The Global Market for Recyclable Packaging 2024-2035

0

 

Plastics consumption continues to steeply increase worldwide, while resultant waste is currently mostly landfilled, discarded to the environment, or incinerated.  Developments in mechanical and chemical recycling technology are changing the shape of the plastics industry and advanced materials and technologies are impacting glass, paper and metal recycling sectors. It’s becoming increasingly possible to recover more materials in a closed-loop, helping to retain maximum value.

The Global Market for Recyclable Packaging 2024-2035 examines recyclable packaging across paper, plastics, glass, and metals, including market size, drivers, applications, technologies, companies, sustainability, and future outlook. The markets is segmented by region and material type, quantitative forecasts are provided through 2035.

Landscape analysis covers major brands, packaging manufacturers, waste management firms, and recycling technology innovators driving circularity. Technical processes are explained across mechanical and chemical recycling, sorting, and reprocessing. Packaging innovations in bio-based materials, smart packaging, and reusable models are highlighted. The report also examines adjacent spaces like e-commerce fulfillment and policy landscapes shaping recyclable packaging. Report contents include:

  • Recyclable Packaging Industry Overview
    • Markets, processes, technologies
    • Drivers and trends shaping growth
  • Plastics Recycling Analysis
    • Mechanical and chemical recycling overview
    • Polymer demand forecasts by process
    • Pyrolysis, gasification, depolymerization techs
    • Bio-based and marine degradable plastics
    • Market challenges and innovations
  • Paper Packaging Recycling Analysis
    • Market size, processes, economics
    • Fiber sources, strength improvements
    • Compostable solutions, active packaging
    • Industry challenges and future outlook
  • Glass Packaging Recycling Analysis
    • Market size, suppliers, collection economics
    • Processing methods, end-use applications
    • Smart glass, hybrids, material advances
    • Participation challenges and opportunities
  • Metal Packaging Recycling Analysis
    • Market size, processes, economics
    • Aluminium, steel, and hybrid innovations
    • Active and smart metal packaging
    • Benefits driving growth and adoption
  • Digital Technologies Analysis
    • Blockchain, IoT, AI applications
    • Digital watermarking for advanced recycling
  • Markets and Applications Analysis
    • Food, beverages, CPG, retail, e-commerce
    • Industrial packaging, healthcare, automotive
  • Competitive Landscape
    • Profiles of over 340 companies. Companies profiled include Aduro Clean Technologies, Agilyx, Alterra, Amsty, APK AG, Aquafil, Arcus, Axens, BASF Chemcycling, BiologiQ, Carbios, DePoly,  Dow, Eastman Chemical, EREMA Group GmbH, Extracthive, ExxonMobil, Fych Technologies, Garbo, gr3n SA, Hyundai Chemical, Ioniqa, Itero, Licella, Mura Technology, Neste, Notpla, Plastic Energy, Plastogaz SA, Plastic Energy, Polystyvert, Pyrowave, Recyc'ELIT, RePEaT Co., Ltd., revalyu Resources GmbH, SABIC, Samsara ECO, Synova, TOMRA Recycling, and Waste Robotics.  
  • Market Size and Forecasts
    • Regional and material type segmentation
    • Revenue and volume projections through 2035
  • Sustainability Analysis
    • Circularity, carbon footprint, and life cycle assessment
    • Energy use, water conservation, and social factors

 

 

1             RESEARCH METHODOLOGY   29

 

2             INTRODUCTION             30

  • 2.1         Recycling Process         30
  • 2.2         Benefits              31
  • 2.3         Types of Recyclable Packaging               32
    • 2.3.1     Paper & Cardboard        32
    • 2.3.2     Glass    32
    • 2.3.3     Aluminium        33
    • 2.3.4     Steel     33
    • 2.3.5     Plastics               34
  • 2.4         Recycling Rates              35
  • 2.5         Barriers to Recycling    36
  • 2.6         Market landscape          37
    • 2.6.1     Raw Materials  37
    • 2.6.2     Packaging Converters  38
    • 2.6.3     Consumer Brands          38
    • 2.6.4     Packaging Equipment  39
    • 2.6.5     Waste Management     39
    • 2.6.6     Recyclers           40
  • 2.7         Waste plastics value chain       40
  • 2.8         Market drivers  41
    • 2.8.1     Circular Economy          41
    • 2.8.2     Waste Reduction            42
    • 2.8.3     Legislation        42
      • 2.8.3.1 EU          43
      • 2.8.3.2 United States   43
      • 2.8.3.3 Asia/Pacific      44
    • 2.8.4     Corporate Sustainability Commitments            45
    • 2.8.5     Consumer Sentiment  46
  • 2.9         Challenges        47
  • 2.10       Future market outlook 48
    • 2.10.1   Increased adoption of mono-material packaging          48
    • 2.10.2   Growth of bio-based and compostable packaging        48
    • 2.10.3   Mainstream Eco-Packaging      49
    • 2.10.4   Expansion of recycling infrastructure  49
    • 2.10.5   Adoption of advanced sorting and recycling technologies        49
    • 2.10.6   Shift towards a circular economy          50
    • 2.10.7   Digitized Supply Chains              50
    • 2.10.8   Dematerialized Delivery             51
    • 2.10.9   Integrated Policy Frameworks 51
    • 2.10.10 Carbon Dioxide (CO2) as a renewable feedstock           52

