbaQus               223
  • 9.3         Adaptive Finance Technologies              224
  • 9.4         Aegiq    224
  • 9.5         Agnostiq GmbH              225
  • 9.6         Algorithmiq Oy 226
  • 9.7         Alpine Quantum Technologies GmbH (AQT)     227
  • 9.8         Alice&Bob         228
  • 9.9         Aliro Quantum 229
  • 9.10       Anametric, Inc.               230
  • 9.11       Anyon Systems Inc.      231
  • 9.12       Aqarios GmbH 231
  • 9.13       Aquark Technologies    232
  • 9.14       Archer Materials             233
  • 9.15       Arclight Quantum          234
  • 9.16       Arqit Quantum Inc.        234
  • 9.17       ARQUE SystemsGmbH               235
  • 9.18       Artificial Brain 236
  • 9.19       Atlantic Quantum          236
  • 9.20       Atom Computing            237
  • 9.21       Atom Quantum Labs    238
  • 9.22       Atos Quantum 239
  • 9.23       Baidu, Inc.         239
  • 9.24       BEIT       240
  • 9.25       Bleximo              240
  • 9.26       BlueQubit          241
  • 9.27       Bohr Quantum Technology        242
  • 9.28       BosonQ Ps         242
  • 9.29       C12 Quantum Electronics         243
  • 9.30       Cambridge Quantum Computing (CQC)             244
  • 9.31       CAS Cold Atom               244
  • 9.32       CEW Systems Canada Inc.        245
  • 9.33       Chiral Nano AG               245
  • 9.34       ColibriTD            246
  • 9.35       Classiq Technologies   247
  • 9.36       Crypta Labs Ltd.             247
  • 9.37       CryptoNext Security     248
  • 9.38       D-Wave Systems            249
  • 9.39       Dirac    249
  • 9.40       Diraq    250
  • 9.41       Delft Circuits    251
  • 9.42       Delta g 251
  • 9.43       Duality Quantum Photonics     252
  • 9.44       EeroQ   252
  • 9.45       eleQtron             253
  • 9.46       Elyah    254
  • 9.47       Entropica Labs 254
  • 9.48       Equal1.labs       255
  • 9.49       EvolutionQ        256
  • 9.50       EYL        256
  • 9.51       First Quantum, Inc.       257
  • 9.52       Fujitsu 258
  • 9.53       Good Chemistry             258
  • 9.54       Google Quantum AI       259
  • 9.55       Haiqu   260
  • 9.56       Hefei Wanzheng Quantum Technology Co., Ltd.            261
  • 9.57       High Q Technologies Inc.            261
  • 9.58       Horizon Quantum Computing  262
  • 9.59       HQS Quantum Simulations      263
  • 9.60       HRL       263
  • 9.61       Huayi Quantum              264
  • 9.62       IBM        265
  • 9.63       Icarus Quantum             266
  • 9.64       Icosa Computing            267
  • 9.65       ID Quantique    268
  • 9.66       InfinityQ             268
  • 9.67       Infineon Technologies AG          269
  • 9.68       Infleqtion           270
  • 9.69       Intel      271
  • 9.70       IonQ      272
  • 9.71       IQM Quantum Computers         274
  • 9.72       JiJ           276
  • 9.73       JoS QUANTUM GmbH  276
  • 9.74       KEEQuant GmbH           277
  • 9.75       KETS Quantum Security             277
  • 9.76       Ki3 Photonics   278
  • 9.77       Kipu Quantum 279
  • 9.78       Kiutra GmbH    279
  • 9.79       Kuano Limited 280
  • 9.80       Kvantify              281
  • 9.81       levelQuantum 281
  • 9.82       LQUOM               282
  • 9.83       Lux Quanta        283
  • 9.84       Materials Nexus             283
  • 9.85       Maybell Quantum Industries    284
  • 9.86       memQ 285
  • 9.87       Menlo Systems GmbH 286
  • 9.88       Menten AI           287
  • 9.89       Microsoft           287
  • 9.90       Miraex 288
  • 9.91       Molecular Quantum Solutions 288
  • 9.92       Multiverse Computing 289
  • 9.93       Nanofiber Quantum Technologies        290
  • 9.94       Next Generation Quantum        290
  • 9.95       Nomad Atomics             291
  • 9.96       Nord Quantique              291
  • 9.97       Nordic Quantum Computing Group AS               292
  • 9.98       Nu Quantum    293
  • 9.99       NVision               294
  • 9.100    1Qbit    294
  • 9.101    ORCA Computing           295
  • 9.102    Orange Quantum Systems        296
  • 9.103    Origin Quantum Computing Technology            297
  • 9.104    Oxford Ionics    298
  • 9.105    Oxford Quantum Circuits (OQC)             299
  • 9.106    PacketLight Networks 300
  • 9.107    ParityQC            301
  • 9.108    Pasqal 302
