The Global Market for Quantum Technology 2024-2035

0

Quantum Computing, Quantum Chemistry, Quantum Cryptography, Quantum Cybersecurity, Quantum Communications, Quantum Sensors and Quantum Batteries. 

  • Published: May 2024
  • Pages: 455
  • Tables: 94
  • Figures: 71
  • Companies profiled: 290

 

Quantum technologies leverage unique properties of quantum physics like superposition, entanglement, and interference to enable new paradigms for information processing, communications, and measurement. Major application areas and techniques currently being researched and developed include:

  • Quantum computing - gate-based universal quantum computers, adiabatic quantum annealing, quantum simulators
  • Quantum cryptography - quantum key distribution, quantum random number generation, post-quantum cryptography
  • Quantum communication - quantum teleportation, quantum repeaters, quantum networks
  • Quantum sensing - quantum LiDAR, atomic clocks, quantum radar, quantum imaging

 

The Global Market for Quantum Technology 2024-2035 explores the rapidly evolving landscape of quantum technologies and their transformative impact on various industries. This in-depth study provides a detailed analysis of the quantum technology market, covering key segments such as quantum computing, quantum communications, quantum sensing, and quantum materials. The report offers valuable insights into the current market landscape, investment trends, and global government initiatives driving the adoption of quantum technologies. It also examines the challenges and limitations hindering widespread commercialization and presents a future outlook for the industry.

One of the key highlights of this report is the extensive coverage of quantum computing technologies and architectures, including superconducting qubits, trapped ion qubits, silicon spin qubits, topological qubits, and more. The report also delves into the software and algorithmic aspects of quantum computing, discussing quantum machine learning, quantum simulation, and quantum optimization.

In addition to quantum computing, the report provides a comprehensive analysis of quantum communications technologies, such as quantum key distribution (QKD), post-quantum cryptography, and quantum networks. It also explores the emerging field of quantum sensing, covering applications like atomic clocks, quantum magnetometers, quantum gravimeters, and quantum radar.

The Global Market for Quantum Technology 2024-2035 includes detailed market forecasts and projections for quantum computing hardware, software, and services, as well as for quantum sensors and QKD systems. The report also features a comprehensive market map, highlighting the key players in the quantum technology ecosystem, including startups, tech giants, and national initiatives. With 290 company profiles, the report offers an unparalleled overview of the competitive landscape, providing valuable information on the products, technologies, and strategies of leading quantum technology players worldwide. Companies profiled include Aegiq, Alea Quantum, Algorithmiq, Arque Systems, Classiq Technologies, Crypta Labs, Diraq, IBM (Quantum Computing), Infineon, LQUOM, memQ, Nanofiber Quantum Technologies, Nomad Atomics, nu quantum, Oxford Ionics, PASQAL, Pixel Photonics, Planckian, Polaris Quantum Biotech (POLARISqb), PsiQuantum, Quantinuum, QuantrolOx, Quantum Bridge, Quantum Brilliance, Quantum Computing Inc, Quobly, Quantum Dice, Quantum Motion, QuiX Quantum, Quside Technologies, QUANTier,  Randaemon, River Lane, SEEQC, SemiWise, SemiQon, Silicon Extreme, Silicon Quantum Computing (SQC), Siquance, Sparrow Quantum and XeedQ.

 

 

 

1             RESEARCH METHODOLOGY   21

 

2             OVERVIEW OF QUANTUM TECHNOLOGY  22

  • 2.1         First and second quantum revolutions 23
  • 2.2         Current quantum technology market landscape            24
    • 2.2.1     Key developments         24
  • 2.3         Investment Landscape               25
  • 2.4         Global government initiatives 26
  • 2.5         Industry developments 2020-2024       28
  • 2.6         Challenges for Quantum Technologies Adoption           38

 