 

3             PLASTICS PACKAGING RECYCLING    54

  • 3.1         Global production of plastics   54
  • 3.2         The importance of plastic          55
  • 3.3         Issues with plastics use              55
  • 3.4         Plastic pollution             56
  • 3.5         Mechanical vs. Chemical Recycling     57
  • 3.6         Polymers used in packaging applications          58
    • 3.6.1     Polyethylene terephthalate (PET)           58
    • 3.6.2     Polyethylene    59
      • 3.6.2.1 Low density and linear low density polyethylene LDPE/ (LDPE)              59
      • 3.6.2.2 High density Polyethylene (HDPE)         59
    • 3.6.3     Polypropylene (PP)        60
    • 3.6.4     Polyamides (PA)             60
    • 3.6.5     Polyvinyl chloride (PVC)              61
    • 3.6.6     Cyclic olefin copolymers (COC)              61
    • 3.6.7     Polystyrene (PS)             62
    • 3.6.8     Thermoplastic elastomers        63
  • 3.7         Global polymer demand 2022-2040, segmented by recycling technology        64
    • 3.7.1     PE          64
    • 3.7.2     PP          66
    • 3.7.3     PET        68
    • 3.7.4     PS          70
    • 3.7.5     Nylon   72
    • 3.7.6     Others 74
  • 3.8         Global polymer demand 2022-2040, segmented by recycling technology, by region   76
    • 3.8.1     Europe 76
    • 3.8.2     North America 78
    • 3.8.3     South America 80
    • 3.8.4     Asia       81
    • 3.8.5     Oceania              83
    • 3.8.6     Africa   84
  • 3.9         Thermoplastics recycling processes    86
    • 3.9.1     Collection and Sorting 86
    • 3.9.2     Cleaning and Shredding              86
    • 3.9.3     Melting and Extrusion  86
    • 3.9.4     Challenges and Limitations      86
    • 3.9.5     Advanced Recycling Technologies        87
  • 3.10       Vulcanized elastomers recycling processes    87
  • 3.11       Mechanical recycling  89
    • 3.11.1   Processes          89
    • 3.11.2   Closed-loop mechanical recycling       90
    • 3.11.3   Open-loop mechanical recycling          91
    • 3.11.4   Polymer types, use, and recovery          92
    • 3.11.5   Common plastics mechanically recycled         93
      • 3.11.5.1               PET        93
      • 3.11.5.2               HDPE   94
      • 3.11.5.3               LDPE    95
      • 3.11.5.4               PP          95
      • 3.11.5.5               PVC       96
      • 3.11.5.6               PS          96
    • 3.11.6   Optical and sensor technologies           97
      • 3.11.6.1               Near-infrared (NIR) sensors      97
      • 3.11.6.2               Mid-infrared (MIR) sensors        97
      • 3.11.6.3               Hyperspectral imaging 97
      • 3.11.6.4               Optical sorting 98
      • 3.11.6.5               Metal detectors              98
      • 3.11.6.6               X-ray detectors               98
      • 3.11.6.7               Melt Indexers   98
      • 3.11.6.8               Colourimeters 99
    • 3.11.7   Life cycle assessment 99
      • 3.11.7.1               Life Cycle Assessment of Virgin Plastic Production      99
      • 3.11.7.2               Life Cycle Assessment of Mechanical Recycling           99
      • 3.11.7.3               Life Cycle Assessment of Chemical Recycling 100
    • 3.11.8   Market trends   101
    • 3.11.9   Global mechanical recycling capacity 102
  • 3.12       Advanced Chemical Recycling 103
    • 3.12.1   Capacities         103
    • 3.12.2   Chemically recycled plastic products 106
    • 3.12.3   Market map       107
    • 3.12.4   Value chain       109
    • 3.12.5   Life Cycle Assessment (LCA)   110
    • 3.12.6   Plastic yield of each chemical recycling technologies 111
    • 3.12.7   Prices  111
    • 3.12.8   Market challenges         112
    • 3.12.9   Technologies    112
      • 3.12.9.1               Applications     112
      • 3.12.9.2               Pyrolysis             113
        • 3.12.9.2.1           Non-catalytic  114
        • 3.12.9.2.2           Catalytic            116
          • 3.12.9.2.2.1       Polystyrene pyrolysis   118
          • 3.12.9.2.2.2       Pyrolysis for production of bio fuel        118