  • 9.109    Peptone              303
  • 9.110    Phasecraft        303
  • 9.111    Photonic, Inc.   304
  • 9.112    Planqc GmbH  305
  • 9.113    Planckian           306
  • 9.114    Polaris Quantum Biotech (POLARISqb)              306
  • 9.115    PQSecure          307
  • 9.116    PQShield            308
  • 9.117    ProteinQure      308
  • 9.118    PsiQuantum     309
  • 9.119    Q.ANT  311
  • 9.120    Q* Bird 311
  • 9.121    Qaisec 312
  • 9.122    QBoson               312
  • 9.123    Qblox   313
  • 9.124    Q-CTRL               314
  • 9.125    QC Design         315
  • 9.126    QC Ware             315
  • 9.127    QC82    316
  • 9.128    Qilimanjaro Quantum Tech      317
  • 9.129    QMware              318
  • 9.130    Qnami 318
  • 9.131    QphoX  319
  • 9.132    Qrate Quantum Communications         320
  • 9.133    Quantum Resistant Cryptography (QRC)            320
  • 9.134    Qruise  321
  • 9.135    QSIMPLUS        322
  • 9.136    QSimulate         322
  • 9.137    QTI s.r.l.              323
  • 9.138    Quandela           323
  • 9.139    Quanscient Oy 325
  • 9.140    Quantagonia    325
  • 9.141    QuantaMap       326
  • 9.142    QuantiCor Security GmbH        327
  • 9.143    Qunasys             327
  • 9.144    QUANTier          328
  • 9.145    Quantinuum     328
  • 9.146    QuantrolOx       330
  • 9.147    Quantropi          330
  • 9.148    Quantum Benchmark  331
  • 9.149    Quantum Bridge Technologies 332
  • 9.150    Quantum Brilliance      332
  • 9.151    Quantum Computing Inc.          334
  • 9.152    QuantumCTek 334
  • 9.153    Quantum Diamond Technologies, Inc. 335
  • 9.154    QuantumDiamonds GmbH       336
  • 9.155    Quantum Dice 337
  • 9.156    Quantum Flytrap            337
  • 9.157    Quantum Generative Materials LLC     338
  • 9.158    Quantum Machines      338
  • 9.159    Quantum Motion Technology   339
  • 9.160    Quantum Optics Jena GmbH   340
  • 9.161    Quantum Source            341
  • 9.162    Quantum Systems        342
  • 9.163    Quantum Transistors   342
  • 9.164    Quantum Xchange         343
  • 9.165    QuantrolOx       344
  • 9.166    Qubitekk             344
  • 9.167    Qubit Pharmaceuticals              345
  • 9.168    Qubrid LLC        346
  • 9.169    QUDORA Technologies               346
  • 9.170    QuEL, Inc.          347
  • 9.171    QuEra Computing          347
  • 9.172    Quintessence Labs       348
  • 9.173    QuantGates      348
  • 9.174    QuantWare       349
  • 9.175    Quobly 349
  • 9.176    Quoherent         350
  • 9.177    QUDOOR           351
  • 9.178    QuiX Quantum 351
  • 9.179    QunaSys             352
  • 9.180    QuantLR             353
  • 9.181    QuantWare       353
  • 9.182    Qunova Computing       354
  • 9.183    Qunnect             355
  • 9.184    QuSecure          355
  • 9.185    Quside Technologies S.L.          356
  • 9.186    Qutronix             357
  • 9.187    Randaemon      357
  • 9.188    Resquant            358
  • 9.189    Rigetti Computing          358
  • 9.190    Riverlane            359
  • 9.191    Rotonium           360
  • 9.192    Sandbox AQ      360
  • 9.193    SaxonQ               361
  • 9.194    SBQuantum      362
  • 9.195    SCALINQ           362
  • 9.196    Seeqc  363
  • 9.197    Senko Advance Components Ltd           364
  • 9.198    SemiQon Technologies Oy        364
  • 9.199    Silicon Extreme              366
  • 9.200    Silicon Quantum Computing    366
  • 9.201    Solid State AI    367
  • 9.202    softwareQ         367
  • 9.203    Sparrow Quantum ApS                368
  • 9.204    SpeQtral             369
  • 9.205    SpinQ Technology          369
  • 9.206    Stafford Computing      370
  • 9.207    Strangeworks, Inc.         370
  • 9.208    sureCore Ltd.   371
  • 9.209    Synergy Quantum SA   372
  • 9.210    Terra Quantum 373
  • 9.211    ThinkQuantum 374
  • 9.212    t0.technology   374
  • 9.213    Tokyo Quantum Computing      375
  • 9.214    Toshiba Digital Solutions           375
  • 9.215    TuringQ               377
  • 9.216    Universal Quantum       378
  • 9.217    VeriQloud          379
  • 9.218    Vexlum Oy         380
  • 9.219    Wave Photonics              381
  • 9.220    Welinq 382
  • 9.221    Xanadu                383
  • 9.222    XeedQ GmbH  384
  • 9.223    Xofia     385
  • 9.224    Zapata Computing         385
  • 9.225    Zhongwei Daxin Technology     387