3             QUANTUM COMPUTING            39

  • 3.1         What is quantum computing? 39
    • 3.1.1     Operating principle       41
    • 3.1.2     Classical vs quantum computing           43
    • 3.1.3     Quantum computing technology            45
      • 3.1.3.1 Quantum emulators     48
      • 3.1.3.2 Quantum inspired computing  49
      • 3.1.3.3 Quantum annealing computers              49
      • 3.1.3.4 Quantum simulators    49
      • 3.1.3.5 Digital quantum computers      49
      • 3.1.3.6 Continuous variables quantum computers      50
      • 3.1.3.7 Measurement Based Quantum Computing (MBQC)     50
      • 3.1.3.8 Topological quantum computing           50
      • 3.1.3.9 Quantum Accelerator  50
    • 3.1.4     Competition from other technologies  51
    • 3.1.5     Quantum algorithms    54
      • 3.1.5.1 Quantum Software Stack          55
      • 3.1.5.2 Quantum Machine Learning     55
      • 3.1.5.3 Quantum Simulation   56
      • 3.1.5.4 Quantum Optimization               56
      • 3.1.5.5 Quantum Cryptography              57
        • 3.1.5.5.1             Quantum Key Distribution (QKD)            57
        • 3.1.5.5.2             Post-Quantum Cryptography   58
    • 3.1.6     Hardware           59
      • 3.1.6.1 Qubit Technologies       60
        • 3.1.6.1.1             Superconducting Qubits            61
          • 3.1.6.1.1.1         Technology description               61
          • 3.1.6.1.1.2         Materials            62
          • 3.1.6.1.1.3         Market players 64
          • 3.1.6.1.1.4         Swot analysis   66
      • 3.1.6.1.2             Trapped Ion Qubits        67
        • 3.1.6.1.2.1         Technology description               67
        • 3.1.6.1.2.2         Materials            69
          • 3.1.6.1.2.2.1     Integrating optical components              69
          • 3.1.6.1.2.2.2     Incorporating high-quality mirrors and optical cavities               70
          • 3.1.6.1.2.2.3     Engineering the vacuum packaging and encapsulation              70
          • 3.1.6.1.2.2.4     Removal of waste heat 70
        • 3.1.6.1.2.3         Market players 71
        • 3.1.6.1.2.4         Swot analysis   72
      • 3.1.6.1.3             Silicon Spin Qubits        73
        • 3.1.6.1.3.1         Technology description               73
        • 3.1.6.1.3.2         Quantum dots  74
        • 3.1.6.1.3.3         Market players 76
        • 3.1.6.1.3.4         SWOT analysis 78
      • 3.1.6.1.4             Topological Qubits        79
        • 3.1.6.1.4.1         Technology description               79
          • 3.1.6.1.4.1.1     Cryogenic cooling          80
        • 3.1.6.1.4.2         Market players 80
        • 3.1.6.1.4.3         SWOT analysis 81
      • 3.1.6.1.5             Photonic Qubits              82
        • 3.1.6.1.5.1         Technology description               82
        • 3.1.6.1.5.2         Market players 85
        • 3.1.6.1.5.3         Swot analysis   86
      • 3.1.6.1.6             Neutral atom (cold atom) qubits             87
        • 3.1.6.1.6.1         Technology description               87
        • 3.1.6.1.6.2         Market players 89
        • 3.1.6.1.6.3         Swot analysis   90
      • 3.1.6.1.7             Diamond-defect qubits               91
        • 3.1.6.1.7.1         Technology description               91
        • 3.1.6.1.7.2         SWOT analysis 94
        • 3.1.6.1.7.3         Market players 95
      • 3.1.6.1.8             Quantum annealers      95
        • 3.1.6.1.8.1         Technology description               95
        • 3.1.6.1.8.2         SWOT analysis 98
        • 3.1.6.1.8.3         Market players 98
      • 3.1.6.2 Architectural Approaches         99
  • 3.1.7     Software            100
    • 3.1.7.1 Technology description               100
    • 3.1.7.2 Cloud-based services- QCaaS (Quantum Computing as a Service).    100
    • 3.1.7.3 Market players 101
  • 3.2         Market challenges         105
  • 3.3         SWOT analysis 107
  • 3.4         Quantum computing value chain           108
  • 3.5         Markets and applications for quantum computing        109
    • 3.5.1     Pharmaceuticals           110
      • 3.5.1.1 Market overview             110
        • 3.5.1.1.1             Drug discovery 110
        • 3.5.1.1.2             Diagnostics       110
        • 3.5.1.1.3             Molecular simulations 111
        • 3.5.1.1.4             Genomics          111
        • 3.5.1.1.5             Proteins and RNA folding           112
      • 3.5.1.2 Market players 112
    • 3.5.2     Chemicals         113
      • 3.5.2.1 Market overview             113
      • 3.5.2.2 Market players 114
    • 3.5.3     Transportation 114
      • 3.5.3.1 Market overview             114
      • 3.5.3.2 Market players 117
    • 3.5.4     Financial services         118
      • 3.5.4.1 Market overview             118
      • 3.5.4.2 Market players 118

