The Global Market for Renewable and Sustainable Materials 2024-2034

0

  • Published: September 2023
  • Pages: 1,742
  • Tables: 429
  • Figures: 563
  • Series: Bio-economy 

 

The demand for renewable and sustainable alternatives to fossil-fuel based chemicals and materials is experiencing rapid growth. The use of renewable and sustainable materials in construction, automotive, energy, textiles and others sectors can create new markets for bio-based products, as well as significantly reduce emissions, manufacturing energy requirements, manufacturing costs and waste. Key market drivers include rising corporate and government commitments to sustainability, regulations favouring renewables, and shifting consumer preferences.

The 1,742 report provides a comprehensive analysis of the global market for bio-based, CO2-utilization, and chemically recycled materials. It profiles over 1,200 companies developing innovative technologies and products in these sectors. Contents include:

  • In-depth analysis of bio-based feedstocks including plant-based sources (starch, sugar crops, lignocellulose, oils), waste streams (food, agricultural, forestry, municipal), and microbial & mineral sources.
  • In-depth analysis of bio-based polymers, plastics, fuels, natural fibers, lignin, and sustainable coatings and paints. Market sizes, production capacities, volume trends and forecasts to 2034.
  • Review of latest technologies and market opportunities in carbon capture, utilization and storage (CCUS). Barriers, policies, projects, product markets including CO2-based fuels, minerals, etc.
  • Overview of advanced chemical recycling processes such as pyrolysis, gasification, depolymerization, etc. Plastics market drivers, industry developments, technology analysis, and company profiles.
  • Companies profiled include NatureWorks, Total Corbion, Danimer Scientific, Novamont, Mitsubishi Chemicals, Indorama, Braskem, Avantium, Borealis, Cathay, Dupont, BASF, Arkema, DuPont, BASF, AMSilk GmbH,  Loliware, Bolt Threads, Ecovative, Bioform Technologies, Algal Bio, Kraig Biocraft Laboratories, Biotic Circular Technologies Ltd., Full Cycle Bioplastics, Stora Enso Oyj, Spiber, Traceless Materials GmbH, CJ Biomaterials, Natrify, Plastus, Humble Bee Bio, B’ZEOS, Ecovative, Notpla, Smartfiber, Keel Labs, MycoWorks, Algiecel, Aspiring Materials, Cambridge Carbon Capture, Carbon Engineering Ltd., Captura, Carbyon BV, CarbonCure Technologies Inc., CarbonOrO, Carbon Collect, Climeworks, Dimensional Energy, Dioxycle, Ebb Carbon, enaDyne, Fortera Corporation, Global Thermostat, Heirloom Carbon Technologies, High Hopes Labs, LanzaTech, Liquid Wind AB, Lithos, Living Carbon, Mars Materials, Mercurius Biorefining, Mission Zero Technologies, OXCUU, Oxylum, Paebbl, Prometheus Fuels, RepAir, Sunfire GmbH, Sustaera, Svante, Travertine Technologies, Verdox,  Agilyx, APK AG, Aquafil, Carbios, Eastman, Extracthive, Fych Technologies, Garbo, gr3n SA, Ioniqa, Itero, Licella, Mura Technology, revalyu Resources GmbH, Plastic Energy, Polystyvert, Pyrowave, ReVital Polymers and SABIC.

 

The report underscores how bio-based, CO2-utilization, and chemical recycling technologies are essential for establishing a circular economy and sustainable climate future. It provides actionable intelligence for manufacturers, investors, and government agencies tracking these rapidly evolving markets.

The Global Market for Renewable and Sustainable Materials 2024-2034
The Global Market for Renewable and Sustainable Materials 2024-2034
PDF download.

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.

1              RESEARCH METHODOLOGY         85

 

2              BIO-BASED FEEDSTOCKS AND INTERMEDIATES MARKET  87

  • 2.1          BIOREFINERIES  87
  • 2.2          BIO-BASED FEEDSTOCK AND LAND USE   88
  • 2.3          PLANT-BASED    91
    • 2.3.1      STARCH 91
      • 2.3.1.1   Overview            91
      • 2.3.1.2   Sources 91
      • 2.3.1.3   Global production            92
      • 2.3.1.4   Lysine   92
        • 2.3.1.4.1               Source  92
        • 2.3.1.4.2               Applications       93
        • 2.3.1.4.3               Global production            93
      • 2.3.1.5   Glucose 94
        • 2.3.1.5.1               HMDA   95
          • 2.3.1.5.1.1           Overview            95
          • 2.3.1.5.1.2           Sources 96
          • 2.3.1.5.1.3           Applications       96
          • 2.3.1.5.1.4           Global production            96
        • 2.3.1.5.2               1,5-diaminopentane (DA5):         97
          • 2.3.1.5.2.1           Overview            97
          • 2.3.1.5.2.2           Sources 97
          • 2.3.1.5.2.3           Applications       98
          • 2.3.1.5.2.4           Global production            98
        • 2.3.1.5.3               Sorbitol 99
          • 2.3.1.5.3.1           Isosorbide           99
            • 2.3.1.5.3.1.1        Overview            99
            • 2.3.1.5.3.1.2        Sources 99
            • 2.3.1.5.3.1.3        Applications       100
            • 2.3.1.5.3.1.4        Global production            100
        • 2.3.1.5.4               Lactic acid            101
          • 2.3.1.5.4.1           Overview            101
          • 2.3.1.5.4.2           D-lactic acid        101
          • 2.3.1.5.4.3           L-lactic acid         102
          • 2.3.1.5.4.4           Lactide  102
        • 2.3.1.5.5               Itaconic acid       104
          • 2.3.1.5.5.1           Overview            104
          • 2.3.1.5.5.2           Sources 104
          • 2.3.1.5.5.3           Applications       104
          • 2.3.1.5.5.4           Global production            105
        • 2.3.1.5.6               3-HP      105
          • 2.3.1.5.6.1           Overview            105
          • 2.3.1.5.6.2           Sources 105
          • 2.3.1.5.6.3           Applications       106
          • 2.3.1.5.6.4           Global production            106
          • 2.3.1.5.6.5           Acrylic acid          107
            • 2.3.1.5.6.5.1        Overview            107
            • 2.3.1.5.6.5.2        Applications       108
            • 2.3.1.5.6.5.3        Global production            108
          • 2.3.1.5.6.6           1,3-Propanediol (1,3-PDO)           109
            • 2.3.1.5.6.6.1        Overview            109
            • 2.3.1.5.6.6.2        Applications       109
            • 2.3.1.5.6.6.3        Global production            109
        • 2.3.1.5.7               Succinic Acid      110
          • 2.3.1.5.7.1           Overview            110
          • 2.3.1.5.7.2           Sources 110
          • 2.3.1.5.7.3           Applications       111
          • 2.3.1.5.7.4           Global production            111
          • 2.3.1.5.7.5           1,4-Butanediol (1,4-BDO)              112
            • 2.3.1.5.7.5.1        Overview            112
            • 2.3.1.5.7.5.2        Applications       112
            • 2.3.1.5.7.5.3        Global production            113
          • 2.3.1.5.7.6           Tetrahydrofuran (THF)   114
            • 2.3.1.5.7.6.1        Overview            114
            • 2.3.1.5.7.6.2        Applications       114
            • 2.3.1.5.7.6.3        Global production            114
        • 2.3.1.5.8               Adipic acid           115
          • 2.3.1.5.8.1           Overview            115
          • 2.3.1.5.8.2           Caprolactame    116
            • 2.3.1.5.8.2.1        Overview            116
            • 2.3.1.5.8.2.2        Applications       116
            • 2.3.1.5.8.2.3        Global production            117
        • 2.3.1.5.9               Isobutanol          118
          • 2.3.1.5.9.1           Overview            118
          • 2.3.1.5.9.2           Sources 118
          • 2.3.1.5.9.3           Applications       118
          • 2.3.1.5.9.4           Global production            119
          • 2.3.1.5.9.5           1,4-Butanediol  119
            • 2.3.1.5.9.5.1        Overview            119
            • 2.3.1.5.9.5.2        Applications       120
            • 2.3.1.5.9.5.3        Global production            120
          • 2.3.1.5.9.6           p-Xylene              121
            • 2.3.1.5.9.6.1        Overview            121
            • 2.3.1.5.9.6.2        Sources 121
            • 2.3.1.5.9.6.3        Applications       121
            • 2.3.1.5.9.6.4        Global production            122
            • 2.3.1.5.9.6.5        Terephthalic acid              122
            • 2.3.1.5.9.6.6        Overview            122
        • 2.3.1.5.10             1,3 Proppanediol             124
          • 2.3.1.5.10.1.1     Overview            124
          • 2.3.1.5.10.2         Sources 124
          • 2.3.1.5.10.3         Applications       124
          • 2.3.1.5.10.4         Global production            124
        • 2.3.1.5.11             Monoethylene glycol (MEG)       125
          • 2.3.1.5.11.1         Overview            125
          • 2.3.1.5.11.2         Sources 125
          • 2.3.1.5.11.3         Applications       126
          • 2.3.1.5.11.4         Global production            126
        • 2.3.1.5.12             Ethanol 127
          • 2.3.1.5.12.1         Overview            127
          • 2.3.1.5.12.2         Sources 127
          • 2.3.1.5.12.3         Applications       127
          • 2.3.1.5.12.4         Global production            128
          • 2.3.1.5.12.5         Ethylene              128
            • 2.3.1.5.12.5.1     Overview            128
            • 2.3.1.5.12.5.2     Applications       129
            • 2.3.1.5.12.5.3     Global production            129
            • 2.3.1.5.12.5.4     Propylene           130
            • 2.3.1.5.12.5.5     Vinyl chloride     131
          • 2.3.1.5.12.6         Methly methacrylate      133
    • 2.3.2      SUGAR CROPS   134
      • 2.3.2.1   Saccharose         134
        • 2.3.2.1.1               Aniline  134
          • 2.3.2.1.1.1           Overview            134
          • 2.3.2.1.1.2           Applications       135
          • 2.3.2.1.1.3           Global production            135
      • 2.3.2.1.2               Fructose              136
        • 2.3.2.1.2.1           Overview            136
        • 2.3.2.1.2.2           Applications       136
        • 2.3.2.1.2.3           Global production            136
        • 2.3.2.1.2.4           5-Hydroxymethylfurfural (5-HMF)            137
          • 2.3.2.1.2.4.1        Overview            137
          • 2.3.2.1.2.4.2        Applications       137
          • 2.3.2.1.2.4.3        Global production            138
        • 2.3.2.1.2.5           5-Chloromethylfurfural (5-CMF) 138
          • 2.3.2.1.2.5.1        Overview            138
          • 2.3.2.1.2.5.2        Applications       138
          • 2.3.2.1.2.5.3        Global production            139
        • 2.3.2.1.2.6           Levulinic Acid     139
          • 2.3.2.1.2.6.1        Overview            139
          • 2.3.2.1.2.6.2        Applications       140
          • 2.3.2.1.2.6.3        Global production            140
        • 2.3.2.1.2.7           FDME    141
          • 2.3.2.1.2.7.1        Overview            141
          • 2.3.2.1.2.7.2        Applications       141
          • 2.3.2.1.2.7.3        Global production            141
        • 2.3.2.1.2.8           2,5-FDCA             142
          • 2.3.2.1.2.8.1        Overview            142
          • 2.3.2.1.2.8.2        Applications       142
          • 2.3.2.1.2.8.3        Global production            143
    • 2.3.3      LIGNOCELLULOSIC BIOMASS       144
      • 2.3.3.1   Levoglucosenone             144
        • 2.3.3.1.1               Overview            144
        • 2.3.3.1.2               Applications       144
        • 2.3.3.1.3               Global production            144
      • 2.3.3.2   Hemicellulose    145
        • 2.3.3.2.1               Overview            145
        • 2.3.3.2.2               Biochemicals from hemicellulose              146
        • 2.3.3.2.3               Global production            146
        • 2.3.3.2.4               Furfural 147
          • 2.3.3.2.4.1           Overview            148
          • 2.3.3.2.4.2           Applications       148
          • 2.3.3.2.4.3           Global production            148
          • 2.3.3.2.4.4           Furfuyl alcohol   149
            • 2.3.3.2.4.4.1        Overview            149
            • 2.3.3.2.4.4.2        Applications       150
            • 2.3.3.2.4.4.3        Global production            150
      • 2.3.3.3   Lignin    151
        • 2.3.3.3.1               Overview            151
        • 2.3.3.3.2               Sources 151
        • 2.3.3.3.3               Applications       152
          • 2.3.3.3.3.1           Aromatic compounds     152
            • 2.3.3.3.3.1.1        Benzene, toluene and xylene      153
            • 2.3.3.3.3.1.2        Phenol and phenolic resins          153
          • 2.3.3.3.3.1.3        Vanillin 154
          • 2.3.3.3.3.2           Polymers             154
      • 2.3.3.3.4               Global production            156
    • 2.3.4      PLANT OILS         157
      • 2.3.4.1   Overview            157
      • 2.3.4.2   Glycerol               157
        • 2.3.4.2.1               Overview            157
        • 2.3.4.2.2               Applications       157
        • 2.3.4.2.3               Global production            158
        • 2.3.4.2.4               MPG      158
          • 2.3.4.2.4.1           Overview            158
          • 2.3.4.2.4.2           Applications       159
          • 2.3.4.2.4.3           Global production            160
        • 2.3.4.2.5               ECH        160
        • 2.3.4.2.5.1           Overview            160
        • 2.3.4.2.5.2           Applications       160
        • 2.3.4.2.5.3           Global production            161
      • 2.3.4.3   Fatty acids           162
        • 2.3.4.3.1               Overview            162
        • 2.3.4.3.2               Applications       162
        • 2.3.4.3.3               Global production            162
      • 2.3.4.4   Castor oil             163
        • 2.3.4.4.1               Overview            163
        • 2.3.4.4.2               Sebacic acid        163
          • 2.3.4.4.2.1           Overview            163
          • 2.3.4.4.2.2           Applications       164
          • 2.3.4.4.2.3           Global production            164
        • 2.3.4.4.3               11-Aminoundecanoic acid (11-AA)            165
          • 2.3.4.4.3.1           Overview            165
          • 2.3.4.4.3.2           Applications       165
          • 2.3.4.4.3.3           Global production            166
      • 2.3.4.5   Dodecanedioic acid (DDDA)         166
        • 2.3.4.5.1               Overview 166
        • 2.3.4.5.2               Applications       167
        • 2.3.4.5.3               Global production            167
      • 2.3.4.6   Pentamethylene diisocyanate    168
        • 2.3.4.6.1               Overview            168
        • 2.3.4.6.2               Applications       168
        • 2.3.4.6.3               Global production            168
    • 2.3.5      NON-EDIBIBLE MILK        169
      • 2.3.5.1   Casein   170
        • 2.3.5.1.1               Overview            170
        • 2.3.5.1.2               Applications       170
        • 2.3.5.1.3               Global production            170
  • 2.4          WASTE  171
    • 2.4.1      Food waste         171
      • 2.4.1.1   Overview            171
      • 2.4.1.2   Products and applications             171
        • 2.4.1.2.1               Global production            172
    • 2.4.2      Agricultural waste           172
      • 2.4.2.1   Overview            172
      • 2.4.2.2   Products and applications             173
      • 2.4.2.3   Global production            173
    • 2.4.3      Forestry waste  174
      • 2.4.3.1   Overview            174
      • 2.4.3.2   Products and applications             174
      • 2.4.3.3   Global production            175
    • 2.4.4      Aquaculture/fishing waste           175
      • 2.4.4.1   Overview            175
      • 2.4.4.2   Products and applications             176
      • 2.4.4.3   Global production            176
    • 2.4.5      Municipal solid waste    177
      • 2.4.5.1   Overview            177
      • 2.4.5.2   Products and applications             177
      • 2.4.5.3   Global production            178
    • 2.4.6      Industrial waste 178
      • 2.4.6.1   Overview            178
    • 2.4.7      Waste oils            179
      • 2.4.7.1   Overview            179
      • 2.4.7.2   Products and applications             179
      • 2.4.7.3   Global production            179
  • 2.5          MICROBIAL & MINERAL SOURCES             180
    • 2.5.1      Microalgae          180
      • 2.5.1.1   Overview            180
      • 2.5.1.2   Products and applications             180
      • 2.5.1.3   Global production            180
    • 2.5.2      Macroalgae        181
      • 2.5.2.1   Overview            181
      • 2.5.2.2   Products and applications             181
      • 2.5.2.3   Global production            182
    • 2.5.3      Mineral sources 182
      • 2.5.3.1   Overview            182
      • 2.5.3.2   Products and applications             183
  • 2.6          GASEOUS            184
    • 2.6.1      Biogas   184
      • 2.6.1.1   Overview            184
      • 2.6.1.2   Products and applications             185
      • 2.6.1.3   Global production            185
    • 2.6.2      Syngas  186
      • 2.6.2.1   Overview            186
      • 2.6.2.2   Products and applications             187
      • 2.6.2.3   Global production            188
    • 2.6.3      Off gases - fermentation CO2, CO              188
      • 2.6.3.1   Overview            188
      • 2.6.3.2   Products and applications             189
  • 2.7          COMPANY PROFILES       189 (105 company profiles)