 

10           TERMS AND DEFINITIONS         388

 

11           REFERENCES   391

 

List of Tables

  • Table 1. First and second quantum revolutions.             22
  • Table 2. Global government initiatives in quantum technologies.          26
  • Table 3. Quantum technologies industry developments 2020-2023.   28
  • Table 4.  Applications for quantum computing 40
  • Table 5. Comparison of classical versus quantum computing.               42
  • Table 6. Key quantum mechanical phenomena utilized in quantum computing.           43
  • Table 7. Types of quantum computers.               43
  • Table 8. Comparative analysis of quantum computing with classical computing, quantum-inspired computing, and neuromorphic computing.                49
  • Table 9. Different computing paradigms beyond conventional CMOS.               50
  • Table 10. Applications of quantum algorithms.               52
  • Table 11. QML approaches.      53
  • Table 12. Coherence times for different qubit implementations.           59
  • Table 13. Superconducting qubit market players.          62
  • Table 14. Initialization, manipulation and readout for trapped ion quantum computers.           66
  • Table 15. Ion trap market players.          69
  • Table 16.  Initialization, manipulation, and readout methods for silicon-spin qubits.   74
  • Table 17. Silicon spin qubits market players.   74
  • Table 18. Initialization, manipulation and readout of topological qubits.           77
  • Table 19. Topological qubits market players.   78
  • Table 20. Pros and cons of photon qubits.         80
  • Table 21. Comparison of photon polarization and squeezed states.    81
  • Table 22. Initialization, manipulation and readout of photonic platform quantum computers.               82
  • Table 23. Photonic qubit market players.           83
  • Table 24. Initialization, manipulation and readout for neutral-atom quantum computers.       86
  • Table 25. Pros and cons of cold atoms quantum computers and simulators   87
  • Table 26. Neural atom qubit market players.    87
  • Table 27. Initialization, manipulation and readout of Diamond-Defect Spin-Based Computing.            89
  • Table 28.  Key materials for developing diamond-defect spin-based quantum computers.      90
  • Table 29. Diamond-defect qubits market players.         93
  • Table 30. Pros and cons of quantum annealers.             94
  • Table 31. Quantum annealers market players.                96
  • Table 32. Quantum computing software market players.          99
  • Table 33. Market challenges in quantum computing.   103
  • Table 34. Quantum computing value chain.     106
  • Table 35. Markets and applications for quantum computing.  107
  • Table 36. Market players in quantum technologies for pharmaceuticals.          110
  • Table 37. Market players in quantum computing for chemicals.            112
  • Table 38. Automotive applications of quantum computing,      112
  • Table 39. Market players in quantum computing for transportation.    115
  • Table 40. Market players in quantum computing for financial services              116
  • Table 41. Applications in quantum chemistry and artificial intelligence (AI).   118
  • Table 42. Market challenges in quantum chemistry and Artificial Intelligence (AI).       120
  • Table 43. Market players in quantum chemistry and AI.              121
  • Table 44. main types of quantum communications.    122
  • Table 45. QRNG applications. 125