        • 3.12.9.2.3           Used tires pyrolysis       122
          • 3.12.9.2.3.1       Conversion to biofuel   123
        • 3.12.9.2.4           Co-pyrolysis of biomass and plastic wastes     125
      • 3.12.9.3               Gasification     125
        • 3.12.9.3.1           Technology overview    125
          • 3.12.9.3.1.1       Syngas conversion to methanol              126
          • 3.12.9.3.1.2       Biomass gasification and syngas fermentation              130
          • 3.12.9.3.1.3       Biomass gasification and syngas thermochemical conversion              130
        • 3.12.9.3.2           Companies and capacities (current and planned)         131
      • 3.12.9.4               Dissolution        131
        • 3.12.9.4.1           Technology overview    131
        • 3.12.9.4.2           Companies and capacities (current and planned)         132
      • 3.12.9.5               Depolymerisation          133
        • 3.12.9.5.1           Hydrolysis         135
          • 3.12.9.5.1.1       Technology overview    135
        • 3.12.9.5.2           Enzymolysis     136
          • 3.12.9.5.2.1       Technology overview    136
        • 3.12.9.5.3           Methanolysis   137
          • 3.12.9.5.3.1       Technology overview    137
        • 3.12.9.5.4           Glycolysis          137
          • 3.12.9.5.4.1       Technology overview    137
        • 3.12.9.5.5           Aminolysis        139
          • 3.12.9.5.5.1       Technology overview    139
          • 3.12.9.5.5.2       Companies and capacities (current and planned)         140
      • 3.12.9.6               Other advanced chemical recycling technologies        141
        • 3.12.9.6.1           Hydrothermal cracking               141
        • 3.12.9.6.2           Pyrolysis with in-line reforming               142
        • 3.12.9.6.3           Microwave-assisted pyrolysis 142
        • 3.12.9.6.4           Plasma pyrolysis            143
        • 3.12.9.6.5           Plasma gasification      144
        • 3.12.9.6.6           Supercritical fluids       144
  • 3.13       3D printing         145
    • 3.13.1   Benefits              145
    • 3.13.2   Challenges        146
    • 3.13.3   Applications     146
  • 3.14       Bio-plastics      148
    • 3.14.1   Bio-based or renewable plastics            148
      • 3.14.1.1               Drop-in bio-based plastics        148
      • 3.14.1.2               Novel bio-based plastics            149
    • 3.14.2   Biodegradable and compostable plastics         150
      • 3.14.2.1               Biodegradability             151
      • 3.14.2.2               Compostability               152
    • 3.14.3   Marine degradable plastics       152
    • 3.14.4   Polylactic acid (Bio-PLA)            153
    • 3.14.5   Polyethylene terephthalate (Bio-PET)  155
    • 3.14.6   Polytrimethylene terephthalate (Bio-PTT)          156
    • 3.14.7   Polyethylene furanoate (Bio-PEF)          157
    • 3.14.8   Polyamides (Bio-PA)     158
    • 3.14.9   Poly(butylene adipate-co-terephthalate) (Bio-PBAT)   160
    • 3.14.10 Polybutylene succinate (PBS) and copolymers               161
    • 3.14.11 Polyethylene (Bio-PE)  162
    • 3.14.12 Polypropylene (Bio-PP)               162
    • 3.14.13 Polyhydroxyalkanoates (PHA) 163
      • 3.14.13.1            Types    165
        • 3.14.13.1.1        PHB      167
        • 3.14.13.1.2        PHBV   168
      • 3.14.13.2            Synthesis and production processes   169
      • 3.14.13.3            Commercially available PHAs 172
  • 3.15       Smart & Active Packaging          173
    • 3.15.1   Sensors               174
    • 3.15.2   RFID tags            174
    • 3.15.3   Oxygen scavengers       175
    • 3.15.4   Antimicrobial surfaces 176
    • 3.15.5   Moisture Regulators     176
  • 3.16       Reuse Models  177
    • 3.16.1   Refillable Containers   177
    • 3.16.2   Reusable Transport Packaging 178
    • 3.16.3   Concentrates   178
  • 3.17       Circular Design               179
    • 3.17.1   Mono-material Packaging         179
    • 3.17.2   Colouring for Sorting    179
    • 3.17.3   Label Considerations   180
    • 3.17.4   Easy Opening for Consumer Access     180