 

4             QUANTUM CHEMISTRY AND ARTIFICAL INTELLIGENCE (AI)    120

  • 4.1         Technology description               120
  • 4.2         Applications     120
  • 4.3         SWOT analysis 121
  • 4.4         Market challenges         122
  • 4.5         Market players 123

 

5             QUANTUM COMMUNICATIONS             124

  • 5.1         Technology description               124
    • 5.1.1     Types    124
    • 5.1.2     Quantum Random Numbers Generators (QRNG)          125
    • 5.1.3     Quantum Key Distribution (QKD)            128
    • 5.1.4     Post-quantum cryptography     128
    • 5.1.5     Quantum homomorphic cryptography 132
    • 5.1.6     Quantum Teleportation              132
    • 5.1.7     Quantum Networks      132
      • 5.1.7.1 Role of Trusted Nodes and Trusted Relays        133
      • 5.1.7.2 Entanglement Swapping and Optical Switches              134
      • 5.1.7.3 Multiplexing quantum signals with classical channels in the O-band  135
        • 5.1.7.3.1             Wavelength-division multiplexing (WDM) and time-division multiplexing (TDM)             135
      • 5.1.7.4 Twin-Field Quantum Key Distribution (TF-QKD)              136
      • 5.1.7.5 Enabling global-scale quantum communication           136
      • 5.1.7.6 Advanced optical fibers and interconnects      138
      • 5.1.7.7 Photodetectors in quantum networks 139
        • 5.1.7.7.1             Avalanche photodetectors (APDs)         139
        • 5.1.7.7.2             Single-photon avalanche diodes (SPADs)          139
        • 5.1.7.7.3             Silicon Photomultipliers (SiPMs)            140
      • 5.1.7.8 Infrastructure requirements     141
      • 5.1.7.9 SWOT analysis 143
    • 5.1.8     Quantum Memory         144
    • 5.1.9     Quantum Internet          144
  • 5.2         Applications     145
  • 5.3         SWOT analysis 145
  • 5.4         Market challenges         147
  • 5.5         Market players 147

 