  • Table 46. Market players in post-quantum cryptography.          127
  • Table 47. Applications in quantum communications. 143
  • Table 48. Market challenges in quantum communications.     145
  • Table 49. Market players in quantum communications.             145
  • Table 50.  Comparison between classical and quantum sensors.         150
  • Table 51. Applications in quantum sensors.     151
  • Table 52. Technology approaches for enabling quantum sensing          153
  • Table 53. Value proposition for quantum sensors.         154
  • Table 54. Key challenges and limitations of quartz crystal clocks vs. atomic clocks.   156
  • Table 55.  New modalities being researched to improve the fractional uncertainty of atomic clocks. 158
  • Table 56. Companies developing high-precision quantum time measurement              160
  • Table 57. Key players in atomic clocks.               162
  • Table 58. Comparative analysis of key performance parameters and metrics of magnetic field sensors.         163
  • Table 59. Types of magnetic field sensors.        164
  • Table 60. Market opportunity for different types of quantum magnetic field sensors.  165
  • Table 61. Applications of SQUIDs.         165
  • Table 62. Market opportunities for SQUIDs (Superconducting Quantum Interference Devices).           167
  • Table 63. Key players in SQUIDs.            168
  • Table 64. Applications of optically pumped magnetometers (OPMs). 170
  • Table 65. Key players in Optically Pumped Magnetometers (OPMs).   171
  • Table 66. Applications for TMR (Tunneling Magnetoresistance) sensors.           174
  • Table 67. Market players in TMR (Tunneling Magnetoresistance) sensors.        174
  • Table 68. Applications of N-V center magnetic field centers    176
  • Table 69. Key players in N-V center magnetic field sensors.     177
  • Table 70. Applications of quantum gravimeters             180
  • Table 71. Comparative table between quantum gravity sensing and some other technologies commonly used for underground mapping.                180
  • Table 72. Key players in quantum gravimeters.               183
  • Table 73. Comparison of quantum gyroscopes with MEMs gyroscopes and optical gyroscopes.           185
  • Table 74. Markets and applications for quantum gyroscopes. 188
  • Table 75. Key players in quantum gyroscopes. 189
  • Table 76. Types of quantum image sensors and their key features/.     191
  • Table 77. Applications of quantum image sensors.       192
  • Table 78. Key players in quantum image sensors.          194
  • Table 79. Comparison of quantum radar versus conventional radar and lidar technologies.   197
  • Table 80. Applications of quantum radar.          198
  • Table 81. Market and technology challenges in quantum sensing.        200
  • Table 82. Comparison between quantum batteries and other conventional battery types.      202
  • Table 83. Types of quantum batteries. 203
  • Table 84. Applications of quantum batteries.  204
  • Table 85. Market challenges in quantum batteries.      206
  • Table 86. Market players in quantum batteries.              206
  • Table 87. Quantum technologies investment funding. 212
  • Table 88. Top funded quantum technology companies.             213
  • Table 89. Global market for quantum computing-Hardware, Software & Services, 2023-2035 (billions USD). 217
  • Table 90. Markets for quantum sensors, by types, 2018-2035 (Millions USD). 219
  • Table 91. Markets for QKD systems, 2018-2035 (Millions USD).             221

 