 

3              BIO-BASED PLASTICS AND POLYMERS MARKET    257

  • 3.1          BIO-BASED OR RENEWABLE PLASTICS      257
    • 3.1.1      Drop-in bio-based plastics            257
    • 3.1.2      Novel bio-based plastics                258
  • 3.2          BIODEGRADABLE AND COMPOSTABLE PLASTICS 259
    • 3.2.1      Biodegradability               259
    • 3.2.2      Compostability  260
  • 3.3          TYPES    260
  • 3.4          KEY MARKET PLAYERS    262
  • 3.5          SYNTHETIC BIO-BASED POLYMERS            263
    • 3.5.1      Polylactic acid (Bio-PLA) 263
      • 3.5.1.1   Market analysis 263
      • 3.5.1.2   Production          265
      • 3.5.1.3   Producers and production capacities, current and planned            265
        • 3.5.1.3.1               Lactic acid producers and production capacities  265
        • 3.5.1.3.2               PLA producers and production capacities               265
        • 3.5.1.3.3               Polylactic acid (Bio-PLA) production 2019-2034 (1,000 tons)         266
    • 3.5.2      Polyethylene terephthalate (Bio-PET)     267
      • 3.5.2.1   Market analysis 267
      • 3.5.2.2   Producers and production capacities       268
      • 3.5.2.3   Polyethylene terephthalate (Bio-PET) production 2019-2034 (1,000 tons)               269
    • 3.5.3      Polytrimethylene terephthalate (Bio-PTT)             269
      • 3.5.3.1   Market analysis 269
      • 3.5.3.2   Producers and production capacities       270
      • 3.5.3.3   Polytrimethylene terephthalate (PTT) production 2019-2034 (1,000 tons)              270
    • 3.5.4      Polyethylene furanoate (Bio-PEF)             271
      • 3.5.4.1   Market analysis 271
      • 3.5.4.2   Comparative properties to PET   272
      • 3.5.4.3   Producers and production capacities       273
        • 3.5.4.3.1               FDCA and PEF producers and production capacities           273
        • 3.5.4.3.2               Polyethylene furanoate (Bio-PEF) production 2019-2034 (1,000 tons).      274
    • 3.5.5      Polyamides (Bio-PA)       274
      • 3.5.5.1   Market analysis 275
      • 3.5.5.2   Producers and production capacities       276
      • 3.5.5.3   Polyamides (Bio-PA) production 2019-2034 (1,000 tons) 276
    • 3.5.6      Poly(butylene adipate-co-terephthalate) (Bio-PBAT)        277
      • 3.5.6.1   Market analysis 277
      • 3.5.6.2   Producers and production capacities       277
      • 3.5.6.3   Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2034 (1,000 tons)  278
    • 3.5.7      Polybutylene succinate (PBS) and copolymers     279
      • 3.5.7.1   Market analysis 279
      • 3.5.7.2   Producers and production capacities       279
      • 3.5.7.3   Polybutylene succinate (PBS) production 2019-2034 (1,000 tons)               280
    • 3.5.8      Polyethylene (Bio-PE)    281
      • 3.5.8.1   Market analysis 281
      • 3.5.8.2   Producers and production capacities       281
      • 3.5.8.3   Polyethylene (Bio-PE) production 2019-2034 (1,000 tons).             282
    • 3.5.9      Polypropylene (Bio-PP) 282
      • 3.5.9.1   Market analysis 282
      • 3.5.9.2   Producers and production capacities       283
      • 3.5.9.3   Polypropylene (Bio-PP) production 2019-2034 (1,000 tons)           283
  • 3.6          NATURAL BIO-BASED POLYMERS               284
    • 3.6.1      Polyhydroxyalkanoates (PHA)     284
      • 3.6.1.1   Technology description 284
      • 3.6.1.2   Types    285
        • 3.6.1.2.1               PHB        287
        • 3.6.1.2.2               PHBV     288
      • 3.6.1.3   Synthesis and production processes        289
      • 3.6.1.4   Market analysis 291
      • 3.6.1.5   Commercially available PHAs      292
      • 3.6.1.6   Markets for PHAs             293
        • 3.6.1.6.1               Packaging            294
        • 3.6.1.6.2               Cosmetics           296
          • 3.6.1.6.2.1           PHA microspheres           296
        • 3.6.1.6.3               Medical 296
          • 3.6.1.6.3.1           Tissue engineering          296
          • 3.6.1.6.3.2           Drug delivery     296
        • 3.6.1.6.4               Agriculture          296
          • 3.6.1.6.4.1           Mulch film           296
          • 3.6.1.6.4.2           Grow bags           297
      • 3.6.1.7   Producers and production capacities       297
      • 3.6.1.8   PHA production capacities 2019-2034 (1,000 tons)            299
    • 3.6.2      Cellulose              300
      • 3.6.2.1   Microfibrillated cellulose (MFC) 300
        • 3.6.2.1.1               Market analysis 300
        • 3.6.2.1.2               Producers and production capacities       301
      • 3.6.2.2   Nanocellulose   301
        • 3.6.2.2.1               Cellulose nanocrystals    301
          • 3.6.2.2.1.1           Synthesis             302
          • 3.6.2.2.1.2           Properties           303
          • 3.6.2.2.1.3           Production          304
          • 3.6.2.2.1.4           Applications       305
          • 3.6.2.2.1.5           Market analysis 306
          • 3.6.2.2.1.6           Producers and production capacities       307
        • 3.6.2.2.2               Cellulose nanofibers       307
          • 3.6.2.2.2.1           Applications       308
          • 3.6.2.2.2.2           Market analysis 309
          • 3.6.2.2.2.3           Producers and production capacities       310
        • 3.6.2.2.3               Bacterial Nanocellulose (BNC)    311
          • 3.6.2.2.3.1           Production          311
          • 3.6.2.2.3.2           Applications       313
    • 3.6.3      Protein-based bioplastics             314
      • 3.6.3.1   Types, applications and producers            315
    • 3.6.4      Algal and fungal 315
    • 3.6.4.1   Algal      316
      • 3.6.4.1.1               Advantages        316
      • 3.6.4.1.2               Production          317
      • 3.6.4.1.3               Producers           318
    • 3.6.4.2   Mycelium            318
      • 3.6.4.2.1               Properties           318
      • 3.6.4.2.2               Applications       319
      • 3.6.4.2.3               Commercialization           320
    • 3.6.5      Chitosan              320
      • 3.6.5.1   Technology description 321
  • 3.7          PRODUCTION OF BIOBASED AND BIODEGRADABLE PLASTICS, BY REGION 321
    • 3.7.1      North America   322
    • 3.7.2      Europe 323
    • 3.7.3      Asia-Pacific         323
      • 3.7.3.1   China     324
      • 3.7.3.2   Japan    324
      • 3.7.3.3   Thailand               324
      • 3.7.3.4   Indonesia            324
    • 3.7.4      Latin America    325
  • 3.8          MARKET SEGMENTATION OF BIOPLASTICS & BIOPOLYMERS         326
    • 3.8.1      Packaging            327
      • 3.8.1.1   Processes for bioplastics in packaging      327
      • 3.8.1.2   Applications       328
      • 3.8.1.3   Flexible packaging            328
        • 3.8.1.3.1               Production volumes 2019-2034   330
    • 3.8.1.4   Rigid packaging 330
      • 3.8.1.4.1               Production volumes 2019-2034   332
    • 3.8.2      Consumer products        332
      • 3.8.2.1   Applications       332
      • 3.8.2.2   Production volumes 2019-2034   333
    • 3.8.3      Automotive        333
      • 3.8.3.1   Applications       333
      • 3.8.3.2   Production volumes 2019-2034   334
    • 3.8.4      Building & construction 334
      • 3.8.4.1   Applications       334
      • 3.8.4.2   Production volumes 2019-2034   335
    • 3.8.5      Textiles 335
      • 3.8.5.1   Apparel 335
      • 3.8.5.2   Footwear            336
      • 3.8.5.3   Medical textiles 338
      • 3.8.5.4   Production volumes 2019-2034   338
    • 3.8.6      Electronics          339
      • 3.8.6.1   Applications       339
      • 3.8.6.2   Production volumes 2019-2034   339
    • 3.8.7      Agriculture and horticulture        339
      • 3.8.7.1   Production volumes 2019-2034   340
  • 3.9          NATURAL FIBERS              341
    • 3.9.1      Manufacturing method, matrix materials and applications of natural fibers            344
    • 3.9.2      Advantages of natural fibers       345
    • 3.9.3      Commercially available next-gen natural fiber  products 346
    • 3.9.4      Market drivers for next-gen natural fibers             349
    • 3.9.5      Challenges          350
    • 3.9.6      Plants (cellulose, lignocellulose) 351
      • 3.9.6.1   Seed fibers         351
        • 3.9.6.1.1               Cotton  351
          • 3.9.6.1.1.1           Production volumes 2018-2034   352
        • 3.9.6.1.2               Kapok   352
          • 3.9.6.1.2.1           Production volumes 2018-2034   353
        • 3.9.6.1.3               Luffa      353
      • 3.9.6.2   Bast fibers           354
        • 3.9.6.2.1               Jute       355
        • 3.9.6.2.2               Production volumes 2018-2034   356
          • 3.9.6.2.2.1           Hemp    356
          • 3.9.6.2.2.2           Production volumes 2018-2034   357
        • 3.9.6.2.3               Flax        358
          • 3.9.6.2.3.1           Production volumes 2018-2034   359
        • 3.9.6.2.4               Ramie   359
          • 3.9.6.2.4.1           Production volumes 2018-2034   360
        • 3.9.6.2.5               Kenaf    361
          • 3.9.6.2.5.1           Production volumes 2018-2034   361
      • 3.9.6.3   Leaf fibers           362
        • 3.9.6.3.1               Sisal       362
          • 3.9.6.3.1.1           Production volumes 2018-2034   363
        • 3.9.6.3.2               Abaca    363
          • 3.9.6.3.2.1           Production volumes 2018-2034   364
      • 3.9.6.4   Fruit fibers          365
        • 3.9.6.4.1               Coir        365
          • 3.9.6.4.1.1           Production volumes 2018-2034   365
        • 3.9.6.4.2               Banana 366
          • 3.9.6.4.2.1           Production volumes 2018-2034   367
        • 3.9.6.4.3               Pineapple            367
      • 3.9.6.5   Stalk fibers from agricultural residues     369
        • 3.9.6.5.1               Rice fiber             369
        • 3.9.6.5.2               Corn      370
      • 3.9.6.6   Cane, grasses and reed  370
        • 3.9.6.6.1               Switch grass       370
        • 3.9.6.6.2               Sugarcane (agricultural residues)              371
        • 3.9.6.6.3               Bamboo               372
          • 3.9.6.6.3.1           Production volumes 2018-2034   372
        • 3.9.6.6.4               Fresh grass (green biorefinery)  373
      • 3.9.6.7   Modified natural polymers          373
        • 3.9.6.7.1               Mycelium            373
        • 3.9.6.7.2               Chitosan              375
        • 3.9.6.7.3               Alginate               376
    • 3.9.7      Animal (fibrous protein) 377
      • 3.9.7.1   Wool     378
        • 3.9.7.1.1               Alternative wool materials           378
        • 3.9.7.1.2               Producers           378
      • 3.9.7.2   Silk fiber              379
        • 3.9.7.2.1               Alternative silk materials               380
          • 3.9.7.2.1.1           Producers           380
      • 3.9.7.3   Leather 380
        • 3.9.7.3.1               Alternative leather materials       381
          • 3.9.7.3.1.1           Producers           381
      • 3.9.7.4   Fur         382
        • 3.9.7.4.1               Producers           382
      • 3.9.7.5   Down    382
        • 3.9.7.5.1               Alternative down materials          383
          • 3.9.7.5.1.1           Producers           383
    • 3.9.8      Markets for natural fibers            383
      • 3.9.8.1   Composites        383
      • 3.9.8.2   Applications       383
      • 3.9.8.3   Natural fiber injection moulding compounds       385
        • 3.9.8.3.1               Properties           385
        • 3.9.8.3.2               Applications       385
      • 3.9.8.4   Non-woven natural fiber mat composites              385
        • 3.9.8.4.1               Automotive        385
        • 3.9.8.4.2               Applications       386
      • 3.9.8.5   Aligned natural fiber-reinforced composites        386
      • 3.9.8.6   Natural fiber biobased polymer compounds         387
      • 3.9.8.7   Natural fiber biobased polymer non-woven mats              387
        • 3.9.8.7.1               Flax        387
        • 3.9.8.7.2               Kenaf    388
      • 3.9.8.8   Natural fiber thermoset bioresin composites       388
      • 3.9.8.9   Aerospace          388
        • 3.9.8.9.1               Market overview             388
      • 3.9.8.10                Automotive        389
        • 3.9.8.10.1             Market overview             389
        • 3.9.8.10.2             Applications of natural fibers      392
      • 3.9.8.11                Building/construction     393
        • 3.9.8.11.1             Market overview             393
        • 3.9.8.11.2             Applications of natural fibers      394
      • 3.9.8.12                Sports and leisure            394
        • 3.9.8.12.1             Market overview             394
      • 3.9.8.13                Textiles 395
        • 3.9.8.13.1             Market overview             395
        • 3.9.8.13.2             Consumer apparel           396
        • 3.9.8.13.3             Geotextiles        396
      • 3.9.8.14                Packaging            397
        • 3.9.8.14.1             Market overview             397
    • 3.9.9      Global production of natural fibers           398
      • 3.9.9.1   Overall global fibers market        399
      • 3.9.9.2   Plant-based fiber production      401
      • 3.9.9.3   Animal-based natural fiber production   402
  • 3.10        LIGNIN 402
    • 3.10.1    Introduction       403
      • 3.10.1.1                What is lignin?   403
        • 3.10.1.1.1             Lignin structure 403
      • 3.10.1.2                Types of lignin    404
        • 3.10.1.2.1             Sulfur containing lignin  406
        • 3.10.1.2.2             Sulfur-free lignin from biorefinery process            407
      • 3.10.1.3                Properties           407
      • 3.10.1.4                The lignocellulose biorefinery     409
      • 3.10.1.5                Markets and applications              410
      • 3.10.1.6                Challenges for using lignin            411
    • 3.10.2    Lignin production processes        412
      • 3.10.2.1                Lignosulphonates            413
      • 3.10.2.2                Kraft Lignin          413
        • 3.10.2.2.1             LignoBoost process         414
        • 3.10.2.2.2             LignoForce method         414
        • 3.10.2.2.3             Sequential Liquid Lignin Recovery and Purification             415
        • 3.10.2.2.4             A-Recovery+      416
      • 3.10.2.3                Soda lignin          417
      • 3.10.2.4                Biorefinery lignin              417
        • 3.10.2.4.1             Commercial and pre-commercial biorefinery lignin production facilities and  processes    419
      • 3.10.2.5                Organosolv lignins            420
      • 3.10.2.6                Hydrolytic lignin                421
    • 3.10.3    Markets for lignin             422
      • 3.10.3.1                Market drivers and trends for lignin         423
      • 3.10.3.2                Production capacities     423
        • 3.10.3.2.1             Technical lignin availability (dry ton/y)    423
        • 3.10.3.2.2             Biomass conversion (Biorefinery)             424
      • 3.10.3.3                Estimated consumption of lignin                424
      • 3.10.3.4                Prices    426
      • 3.10.3.5                Heat and power energy 426
      • 3.10.3.6                Pyrolysis and syngas       426
      • 3.10.3.7                Aromatic compounds     426
        • 3.10.3.7.1             Benzene, toluene and xylene      426
        • 3.10.3.7.2             Phenol and phenolic resins          427
        • 3.10.3.7.3             Vanillin 428
      • 3.10.3.8                Plastics and polymers     428
      • 3.10.3.9                Hydrogels            429
      • 3.10.3.10              Carbon materials              429
        • 3.10.3.10.1          Carbon black      429
        • 3.10.3.10.2          Activated carbons            430
        • 3.10.3.10.3          Carbon fiber       430
      • 3.10.3.11              Concrete             431
      • 3.10.3.12              Rubber 432
      • 3.10.3.13              Biofuels 432
      • 3.10.3.14              Bitumen and Asphalt      432
      • 3.10.3.15              Oil and gas          433
      • 3.10.3.16              Energy storage  434
        • 3.10.3.16.1          Supercapacitors 434
        • 3.10.3.16.2          Anodes for lithium-ion batteries 434
        • 3.10.3.16.3          Gel electrolytes for lithium-ion batteries                435
        • 3.10.3.16.4          Binders for lithium-ion batteries 435
        • 3.10.3.16.5          Cathodes for lithium-ion batteries            435
        • 3.10.3.16.6          Sodium-ion batteries      435
      • 3.10.3.17              Binders, emulsifiers and dispersants        436
      • 3.10.3.18              Chelating agents              438
      • 3.10.3.19              Ceramics              438
      • 3.10.3.20              Automotive interiors      438
      • 3.10.3.21              Fire retardants  439
      • 3.10.3.22              Antioxidants      439
      • 3.10.3.23              Lubricants           439
      • 3.10.3.24              Dust control       439
  • 3.11        BIOPLASTICS AND BIOPOLYMERS COMPANY PROFILES    441 (503 company profiles)