 

4             PAPER PACKAGING RECYCLING           182

  • 4.1         Market overview             182
    • 4.1.1     Global market size        182
      • 4.1.1.1 Total     182
      • 4.1.1.2 By market          184
      • 4.1.1.3 By region            186
    • 4.1.2     Supply 188
    • 4.1.3     Demand drivers              188
    • 4.1.4     Prices  189
    • 4.1.5     Economics        189
  • 4.2         Paper Packaging Types                189
  • 4.3         Paper Packaging Recycling Process     190
  • 4.4         Benefits of Paper Recycling      191
  • 4.5         Issues Hampering Recycling    192
  • 4.6         Renewable Materials   193
    • 4.6.1     Bagasse              193
    • 4.6.2     Bamboo              194
    • 4.6.3     Flax       195
    • 4.6.4     Mycelium           196
      • 4.6.4.1 Companies       198
    • 4.6.5     Starch-based materials              199
    • 4.6.6     Seaweed and algae-based materials   199
      • 4.6.6.1 Polysaccharides used in bioplastic production:             200
      • 4.6.6.2 Microalgae        201
      • 4.6.6.3 Macroalgae       202
      • 4.6.6.4 Companies       203
    • 4.6.7     Nano-fibrillated cellulose (NFC)            204
    • 4.6.8     Bacterial Nanocellulose (BNC)               205
    • 4.6.9     Micro-fibrillated cellulose (MFC)            209
    • 4.6.10   Compostable Packaging            210
    • 4.6.11   PLA Lining          211
    • 4.6.12   Molded Fiber    212
    • 4.6.13   Coated Papers 212
  • 4.7         Active & Intelligent Packaging 213
    • 4.7.1     Benefits              213
    • 4.7.2     Challenges        214
    • 4.7.3     Oxygen Absorption        214
      • 4.7.3.1 Recyclability and Sustainability             214
    • 4.7.4     Moisture Regulation     215
      • 4.7.4.1 Recyclability and Sustainability             215
    • 4.7.5     Leak and Tamper Indicators     215
      • 4.7.5.1 Recyclability and Sustainability             216
    • 4.7.6     RFID Technology             216
      • 4.7.6.1 Recyclability and Sustainability             216
    • 4.7.7     Ethylene Absorbers       216
      • 4.7.7.1 Recyclability and Sustainability             217
    • 4.7.8     Antimicrobial Packaging            217
      • 4.7.8.1 Recyclability and Sustainability             217
    • 4.7.9     Time-Temperature Indicators  217
      • 4.7.9.1 Recyclability and Sustainability             218
    • 4.7.10   Freshness Indicators   218
      • 4.7.10.1               Recyclability and Sustainability             218
  • 4.8         Strength Improvements              219
    • 4.8.1     Nanocellulose 219
    • 4.8.2     Synthetic Binders          219
    • 4.8.3     3D Molded Fiber             220
    • 4.8.4     Mineral Additives           221
  • 4.9         Circular Design               222
    • 4.9.1     Mono-material packaging          222
    • 4.9.2     Water-based coatings 223
    • 4.9.3     Smart Dyes       224
    • 4.9.4     Digital Watermarking   225
  • 4.10       Other technologies       226
    • 4.10.1   Robotics             226
      • 4.10.1.1               Automated Sorting        226
      • 4.10.1.2               Palletizing and Baling   226
      • 4.10.1.3               Benefits              227
    • 4.10.2   Enzymatic Pretreatment            227
      • 4.10.2.1               Benefits              228
    • 4.10.3   Advanced Membranes 228
      • 4.10.3.1               Types and Mechanisms              228
      • 4.10.3.2               Benefits              229
    • 4.10.4   Black Liquor Valorization           229
      • 4.10.4.1               Recovery of Chemicals               229
      • 4.10.4.2               Bioplastics        230
      • 4.10.4.3               Benefits              230
    • 4.10.5   Pressurized Hot Water Extraction          231
      • 4.10.5.1               Principles and Mechanisms     231
      • 4.10.5.2               Benefits              231
  • 4.11       Market Challenges        232