6             QUANTUM SENSING   152

  • 6.1         Technology description               152
    • 6.1.1     Quantum Sensing Principles    154
    • 6.1.2     SWOT analysis 157
    • 6.1.3     Atomic Clocks 158
      • 6.1.3.1 High frequency oscillators        159
        • 6.1.3.1.1             Emerging oscillators     159
      • 6.1.3.2 Caesium atoms              159
      • 6.1.3.3 Self-calibration               159
      • 6.1.3.4 Optical atomic clocks 160
        • 6.1.3.4.1             Chip-scale optical clocks          161
      • 6.1.3.5 Companies       162
      • 6.1.3.6 SWOT analysis 163
    • 6.1.4     Quantum Magnetic Field Sensors          164
      • 6.1.4.1 Introduction      164
      • 6.1.4.2 Motivation for use          165
      • 6.1.4.3 Market opportunity        167
      • 6.1.4.4 Superconducting Quantum Interference Devices (Squids)       167
        • 6.1.4.4.1             Applications     167
        • 6.1.4.4.2             Key players        170
        • 6.1.4.4.3             SWOT analysis 171
      • 6.1.4.5 Optically Pumped Magnetometers (OPMs)       172
        • 6.1.4.5.1             Applications     172
        • 6.1.4.5.2             Key players        173
        • 6.1.4.5.3             SWOT analysis 174
      • 6.1.4.6 Tunneling Magneto Resistance Sensors (TMRs)              175
        • 6.1.4.6.1             Applications     175
        • 6.1.4.6.2             Key players        176
        • 6.1.4.6.3             SWOT analysis 177
      • 6.1.4.7 Nitrogen Vacancy Centers (N-V Centers)           178
        • 6.1.4.7.1             Applications     178
        • 6.1.4.7.2             Key players        179
        • 6.1.4.7.3             SWOT analysis 180
    • 6.1.5     Quantum Gravimeters 181
      • 6.1.5.1 Technology description               181
      • 6.1.5.2 Applications     182
      • 6.1.5.3 Key players        185
      • 6.1.5.4 SWOT analysis 186
    • 6.1.6     Quantum Gyroscopes 187
      • 6.1.6.1 Technology description               187
        • 6.1.6.1.1             Inertial Measurement Units (IMUs)        188
        • 6.1.6.1.2             Atomic quantum gyroscopes   189
      • 6.1.6.2 Applications     189
      • 6.1.6.3 Key players        191
      • 6.1.6.4 SWOT analysis 192
    • 6.1.7     Quantum Image Sensors            193
      • 6.1.7.1 Technology description               193
      • 6.1.7.2 Applications     194
      • 6.1.7.3 SWOT analysis 195
      • 6.1.7.4 Key players        196
    • 6.1.8     Quantum Radar              198
      • 6.1.8.1 Technology description               198
      • 6.1.8.2 Applications     200
    • 6.1.9     Quantum chemical sensors     200
    • 6.1.10   Quantum NEM and MEMs          201
      • 6.1.10.1               Technology description               201
  • 6.2         Market and technology challenges        202

 

7             QUANTUM BATTERIES 204

  • 7.1         Technology description               204
  • 7.2         Types    205
  • 7.3         Applications     206
  • 7.4         SWOT analysis 207
  • 7.5         Market challenges         208
  • 7.6         Market players 208

 

8             MATERIALS FOR QUANTUM TECHNOLOGY     210

  • 8.1         Superconductors           211
    • 8.1.1     Overview            211
    • 8.1.2     Types and Properties   212
    • 8.1.3     Opportunities  213
  • 8.2         Photonics, Silicon Photonics and Optical Components             214
    • 8.2.1     Overview            214
    • 8.2.2     Types and Properties   215
    • 8.2.3     Opportunities  217
  • 8.3         Nanomaterials 218
    • 8.3.1     Overview            218
    • 8.3.2     Types and Properties   219
    • 8.3.3     Opportunities  221

 

9             MARKET ANALYSIS       222

  • 9.1         Market map       222
  • 9.2         Key industry players      224
    • 9.2.1     Start-ups            224
    • 9.2.2     Tech Giants      225
    • 9.2.3     National Initiatives        226
  • 9.3         Investment funding       226
    • 9.3.1     Venture Capital               228
    • 9.3.2     M&A      229
    • 9.3.3     Corporate Investment 230
    • 9.3.4     Government Funding   230
  • 9.4         Global market revenues 2018-2035      232
    • 9.4.1     Quantum computing    232
    • 9.4.2     Other segments              234
      • 9.4.2.1 Quantum sensors          234
      • 9.4.2.2 QKD systems   236

 

10           COMPANY PROFILES  238 (290 company profiles)

 