 

4              BIO-BASED FUELS MARKET           805

  • 4.1          Comparison to fossil fuels            805
  • 4.2          Role in the circular economy       805
  • 4.3          Market drivers  806
  • 4.4          Market challenges           807
  • 4.5          Liquid biofuels market   807
  • 4.6          SWOT analysis: Biofuels market 810
  • 4.7          Comparison of biofuel costs 2023, by type            811
  • 4.8          Types    811
    • 4.8.1      Solid Biofuels     811
    • 4.8.2      Liquid Biofuels  812
    • 4.8.3      Gaseous Biofuels             813
    • 4.8.4      Conventional Biofuels    814
    • 4.8.5      Advanced Biofuels           814
  • 4.9          Feedstocks         815
    • 4.9.1      First-generation (1-G)    816
    • 4.9.2      Second-generation (2-G)              817
      • 4.9.2.1   Lignocellulosic wastes and residues         818
      • 4.9.2.2   Biorefinery lignin              819
    • 4.9.3      Third-generation (3-G)  823
      • 4.9.3.1   Algal biofuels     823
        • 4.9.3.1.1               Properties           824
        • 4.9.3.1.2               Advantages        824
    • 4.9.4      Fourth-generation (4-G) 825
    • 4.9.5      Advantages and disadvantages, by generation    825
    • 4.9.6      Energy crops      827
      • 4.9.6.1   Feedstocks         827
      • 4.9.6.2   SWOT analysis   827
    • 4.9.7      Agricultural residues      828
      • 4.9.7.1   Feedstocks         828
      • 4.9.7.2   SWOT analysis   829
    • 4.9.8      Manure, sewage sludge and organic waste           830
      • 4.9.8.1   Processing pathways      830
      • 4.9.8.2   SWOT analysis   830
    • 4.9.9      Forestry and wood waste             831
      • 4.9.9.1   Feedstocks         831
      • 4.9.9.2   SWOT analysis   832
    • 4.9.10    Feedstock costs 833
  • 4.10        HYDROCARBON BIOFUELS            834
    • 4.10.1    Biodiesel              834
      • 4.10.1.1                Biodiesel by generation 835
      • 4.10.1.2                SWOT analysis   836
      • 4.10.1.3                Production of biodiesel and other biofuels            837
        • 4.10.1.3.1             Pyrolysis of biomass        838
        • 4.10.1.3.2             Vegetable oil transesterification 840
        • 4.10.1.3.3             Vegetable oil hydrogenation (HVO)         842
          • 4.10.1.3.3.1         Production process         842
        • 4.10.1.3.4             Biodiesel from tall oil      843
        • 4.10.1.3.5             Fischer-Tropsch BioDiesel             843
        • 4.10.1.3.6             Hydrothermal liquefaction of biomass    845
        • 4.10.1.3.7             CO2 capture and Fischer-Tropsch (FT)     845
        • 4.10.1.3.8             Dymethyl ether (DME)   846
      • 4.10.1.4                Prices    846
      • 4.10.1.5                Global production and consumption        847
    • 4.10.2    Renewable diesel            849
      • 4.10.2.1                Production          850
      • 4.10.2.2                SWOT analysis   850
      • 4.10.2.3                Global consumption       851
      • 4.10.2.4                Prices    853
    • 4.10.3    Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel)      854
      • 4.10.3.1                Description         854
      • 4.10.3.2                SWOT analysis   854
      • 4.10.3.3                Global production and consumption        855
      • 4.10.3.4                Production pathways     855
      • 4.10.3.5                Prices    857
      • 4.10.3.6                Bio-aviation fuel production capacities    858
      • 4.10.3.7                Challenges          858
      • 4.10.3.8                Global consumption       859
  • 4.11        Bio-naphtha       860
    • 4.11.1    Overview            860
  • 4.12        ALCOHOL FUELS               860
    • 4.12.1    Biomethanol      860
      • 4.12.1.1                SWOT analysis   861
      • 4.12.1.2                Methanol-to gasoline technology             862
        • 4.12.1.2.1             Production processes     863
        • 4.12.1.2.1.1         Anaerobic digestion        863
        • 4.12.1.2.1.2         Biomass gasification        864
        • 4.12.1.2.1.3         Power to Methane          865
    • 4.12.2    Ethanol 865
      • 4.12.2.1                Technology description 865
      • 4.12.2.2                1G Bio-Ethanol  866
      • 4.12.2.3                SWOT analysis   866
      • 4.12.2.4                Ethanol to jet fuel technology     867
      • 4.12.2.5                Methanol from pulp & paper production               868
      • 4.12.2.6                Sulfite spent liquor fermentation              868
      • 4.12.2.7                Gasification        868
        • 4.12.2.7.1             Biomass gasification and syngas fermentation    868
        • 4.12.2.7.2             Biomass gasification and syngas thermochemical conversion        869
      • 4.12.2.8                CO2 capture and alcohol synthesis           869
      • 4.12.2.9                Biomass hydrolysis and fermentation     870
        • 4.12.2.9.1             Separate hydrolysis and fermentation    870
        • 4.12.2.9.2             Simultaneous saccharification and fermentation (SSF)     870
        • 4.12.2.9.3             Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)             871
        • 4.12.2.9.4             Simultaneous saccharification and co-fermentation (SSCF)            871
        • 4.12.2.9.5             Direct conversion (consolidated bioprocessing) (CBP)      871
      • 4.12.2.10              Global ethanol consumption       872
    • 4.12.3    Biobutanol          873
      • 4.12.3.1                Production          875
      • 4.12.3.2                Prices    875
  • 4.13        BIOMASS-BASED GAS     875
    • 4.13.1    Feedstocks         877
      • 4.13.1.1                Biomethane       877
      • 4.13.1.2                Production pathways     879
        • 4.13.1.2.1             Landfill gas recovery       879
        • 4.13.1.2.2             Anaerobic digestion        880
        • 4.13.1.2.3             Thermal gasification        880
      • 4.13.1.3                SWOT analysis   881
      • 4.13.1.4                Global production            882
      • 4.13.1.5                Prices    882
        • 4.13.1.5.1             Raw Biogas         882
        • 4.13.1.5.2             Upgraded Biomethane  882
      • 4.13.1.6                Bio-LNG               883
        • 4.13.1.6.1             Markets               883
          • 4.13.1.6.1.1         Trucks   883
          • 4.13.1.6.1.2         Marine 883
        • 4.13.1.6.2             Production          883
        • 4.13.1.6.3             Plants    883
      • 4.13.1.7                bio-CNG (compressed natural gas derived from biogas)   884
      • 4.13.1.8                Carbon capture from biogas        884
    • 4.13.2    Biosyngas            886
      • 4.13.2.1                Production          886
      • 4.13.2.2                Prices    886
    • 4.13.3    Biohydrogen      887
      • 4.13.3.1                Description         887
      • 4.13.3.2                SWOT analysis   887
      • 4.13.3.3                Production of biohydrogen from biomass              888
        • 4.13.3.3.1             Biological Conversion Routes      889
          • 4.13.3.3.1.1         Bio-photochemical Reaction        889
          • 4.13.3.3.1.2         Fermentation and Anaerobic Digestion   889
        • 4.13.3.3.2             Thermochemical conversion routes         890
          • 4.13.3.3.2.1         Biomass Gasification       890
          • 4.13.3.3.2.2         Biomass Pyrolysis             890
          • 4.13.3.3.2.3         Biomethane Reforming 890
      • 4.13.3.4                Applications       891
      • 4.13.3.5                Prices    891
    • 4.13.4    Biochar in biogas production       891
    • 4.13.5    Bio-DME              892
  • 4.14        CHEMICAL RECYCLING FOR BIOFUELS      892
    • 4.14.1    Plastic pyrolysis 892
      • 4.14.1.1                Used tires pyrolysis         893
      • 4.14.1.2                Conversion to biofuel     894
    • 4.14.2    Co-pyrolysis of biomass and plastic wastes           895
    • 4.14.3    Gasification        896
      • 4.14.3.1                Syngas conversion to methanol 897
      • 4.14.3.2                Biomass gasification and syngas fermentation    900
      • 4.14.3.3                Biomass gasification and syngas thermochemical conversion        900
    • 4.14.4    Hydrothermal cracking   901
    • 4.14.5    SWOT analysis   901
  • 4.15        ELECTROFUELS (E-FUELS)             902
    • 4.15.1    Introduction       902
      • 4.15.1.1                Benefits of e-fuels           905
    • 4.15.2    Feedstocks         906
      • 4.15.2.1                Hydrogen electrolysis     906
      • 4.15.2.2                CO2 capture       906
    • 4.15.3    SWOT analysis   907
    • 4.15.4    Production          908
      • 4.15.4.1                eFuel production facilities, current and planned 910
    • 4.15.5    Electrolysers      911
      • 4.15.5.1                Commercial alkaline electrolyser cells (AECs)       912
      • 4.15.5.2                PEM electrolysers (PEMEC)         912
      • 4.15.5.3                High-temperature solid oxide electrolyser cells (SOECs)  912
    • 4.15.6    Prices    912
    • 4.15.7    Market challenges           915
    • 4.15.8    Companies         915
  • 4.16        ALGAE-DERIVED BIOFUELS           916
    • 4.16.1    Technology description 916
    • 4.16.2    Conversion pathways     916
    • 4.16.3    SWOT analysis   916
    • 4.16.4    Production          917
    • 4.16.5    Market challenges           918
    • 4.16.6    Prices    919
    • 4.16.7    Producers           919
  • 4.17        GREEN AMMONIA           920
    • 4.17.1    Production          920
    • 4.17.2    Decarbonisation of ammonia production               922
    • 4.17.3    Green ammonia projects              923
    • 4.17.4    Green ammonia synthesis methods         923
      • 4.17.4.1                Haber-Bosch process      923
      • 4.17.4.2                Biological nitrogen fixation          924
      • 4.17.4.3                Electrochemical production         925
      • 4.17.4.4                Chemical looping processes        925
    • 4.17.5    SWOT analysis   925
    • 4.17.6    Blue ammonia   926
      • 4.17.6.1                Blue ammonia projects  926
    • 4.17.7    Markets and applications              927
      • 4.17.7.1                Chemical energy storage              927
        • 4.17.7.1.1             Ammonia fuel cells          927
      • 4.17.7.2                Marine fuel         927
    • 4.17.8    Prices    929
    • 4.17.9    Estimated market demand           931
    • 4.17.10  Companies and projects 931
  • 4.18        BIO-OILS (PYROLYSIS OIL)             932
    • 4.18.1    Description         932
      • 4.18.1.1                Advantages of bio-oils    932
    • 4.18.2    Production          934
      • 4.18.2.1                Fast Pyrolysis     934
      • 4.18.2.2                Costs of production         934
      • 4.18.2.3                Upgrading           934
    • 4.18.3    SWOT analysis   936
    • 4.18.4    Applications       936
    • 4.18.5    Bio-oil producers              937
    • 4.18.6    Prices    937
  • 4.19        REFUSE-DERIVED FUELS (RDF)    938
    • 4.19.1    Overview            938
    • 4.19.2    Production          938
      • 4.19.2.1                Production process         939
      • 4.19.2.2                Mechanical biological treatment               939
    • 4.19.3    Markets               940
  • 4.20        COMPANY PROFILES       941 (164 company profiles)

 

5              BIO-BASED PAINTS AND COATINGS MARKET        1054

  • 5.1          The global paints and coatings market    1054
  • 5.2          Bio-based paints and coatings     1054
  • 5.3          Challenges using bio-based paints and coatings   1055
  • 5.4          Types of bio-based coatings and materials             1055
    • 5.4.1      Alkyd coatings   1055
      • 5.4.1.1   Alkyd resin properties    1056
      • 5.4.1.2   Biobased alkyd coatings 1056
      • 5.4.1.3   Products              1058
    • 5.4.2      Polyurethane coatings   1058
      • 5.4.2.1   Properties           1058
      • 5.4.2.2   Biobased polyurethane coatings 1059
      • 5.4.2.3   Products              1060
    • 5.4.3      Epoxy coatings  1061
      • 5.4.3.1   Properties           1061
      • 5.4.3.2   Biobased epoxy coatings               1061
      • 5.4.3.3   Products              1063
    • 5.4.4      Acrylate resins   1063
      • 5.4.4.1   Properties           1063
      • 5.4.4.2   Biobased acrylates           1064
      • 5.4.4.3   Products              1064
    • 5.4.5      Polylactic acid (Bio-PLA) 1065
      • 5.4.5.1   Properties           1067
      • 5.4.5.2   Bio-PLA coatings and films            1067
    • 5.4.6      Polyhydroxyalkanoates (PHA)     1067
      • 5.4.6.1   Properties           1069
      • 5.4.6.2   PHA coatings      1071
    • 5.4.7      Cellulose nanofibers       1071
      • 5.4.7.1   Bacterial Nanocellulose (BNC)    1073
    • 5.4.8      Rosins   1073
    • 5.4.9      Biobased carbon black   1073
      • 5.4.9.1   Lignin-based      1073
      • 5.4.9.2   Algae-based       1073
    • 5.4.10    Lignin    1074
      • 5.4.10.1                Application in coatings   1074
    • 5.4.11    Edible coatings  1074
    • 5.4.12    Protein-based biomaterials for coatings 1076
      • 5.4.12.1                Plant derived proteins   1076
      • 5.4.12.2                Animal origin proteins   1076
    • 5.4.13    Alginate               1078
  • 5.5          Market for bio-based paints and coatings              1079
    • 5.5.1      Global market revenues to 2034, by market         1079
  • 5.6          BIO-BASED PAINTS AND COATINGS COMPANY PROFILES 1081 (130 company profiles)

 