 

5             GLASS PACKAGING RECYCLING           234

  • 5.1         Market overview             234
    • 5.1.1     Global market size        234
      • 5.1.1.1 Total     234
      • 5.1.1.2 By market          236
      • 5.1.1.3 By region            237
    • 5.1.2     Supply 239
    • 5.1.3     Demand drivers              239
    • 5.1.4     Prices  240
    • 5.1.5     Economics        240
  • 5.2         Glass Packaging Recycling Process     241
  • 5.3         Benefits of Glass Recycling      242
  • 5.4         Participation Challenges           243
  • 5.5         Use of Recycled Glass 244
  • 5.6         Lightweighting 245
  • 5.7         Active & Smart 245
  • 5.8         Reuse Models  246
  • 5.9         Cullet Processing           247
    • 5.9.1     Advanced optical sorting for cullet purification              248
    • 5.9.2     Decoating technologies              248
  • 5.10       Other materials and technologies         249
    • 5.10.1   Optical Sorters 249
      • 5.10.1.1               Advanced Optical Scanning and AI        249
      • 5.10.1.2               Benefits              249
    • 5.10.2   Glass Foams    250
      • 5.10.2.1               Foamed Glass from Recycled Bottles/Jars        250
      • 5.10.2.2               Applications of Glass Foam      250
    • 5.10.3   Bioglass              251
      • 5.10.3.1               Bioglass in Packaging  251
    • 5.10.4   Glass-Polymer Hybrids               253
      • 5.10.4.1               Glass-Polymer Hybrids in Packaging   253
    • 5.10.5   Digital Watermarking   254
      • 5.10.5.1               Digital Watermarking on Glass 254
  • 5.11       Market Challenges        255
  • 5.12       Future Opportunities    256

 

6             METALS PACKAGING RECYCLING        259

  • 6.1         Market overview             259
    • 6.1.1     Global market size        259
      • 6.1.1.1 By market          259
      • 6.1.1.2 By region            261
    • 6.1.2     Supply 263
    • 6.1.3     Demand drivers              263
    • 6.1.4     Prices  264
    • 6.1.5     Economics        265
  • 6.2         Metal Packaging Recycling Process     267
  • 6.3         Benefits of Glass Recycling      268
  • 6.4         Innovation         268
    • 6.4.1     Aluminium        269
    • 6.4.2     Steel     269
    • 6.4.3     Active & Smart Packaging          270
    • 6.4.4     Hybrid Packaging           270
    • 6.4.5     Mono-Material Design 271
    • 6.4.6     Design for Disassembly              271
    • 6.4.7     Recycling-Friendly Coatings    272
    • 6.4.8     Advanced Sorting Technologies              272

 

7             DIGITAL TECHNOLOGIES          274

  • 7.1         Blockchain for Circularity          274
  • 7.2         Internet of Things (IoT)  275
  • 7.3         Artificial Intelligence    276

 

8             MARKETS AND APPLICATIONS 278

  • 8.1         Food Packaging              278
    • 8.1.1     Market Drivers 278
    • 8.1.2     Applications and materials       279
    • 8.1.3     Market Challenges        280
  • 8.2         Beverage Packaging     281
    • 8.2.1     Market Drivers 281
    • 8.2.2     Applications and materials       282
    • 8.2.3     Market Challenges        282
  • 8.3         Personal Care & Household Products 283
    • 8.3.1     Market Drivers 284
    • 8.3.2     Applications and materials       285
    • 8.3.3     Market Challenges        286
  • 8.4         Retail & E-Commerce Packaging           287
    • 8.4.1     Market Drivers 287
    • 8.4.2     Applications and materials       288
    • 8.4.3     Market Challenges        289
  • 8.5         Industrial Packaging     290
    • 8.5.1     Market Drivers 290
    • 8.5.2     Applications and materials       291
    • 8.5.3     Market Challenges        292

 

9             GLOBAL MARKET 2018-2035   293

  • 9.1         End use applications for global recyclate 2023               293
  • 9.2         By material       294
  • 9.3         By region            296
    • 9.3.1     Asia Pacific       297
    • 9.3.2     North America 298
    • 9.3.3     Europe 298
    • 9.3.4     South America 298

 

10           COMPANY PROFILES  299 (341 company profiles)

 

11           REFERENCES   574

 