11           TERMS AND DEFINITIONS         445

 

12           REFERENCES   448

 

List of Tables

  • Table 1. First and second quantum revolutions.             23
  • Table 2. Global government initiatives in quantum technologies.          27
  • Table 3. Quantum technologies industry developments 2020-2023.   28
  • Table 4.  Applications for quantum computing 42
  • Table 5. Comparison of classical versus quantum computing.               44
  • Table 6. Key quantum mechanical phenomena utilized in quantum computing.           45
  • Table 7. Types of quantum computers.               45
  • Table 8. Comparative analysis of quantum computing with classical computing, quantum-inspired computing, and neuromorphic computing.                51
  • Table 9. Different computing paradigms beyond conventional CMOS.               52
  • Table 10. Applications of quantum algorithms.               54
  • Table 11. QML approaches.      55
  • Table 12. Coherence times for different qubit implementations.           61
  • Table 13. Superconducting qubit market players.          64
  • Table 14. Initialization, manipulation and readout for trapped ion quantum computers.           68
  • Table 15. Ion trap market players.          71
  • Table 16.  Initialization, manipulation, and readout methods for silicon-spin qubits.   76
  • Table 17. Silicon spin qubits market players.   76
  • Table 18. Initialization, manipulation and readout of topological qubits.           79
  • Table 19. Topological qubits market players.   80
  • Table 20. Pros and cons of photon qubits.         82
  • Table 21. Comparison of photon polarization and squeezed states.    83
  • Table 22. Initialization, manipulation and readout of photonic platform quantum computers.               84
  • Table 23. Photonic qubit market players.           85
  • Table 24. Initialization, manipulation and readout for neutral-atom quantum computers.       88
  • Table 25. Pros and cons of cold atoms quantum computers and simulators   89
  • Table 26. Neural atom qubit market players.    89
  • Table 27. Initialization, manipulation and readout of Diamond-Defect Spin-Based Computing.            91
  • Table 28.  Key materials for developing diamond-defect spin-based quantum computers.      92
  • Table 29. Diamond-defect qubits market players.         95
  • Table 30. Pros and cons of quantum annealers.             96
  • Table 31. Quantum annealers market players.                98
  • Table 32. Quantum computing software market players.          101
  • Table 33. Market challenges in quantum computing.   105
  • Table 34. Quantum computing value chain.     108
  • Table 35. Markets and applications for quantum computing.  109
  • Table 36. Market players in quantum technologies for pharmaceuticals.          112
  • Table 37. Market players in quantum computing for chemicals.            114
  • Table 38. Automotive applications of quantum computing,      114
  • Table 39. Market players in quantum computing for transportation.    117
  • Table 40. Market players in quantum computing for financial services              118
  • Table 41. Applications in quantum chemistry and artificial intelligence (AI).   120
  • Table 42. Market challenges in quantum chemistry and Artificial Intelligence (AI).       122
  • Table 43. Market players in quantum chemistry and AI.              123
  • Table 44. main types of quantum communications.    124
  • Table 45. QRNG applications. 127
  • Table 46. Market players in post-quantum cryptography.          129
  • Table 47. Applications in quantum communications. 145