6              CARBON CAPTURE, UTILIZATION AND STORAGE MARKET               1186

  • 6.1          Main sources of carbon dioxide emissions             1186
  • 6.2          CO2 as a commodity       1187
  • 6.3          Meeting climate targets 1188
  • 6.4          Market drivers and trends            1189
  • 6.5          The current market and future outlook  1190
  • 6.6          CCUS Industry developments 2020-2023                1191
  • 6.7          CCUS investments           1195
    • 6.7.1      Venture Capital Funding                1195
  • 6.8          Government CCUS initiatives      1195
    • 6.8.1      North America   1195
    • 6.8.2      Europe 1196
    • 6.8.3      China     1196
  • 6.9          Market map       1198
  • 6.10        Commercial CCUS facilities and projects 1200
    • 6.10.1    Facilities               1201
      • 6.10.1.1                Operational        1201
      • 6.10.1.2                Under development/construction            1203
  • 6.11        CCUS Value Chain             1208
  • 6.12        Key market barriers for CCUS      1209
  • 6.13        What is CCUS?  1210
    • 6.13.1    Carbon Capture 1215
      • 6.13.1.1                Source Characterization 1215
      • 6.13.1.2                Purification         1216
      • 6.13.1.3                CO2 capture technologies            1216
    • 6.13.2    Carbon Utilization            1219
      • 6.13.2.1                CO2 utilization pathways              1220
    • 6.13.3    Carbon storage 1221
      • 6.13.3.1                Passive storage 1221
      • 6.13.3.2                Enhanced oil recovery   1222
  • 6.14        Transporting CO2             1222
    • 6.14.1    Methods of CO2 transport           1222
      • 6.14.1.1                Pipeline 1224
      • 6.14.1.2                Ship       1224
      • 6.14.1.3                Road      1224
      • 6.14.1.4                Rail         1225
    • 6.14.2    Safety   1225
  • 6.15        Costs     1226
    • 6.15.1    Cost of CO2 transport     1227
  • 6.16        Carbon credits   1229
  • 6.17        CARBON CAPTURE           1230
    • 6.17.1    CO2 capture from point sources 1231
      • 6.17.1.1                Transportation  1231
      • 6.17.1.2                Global point source CO2 capture capacities          1232
      • 6.17.1.3                By source            1233
      • 6.17.1.4                By endpoint       1234
    • 6.17.2    Main carbon capture processes 1235
      • 6.17.2.1                Materials             1235
      • 6.17.2.2                Post-combustion             1237
      • 6.17.2.3                Oxy-fuel combustion      1238
      • 6.17.2.4                Liquid or supercritical CO2: Allam-Fetvedt Cycle 1239
      • 6.17.2.5                Pre-combustion 1240
    • 6.17.3    Carbon separation technologies 1241
      • 6.17.3.1                Absorption capture         1242
      • 6.17.3.2                Adsorption capture         1246
      • 6.17.3.3                Membranes       1248
      • 6.17.3.4                Liquid or supercritical CO2 (Cryogenic) capture   1250
      • 6.17.3.5                Chemical Looping-Based Capture              1250
      • 6.17.3.6                Calix Advanced Calciner 1251
      • 6.17.3.7                Other technologies         1252
        • 6.17.3.7.1             Solid Oxide Fuel Cells (SOFCs)     1252
        • 6.17.3.7.2             Microalgae Carbon Capture         1253
      • 6.17.3.8                Comparison of key separation technologies         1255
      • 6.17.3.9                Technology readiness level (TRL) of gas separtion technologies   1256
    • 6.17.4    Opportunities and barriers           1257
    • 6.17.5    Costs of CO2 capture      1258
    • 6.17.6    CO2 capture capacity      1259
    • 6.17.7    Bioenergy with carbon capture and storage (BECCS)         1261
      • 6.17.7.1                Overview of technology 1261
      • 6.17.7.2                Biomass conversion        1263
      • 6.17.7.3                BECCS facilities  1263
      • 6.17.7.4                Challenges          1264
    • 6.17.8    Direct air capture (DAC) 1265
      • 6.17.8.1                Description         1265
      • 6.17.8.2                Deployment       1267
      • 6.17.8.3                Point source carbon capture versus Direct Air Capture     1267
      • 6.17.8.4                Technologies     1268
        • 6.17.8.4.1             Solid sorbents   1269
        • 6.17.8.4.2             Liquid sorbents 1271
        • 6.17.8.4.3             Liquid solvents  1271
        • 6.17.8.4.4             Airflow equipment integration   1272
        • 6.17.8.4.5             Passive Direct Air Capture (PDAC)             1272
        • 6.17.8.4.6             Direct conversion             1273
        • 6.17.8.4.7             Co-product generation  1273
        • 6.17.8.4.8             Low Temperature DAC  1273
        • 6.17.8.4.9             Regeneration methods 1273
      • 6.17.8.5                Commercialization and plants     1274
      • 6.17.8.6                Metal-organic frameworks (MOFs) in DAC             1274
      • 6.17.8.7                DAC plants and projects-current and planned      1275
      • 6.17.8.8                Markets for DAC               1280
      • 6.17.8.9                Costs     1281
      • 6.17.8.10              Challenges          1285
      • 6.17.8.11              Players and production  1286
    • 6.17.9    Other technologies         1287
      • 6.17.9.1                Enhanced weathering    1287
      • 6.17.9.2                Afforestation and reforestation 1288
      • 6.17.9.3                Soil carbon sequestration (SCS) 1288
      • 6.17.9.4                Biochar 1289
      • 6.17.9.5                Ocean fertilisation           1290
      • 6.17.9.6                Ocean alkalinisation        1290
  • 6.18        CARBON UTILIZATION    1291
    • 6.18.1    Overview            1291
      • 6.18.1.1                Current market status    1291
      • 6.18.1.2                Benefits of carbon utilization       1295
      • 6.18.1.3                Market challenges           1297
    • 6.18.2    Co2 utilization pathways               1298
    • 6.18.3    Conversion processes    1300
      • 6.18.3.1                Thermochemical              1300
        • 6.18.3.1.1             Process overview             1300
        • 6.18.3.1.2             Plasma-assisted CO2 conversion 1302
      • 6.18.3.2                Electrochemical conversion of CO2           1303
        • 6.18.3.2.1             Process overview             1304
      • 6.18.3.3                Photocatalytic and photothermal catalytic conversion of CO2       1306
      • 6.18.3.4                Catalytic conversion of CO2         1306
      • 6.18.3.5                Biological conversion of CO2       1307
      • 6.18.3.6                Copolymerization of CO2              1310
      • 6.18.3.7                Mineral carbonation       1311
    • 6.18.4    CO2-derived products    1314
      • 6.18.4.1                Fuels     1314
        • 6.18.4.1.1             Overview            1314
        • 6.18.4.1.2             Production routes            1316
        • 6.18.4.1.3             Methanol            1316
        • 6.18.4.1.4             Algae based biofuels       1317
        • 6.18.4.1.5             CO₂-fuels from solar        1318
        • 6.18.4.1.6             Companies         1320
        • 6.18.4.1.7             Challenges          1322
      • 6.18.4.2                Chemicals            1322
        • 6.18.4.2.1             Overview            1322
        • 6.18.4.2.2             Scalability            1323
        • 6.18.4.2.3             Applications       1324
          • 6.18.4.2.3.1         Urea production               1324
          • 6.18.4.2.3.2         CO₂-derived polymers   1324
          • 6.18.4.2.3.3         Inert gas in semiconductor manufacturing            1325
          • 6.18.4.2.3.4         Carbon nanotubes           1325
        • 6.18.4.2.4             Companies         1326
      • 6.18.4.3                Construction materials   1327
        • 6.18.4.3.1             Overview            1327
        • 6.18.4.3.2             CCUS technologies          1329
        • 6.18.4.3.3             Carbonated aggregates 1331
        • 6.18.4.3.4             Additives during mixing 1332
        • 6.18.4.3.5             Concrete curing 1332
        • 6.18.4.3.6             Costs     1333
        • 6.18.4.3.7             Companies         1333
        • 6.18.4.3.8             Challenges          1335
      • 6.18.4.4                CO2 Utilization in Biological Yield-Boosting           1335
        • 6.18.4.4.1             Overview            1335
        • 6.18.4.4.2             Applications       1335
          • 6.18.4.4.2.1         Greenhouses     1335
          • 6.18.4.4.2.2         Algae cultivation               1336
          • 6.18.4.4.2.3         Microbial conversion      1336
          • 6.18.4.4.2.4         Food and feed production            1338
        • 6.18.4.4.3             Companies         1338
    • 6.18.5    CO₂ Utilization in Enhanced Oil Recovery               1339
      • 6.18.5.1                Overview            1339
        • 6.18.5.1.1             Process 1339
        • 6.18.5.1.2             CO₂ sources        1340
      • 6.18.5.2                CO₂-EOR facilities and projects   1340
      • 6.18.5.3                Challenges          1342
    • 6.18.6    Enhanced mineralization               1342
      • 6.18.6.1                Advantages        1342
      • 6.18.6.2                In situ and ex-situ mineralization 1343
      • 6.18.6.3                Enhanced mineralization pathways            1343
      • 6.18.6.4                Challenges          1344
  • 6.19        CARBON STORAGE          1345
    • 6.19.1    CO2 storage sites             1346
      • 6.19.1.1                Storage types for geologic CO2 storage  1347
      • 6.19.1.2                Oil and gas fields              1348
      • 6.19.1.3                Saline formations             1350
    • 6.19.2    Global CO2 storage capacity        1352
    • 6.19.3    Costs     1353
    • 6.19.4    Challenges          1354
  • 6.20        COMPANY PROFILES       1355 (243 company profiles)

 

7              ADVANCED CHEMICAL RECYCLING           1518

  • 7.1          Classification of recycling technologies   1518
  • 7.2          Introduction       1518
  • 7.3          Plastic recycling 1519
    • 7.3.1      Mechanical recycling      1521
      • 7.3.1.1   Closed-loop mechanical recycling              1521
      • 7.3.1.2   Open-loop mechanical recycling 1522
      • 7.3.1.3   Polymer types, use, and recovery             1522
    • 7.3.2      Advanced chemical recycling       1523
      • 7.3.2.1   Main streams of plastic waste    1523
      • 7.3.2.2   Comparison of mechanical and advanced chemical recycling         1524
  • 7.4          The advanced recycling market  1524
    • 7.4.1      Market drivers and trends            1524
    • 7.4.2      Industry developments 2020-2023            1525
    • 7.4.3      Capacities            1528
    • 7.4.4      Global polymer demand 2022-2040, segmented by recycling technology 1530
      • 7.4.4.1   Resin types         1530
        • 7.4.4.1.1               PE           1530
        • 7.4.4.1.2               PP           1531
        • 7.4.4.1.3               PET         1532
        • 7.4.4.1.4               PS           1533
        • 7.4.4.1.5               Nylon    1534
        • 7.4.4.1.6               Others  1535
    • 7.4.5      Global polymer demand 2022-2040, segmented by recycling technology, by region            1537
      • 7.4.5.1   Europe 1537
      • 7.4.5.2   North America   1538
      • 7.4.5.3   South America   1539
      • 7.4.5.4   Asia        1540
      • 7.4.5.5   Oceania                1542
      • 7.4.5.6   Africa    1542
    • 7.4.6      Global polymer demand 2022-2040, segmented by region            1544
      • 7.4.6.1   PE           1544
      • 7.4.6.2   PP           1545
      • 7.4.6.3   PET         1546
      • 7.4.6.4   PS           1547
      • 7.4.6.5   NY          1548
      • 7.4.6.6   Others  1549
    • 7.4.7      Treatment capacity 2023-2026, segmented by chemical recycling technology       1551
      • 7.4.7.1   PE           1551
      • 7.4.7.2   PP           1551
      • 7.4.7.3   PET         1551
      • 7.4.7.4   PS           1551
      • 7.4.7.5   Ny          1551
      • 7.4.7.6   Others  1552
    • 7.4.8      Treatment capacity 2023-2026, segmented by region      1552
      • 7.4.8.1   PE           1552
      • 7.4.8.2   PP           1552
      • 7.4.8.3   PET         1553
      • 7.4.8.4   PS           1553
      • 7.4.8.5   Ny          1553
      • 7.4.8.6   Others  1553
    • 7.4.9      Life cycle assessment for each chemical recycling technologies    1554
      • 7.4.9.1   Virgin plastic production, mechanical recycling and chemical recycling     1554
      • 7.4.9.2   Chemical recycling technologies (pyrolysis, gasification, depolymerization and dissolution)             1554
        • 7.4.9.2.1               PE           1555
        • 7.4.9.2.2               PP           1555
        • 7.4.9.2.3               PET         1555
    • 7.4.10    Recycled plastic yield and cost    1556
      • 7.4.10.1                Plastic yield of each chemical recycling technologies (,and)           1556
      • 7.4.10.2                Prices    1556
    • 7.4.11    Chemically recycled plastic products        1557
    • 7.4.12    Market map       1558
    • 7.4.13    Value chain         1559
    • 7.4.14    Life Cycle Assessments (LCA) of advanced chemical recycling processes   1559
    • 7.4.15    Market challenges           1560
  • 7.5          Advanced recycling technologies               1561
    • 7.5.1      Applications       1561
      • 7.5.1.1   Pyrolysis              1561
      • 7.5.1.2   Non-catalytic     1562
      • 7.5.1.3   Catalytic               1563
        • 7.5.1.3.1               Polystyrene pyrolysis     1565
        • 7.5.1.3.2               Pyrolysis for production of bio fuel           1566
        • 7.5.1.3.3               Used tires pyrolysis         1569
        • 7.5.1.3.4               Conversion to biofuel     1570
        • 7.5.1.3.5               Co-pyrolysis of biomass and plastic wastes           1571
      • 7.5.1.4   SWOT analysis   1572
        • 7.5.1.4.1               Companies and capacities             1572
    • 7.5.2      Gasification        1573
      • 7.5.2.1   Technology overview     1573
        • 7.5.2.1.1               Syngas conversion to methanol 1574
        • 7.5.2.1.2               Biomass gasification and syngas fermentation    1578
        • 7.5.2.1.3               Biomass gasification and syngas thermochemical conversion        1578
      • 7.5.2.2   SWOT analysis   1578
      • 7.5.2.3   Companies and capacities (current and planned)               1579
    • 7.5.3      Dissolution          1580
      • 7.5.3.1   Technology overview     1580
      • 7.5.3.2   SWOT analysis   1581
      • 7.5.3.3   Companies and capacities (current and planned)               1581
    • 7.5.4      Depolymerisation            1582
      • 7.5.4.1   Hydrolysis           1584
        • 7.5.4.1.1               Technology overview     1584
        • 7.5.4.1.2               SWOT analysis   1585
      • 7.5.4.2   Enzymolysis        1585
        • 7.5.4.2.1               Technology overview     1585
        • 7.5.4.2.2               SWOT analysis   1586
      • 7.5.4.3   Methanolysis     1587
        • 7.5.4.3.1               Technology overview     1587
        • 7.5.4.3.2               SWOT analysis   1587
      • 7.5.4.4   Glycolysis            1588
        • 7.5.4.4.1               Technology overview     1588
        • 7.5.4.4.2               SWOT analysis   1589
      • 7.5.4.5   Aminolysis          1590
        • 7.5.4.5.1               Technology overview     1590
        • 7.5.4.5.2               SWOT analysis   1590
      • 7.5.4.6   Companies and capacities (current and planned)               1590
    • 7.5.5      Other advanced chemical recycling technologies 1591
      • 7.5.5.1   Hydrothermal cracking   1591
      • 7.5.5.2   Pyrolysis with in-line reforming  1592
      • 7.5.5.3   Microwave-assisted pyrolysis     1593
      • 7.5.5.4   Plasma pyrolysis               1593
      • 7.5.5.5   Plasma gasification          1594
      • 7.5.5.6   Supercritical fluids           1594
      • 7.5.5.7   Carbon fiber recycling    1595
        • 7.5.5.7.1               Processes            1595
        • 7.5.5.7.2               Companies         1598
  • 7.6          COMPANY PROFILES       1599 (143 company profiles)

 

8              REFERENCES       1707

 