List of Tables

  • Table 1. Key benefits driving adoption of recyclable packaging solutions.         31
  • Table 2. Global Recycling Rates.            35
  • Table 3. Key factors limiting real-world recycling rates.              36
  • Table 4. Waste plastics value chain.     40
  • Table 5. Targets and progress of the top 10 plastic packaging producers.         46
  • Table 6. Market challenges in recyclable packaging.    47
  • Table 7. Key emerging application areas and opportunities for CO2 utilization.             53
  • Table 8. Issues related to the use of plastics.  55
  • Table 9. Mechanical vs. Chemical Recycling.  57
  • Table 10. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes).    64
  • Table 11. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes).    66
  • Table 12. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes).  68
  • Table 13. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes).    70
  • Table 14. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes).                72
  • Table 15. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes).*            74
  • Table 16. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes).     76
  • Table 17. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes).     78
  • Table 18. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes).     80
  • Table 19. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes).           81
  • Table 20. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes).  83
  • Table 21. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes).        84
  • Table 22.  Key recycling processes for effectively recovering and reusing vulcanized elastomers.       88
  • Table 23. Polymer types, use, and recovery.    92
  • Table 24. Life cycle assessment of virgin plastic production, mechanical recycling and chemical recycling. 100
  • Table 25. Market trends in mechanical recycling.         101
  • Table 26. Advanced plastics recycling capacities, by technology.        103
  • Table 27. Example chemically recycled plastic products.         106
  • Table 28. Life Cycle Assessments (LCA) of Advanced Chemical Recycling Processes.              110
  • Table 29. Plastic yield of each chemical recycling technologies.           111
  • Table 30. Chemically recycled plastics prices in USD. 111
  • Table 31. Challenges in the advanced chemical recycling market.       112
  • Table 32. Applications of chemically recycled materials.          112
  • Table 33. Summary of non-catalytic pyrolysis technologies.   115
  • Table 34. Summary of catalytic pyrolysis technologies.             116
  • Table 35. Summary of pyrolysis technique under different operating conditions.          120
  • Table 36. Biomass materials and their bio-oil yield.      121
  • Table 37. Biofuel production cost from the biomass pyrolysis process.              122
  • Table 38. Summary of gasification technologies.          125
  • Table 39. Advanced recycling (Gasification) companies.          131
  • Table 40. Summary of dissolution technologies.            131
  • Table 41. Advanced recycling (Dissolution) companies              132
  • Table 42. Depolymerisation processes for PET, PU, PC and PA, products and yields. 134
  • Table 43. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.               135
  • Table 44. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.               136
  • Table 45. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.               137
  • Table 46. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.               138
  • Table 47. Summary of aminolysis technologies.            139
  • Table 48. Advanced recycling (Depolymerisation) companies and capacities (current and planned). 140
  • Table 49. Overview of hydrothermal cracking for advanced chemical recycling.           141
  • Table 50. Overview of Pyrolysis with in-line reforming for advanced chemical recycling.          142
  • Table 51. Overview of microwave-assisted pyrolysis for advanced chemical recycling.            142
  • Table 52. Overview of plasma pyrolysis for advanced chemical recycling.       143
  • Table 53. Overview of plasma gasification for advanced chemical recycling. 144
  • Table 54. Type of biodegradation.          151
  • Table 55. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications. 153
  • Table 56. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications.           155
  • Table 57. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications.    156
  • Table 58. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.    157