  • Table 48. Market challenges in quantum communications.     147
  • Table 49. Market players in quantum communications.             147
  • Table 50.  Comparison between classical and quantum sensors.         152
  • Table 51. Applications in quantum sensors.     153
  • Table 52. Technology approaches for enabling quantum sensing          155
  • Table 53. Value proposition for quantum sensors.         156
  • Table 54. Key challenges and limitations of quartz crystal clocks vs. atomic clocks.   158
  • Table 55.  New modalities being researched to improve the fractional uncertainty of atomic clocks. 160
  • Table 56. Companies developing high-precision quantum time measurement              162
  • Table 57. Key players in atomic clocks.               164
  • Table 58. Comparative analysis of key performance parameters and metrics of magnetic field sensors.         165
  • Table 59. Types of magnetic field sensors.        166
  • Table 60. Market opportunity for different types of quantum magnetic field sensors.  167
  • Table 61. Applications of SQUIDs.         167
  • Table 62. Market opportunities for SQUIDs (Superconducting Quantum Interference Devices).           169
  • Table 63. Key players in SQUIDs.            170
  • Table 64. Applications of optically pumped magnetometers (OPMs). 172
  • Table 65. Key players in Optically Pumped Magnetometers (OPMs).   173
  • Table 66. Applications for TMR (Tunneling Magnetoresistance) sensors.           176
  • Table 67. Market players in TMR (Tunneling Magnetoresistance) sensors.        176
  • Table 68. Applications of N-V center magnetic field centers    178
  • Table 69. Key players in N-V center magnetic field sensors.     179
  • Table 70. Applications of quantum gravimeters             182
  • Table 71. Comparative table between quantum gravity sensing and some other technologies commonly used for underground mapping.                182
  • Table 72. Key players in quantum gravimeters.               185
  • Table 73. Comparison of quantum gyroscopes with MEMs gyroscopes and optical gyroscopes.           187
  • Table 74. Markets and applications for quantum gyroscopes. 190
  • Table 75. Key players in quantum gyroscopes. 191
  • Table 76. Types of quantum image sensors and their key features.     193
  • Table 77. Applications of quantum image sensors.       194
  • Table 78. Key players in quantum image sensors.          196
  • Table 79. Comparison of quantum radar versus conventional radar and lidar technologies.   199
  • Table 80. Applications of quantum radar.          200
  • Table 81. Market and technology challenges in quantum sensing.        202
  • Table 82. Comparison between quantum batteries and other conventional battery types.      204
  • Table 83. Types of quantum batteries. 205
  • Table 84. Applications of quantum batteries.  206
  • Table 85. Market challenges in quantum batteries.      208
  • Table 86. Market players in quantum batteries.              208
  • Table 87. Superconductors in quantum technology.    211
  • Table 88. Photonics, silicon photonics and optics in quantum technology.      214
  • Table 89. Nanomaterials in quantum technology.         218
  • Table 90. Quantum technologies investment funding. 226
  • Table 91. Top funded quantum technology companies.             227
  • Table 92. Global market for quantum computing-Hardware, Software & Services, 2023-2035 (billions USD). 231
  • Table 93. Markets for quantum sensors, by types, 2018-2035 (Millions USD). 233
  • Table 94. Markets for QKD systems, 2018-2035 (Millions USD).             235