List of Tables

  • Table 1. Plant-based feedstocks and biochemicals produced.       88
  • Table 2. Waste-based feedstocks and biochemicals produced.     89
  • Table 3. Microbial and mineral-based feedstocks and biochemicals produced.      90
  • Table 4. Common starch sources that can be used as feedstocks for producing biochemicals.         91
  • Table 5. Common lysine sources that can be used as feedstocks for producing biochemicals.          93
  • Table 6. Applications of  lysine as a feedstock for biochemicals.   93
  • Table 7. HDMA sources that can be used as feedstocks for producing biochemicals.           96
  • Table 8. Applications of bio-based HDMA.             96
  • Table 9. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5).     98
  • Table 10. Applications of DN5.    98
  • Table 11. Biobased feedstocks for isosorbide.     100
  • Table 12. Applications of bio-based isosorbide.   100
  • Table 13. Lactide applications.    103
  • Table 14. Biobased feedstock sources for itaconic acid.    104
  • Table 15. Applications of bio-based itaconic acid.               104
  • Table 16. Biobased feedstock sources for 3-HP.  106
  • Table 17. Applications of 3-HP.   106
  • Table 18. Applications of bio-based acrylic acid.  108
  • Table 19. Applications of bio-based 1,3-Propanediol (1,3-PDO).   109
  • Table 20. Biobased feedstock sources for Succinic acid.   110
  • Table 21. Applications of succinic acid.    111
  • Table 22. Applications of bio-based 1,4-Butanediol (BDO).             112
  • Table 23. Applications of bio-based Tetrahydrofuran (THF).          114
  • Table 24. Applications of bio-based caprolactam.               116
  • Table 25. Biobased feedstock sources for isobutanol.       118
  • Table 26. Applications of bio-based isobutanol.  118
  • Table 27. Applications of bio-based 1,4-Butanediol.          120
  • Table 28. Biobased feedstock sources for p-Xylene.          121
  • Table 29. Applications of bio-based p-Xylene.      121
  • Table 30. Applications of bio-based Terephthalic acid (TPA).         123
  • Table 31. Biobased feedstock sources for 1,3 Proppanediol.          124
  • Table 32. Applications of bio-based 1,3 Proppanediol.     124
  • Table 33. Biobased feedstock sources for MEG.  125
  • Table 34. Applications of bio-based MEG.              126
  • Table 35. Biobased MEG producers capacities.    126
  • Table 36. Biobased feedstock sources for ethanol.            127
  • Table 37. Applications of bio-based ethanol.        127
  • Table 38. Applications of bio-based ethylene.     129
  • Table 39. Applications of bio-based propylene.   130
  • Table 40. Applications of bio-based vinyl chloride.             131
  • Table 41. Applications of bio-based Methly methacrylate.             133
  • Table 42. Applications of bio-based aniline.          135
  • Table 43. Applications of biobased fructose.        136
  • Table 44. Applications of bio-based 5-Hydroxymethylfurfural (5-HMF).    137
  • Table 45. Applications of 5-(Chloromethyl)furfural (CMF).             139
  • Table 46. Applications of Levulinic acid.  140
  • Table 47. Markets and applications for bio-based FDME. 141
  • Table 48. Applications of FDCA.  142
  • Table 49. Markets and applications for bio-based levoglucosenone.          144
  • Table 50. Biochemicals derived from hemicellulose           146
  • Table 51. markets and applications for bio-based hemicellulose  146
  • Table 52. Markets and applications for bio-based furfuryl alcohol.              150
  • Table 53. Commercial and pre-commercial biorefinery lignin production facilities and processes  151
  • Table 54. Lignin aromatic compound products.   152
  • Table 55. Prices of benzene, toluene, xylene and their derivatives.            153
  • Table 56. Lignin products in polymeric materials.               154
  • Table 57. Application of lignin in plastics and composites.              155
  • Table 58. Markets and applications for bio-based glycerol.             158
  • Table 59. Markets and applications for Bio-based MPG.  159
  • Table 60. Markets and applications: Bio-based ECH.          161
  • Table 61. Mineral source products and applications.         183
  • Table 62. Type of biodegradation.            259
  • Table 63. Advantages and disadvantages of biobased plastics compared to conventional plastics. 260
  • Table 64. Types of Bio-based and/or Biodegradable Plastics, applications.               261
  • Table 65. Key market players by Bio-based and/or Biodegradable Plastic types.    262
  • Table 66. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.               263
  • Table 67. Lactic acid producers and production capacities.             265
  • Table 68. PLA producers and production capacities.          265
  • Table 69. Planned PLA capacity expansions in China.         266
  • Table 70. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications.              267
  • Table 71. Bio-based Polyethylene terephthalate (PET) producers and production capacities,           268
  • Table 72. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications.       269
  • Table 73. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.   270
  • Table 74. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.                271
  • Table 75. PEF vs. PET.     272
  • Table 76. FDCA and PEF producers.          273
  • Table 77. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications.                275
  • Table 78. Leading Bio-PA producers production capacities.            276
  • Table 79. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications.              277
  • Table 80. Leading PBAT producers, production capacities and brands.      277
  • Table 81. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications.       279
  • Table 82. Leading PBS producers and production capacities.          280
  • Table 83. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.                281
  • Table 84. Leading Bio-PE producers.        281
  • Table 85. Bio-PP market analysis- manufacture, advantages, disadvantages and applications.        282
  • Table 86. Leading Bio-PP producers and capacities.           283
  • Table 87.Types of PHAs and properties. 286
  • Table 88. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 288
  • Table 89. Polyhydroxyalkanoate (PHA) extraction methods.          290
  • Table 90. Polyhydroxyalkanoates (PHA) market analysis. 291
  • Table 91. Commercially available PHAs.  292
  • Table 92. Markets and applications for PHAs.       293
  • Table 93. Applications, advantages and disadvantages of PHAs in packaging.         294
  • Table 94. Polyhydroxyalkanoates (PHA) producers.           297
  • Table 95. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications.                300
  • Table 96. Leading MFC producers and capacities.               301
  • Table 97. Synthesis methods for cellulose nanocrystals (CNC).     302
  • Table 98. CNC sources, size and yield.      303
  • Table 99. CNC properties.             303
  • Table 100. Mechanical properties of CNC and other reinforcement materials.       304
  • Table 101. Applications of nanocrystalline cellulose (NCC).            305
  • Table 102. Cellulose nanocrystals analysis.            306
  • Table 103: Cellulose nanocrystal production capacities and production process, by producer.        307
  • Table 104. Applications of cellulose nanofibers (CNF).     308
  • Table 105. Cellulose nanofibers market analysis. 309
  • Table 106. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes.  310
  • Table 107. Applications of bacterial nanocellulose (BNC).               313
  • Table 108. Types of protein based-bioplastics, applications and companies.           315
  • Table 109. Types of algal and fungal based-bioplastics, applications and companies.          316
  • Table 110. Overview of alginate-description, properties, application and market size.        316
  • Table 111. Companies developing algal-based bioplastics.              318
  • Table 112. Overview of mycelium fibers-description, properties, drawbacks and applications.       318
  • Table 113. Companies developing mycelium-based bioplastics.   320
  • Table 114. Overview of chitosan-description, properties, drawbacks and applications.      321
  • Table 115. Global production capacities of biobased and sustainable plastics in 2019-2034, by region, tons.            321
  • Table 116. Biobased and sustainable plastics producers in North America.              323
  • Table 117. Biobased and sustainable plastics producers in Europe.             323
  • Table 118. Biobased and sustainable plastics producers in Asia-Pacific.     324
  • Table 119. Biobased and sustainable plastics producers in Latin America. 325
  • Table 120. Processes for bioplastics in packaging.              327
  • Table 121. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.           329
  • Table 122. Typical applications for bioplastics in flexible packaging.           329
  • Table 123. Typical applications for bioplastics in rigid packaging. 331
  • Table 124. Types of next-gen natural fibers.         341
  • Table 125. Application, manufacturing method, and matrix materials of natural fibers.     344
  • Table 126. Typical properties of natural fibers.    345
  • Table 127. Commercially available next-gen natural fiber products.           346
  • Table 128. Market drivers for natural fibers.        349
  • Table 129. Overview of cotton fibers-description, properties, drawbacks and applications.              351
  • Table 130. Overview of kapok fibers-description, properties, drawbacks and applications.               352
  • Table 131. Overview of luffa fibers-description, properties, drawbacks and applications.  353
  • Table 132. Overview of jute fibers-description, properties, drawbacks and applications.   355
  • Table 133. Overview of hemp fibers-description, properties, drawbacks and applications.               356
  • Table 134. Overview of flax fibers-description, properties, drawbacks and applications.    358
  • Table 135. Overview of ramie fibers- description, properties, drawbacks and applications.              359
  • Table 136. Overview of kenaf fibers-description, properties, drawbacks and applications. 361
  • Table 137. Overview of sisal leaf fibers-description, properties, drawbacks and applications.          362
  • Table 138. Overview of abaca fibers-description, properties, drawbacks and applications.               363
  • Table 139. Overview of coir fibers-description, properties, drawbacks and applications.   365
  • Table 140. Overview of banana fibers-description, properties, drawbacks and applications.            366
  • Table 141. Overview of pineapple fibers-description, properties, drawbacks and applications.       367
  • Table 142. Overview of rice fibers-description, properties, drawbacks and applications.   369
  • Table 143. Overview of corn fibers-description, properties, drawbacks and applications.  370
  • Table 144. Overview of switch grass fibers-description, properties and applications.          370
  • Table 145. Overview of sugarcane fibers-description, properties, drawbacks and application and market size.        371
  • Table 146. Overview of bamboo fibers-description, properties, drawbacks and applications.          372
  • Table 147. Overview of mycelium fibers-description, properties, drawbacks and applications.       374
  • Table 148. Overview of chitosan fibers-description, properties, drawbacks and applications.          376
  • Table 149. Overview of alginate-description, properties, application and market size.        376
  • Table 150. Overview of wool fibers-description, properties, drawbacks and applications. 378
  • Table 151. Alternative wool materials producers.              378
  • Table 152. Overview of silk fibers-description, properties, application and market size.     379
  • Table 153. Alternative silk materials producers.  380
  • Table 154. Alternative leather materials producers.          381
  • Table 155. Next-gen fur producers.          382
  • Table 156. Alternative down materials producers.             383
  • Table 157. Applications of natural fiber composites.         383
  • Table 158. Typical properties of short natural fiber-thermoplastic composites.     385
  • Table 159. Properties of non-woven natural fiber mat composites.            386
  • Table 160. Properties of aligned natural fiber composites.             386
  • Table 161. Properties of natural fiber-bio-based polymer compounds.     387
  • Table 162. Properties of natural fiber-bio-based polymer non-woven mats.           388
  • Table 163. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use. 388
  • Table 164. Natural fiber-reinforced polymer composite in the automotive market.             390
  • Table 165. Natural fibers in the aerospace sector- market drivers, applications and challenges for NF use. 391
  • Table 166. Applications of natural fibers in the automotive industry.         392
  • Table 167. Natural fibers in the building/construction sector- market drivers, applications and challenges for NF use.                393
  • Table 168. Applications of natural fibers in the building/construction sector.         394
  • Table 169. Natural fibers in the sports and leisure sector-market drivers, applications and challenges for NF use.  394
  • Table 170. Natural fibers in the textiles sector- market drivers, applications and challenges for NF use.     395
  • Table 171. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use. 397
  • Table 172. Technical lignin types and applications.             405
  • Table 173. Classification of technical lignins.         407
  • Table 174. Lignin content of selected biomass.   407
  • Table 175. Properties of lignins and their applications.     408
  • Table 176. Example markets and applications for lignin.  410
  • Table 177. Processes for lignin production.           412
  • Table 178. Biorefinery feedstocks.           418
  • Table 179. Comparison of pulping and biorefinery lignins.              418
  • Table 180. Commercial and pre-commercial biorefinery lignin production facilities and  processes              419
  • Table 181. Market drivers and trends for lignin.  423
  • Table 182. Production capacities of technical lignin producers.    423
  • Table 183. Production capacities of biorefinery lignin producers. 424
  • Table 184. Estimated consumption of lignin, 2019-2034 (000 MT).             425
  • Table 185. Prices of benzene, toluene, xylene and their derivatives.          427
  • Table 186. Application of lignin in plastics and polymers. 428
  • Table 187. Lignin-derived anodes in lithium batteries.     434
  • Table 188. Application of lignin in binders, emulsifiers and dispersants.   436
  • Table 189. Lactips plastic pellets.              622
  • Table 190. Oji Holdings CNF products.     686
  • Table 191. Market drivers for biofuels.   806
  • Table 192. Market challenges for biofuels.            807
  • Table 193. Liquid biofuels market 2020-2034, by type and production.     809
  • Table 194. Comparison of biofuel costs (USD/liter) 2023, by type.              811
  • Table 195. Categories and examples of solid biofuel.        812
  • Table 196. Comparison of biofuels and e-fuels to fossil and electricity.      814
  • Table 197. Classification of biomass feedstock.   815
  • Table 198. Biorefinery feedstocks.           816
  • Table 199. Feedstock conversion pathways.         816
  • Table 200. First-Generation Feedstocks. 816
  • Table 201.  Lignocellulosic ethanol plants and capacities.                818
  • Table 202. Comparison of pulping and biorefinery lignins.              820
  • Table 203. Commercial and pre-commercial biorefinery lignin production facilities and  processes              820
  • Table 204. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol. 822
  • Table 205. Properties of microalgae and macroalgae.       824
  • Table 206. Yield of algae and other biodiesel crops.           824
  • Table 207. Advantages and disadvantages of biofuels, by generation.       825
  • Table 208. Biodiesel by generation.         835
  • Table 209. Biodiesel production techniques.        837
  • Table 210. Summary of pyrolysis technique under different operating conditions.              838
  • Table 211. Biomass materials and their bio-oil yield.         839
  • Table 212. Biofuel production cost from the biomass pyrolysis process.   840