  • Table 59. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications.    159
  • Table 60. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications.           160
  • Table 61. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications.         161
  • Table 62. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.    162
  • Table 63. Bio-PP market analysis- manufacture, advantages, disadvantages and applications.            162
  • Table 64.Types of PHAs and properties.              166
  • Table 65. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers.                168
  • Table 66. Polyhydroxyalkanoate (PHA) extraction methods.    170
  • Table 67. Commercially available PHAs.           172
  • Table 68. Global paper packaging recycling market, 2018-2035 (million tonnes).         182
  • Table 69. Global paper packaging recycling market, by region, 2018-2035 (million tonnes).    184
  • Table 70. Global paper packaging recycling market, by region, 2018-2035 (million tonnes).    186
  • Table 71. Major paper packaging formats.         189
  • Table 72. Paper Packaging Recycling Process.               190
  • Table 73. Benefits of Paper Recycling. 191
  • Table 74. Issues that hamper the effective recycling of packaging materials. 192
  • Table 75. Overview of mycelium-description, properties, drawbacks and applications.            196
  • Table 76. Companies developing mycelium-based packaging.              198
  • Table 77. Common starch sources that can be used as feedstocks for producing biochemicals.        199
  • Table 78. Companies developing algal-based bioplastics.        203
  • Table 79. Applications of cellulose nanofibers (CNF).  204
  • Table 80. Applications of bacterial nanocellulose (BNC).          208
  • Table 81. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications.    210
  • Table 82. Paper Recycling Challenges.               232
  • Table 83. Global glass packaging recycling market, 2018-2035 (million tonnes).           234
  • Table 84. Global glass packaging recycling market, by market, 2018-2035 (million tonnes).    236
  • Table 85. Global glass packaging recycling market, by region, 2018-2035 (million tonnes).     237
  • Table 86. Recycled glass demand drivers.         239
  • Table 87. Average prices of recycled glass cullet.          240
  • Table 88. Glass Packaging Recycling Process. 241
  • Table 89. Benefits of Glass Recycling. 242
  • Table 90. Applications of recycled glass.            244
  • Table 91. Glass Recycling Challenges. 255
  • Table 92. Global metal packaging recycling market, by market, 2018-2035 (million tonnes).  259
  • Table 93. Global metal packaging recycling market, by region, 2018-2035 (million tonnes).    261
  • Table 94. Demand drivers for metals packaging recycling.       263
  • Table 95. Metal Packaging Recycling Process. 267
  • Table 96. Benefits of Metal Packaging Recycling.          268
  • Table 97. Market Drivers for recyclable packaging in the food industry.              278
  • Table 98. Key applications and materials used in recyclable food packaging. 279
  • Table 99. Market challenges in recyclable packaging in the food industry.        280
  • Table 100. Market Drivers for recyclable packaging in the food industry.           281
  • Table 101. Key applications and materials used in recyclable beverage packaging.    282
  • Table 102. Market challenges in recyclable packaging in the beverage industry.           283
  • Table 103. Market Drivers for recyclable packaging in the personal care and household products industry.   284
  • Table 104. Key applications and materials used in recyclable personal care and household products packaging.                285
  • Table 105. Market challenges in recyclable packaging in the personal care and household products industry.                286
  • Table 106. Market Drivers for recyclable packaging in the Retail & E-Commerce industry.       287
  • Table 107. Key applications and materials used in recyclable Retail & E-Commerce packaging.          288
  • Table 108. Market challenges in recyclable packaging in the Retail & E-Commerce industry. 289
  • Table 109. Market Drivers for recyclable industrial packaging.               290
  • Table 110. Key applications and materials used in industrial packaging.           291
  • Table 111. Market challenges in recyclable industrial packaging.         292
  • Table 112. Global Recyclable Packaging Market 2018-2035, by material (billions USD).            294
  • Table 113. Global Recyclable Packaging Market 2018-2035, by region (billions USD). 296