List of Figures

  • Figure 1. Quantum computing development timeline. 23
  • Figure 2.Quantum investments 2012-2023 (millions USD).      25
  • Figure 3.  National quantum initiatives and funding.     26
  • Figure 4. An early design of an IBM 7-qubit chip based on superconducting technology.           40
  • Figure 5. Various 2D to 3D chips integration techniques into chiplets. 42
  • Figure 6. IBM Q System One quantum computer.          46
  • Figure 7. Unconventional computing approaches.        51
  • Figure 8. 53-qubit Sycamore processor.             54
  • Figure 9. Interior of IBM quantum computing system. The quantum chip is located in the small dark square at center bottom. 58
  • Figure 10. Superconducting quantum computer.          60
  • Figure 11. Superconducting quantum computer schematic.   61
  • Figure 12.  Components and materials used in a superconducting qubit.          62
  • Figure 13. SWOT analysis for superconducting quantum computers:. 64
  • Figure 14. Ion-trap quantum computer.              65
  • Figure 15. Various ways to trap ions      66
  • Figure 16.  Universal Quantum’s shuttling ion architecture in their Penning traps.        67
  • Figure 17. SWOT analysis for trapped-ion quantum computing.             71
  • Figure 18. CMOS silicon spin qubit.      71
  • Figure 19. Silicon quantum dot qubits.                73
  • Figure 20. SWOT analysis for silicon spin quantum computers.             76
  • Figure 21. SWOT analysis for topological qubits             79
  • Figure 22 . SWOT analysis for photonic quantum computers. 84
  • Figure 23. Neutral atoms (green dots) arranged in various configurations         85
  • Figure 24. SWOT analysis for neutral-atom quantum computers.         88
  • Figure 25. NV center components.        89
  • Figure 26. SWOT analysis for diamond-defect quantum computers.   92
  • Figure 27. D-Wave quantum annealer. 95
  • Figure 28. SWOT analysis for quantum annealers.        96
  • Figure 29. Quantum software development platforms.              98
  • Figure 30. SWOT analysis for quantum computing.       105
  • Figure 32. SWOT analysis for quantum chemistry and AI.          120
  • Figure 33. IDQ quantum number generators.   124
  • Figure 34. SWOT Analysis: Post Quantum Cryptography (PQC).             129
  • Figure 35. SWOT analysis for networks.              142
  • Figure 36. SWOT analysis for quantum communications.         145
  • Figure 37. SWOT analysis for quantum sensors market.            155
  • Figure 38. NIST's compact optical clock.           159
  • Figure 39. SWOT analysis for atomic clocks.    161
  • Figure 40.Principle of SQUID magnetometer.  167
  • Figure 41. SWOT analysis for SQUIDS. 169
  • Figure 42. SWOT analysis for OPMs      173
  • Figure 43. Tunneling magnetoresistance mechanism and TMR ratio formats. 173
  • Figure 44. SWOT analysis for TMR (Tunneling Magnetoresistance) sensors.     176
  • Figure 45. SWOT analysis for N-V Center Magnetic Field Sensors.        178
  • Figure 46. Quantum Gravimeter.           179
  • Figure 47. SWOT analysis for Quantum Gravimeters.  184
  • Figure 48. SWOT analysis for Quantum Gyroscopes.   190
  • Figure 49. SWOT analysis for Quantum image sensing.              194
  • Figure 50. Principle of quantum radar. 196
  • Figure 51. Illustration of a quantum radar prototype.   197
  • Figure 52. Schematic of the flow of energy (blue) from a source to a battery made up of multiple cells. (left)  203
  • Figure 53. SWOT analysis for quantum batteries.          205
  • Figure 54. Market map for quantum technologies industry.      208
  • Figure 55. Tech Giants quantum technologies activities.          210
  • Figure 56. Quantum Technology investment by sector, 2023.  211
  • Figure 57.  Quantum computing public and industry funding to mid-2023, millions USD.         216
  • Figure 58. Global market for quantum computing-Hardware, Software & Services, 2023-2035 (billions USD).                218
  • Figure 59. Markets for quantum sensors, by types, 2018-2035 (Millions USD).               220
  • Figure 60. Markets for QKD systems, 2018-2035 (Millions USD).            222
  • Figure 61. Archer-EPFL spin-resonance circuit.             233
  • Figure 62.  IBM Q System One quantum computer.      266
  • Figure 63. ColdQuanta Quantum Core (left), Physics Station (middle) and the atoms control chip (right).        270
  • Figure 64.  Intel Tunnel Falls 12-qubit chip.       272
  • Figure 65. IonQ's ion trap           273
  • Figure 66. 20-qubit quantum computer.             275
  • Figure 67. Maybell Big Fridge.   285
  • Figure 68. PsiQuantum’s modularized quantum computing system networks.              310
  • Figure 69. SemiQ first chip prototype. 365
  • Figure 70. Toshiba QKD Development Timeline.            376
  • Figure 71. Toshiba Quantum Key Distribution technology.        377

 

 

The Global Market for Quantum Technologies (Quantum Computing, Cryptography, Communications, Sensors, Batteries) 2024-2035
The Global Market for Quantum Technologies (Quantum Computing, Cryptography, Communications, Sensors, Batteries) 2024-2035
PDF download/by email.

The Global Market for Quantum Technologies (Quantum Computing, Cryptography, Communications, Sensors, Batteries) 2024-2035
The Global Market for Quantum Technologies (Quantum Computing, Cryptography, Communications, Sensors, Batteries) 2024-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.