  • Table 213. Properties of vegetable oils in comparison to diesel.   841
  • Table 214. Main producers of HVO and capacities.             843
  • Table 215. Example commercial Development of BtL processes. 844
  • Table 216. Pilot or demo projects for biomass to liquid (BtL) processes.   844
  • Table 217. Global biodiesel consumption, 2010-2034 (M litres/year).       848
  • Table 218. Global renewable diesel consumption, to 2033 (M litres/year).              852
  • Table 219. Renewable diesel price ranges.            853
  • Table 220. Advantages and disadvantages of Bio-aviation fuel.     854
  • Table 221. Production pathways for Bio-aviation fuel.      855
  • Table 222. Current and announced Bio-aviation fuel facilities and capacities.         858
  • Table 223. Global bio-jet fuel consumption to 2033 (Million litres/year). 859
  • Table 224. Comparison of biogas, biomethane and natural gas.   863
  • Table 225.  Processes in bioethanol production. 870
  • Table 226. Microorganisms used in CBP for ethanol production from biomass lignocellulosic.         871
  • Table 227. Ethanol consumption 2010-2034 (million litres).           872
  • Table 228. Biogas feedstocks.     877
  • Table 229. Existing and planned bio-LNG production plants.          884
  • Table 230. Methods for capturing carbon dioxide from biogas.    885
  • Table 231. Comparison of different Bio-H2 production pathways.               888
  • Table 232. Markets and applications for biohydrogen.     891
  • Table 233. Summary of gasification technologies.              896
  • Table 234. Overview of hydrothermal cracking for advanced chemical recycling.  901
  • Table 235. Applications of e-fuels, by type.           904
  • Table 236. Overview of e-fuels. 905
  • Table 237. Benefits of e-fuels.    905
  • Table 238. eFuel production facilities, current and planned.          910
  • Table 239. Main characteristics of different electrolyzer technologies.     911
  • Table 240. Market challenges for e-fuels.              915
  • Table 241. E-fuels companies.    915
  • Table 242. Algae-derived biofuel producers.        920
  • Table 243. Green ammonia projects (current and planned).          923
  • Table 244. Blue ammonia projects.          926
  • Table 245. Ammonia fuel cell technologies.          927
  • Table 246. Market overview of green ammonia in marine fuel.    928
  • Table 247. Summary of marine alternative fuels. 928
  • Table 248. Estimated costs for different types of ammonia.           930
  • Table 249. Main players in green ammonia.          931
  • Table 250. Typical composition and physicochemical properties reported for bio-oils and heavy petroleum-derived oils.        933
  • Table 251. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil.            933
  • Table 252. Main techniques used to upgrade bio-oil into higher-quality fuels.       935
  • Table 253. Markets and applications for bio-oil.  936
  • Table 254. Bio-oil producers.      937
  • Table 255. Key resource recovery technologies   939
  • Table 256. Markets and end uses for refuse-derived fuels (RDF). 940
  • Table 257. Granbio Nanocellulose Processes.      987
  • Table 258. Types of alkyd resins and properties. 1056
  • Table 259. Market summary for biobased alkyd coatings-raw materials, advantages, disadvantages, applications and producers.          1057
  • Table 260. Biobased alkyd coating products.        1058
  • Table 261. Types of polyols.         1059
  • Table 262. Polyol producers.       1059
  • Table 263. Biobased polyurethane coating products.        1060
  • Table 264. Market summary for biobased epoxy resins.  1061
  • Table 265. Biobased polyurethane coating products.        1063
  • Table 266. Biobased acrylate resin products.        1064
  • Table 267. Polylactic acid (PLA) market analysis. 1065
  • Table 268. PLA producers and production capacities.        1066
  • Table 269. Polyhydroxyalkanoates (PHA) market analysis.              1068
  • Table 270.Types of PHAs and properties.               1070
  • Table 271. Companies developing cellulose nanofibers products in paints and coatings.   1072
  • Table 272. Edible coatings market summary.       1075
  • Table 273. Types of protein based-biomaterials, applications and companies.       1077
  • Table 274. Overview of alginate-description, properties, application and market size.        1078
  • Table 275. Market revenues for biobased paints and coatings, 2018-2034 (billions USD). 1079
  • Table 276. Oji Holdings CNF products.     1154
  • Table 277. Carbon Capture, Utilisation and Storage (CCUS) market drivers and trends.      1189
  • Table 278. Carbon capture, usage, and storage (CCUS) industry developments 2020-2023.              1191
  • Table 279. Demonstration and commercial CCUS facilities in China.           1197
  • Table 280. Global commercial CCUS facilities-in operation.            1201
  • Table 281. Global commercial CCUS facilities-under development/construction.  1203
  • Table 282. Key market barriers for CCUS.               1209
  • Table 283. CO2 utilization and removal pathways              1212
  • Table 284. Approaches for capturing carbon dioxide (CO2) from point sources.    1215
  • Table 285. CO2 capture technologies.     1216
  • Table 286. Advantages and challenges of carbon capture technologies.   1217
  • Table 287. Overview of commercial materials and processes utilized in carbon capture.   1218
  • Table 288. Methods of CO2 transport.    1223
  • Table 289. Carbon capture, transport, and storage cost per unit of CO2    1226
  • Table 290. Estimated capital costs for commercial-scale carbon capture. 1226
  • Table 291. Point source examples.           1231
  • Table 292. Assessment of carbon capture materials          1235
  • Table 293. Chemical solvents used in post-combustion.  1238
  • Table 294. Commercially available physical solvents for pre-combustion carbon capture. 1241
  • Table 295. Main capture processes and their separation technologies.     1241
  • Table 296. Absorption methods for CO2 capture overview.           1242
  • Table 297. Commercially available physical solvents used in CO2 absorption.        1244
  • Table 298. Adsorption methods for CO2 capture overview.           1246
  • Table 299. Membrane-based methods for CO2 capture overview.              1248
  • Table 300. Benefits and drawbacks of microalgae carbon capture.              1254
  • Table 301. Comparison of main separation technologies.               1255
  • Table 302. Technology readiness level (TRL) of gas separtion technologies              1256
  • Table 303. Opportunities and Barriers by sector. 1257
  • Table 304. Existing and planned capacity for sequestration of biogenic carbon.     1263
  • Table 305. Existing facilities with capture and/or geologic sequestration of biogenic CO2. 1264
  • Table 306. Advantages and disadvantages of DAC.             1266
  • Table 307. Companies developing airflow equipment integration with DAC.           1272
  • Table 308. Companies developing Passive Direct Air Capture (PDAC) technologies.             1272
  • Table 309. Companies developing regeneration methods for DAC technologies.  1273
  • Table 310. DAC companies and technologies.      1274
  • Table 311. DAC technology developers and production.  1276
  • Table 312. DAC projects in development.              1279
  • Table 313. Markets for DAC.        1281
  • Table 314. Costs summary for DAC.          1281
  • Table 315. Cost estimates of DAC.             1283
  • Table 316. Challenges for DAC technology.           1285
  • Table 317. DAC companies and technologies.      1286
  • Table 318. Biological CCS technologies.  1287
  • Table 319. Biochar in carbon capture overview. 1290
  • Table 320. Carbon utilization revenue forecast by product (US$). 1294
  • Table 321. CO2 utilization and removal pathways.             1295
  • Table 322. Market challenges for CO2 utilization.               1297
  • Table 323. Example CO2 utilization pathways.     1298
  • Table 324. CO2 derived products via Thermochemical conversion-applications, advantages and disadvantages.    1300
  • Table 325. Electrochemical CO₂ reduction products.         1304
  • Table 326. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages.      1304
  • Table 327. CO2 derived products via biological conversion-applications, advantages and disadvantages.  1308
  • Table 328. Companies developing and producing CO2-based polymers.   1311
  • Table 329. Companies developing mineral carbonation technologies.       1313
  • Table 330. Market overview for CO2 derived fuels.           1314
  • Table 331. Microalgae products and prices.          1318
  • Table 332. Main Solar-Driven CO2 Conversion Approaches.          1319
  • Table 333. Companies in CO2-derived fuel products.        1320
  • Table 334. Commodity chemicals and fuels manufactured from CO2.        1323
  • Table 335. Companies in CO2-derived chemicals products.            1326
  • Table 336. Carbon capture technologies and projects in the cement sector            1329
  • Table 337. Companies in CO2 derived building materials.               1333
  • Table 338. Market challenges for CO2 utilization in construction materials.            1335
  • Table 339. Companies in CO2 Utilization in Biological Yield-Boosting.        1338
  • Table 340. Applications of CCS in oil and gas production. 1339
  • Table 341. CO2 EOR/Storage Challenges.               1345
  • Table 342. Storage and utilization of CO2.             1346
  • Table 343. Global depleted reservoir storage projects.    1347
  • Table 344. Global CO2 ECBM storage projects.    1348
  • Table 345. CO2 EOR/storage projects.    1348
  • Table 346. Global storage sites-saline aquifer projects.    1351
  • Table 347. Global storage capacity estimates, by region. 1352
  • Table 348. Types of recycling.     1518
  • Table 349. Overview of the recycling technologies.           1521
  • Table 350. Polymer types, use, and recovery.      1522
  • Table 351. Composition of plastic waste streams.              1523
  • Table 352. Comparison of mechanical and advanced chemical recycling.  1524
  • Table 353. Market drivers and trends in the advanced chemical recycling market.               1524
  • Table 354. Advanced recycling industry developments 2020-2023.             1525
  • Table 355. Advanced recycling capacities, by technology.               1528
  • Table 356. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tons). 1530
  • Table 357. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tons). 1531
  • Table 358. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tons).              1532
  • Table 359. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tons). 1533
  • Table 360. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tons).          1534
  • Table 361. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tons).*                1535
  • Table 362. Global polymer demand in Europe, by recycling technology 2022-2040 (million tons). 1537
  • Table 363. Global polymer demand in North America, by recycling technology 2022-2040 (million tons).  1538
  • Table 364. Global polymer demand in South America, by recycling technology 2022-2040 (million tons).  1539
  • Table 365. Global polymer demand in Asia, by recycling technology 2022-2040 (million tons).       1540
  • Table 366. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tons).               1542
  • Table 367. Global polymer demand in Africa, by recycling technology 2022-2040 (million tons).    1543
  • Table 368. Global polymer demand 2022-2040 by region, for PE (millions tons).  1544
  • Table 369. Global polymer demand 2022-2040 by region, for PP (millions tons).  1545
  • Table 370. Global polymer demand 2022-2040 by region, for PET (millions tons). 1546
  • Table 371. Global polymer demand 2022-2040 by region, for PS (millions tons).   1547
  • Table 372. Global polymer demand 2022-2040 by region, for NY (millions tons).  1548
  • Table 373. Global polymer demand 2022-2040 by region, for others (millions tons).*        1549
  • Table 374. Treatment capacity 2023-2026 for PE, by advanced recycling technology, 2023-2026 (million tons).      1551
  • Table 375. Treatment capacity 2023-2026 for PP, by advanced recycling technology, 2023-2026 (million tons).      1551
  • Table 376. Treatment capacity 2023-2026 for PET, by advanced recycling technology, 2023-2026 (million tons).   1551
  • Table 377. Treatment capacity 2023-2026 for PS, by advanced recycling technology, 2023-2026 (million tons).      1551
  • Table 378. Treatment capacity 2023-2026 for PS, by advanced recycling technology, 2023-2026 (million tons).      1552
  • Table 379. Treatment capacity 2023-2026 for others, by advanced recycling technology, 2023-2026.           1552
  • Table 380. Treatment capacity by region for PE (2023-2026), million tons.              1552
  • Table 381. Treatment capacity by region for PP (2023-2026), million tons.              1552
  • Table 382. Treatment capacity by region for PET (2023-2026), million tons.            1553
  • Table 383. Treatment capacity by region for PS (2023-2026), million tons.              1553
  • Table 384. Treatment capacity by region for Ny (2023-2026), million tons.              1553
  • Table 385. Treatment capacity by region for Others (2023-2026), million tons.     1553
  • Table 386. Life cycle assessment of virgin plastic production, mechanical recycling and chemical recycling.              1554
  • Table 387. Life cycle assessment of chemical recycling technologies (pyrolysis, gasification, depolymerization and dissolution).       1554
  • Table 388. Life cycle assessment of mechanically versus chemically recycling polyethylene (PE).   1555
  • Table 389. Life cycle assessment of mechanically versus chemically recycling polypropylene (PP). 1555
  • Table 390. Life cycle assessment of mechanically versus chemically recycling polyethylene terephthalate (PET).    1555
  • Table 391. Plastic yield of each chemical recycling technologies. 1556
  • Table 392. Chemically recycled plastics prices in USD.      1556
  • Table 393. Example chemically recycled plastic products.               1557
  • Table 394. Life Cycle Assessments (LCA) of Advanced Chemical Recycling Processes.          1559
  • Table 395. Challenges in the advanced recycling market. 1560
  • Table 396. Applications of chemically recycled materials.                1561
  • Table 397. Summary of non-catalytic pyrolysis technologies.        1563
  • Table 398. Summary of catalytic pyrolysis technologies. 1564
  • Table 399. Summary of pyrolysis technique under different operating conditions.              1567
  • Table 400. Biomass materials and their bio-oil yield.         1568
  • Table 401. Biofuel production cost from the biomass pyrolysis process.   1568
  • Table 402. Pyrolysis companies and plant capacities, current and planned.             1572
  • Table 403. Summary of gasification technologies.              1573
  • Table 404. Advanced recycling (Gasification) companies. 1579
  • Table 405. Summary of dissolution technologies.               1580
  • Table 406. Advanced recycling (Dissolution) companies  1581
  • Table 407. depolymerisation processes for PET, PU, PC and PA, products and yields.          1583
  • Table 408. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        1584
  • Table 409. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        1585
  • Table 410. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        1587
  • Table 411. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        1588
  • Table 412. Summary of aminolysis technologies. 1590
  • Table 413. Advanced recycling (Depolymerisation) companies and capacities (current and planned).          1590
  • Table 414. Overview of hydrothermal cracking for advanced chemical recycling.  1591
  • Table 415. Overview of Pyrolysis with in-line reforming for advanced chemical recycling. 1592
  • Table 416. Overview of microwave-assisted pyrolysis for advanced chemical recycling.     1593
  • Table 417. Overview of plasma pyrolysis for advanced chemical recycling.              1593
  • Table 418. Overview of plasma gasification for advanced chemical recycling.         1594
  • Table 419. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages. 1596
  • Table 420. Retention rate of tensile properties of recovered carbon fibres by different recycling processes.            1597
  • Table 421. Recycled carbon fiber producers, technology and capacity.      1598