 

List of Figures

  • Figure 1. Quantum computing development timeline. 24
  • Figure 2.Quantum investments 2012-2023 (millions USD).      26
  • Figure 3.  National quantum initiatives and funding.     27
  • Figure 4. Quantum computing architectures.  41
  • Figure 5. An early design of an IBM 7-qubit chip based on superconducting technology.           42
  • Figure 6. Various 2D to 3D chips integration techniques into chiplets. 44
  • Figure 7. IBM Q System One quantum computer.          48
  • Figure 8. Unconventional computing approaches.        53
  • Figure 9. 53-qubit Sycamore processor.             56
  • Figure 10. Interior of IBM quantum computing system. The quantum chip is located in the small dark square at center bottom. 60
  • Figure 11. Superconducting quantum computer.          62
  • Figure 12. Superconducting quantum computer schematic.   63
  • Figure 13.  Components and materials used in a superconducting qubit.          64
  • Figure 14. SWOT analysis for superconducting quantum computers:. 66
  • Figure 15. Ion-trap quantum computer.              67
  • Figure 16. Various ways to trap ions      68
  • Figure 17.  Universal Quantum’s shuttling ion architecture in their Penning traps.        69
  • Figure 18. SWOT analysis for trapped-ion quantum computing.             73
  • Figure 19. CMOS silicon spin qubit.      73
  • Figure 20. Silicon quantum dot qubits.                75
  • Figure 21. SWOT analysis for silicon spin quantum computers.             78
  • Figure 22. SWOT analysis for topological qubits             81
  • Figure 23 . SWOT analysis for photonic quantum computers. 86
  • Figure 24. Neutral atoms (green dots) arranged in various configurations         87
  • Figure 25. SWOT analysis for neutral-atom quantum computers.         90
  • Figure 26. NV center components.        91
  • Figure 27. SWOT analysis for diamond-defect quantum computers.   94
  • Figure 28. D-Wave quantum annealer. 97
  • Figure 29. SWOT analysis for quantum annealers.        98
  • Figure 30. Quantum software development platforms.              100
  • Figure 31. SWOT analysis for quantum computing.       107
  • Figure 32. SWOT analysis for quantum chemistry and AI.          122
  • Figure 33. IDQ quantum number generators.   126
  • Figure 34. SWOT Analysis: Post Quantum Cryptography (PQC).             131
  • Figure 35. SWOT analysis for networks.              144
  • Figure 36. SWOT analysis for quantum communications.         147
  • Figure 37. SWOT analysis for quantum sensors market.            157
  • Figure 38. NIST's compact optical clock.           161
  • Figure 39. SWOT analysis for atomic clocks.    163
  • Figure 40.Principle of SQUID magnetometer.  169
  • Figure 41. SWOT analysis for SQUIDS. 171
  • Figure 42. SWOT analysis for OPMs      175
  • Figure 43. Tunneling magnetoresistance mechanism and TMR ratio formats. 175
  • Figure 44. SWOT analysis for TMR (Tunneling Magnetoresistance) sensors.     178
  • Figure 45. SWOT analysis for N-V Center Magnetic Field Sensors.        180
  • Figure 46. Quantum Gravimeter.           181
  • Figure 47. SWOT analysis for Quantum Gravimeters.  186
  • Figure 48. SWOT analysis for Quantum Gyroscopes.   192
  • Figure 49. SWOT analysis for Quantum image sensing.              196
  • Figure 50. Principle of quantum radar. 198
  • Figure 51. Illustration of a quantum radar prototype.   199
  • Figure 52. Schematic of the flow of energy (blue) from a source to a battery made up of multiple cells. (left)  205
  • Figure 53. SWOT analysis for quantum batteries.          207
  • Figure 54. Market map for quantum technologies industry.      222
  • Figure 55. Tech Giants quantum technologies activities.          224
  • Figure 56. Quantum Technology investment by sector, 2023.  226
  • Figure 57.  Quantum computing public and industry funding to mid-2023, millions USD.         230
  • Figure 58. Global market for quantum computing-Hardware, Software & Services, 2023-2035 (billions USD).                232
  • Figure 59. Markets for quantum sensors, by types, 2018-2035 (Millions USD).               234
  • Figure 60. Markets for QKD systems, 2018-2035 (Millions USD).            236
  • Figure 61. Archer-EPFL spin-resonance circuit.             251
  • Figure 62.  IBM Q System One quantum computer.      295
  • Figure 63. ColdQuanta Quantum Core (left), Physics Station (middle) and the atoms control chip (right).        300
  • Figure 64.  Intel Tunnel Falls 12-qubit chip.       301
  • Figure 65. IonQ's ion trap           302
  • Figure 66. 20-qubit quantum computer.             305
  • Figure 67. Maybell Big Fridge.   317
  • Figure 68. PsiQuantum’s modularized quantum computing system networks.              347
  • Figure 69. SemiQ first chip prototype. 411
  • Figure 70. Toshiba QKD Development Timeline.            428
  • Figure 71. Toshiba Quantum Key Distribution technology.        429

 

 

 

The Global Market for Quantum Technology 2024-2035
The Global Market for Quantum Technology 2024-2035
PDF download.

The Global Market for Quantum Technology 2024-2035
The Global Market for Quantum Technology 2024-2035
PDF and Print Edition (Including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.