 

List of Figures

  • Figure 1. Recycling process for recyclable packaging. 31
  • Figure 2. Global plastics production 1950-2021, millions of tonnes.    54
  • Figure 3. Global production, use, and fate of polymer resins, synthetic fibers, and additives. 56
  • Figure 4. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes).     65
  • Figure 5. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes).     67
  • Figure 6. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes).   69
  • Figure 7. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes).     71
  • Figure 8. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes).                73
  • Figure 9. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes).               75
  • Figure 10. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes).   77
  • Figure 11. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes).    79
  • Figure 12. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes).   81
  • Figure 13. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes).          82
  • Figure 14. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes). 84
  • Figure 15. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes).      85
  • Figure 16. Global mechanical recycling capacity 2018-2035 (million metric tonnes). 102
  • Figure 17. Market map for advanced plastics recycling.             109
  • Figure 18. Value chain for advanced plastics recycling market.             109
  • Figure 19. Schematic layout of a pyrolysis plant.            114
  • Figure 20. Waste plastic production pathways to (A) diesel and (B) gasoline   119
  • Figure 21. Schematic for Pyrolysis of Scrap Tires.         123
  • Figure 22. Used tires conversion process.         124
  • Figure 23. Total syngas market by product in MM Nm³/h of Syngas, 2021.         127
  • Figure 24. Overview of biogas utilization.           128
  • Figure 25. Biogas and biomethane pathways. 129
  • Figure 26. Products obtained through the different solvolysis pathways of PET, PU, and PA.   133
  • Figure 27.  Coca-Cola PlantBottle®.     149
  • Figure 28. Interrelationship between conventional, bio-based and biodegradable plastics.    150
  • Figure 29. PHA family. 166
  • Figure 30. Global paper packaging recycling market, 2018-2035 (million tonnes).        183
  • Figure 31. Global paper packaging recycling market, by region, 2018-2035 (million tonnes).  185
  • Figure 32. Global paper packaging recycling market, by region, 2018-2035 (million tonnes).  187
  • Figure 33. Paper recycling process.      191
  • Figure 34. Bagasse Recyclable Pack.   194
  • Figure 35. Celebration Packaging's sustainable bamboo fibre cups.    194
  • Figure 36, Wine bottle made from flax fibres.   195
  • Figure 37. Typical structure of mycelium-based foam.               196
  • Figure 38. Biodegradable Mushroom Packaging.           198
  • Figure 39. Packaging made from Seaweed.      200
  • Figure 40. Bacterial nanocellulose shapes        207
  • Figure 41. SEM image of microfibrillated cellulose.      209
  • Figure 42. Global glass packaging recycling market, 2018-2035 (million tonnes).         235
  • Figure 43. Global glass packaging recycling market, by market, 2018-2035 (million tonnes).  237
  • Figure 44. Global glass packaging recycling market, by region, 2018-2035 (million tonnes).    238
  • Figure 45. Global metal packaging recycling market, by market, 2018-2035 (million tonnes). 260
  • Figure 46. Global metal packaging recycling market, by region, 2018-2035 (million tonnes).   262
  • Figure 47. End use applications for global recyclate 2022.        293
  • Figure 48. Global Recyclable Packaging Market 2018-2035, by market (billions USD).                295
  • Figure 49. Global Recyclable Packaging Market 2018-2035, by region (billions USD). 297
  • Figure 50. Pluumo.        300
  • Figure 51. NewCycling process.             313
  • Figure 52. ChemCyclingTM prototypes.              322
  • Figure 53. ChemCycling circle by BASF.             322
  • Figure 54. Recycled carbon fibers obtained through the R3FIBER process.       324
  • Figure 55. Be Green Packaging molded fiber products.               325
  • Figure 56. BIOLO e-commerce mailer bag made from PHA.     330
  • Figure 57. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc.             331
  • Figure 58. Fiber-based screw cap.         340
  • Figure 59. B’Zeos packaging film.          347
  • Figure 60. Cassandra Oil  process.        354
  • Figure 61. CuanSave film.          370
  • Figure 62. CuRe Technology process.  371
  • Figure 63. ELLEX products.        374
  • Figure 64. CNF-reinforced PP compounds.       374
  • Figure 65. Kirekira! toilet wipes.              375
  • Figure 66. Rheocrysta spray.    380
  • Figure 67. DKS CNF products.  381
  • Figure 68. Photograph (a) and micrograph (b) of mineral/ MFC composite showing the high viscosity and fibrillar structure.           403
  • Figure 69. FlexSea packaging materials.            406
  • Figure 70. PHA production process.      410
  • Figure 71. CNF gel.        423
  • Figure 72. Block nanocellulose material.           423
  • Figure 73. CNF products developed by Hokuetsu.         424
  • Figure 74. Unilever Carte D’Or ice cream packaging.   427
  • Figure 75. MoReTec.     452
  • Figure 76. Molded Fiber Labeling applied to products. 457
  • Figure 77. Chemical decomposition process of polyurethane foam.   461
  • Figure 78. Compostable water pod.      478
  • Figure 79. "All PET" bottle cap produced by Origin Materials.  486
  • Figure 80. Schematic Process of Plastic Energy’s TAC Chemical Recycling.   496
  • Figure 81. XCNF.             518
  • Figure 82. Easy-tear film material from recycled material.       520
  • Figure 83. Polyester fabric made from recycled monomers.    524
  • Figure 84. Shellworks packaging containers.   534
  • Figure 85. Sulapac cosmetics containers.        544
  • Figure 86. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right). 546
  • Figure 87. Sway seaweed-based Poly and retail bags. 548
  • Figure 88. Teijin Frontier Co., Ltd. Depolymerisation process. 553
  • Figure 89. UPM biorefinery process.     562
  • Figure 90. The Velocys process.              567
  • Figure 91. The Proesa® Process.             568
  • Figure 92. Worn Again products.             572

 

 

The Global Market for Recyclable Packaging 2024-2034
The Global Market for Recyclable Packaging 2024-2034
PDF download.

The Global Market for Recyclable Packaging 2024-2034
The Global Market for Recyclable Packaging 2024-2034
PDF and hard copy (price includes tracked FEDEX delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.