 

List of Figures

  • Figure 1. Schematic of biorefinery processes.      87
  • Figure 2. Global production of starch for biobased chemicals and intermediates, 2018-2034 (million metric tonnes).                92
  • Figure 3. Global production of biobased lysine, 2018-2034 (metric tonnes).           94
  • Figure 4. Global glucose production for bio-based chemicals and intermediates 2018-2034 (million metric tonnes).                95
  • Figure 5. Global production volumes of bio-HMDA, 2018 to 2034 in metric tonnes.            97
  • Figure 6. Global production of bio-based DN5, 2018-2034 (metric tonnes).            99
  • Figure 7. Global production of bio-based isosorbide, 2018-2034 (metric tonnes). 101
  • Figure 8. L-lactic acid (L-LA) production, 2018-2034 (metric tonnes).         102
  • Figure 9. Global lactide production, 2018-2034 (metric tonnes).  103
  • Figure 10. Global production of bio-itaconic acid, 2018-2034 (metric tonnes).       105
  • Figure 11. Global production of 3-HP,  2018-2034 (metric tonnes).             107
  • Figure 12. Global production of bio-based acrylic acid,  2018-2034 (metric tonnes).           108
  • Figure 13. Global production of bio-based 1,3-Propanediol (1,3-PDO), 2018-2034 (metric tonnes).              110
  • Figure 14. Global production of bio-based Succinic acid, 2018-2034 (metric tonnes).         112
  • Figure 15. Global production of 1,4-Butanediol (BDO), 2018-2034 (metric tonnes).             113
  • Figure 16. Global production of bio-based tetrahydrofuran (THF), 2018-2034 (metric tonnes).       115
  • Figure 17. Overview of Toray process.     116
  • Figure 18. Global production of bio-based caprolactam, 2018-2034 (metric tonnes).          118
  • Figure 19. Global production of bio-based isobutanol, 2018-2034 (metric tonnes).             119
  • Figure 20. Global production of bio-based 1,4-butanediol, 2018-2034 (metric tonnes).     120
  • Figure 21. Global production of bio-based p-xylene, 2018-2034 (metric tonnes). 122
  • Figure 22. Global production of biobased terephthalic acid (TPA), 2018-2034 (metric tonnes).       123
  • Figure 23. Global production of biobased 1,3 Proppanediol, 2018-2034 (metric tonnes).  125
  • Figure 24. Global production of biobased MEG, 2018-2034 (metric tonnes).          127
  • Figure 25. Global production of biobased ethanol, 2018-2034 (million metric tonnes).      128
  • Figure 26. Global production of biobased ethylene, 2018-2034 (million metric tonnes).    129
  • Figure 27. Global production of biobased propylene, 2018-2034 (metric tonnes). 131
  • Figure 28. Global production of biobased vinyl chloride, 2018-2034 (metric tonnes).         132
  • Figure 29. Global production of bio-based Methly methacrylate, 2018-2034 (metric tonnes).         134
  • Figure 30. Global production of biobased aniline, 2018-2034 (metric tonnes).       136
  • Figure 31. Global production of biobased fructose, 2018-2034 (metric tonnes).    137
  • Figure 32. Global production of biobased 5-Hydroxymethylfurfural (5-HMF), 2018-2034 (metric tonnes). 138
  • Figure 33. Global production of biobased 5-(Chloromethyl)furfural (CMF), 2018-2034 (metric tonnes).      139
  • Figure 34. Global production of biobased Levulinic acid, 2018-2034 (metric tonnes).         141
  • Figure 35. Global production of biobased FDME, 2018-2034 (metric tonnes).        142
  • Figure 36. Global production of biobased Furan-2,5-dicarboxylic acid (FDCA), 2018-2034 (metric tonnes). 143
  • Figure 37. Global production projections for bio-based levoglucosenone from 2018 to 2034 in metric tonnes:       145
  • Figure 38. Global production of hemicellulose, 2018-2034 (metric tonnes).            147
  • Figure 39. Global production of biobased furfural, 2018-2034 (metric tonnes).     149
  • Figure 40. Global production of biobased furfuryl alcohol, 2018-2034 (metric tonnes).      150
  • Figure 41. Schematic of WISA plywood home.     154
  • Figure 42. Global production of biobased lignin, 2018-2034 (metric tonnes).         156
  • Figure 43. Global production of biobased glycerol, 2018-2034 (metric tonnes).    158
  • Figure 44. Global production of Bio-MPG, 2018-2034 (metric tonnes).      160
  • Figure 45. Global production of biobased ECH, 2018-2034 (metric tonnes).            161
  • Figure 46. Global production of biobased fatty acids, 2018-2034 (million metric tonnes). 163
  • Figure 47. Global production of biobased sebacic acid, 2018-2034 (metric tonnes).            164
  • Figure 48. Global production of biobased 11-Aminoundecanoic acid (11-AA), 2018-2034 (metric tonnes). 166
  • Figure 49. Global production of biobased Dodecanedioic acid (DDDA), 2018-2034 (metric tonnes).             167
  • Figure 50. Global production of biobased Pentamethylene diisocyanate, 2018-2034 (metric tonnes).         169
  • Figure 51. Global production of biobased casein, 2018-2034 (metric tonnes).       170
  • Figure 52. Global production of food waste for biochemicals, 2018-2034 (million metric tonnes). 172
  • Figure 53. Global production of agricultural waste for biochemicals, 2018-2034 (million metric tonnes).   173
  • Figure 54. Global production of forestry waste for biochemicals, 2018-2034 (million metric tonnes).          175
  • Figure 55. Global production of aquaculture/fishing waste for biochemicals, 2018-2034 (million metric tonnes).   176
  • Figure 56. Global production of municipal solid waste for biochemicals, 2018-2034 (million metric tonnes).            178
  • Figure 57. Global production of waste oils for biochemicals, 2018-2034 (million metric tonnes).   180
  • Figure 58. Global microalgae production, 2018-2034 (million metric tonnes).        181
  • Figure 59. Global macroalgae production, 2018-2034 (million metric tonnes).      182
  • Figure 60. Global production of biogas, 2018-2034 (billion m3).   186
  • Figure 61. Global production of syngas, 2018-2034 (billion m3).   188
  • Figure 62. formicobio™ technology.         206
  • Figure 63. Domsjö process.          210
  • Figure 64.  TMP-Bio Process.       213
  • Figure 65. Lignin gel.       230
  • Figure 66. BioFlex process.           233
  • Figure 67. LX Process.    234
  • Figure 68. METNIN™ Lignin refining technology. 238
  • Figure 69. Enfinity cellulosic ethanol technology process.               244
  • Figure 70. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.    246
  • Figure 71. UPM biorefinery process.        253
  • Figure 72. The Proesa® Process. 255
  • Figure 73. Goldilocks process and applications.   256
  • Figure 74.  Coca-Cola PlantBottle®.           258
  • Figure 75. Interrelationship between conventional, bio-based and biodegradable plastics.              258
  • Figure 76. Polylactic acid (Bio-PLA) production 2019-2034 (1,000 tons).   267
  • Figure 77. Polyethylene terephthalate (Bio-PET) production 2019-2034 (1,000 tons)          269
  • Figure 78. Polytrimethylene terephthalate (PTT) production 2019-2034 (1,000 tons).        270
  • Figure 79. Production capacities of Polyethylene furanoate (PEF) to 2025.               273
  • Figure 80. Polyethylene furanoate (Bio-PEF) production 2019-2034 (1,000 tons). 274
  • Figure 81. Polyamides (Bio-PA) production 2019-2034 (1,000 tons).           276
  • Figure 82. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2034 (1,000 tons).            278
  • Figure 83. Polybutylene succinate (PBS) production 2019-2034 (1,000 tons).         280
  • Figure 84. Polyethylene (Bio-PE) production 2019-2034 (1,000 tons).        282
  • Figure 85. Polypropylene (Bio-PP) production capacities 2019-2034 (1,000 tons). 283
  • Figure 86. PHA family.    286
  • Figure 87. PHA production capacities 2019-2034 (1,000 tons).     299
  • Figure 88. TEM image of cellulose nanocrystals. 301
  • Figure 89. CNC preparation.        302
  • Figure 90. Extracting CNC from trees.      303
  • Figure 91. CNC slurry.     305
  • Figure 92. CNF gel.           308
  • Figure 93. Bacterial nanocellulose shapes              312
  • Figure 94. BLOOM masterbatch from Algix.           317
  • Figure 95. Typical structure of mycelium-based foam.     319
  • Figure 96. Commercial mycelium composite construction materials.          320
  • Figure 97. Global production capacities of biobased and sustainable plastics 2022.              322
  • Figure 98. Global production capacities of biobased and sustainable plastics 2034.              322
  • Figure 99. Global production capacities for bioplastics by end user market 2019-2034, 1,000 tons.              326
  • Figure 100. PHA bioplastics products.      328
  • Figure 101. The global market for biobased and biodegradable plastics for flexible packaging 2019–2033 (‘000 tonnes).                330
  • Figure 102. Production volumes for bioplastics for rigid packaging, 2019–2033 (‘000 tonnes).        332
  • Figure 103. Global production for biobased and biodegradable plastics in consumer products 2019-2034, in 1,000 tons.      333
  • Figure 104. Global production capacities for biobased and biodegradable plastics in automotive 2019-2034, in 1,000 tons.      334
  • Figure 105. Global production volumes for biobased and biodegradable plastics in building and construction 2019-2034, in 1,000 tons.        335
  • Figure 106. AlgiKicks sneaker, made with the Algiknit biopolymer gel.       336
  • Figure 107. Reebok's [REE]GROW running shoes.               337
  • Figure 108. Camper Runner K21.                338
  • Figure 109. Global production volumes for biobased and biodegradable plastics in textiles 2019-2034, in 1,000 tons.                338
  • Figure 110. Global production volumes for biobased and biodegradable plastics in electronics 2019-2034, in 1,000 tons.      339
  • Figure 111. Biodegradable mulch films.  340
  • Figure 112. Global production volulmes for biobased and biodegradable plastics in agriculture 2019-2034, in 1,000 tons.      340
  • Figure 113. Types of natural fibers.          343
  • Figure 114. Absolut natural based fiber bottle cap.            346
  • Figure 115. Adidas algae-ink tees.             346
  • Figure 116. Carlsberg natural fiber beer bottle.   346
  • Figure 117. Miratex watch bands.             347
  • Figure 118. Adidas Made with Nature Ultraboost 22.        347
  • Figure 119. PUMA RE:SUEDE sneaker      347
  • Figure 120. Cotton production volume 2018-2034 (Million MT).  352
  • Figure 121. Kapok production volume 2018-2034 (MT).  353
  • Figure 122.  Luffa cylindrica fiber.             354
  • Figure 123. Jute production volume 2018-2034 (Million MT).        356
  • Figure 124. Hemp fiber production volume 2018-2034 ( MT).       358
  • Figure 125. Flax fiber production volume 2018-2034 (MT).            359
  • Figure 126. Ramie fiber production volume 2018-2034 (MT).        360
  • Figure 127. Kenaf fiber production volume 2018-2034 (MT).         362
  • Figure 128. Sisal fiber production volume 2018-2034 (MT).           363
  • Figure 129. Abaca fiber production volume 2018-2034 (MT).        365
  • Figure 130. Coir fiber production volume 2018-2034 (MILLION MT).          366
  • Figure 131. Banana fiber production volume 2018-2034 (MT).     367
  • Figure 132. Pineapple fiber.         368
  • Figure 133. A bag made with pineapple biomaterial from the H&M Conscious Collection 2019.      369
  • Figure 134. Bamboo fiber production volume 2018-2034 (MILLION MT). 373
  • Figure 135. Typical structure of mycelium-based foam.   373
  • Figure 136. Commercial mycelium composite construction materials.       374
  • Figure 137. Frayme Mylo™️.         374
  • Figure 138. BLOOM masterbatch from Algix.        377
  • Figure 139. Conceptual landscape of next-gen leather materials. 381
  • Figure 140. Hemp fibers combined with PP in car door panel.       388
  • Figure 141. Car door produced from Hemp fiber.               389
  • Figure 142. Mercedes-Benz components containing natural fibers.            390
  • Figure 143. AlgiKicks sneaker, made with the Algiknit biopolymer gel.       396
  • Figure 144. Coir mats for erosion control.              396
  • Figure 145. Global fiber production in 2022, by fiber type, million MT and %.        399
  • Figure 146. Global fiber production (million MT) to 2020-2034.     400
  • Figure 147. Plant-based fiber production 2018-2034, by fiber type, MT.   401
  • Figure 148. Animal based fiber production 2018-2034, by fiber type, million MT. 402
  • Figure 149. High purity lignin.     403
  • Figure 150. Lignocellulose architecture. 404
  • Figure 151. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins.                405
  • Figure 152. The lignocellulose biorefinery.            410
  • Figure 153. LignoBoost process. 414
  • Figure 154. LignoForce system for lignin recovery from black liquor.          415
  • Figure 155. Sequential liquid-lignin recovery and purification (SLPR) system.         416
  • Figure 156. A-Recovery+ chemical recovery concept.       417
  • Figure 157.  Schematic of a biorefinery for production of carriers and chemicals. 419
  • Figure 158. Organosolv lignin.     421
  • Figure 159. Hydrolytic lignin powder.      422
  • Figure 160. Estimated consumption of lignin, 2019-2034 (000 MT).            425
  • Figure 161. Schematic of WISA plywood home.   428
  • Figure 162. Lignin based activated carbon.            430
  • Figure 163. Lignin/celluose precursor.     431
  • Figure 164. Pluumo.        444
  • Figure 165. ANDRITZ Lignin Recovery process.    453
  • Figure 166. Anpoly cellulose nanofiber hydrogel.               455
  • Figure 167. MEDICELLU™.            456
  • Figure 168. Asahi Kasei CNF fabric sheet.               465
  • Figure 169. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.            465
  • Figure 170. CNF nonwoven fabric.            466
  • Figure 171. Roof frame made of natural fiber.     475
  • Figure 172. Beyond Leather Materials product.   479
  • Figure 173. BIOLO e-commerce mailer bag made from PHA.          484
  • Figure 174. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc. 486
  • Figure 175. Fiber-based screw cap.           496
  • Figure 176. formicobio™ technology.      514
  • Figure 177. nanoforest-S.             516
  • Figure 178. nanoforest-PDP.       516
  • Figure 179. nanoforest-MB.        517
  • Figure 180. sunliquid® production process.           524
  • Figure 181. CuanSave film.           527
  • Figure 182. Celish.           528
  • Figure 183. Trunk lid incorporating CNF. 529
  • Figure 184. ELLEX products.         531
  • Figure 185. CNF-reinforced PP compounds.          531
  • Figure 186. Kirekira! toilet wipes.              532
  • Figure 187. Color CNF.   533
  • Figure 188. Rheocrysta spray.     538
  • Figure 189. DKS CNF products.   539
  • Figure 190. Domsjö process.       540
  • Figure 191. Mushroom leather. 549
  • Figure 192. CNF based on citrus peel.      550
  • Figure 193. Citrus cellulose nanofiber.    551
  • Figure 194. Filler Bank CNC products.      561
  • Figure 195. Fibers on kapok tree and after processing.     563
  • Figure 196.  TMP-Bio Process.    565
  • Figure 197. Flow chart of the lignocellulose biorefinery pilot plant in Leuna.          567
  • Figure 198. Water-repellent cellulose.    568
  • Figure 199. Cellulose Nanofiber (CNF) composite with polyethylene (PE). 570
  • Figure 200. PHA production process.       571
  • Figure 201. CNF products from Furukawa Electric.              572
  • Figure 202. AVAPTM process.     581
  • Figure 203. GreenPower+™ process.       581
  • Figure 204. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.            584
  • Figure 205. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer).              587
  • Figure 206. CNF gel.        593
  • Figure 207. Block nanocellulose material.              594
  • Figure 208. CNF products developed by Hokuetsu.            594
  • Figure 209. Marine leather products.      597
  • Figure 210. Inner Mettle Milk products. 600
  • Figure 211. Kami Shoji CNF products.      611
  • Figure 212. Dual Graft System.   614
  • Figure 213. Engine cover utilizing Kao CNF composite resins.        614
  • Figure 214. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).           615
  • Figure 215. Kel Labs yarn.             616
  • Figure 216. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side).     620
  • Figure 217. Lignin gel.    628
  • Figure 218. BioFlex process.        631
  • Figure 219. Nike Algae Ink graphic tee.   633
  • Figure 220. LX Process.  637
  • Figure 221. Made of Air's HexChar panels.            638
  • Figure 222. TransLeather.             639
  • Figure 223. Chitin nanofiber product.      644
  • Figure 224. Marusumi Paper cellulose nanofiber products.            645
  • Figure 225. FibriMa cellulose nanofiber powder. 646
  • Figure 226. METNIN™ Lignin refining technology.              649
  • Figure 227. IPA synthesis method.            652
  • Figure 228. MOGU-Wave panels.              655
  • Figure 229. CNF slurries.                656
  • Figure 230. Range of CNF products.          656
  • Figure 231. Reishi.           660
  • Figure 232. Compostable water pod.       676
  • Figure 233. Leather made from leaves.   677
  • Figure 234. Nike shoe with beLEAF™.      677
  • Figure 235. CNF clear sheets.      686
  • Figure 236. Oji Holdings CNF polycarbonate product.       687
  • Figure 237. Enfinity cellulosic ethanol technology process.            699
  • Figure 238. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 704
  • Figure 239. XCNF.            711
  • Figure 240: Plantrose process.    712
  • Figure 241. LOVR hemp leather. 715
  • Figure 242. CNF insulation flat plates.     717
  • Figure 243. Hansa lignin.               723
  • Figure 244. Manufacturing process for STARCEL. 726
  • Figure 245. Manufacturing process for STARCEL. 730
  • Figure 246. 3D printed cellulose shoe.    738
  • Figure 247. Lyocell process.         741
  • Figure 248. North Face Spiber Moon Parka.          745
  • Figure 249. PANGAIA LAB NXT GEN Hoodie.         745
  • Figure 250. Spider silk production.            747
  • Figure 251. Stora Enso lignin battery materials.   751
  • Figure 252. 2 wt.% CNF suspension.       752
  • Figure 253. BiNFi-s Dry Powder. 753
  • Figure 254. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.          753
  • Figure 255. Silk nanofiber (right) and cocoon of raw material.       754
  • Figure 256. Sulapac cosmetics containers.             755
  • Figure 257.  Sulzer equipment for PLA polymerization processing.              756
  • Figure 258. Solid Novolac Type lignin modified phenolic resins.    757
  • Figure 259. Teijin bioplastic film for door handles.             765
  • Figure 260. Corbion FDCA production process.    772
  • Figure 261. Comparison of weight reduction effect using CNF.     774
  • Figure 262. CNF resin products. 777
  • Figure 263. UPM biorefinery process.     779
  • Figure 264. Vegea production process.   783
  • Figure 265. The Proesa® Process.              784
  • Figure 266. Goldilocks process and applications. 785
  • Figure 267. Visolis’ Hybrid Bio-Thermocatalytic Process. 788
  • Figure 268. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.     791
  • Figure 269. Worn Again products.             795
  • Figure 270. Zelfo Technology GmbH CNF production process.       799
  • Figure 271. Liquid biofuel production and consumption (in thousands of m3), 2000-2021.                808
  • Figure 272. Distribution of global liquid biofuel production in 2022.            809
  • Figure 273. SWOT analysis for biofuels.  811
  • Figure 274.  Schematic of a biorefinery for production of carriers and chemicals. 820
  • Figure 275. Hydrolytic lignin powder.      823
  • Figure 276. SWOT analysis for energy crops in biofuels.  828
  • Figure 277. SWOT analysis for agricultural residues in biofuels.    830
  • Figure 278. SWOT analysis for Manure, sewage sludge and organic waste in biofuels.        831
  • Figure 279. SWOT analysis for forestry and wood waste in biofuels.           833
  • Figure 280. Range of biomass cost by feedstock type.      833
  • Figure 281. Regional production of biodiesel (billion litres).           835
  • Figure 282. SWOT analysis for biodiesel. 837
  • Figure 283. Flow chart for biodiesel production. 841
  • Figure 284. Biodiesel (B20) average prices, current and historical, USD/litre.          847
  • Figure 285. Global biodiesel consumption, 2010-2034 (M litres/year).      848
  • Figure 286. SWOT analysis for renewable iesel.  851
  • Figure 287. Global renewable diesel consumption, to 2033 (M litres/year).            852
  • Figure 288. SWOT analysis for Bio-aviation fuel.  855
  • Figure 289. Global bio-jet fuel consumption to 2033 (Million litres/year). 859
  • Figure 290. SWOT analysis biomethanol.               862
  • Figure 291. Renewable Methanol Production Processes from Different Feedstocks.           863
  • Figure 292. Production of biomethane through anaerobic digestion and upgrading.           864
  • Figure 293. Production of biomethane through biomass gasification and methanation.    864
  • Figure 294. Production of biomethane through the Power to methane process.   865
  • Figure 295. SWOT analysis for ethanol.   867
  • Figure 296. Ethanol consumption 2010-2034 (million litres).         872
  • Figure 297. Properties of petrol and biobutanol. 873
  • Figure 298. Biobutanol production route.              874
  • Figure 299. Biogas and biomethane pathways.   876
  • Figure 300. Overview of biogas utilization.             878
  • Figure 301. Biogas and biomethane pathways.   879
  • Figure 302. Schematic overview of anaerobic digestion process for biomethane production.          880
  • Figure 303. Schematic overview of biomass gasification for biomethane production.         881
  • Figure 304. SWOT analysis for biogas.     882
  • Figure 305. Total syngas market by product in MM Nm³/h of Syngas, 2021.             886
  • Figure 306. SWOT analysis for biohydrogen.        888
  • Figure 307. Waste plastic production pathways to (A) diesel and (B) gasoline         893
  • Figure 308. Schematic for Pyrolysis of Scrap Tires.              894
  • Figure 309. Used tires conversion process.            895
  • Figure 310. Total syngas market by product in MM Nm³/h of Syngas, 2021.             897
  • Figure 311. Overview of biogas utilization.             898
  • Figure 312. Biogas and biomethane pathways.   899
  • Figure 313. SWOT analysis for chemical recycling of biofuels.       902
  • Figure 314. Process steps in the production of electrofuels.          903
  • Figure 315. Mapping storage technologies according to performance characteristics.        904
  • Figure 316. Production process for green hydrogen.         906
  • Figure 317. SWOT analysis for E-fuels.    907
  • Figure 318. E-liquids production routes. 908
  • Figure 319. Fischer-Tropsch liquid e-fuel products.            909
  • Figure 320. Resources required for liquid e-fuel production.         909
  • Figure 321. Levelized cost and fuel-switching CO2 prices of e-fuels.           913
  • Figure 322. Cost breakdown for e-fuels. 914
  • Figure 323.  Pathways for algal biomass conversion to biofuels.   916
  • Figure 324. SWOT analysis for algae-derived biofuels.     917
  • Figure 325. Algal biomass conversion process for biofuel production.        918
  • Figure 326. Classification and process technology according to carbon emission in ammonia production.  921
  • Figure 327. Green ammonia production and use.               922
  • Figure 328. Schematic of the Haber Bosch ammonia synthesis reaction.  924
  • Figure 329. Schematic of hydrogen production via steam methane reformation. 924
  • Figure 330. SWOT analysis for green ammonia.   926
  • Figure 331. Estimated production cost of green ammonia.             930
  • Figure 332. Projected annual ammonia production, million tons. 931
  • Figure 333. Bio-oil upgrading/fractionation techniques.  935
  • Figure 334. SWOT analysis for bio-oils.    936
  • Figure 335. ANDRITZ Lignin Recovery process.    946
  • Figure 336. FBPO process             957
  • Figure 337. Direct Air Capture Process.   961
  • Figure 338. CRI process. 963
  • Figure 339. Colyser process.        969
  • Figure 340. ECFORM electrolysis reactor schematic.          973
  • Figure 341. Dioxycle modular electrolyzer.            974
  • Figure 342. Domsjö process.       975
  • Figure 343. FuelPositive system. 982
  • Figure 344. INERATEC unit.           994
  • Figure 345. Infinitree swing method.       995
  • Figure 346. Enfinity cellulosic ethanol technology process.            1021
  • Figure 347: Plantrose process.    1027
  • Figure 348. O12 Reactor.              1042
  • Figure 349. Sunglasses with lenses made from CO2-derived materials.     1042
  • Figure 350. CO2 made car part.  1043
  • Figure 351. The Velocys process.               1045
  • Figure 352. The Proesa® Process.              1047
  • Figure 353. Goldilocks process and applications. 1049
  • Figure 354. Paints and coatings industry by market segmentation 2019-2020.        1054
  • Figure 355. PHA family. 1070
  • Figure 356. Market revenues for biobased paints and coatings, 2018-2034 (billions USD). 1080
  • Figure 357. Dulux Better Living Air Clean Biobased.           1082
  • Figure 358: NCCTM Process.        1101
  • Figure 359: CNC produced at Tech Futures’ pilot plant; cloudy suspension (1 wt.%), gel-like (10 wt.%), flake-like crystals, and very fine powder. Product advantages include:         1101
  • Figure 360. Cellugy materials.     1102
  • Figure 361. EcoLine® 3690 (left) vs Solvent-Based Competitor Coating (right).       1106
  • Figure 362. Rheocrysta spray.     1111
  • Figure 363. DKS CNF products.   1112
  • Figure 364. Domsjö process.       1113
  • Figure 365. CNF gel.        1127
  • Figure 366. Block nanocellulose material.              1127
  • Figure 367. CNF products developed by Hokuetsu.            1128
  • Figure 368. BioFlex process.        1139
  • Figure 369. Marusumi Paper cellulose nanofiber products.            1141
  • Figure 370: Fluorene cellulose ® powder.              1158
  • Figure 371. XCNF.            1162
  • Figure 372. Spider silk production.            1170
  • Figure 373. CNF dispersion and powder from Starlite.      1172
  • Figure 374. 2 wt.% CNF suspension.       1175
  • Figure 375. BiNFi-s Dry Powder. 1176
  • Figure 376. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.          1176
  • Figure 377. Silk nanofiber (right) and cocoon of raw material.       1177
  • Figure 378. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.     1181
  • Figure 379. Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film.        1182
  • Figure 380. Bioalkyd products.   1185
  • Figure 381. Carbon emissions by sector. 1186
  • Figure 382. Overview of CCUS market     1188
  • Figure 383. Pathways for CO2 use.           1188
  • Figure 384. Regional capacity share 2022-2030.   1190
  • Figure 385. Global investment in carbon capture 2010-2022, millions USD.            1195
  • Figure 386. Carbon Capture, Utilization, & Storage (CCUS) Market Map.  1199
  • Figure 387. CCS deployment projects, historical and to 2035.        1200
  • Figure 388. Existing and planned CCS projects.    1208
  • Figure 389. CCUS Value Chain.    1208
  • Figure 390. Schematic of CCUS process. 1210
  • Figure 391. Pathways for CO2 utilization and removal.     1211
  • Figure 392. A pre-combustion capture system.   1217
  • Figure 393. Carbon dioxide utilization and removal cycle.               1220
  • Figure 394. Various pathways for CO2 utilization.               1221
  • Figure 395. Example of underground carbon dioxide storage.       1222
  • Figure 396. Transport of CCS technologies.           1223
  • Figure 397. Railroad car for liquid CO₂ transport 1225
  • Figure 398. Estimated costs of capture of one metric ton of carbon dioxide (Co2) by sector.           1227
  • Figure 399. Cost of CO2 transported at different flowrates            1228
  • Figure 400. Cost estimates for long-distance CO2 transport.          1229
  • Figure 401. CO2 capture and separation technology.        1230
  • Figure 402. Global capacity of point-source carbon capture and storage facilities.                1232
  • Figure 403. Global carbon capture capacity by CO2 source, 2022.                1233
  • Figure 404. Global carbon capture capacity by CO2 source, 2030.                1234
  • Figure 405. Global carbon capture capacity by CO2 endpoint, 2021 and 2030.        1235
  • Figure 406. Post-combustion carbon capture process.     1237
  • Figure 407. Postcombustion CO2 Capture in a Coal-Fired Power Plant.      1238
  • Figure 408. Oxy-combustion carbon capture process.      1239
  • Figure 409. Liquid or supercritical CO2 carbon capture process.   1240
  • Figure 410. Pre-combustion carbon capture process.       1241
  • Figure 411. Amine-based absorption technology.              1244
  • Figure 412. Pressure swing absorption technology.           1248
  • Figure 413. Membrane separation technology.   1250
  • Figure 414. Liquid or supercritical CO2 (cryogenic) distillation.      1250
  • Figure 415. Process schematic of chemical looping.           1251
  • Figure 416. Calix advanced calcination reactor.   1252
  • Figure 417. Fuel Cell CO2 Capture diagram.           1253
  • Figure 418. Microalgal carbon capture.   1254
  • Figure 419. Cost of carbon capture.          1259
  • Figure 420. CO2 capture capacity to 2030, MtCO2.            1260
  • Figure 421. Capacity of large-scale CO2 capture projects, current and planned vs. the Net Zero Scenario, 2020-2030.                1261
  • Figure 422. Bioenergy with carbon capture and storage (BECCS) process. 1262
  • Figure 423. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse. 1265
  • Figure 424. Global CO2 capture from biomass and DAC in the Net Zero Scenario. 1266
  • Figure 425.  DAC technologies.   1268
  • Figure 426. Schematic of Climeworks DAC system.            1269
  • Figure 427. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.        1270
  • Figure 428.  Flow diagram for solid sorbent DAC.                1270
  • Figure 429. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.  1271
  • Figure 430. Global capacity of direct air capture facilities.               1275
  • Figure 431. Global map of DAC and CCS plants.   1280
  • Figure 432. Schematic of costs of DAC technologies.         1282
  • Figure 433. DAC cost breakdown and comparison.            1283
  • Figure 434. Operating costs of generic liquid and solid-based DAC systems.           1285
  • Figure 435. Schematic of biochar production.      1289
  • Figure 436. CO2 non-conversion and conversion technology, advantages and disadvantages.        1291
  • Figure 437. Applications for CO2.              1294
  • Figure 438. Cost to capture one metric ton of carbon, by sector. 1294
  • Figure 439. Life cycle of CO2-derived products and services.         1296
  • Figure 440. Co2 utilization pathways and products.           1299
  • Figure 441. Plasma technology configurations and their advantages and disadvantages for CO2 conversion.           1303
  • Figure 442. LanzaTech gas-fermentation process.              1307
  • Figure 443. Schematic of biological CO2 conversion into e-fuels. 1308
  • Figure 444. Econic catalyst systems.        1310
  • Figure 445. Mineral carbonation processes.         1312
  • Figure 446. Conversion route for CO2-derived fuels and chemical intermediates. 1315
  • Figure 447.  Conversion pathways for CO2-derived methane, methanol and diesel.            1316
  • Figure 448. CO2 feedstock for the production of e-methanol.      1317
  • Figure 449. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c     1319
  • Figure 450. Audi synthetic fuels. 1320
  • Figure 451.  Conversion of CO2 into chemicals and fuels via different pathways.  1323
  • Figure 452.  Conversion pathways for CO2-derived polymeric materials   1325
  • Figure 453. Conversion pathway for CO2-derived building materials.         1328
  • Figure 454. Schematic of CCUS in cement sector.               1329
  • Figure 455. Carbon8 Systems’ ACT process.          1331
  • Figure 456. CO2 utilization in the Carbon Cure process.   1332
  • Figure 457. Algal cultivation in the desert.            1336
  • Figure 458. Example pathways for products from cyanobacteria. 1337
  • Figure 459. Typical Flow Diagram for CO2 EOR.   1340
  • Figure 460. Large CO2-EOR projects in different project stages by industry.            1341
  • Figure 461. Carbon mineralization pathways.      1344
  • Figure 462. CO2 Storage Overview - Site Options                1347
  • Figure 463.  CO2 injection into a saline formation while producing brine for beneficial use.             1350
  • Figure 464. Subsurface storage cost estimation. 1354
  • Figure 465. Air Products production process.       1357
  • Figure 466. Aker carbon capture system.               1359
  • Figure 467. ALGIECEL PhotoBioReactor. 1361
  • Figure 468. Schematic of carbon capture solar project.    1365
  • Figure 469. Aspiring Materials method.  1366
  • Figure 470. Aymium’s Biocarbon production.       1368
  • Figure 471. Carbonminer technology.     1382
  • Figure 472. Carbon Blade system.             1385
  • Figure 473. CarbonCure Technology.       1391
  • Figure 474. Direct Air Capture Process.   1392
  • Figure 475. CRI process. 1395
  • Figure 476. PCCSD Project in China.          1407
  • Figure 477. Orca facility.                1408
  • Figure 478. Process flow scheme of Compact Carbon Capture Plant.          1412
  • Figure 479. Colyser process.        1413
  • Figure 480. ECFORM electrolysis reactor schematic.          1418
  • Figure 481. Dioxycle modular electrolyzer.            1419
  • Figure 482. Fuel Cell Carbon Capture.      1434
  • Figure 483. Topsoe's SynCORTM autothermal reforming technology.        1439
  • Figure 484. Carbon Capture balloon.        1441
  • Figure 485. Holy Grail DAC system.           1443
  • Figure 486. INERATEC unit.           1447
  • Figure 487. Infinitree swing method.       1448
  • Figure 488. Audi/Krajete unit.    1452
  • Figure 489. Made of Air's HexChar panels.            1461
  • Figure 490. Mosaic Materials MOFs.        1468
  • Figure 491. Neustark modular plant.        1471
  • Figure 492. OCOchem’s Carbon Flux Electrolyzer.               1476
  • Figure 493. ZerCaL™ process.      1478
  • Figure 494. CCS project at Arthit offshore gas field.           1486
  • Figure 495. RepAir technology.  1489
  • Figure 496. Soletair Power unit. 1499
  • Figure 497. Sunfire process for Blue Crude production.    1504
  • Figure 498. CALF-20 has been integrated into a rotating CO2 capture machine (left), which operates inside a CO2 plant module (right).  1506
  • Figure 499. O12 Reactor.              1512
  • Figure 500. Sunglasses with lenses made from CO2-derived materials.     1512
  • Figure 501. CO2 made car part.  1512
  • Figure 502. Global production, use, and fate of polymer resins, synthetic fibers, and additives.     1519
  • Figure 503. Current management systems for waste plastics.       1520
  • Figure 504. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tons).               1531
  • Figure 505. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tons).               1532
  • Figure 506. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tons).             1533
  • Figure 507. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tons).               1534
  • Figure 508. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tons).         1535
  • Figure 509. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tons).                1536
  • Figure 510. Global polymer demand in Europe, by recycling technology 2022-2040 (million tons).               1538
  • Figure 511. Global polymer demand in North America, by recycling technology 2022-2040 (million tons). 1539
  • Figure 512. Global polymer demand in South America, by recycling technology 2022-2040 (million tons). 1540
  • Figure 513. Global polymer demand in Asia, by recycling technology 2022-2040 (million tons).     1541
  • Figure 514. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tons).              1542
  • Figure 515. Global polymer demand in Africa, by recycling technology 2022-2040 (million tons).  1543
  • Figure 516. Global polymer demand 2022-2040 by region, for PE (millions tons). 1545
  • Figure 517. Global polymer demand 2022-2040 by region, for PP (millions tons). 1546
  • Figure 518. Global polymer demand 2022-2040 by region, for PET (millions tons).               1547
  • Figure 519. Global polymer demand 2022-2040 by region, for PS (millions tons). 1548
  • Figure 520. Global polymer demand 2022-2040 by region, for NY (millions tons). 1549
  • Figure 521. Global polymer demand 2022-2040 by region, for others (millions tons).         1550
  • Figure 522. Market map for advanced recycling. 1558
  • Figure 523. Value chain for advanced recycling market.   1559
  • Figure 524. Schematic layout of a pyrolysis plant.               1562
  • Figure 525. Waste plastic production pathways to (A) diesel and (B) gasoline         1566
  • Figure 526. Schematic for Pyrolysis of Scrap Tires.              1570
  • Figure 527. Used tires conversion process.            1571
  • Figure 528. SWOT analysis-pyrolysis for advanced recycling.          1572
  • Figure 529. Total syngas market by product in MM Nm³/h of Syngas, 2021.             1575
  • Figure 530. Overview of biogas utilization.             1576
  • Figure 531. Biogas and biomethane pathways.   1577
  • Figure 532. SWOT analysis-gasification for advanced recycling.    1578
  • Figure 533. SWOT analysis-dissoluton for advanced recycling.      1581
  • Figure 534. Products obtained through the different solvolysis pathways of PET, PU, and PA.         1582
  • Figure 535. SWOT analysis-Hydrolysis for advanced chemical recycling.    1585
  • Figure 536. SWOT analysis-Enzymolysis for advanced chemical recycling. 1586
  • Figure 537. SWOT analysis-Methanolysis for advanced chemical recycling.              1587
  • Figure 538. SWOT analysis-Glycolysis for advanced chemical recycling.     1589
  • Figure 539. SWOT analysis-Aminolysis for advanced chemical recycling.   1590
  • Figure 540. NewCycling process.               1605
  • Figure 541. ChemCyclingTM prototypes. 1608
  • Figure 542. ChemCycling circle by BASF. 1609
  • Figure 543. Recycled carbon fibers obtained through the R3FIBER process.            1610
  • Figure 544. Cassandra Oil  process.           1620
  • Figure 545. CuRe Technology process.    1627
  • Figure 546. MoReTec.    1656
  • Figure 547. Chemical decomposition process of polyurethane foam.         1658
  • Figure 548. Schematic Process of Plastic Energy’s TAC Chemical Recycling.              1669
  • Figure 549. Easy-tear film material from recycled material.            1682
  • Figure 550. Polyester fabric made from recycled monomers.        1685
  • Figure 551. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right).    1693
  • Figure 552. Teijin Frontier Co., Ltd. Depolymerisation process.    1697
  • Figure 553. The Velocys process.               1703
  • Figure 554. The Proesa® Process.              1704
  • Figure 555. Worn Again products.             1705

 

 

The Global Market for Renewable and Sustainable Materials 2024-2034
The Global Market for Renewable and Sustainable Materials 2024-2034
PDF download.

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.