- Published: October 2024
- Pages: 1,002
- Tables: 449
- Figures: 149
The new era of chemicals represents a paradigm shift in the chemical industry, driven by the need for sustainability, technological advancements, and changing market demands. This transformation is characterized by a move away from fossil-based feedstocks towards renewable and circular resources, coupled with innovative production methods that minimize environmental impact. Key aspects of this new era include:
- Sustainable Feedstocks: Utilization of biomass, CO2, and waste materials as raw materials for chemical production, reducing dependence on fossil resources.
- Green Chemistry: Application of principles that reduce or eliminate the use and generation of hazardous substances in chemical processes.
- Circular Economy: Design of chemical products and processes for reuse, recycling, and upcycling, minimizing waste and maximizing resource efficiency.
- Electrification: Integration of renewable electricity in chemical processes, including electrocatalysis and electrochemical synthesis.
- Digitalization: Use of AI, machine learning, and advanced analytics to optimize processes and accelerate innovation.
Technology areas covered in this new era include:
- Biorefining: Converting biomass into a spectrum of valuable chemicals and materials.
- CO2 Utilization: Capturing and converting CO2 into chemicals, fuels, and materials.
- Advanced Catalysis: Developing highly selective and efficient catalysts for sustainable processes.
- Synthetic Biology: Engineering microorganisms to produce chemicals from renewable feedstocks.
- Flow Chemistry: Continuous manufacturing processes for improved efficiency and control.
- Additive Manufacturing: 3D printing of chemicals and materials for customized production.
- Advanced Materials: Developing sustainable, high-performance materials like bioplastics and advanced composites.
- Green Solvents: Creating bio-based and low-impact solvents to replace harmful traditional solvents.
- Process Intensification: Designing more compact, efficient, and integrated chemical processes.
- Waste Valorization: Converting waste streams into valuable chemicals and materials.
- Artificial Intelligence in Chemical Design: The use of AI and machine learning for molecular design, process optimization, and predictive modeling is becoming a significant market area in chemical innovation.
- Personalized Chemistry: This includes the development of customized chemicals and materials for personalized medicine, cosmetics, and other consumer products.
- Quantum Chemistry: Although still emerging, this field uses quantum mechanical principles to develop new materials and chemical processes, potentially revolutionizing various industries.
This new era of chemicals is not just about individual technologies but their integration into holistic, sustainable chemical value chains. It promises to deliver innovative solutions to global challenges while creating new economic opportunities and reducing the environmental footprint of the chemical industry. This report analyzes the sustainable chemicals market, offering insights into trends, technologies, and market opportunities from 2025 to 2035. Report contents include:
- Market Drivers and Trends
- Sustainable Feedstocks and Green Chemistry
- Circular Economy in the Chemical Industry
- Emerging Technologies and Manufacturing Processes
- Electrification of chemical processes
- Digitalization and Industry 4.0 applications
- Advanced manufacturing technologies
- Biorefining and industrial biotechnology
- CO2 utilization technologies
- Advanced catalysts
- Synthetic biology and metabolic engineering
- Market Segments and Applications:
- Sustainable materials and polymers
- Green solvents and process chemicals
- Sustainable agriculture chemicals
- Renewable energy technologies
- Sustainable construction materials
- Green cosmetics and personal care products
- Sustainable packaging
- Eco-friendly paints and coatings
- Green electronics
- Sustainable textiles and fibers
- Alternative fuels and lubricants
- Pharmaceuticals and healthcare applications
- Water treatment and purification solutions
- Carbon capture and utilization products
- Industrial biotechnology products
- Advanced materials for 3D printing
- Regulatory Landscape and Policy Analysis
- Economic Aspects and Business Models
- Future Outlook and Emerging Trends
- Company Profiles and Competitive Landscape-profiles of over 1,000 key players in the sustainable chemicals market, analyzing their strategies, products, and market positions. Companies profiled include Aanika Biosciences, ACCUREC-Recycling GmbH, Aduro Clean Technologies, Aemetis, Agra Energy, Agilyx, Air Company, Aircela, Algenol, Allozymes, Alpha Biofuels, AM Green, Amyris, Andritz, APChemi, Apeiron Bioenergy, Aperam BioEnergia, Applied Research Associates (ARA), Aralez Bio, Arcadia eFuels, Ascend Elements, ASB Biodiesel, Atmonia, Avalon BioEnergy, Avantium, Avioxx, BANiQL, BASF, BBCA Biochemical & GALACTIC Lactic Acid, BBGI, BDI-BioEnergy International, BEE Biofuel, Benefuel, Bio2Oil, Bio-Oils, Biofibre GmbH, Bioform Technologies, Biofine Technology, Biofy, BiogasClean, BIOD Energy, Biojet, Biokemik, BIOLO, BioLogiQ, Inc., Biome Bioplastics, Biomass Resin Holdings Co., Ltd., Biomatter, BIO-FED, BIO-LUTIONS International AG, Bioplastech Ltd, BioSmart Nano, BIOTEC GmbH & Co. KG, Biovectra, Biovox GmbH, BlockTexx Pty Ltd., Bloom Biorenewables, Blue BioFuels, Blue Ocean Closures, BlueAlp Technology, Bluepha Beijing Lanjing Microbiology Technology Co., Ltd., BOBST, Borealis AG, Braskem, Braven Environmental, Brightmark Energy, Brightplus Oy, bse Methanol, BTG Bioliquids, Bucha Bio, Business Innovation Partners Co., Ltd., Buyo, Byogy Renewables, C1 Green Chemicals, Caphenia, Carbiolice, Carbios, Carbonade, CarbonBridge, Carbon Collect, Carbon Engineering, Carbon Infinity, Carbon Neutral Fuels, Carbon Recycling International, Carbon Sink, Carbyon, Cardia Bioplastics Ltd., CARAPAC Company, Cargill, Cascade Biocatalysts, Cass Materials Pty Ltd, Cassandra Oil, Casterra Ag, Celanese Corporation, Celtic Renewables, Cellugy, Cellutech AB (Stora Enso), Cereal Process Technologies (CPT), CERT Systems, CF Industries Holdings, Chemkey Advanced Materials Technology (Shanghai) Co., Ltd., Chemol Company (Seydel), Chitose Bio Evolution, Circla Nordic, Cirba Solutions, CJ Biomaterials, Inc., CleanJoule, Climeworks, Coastgrass ApS, CNF Biofuel, Concord Blue Engineering, Constructive Bio, Cool Planet Energy Systems, Corumat, Inc., Corsair Group International, Coval Energy, Crimson Renewable Energy, Cruz Foam, Cryotech, CuanTec Ltd., Cyclic Materials, C-Zero, Daicel Polymer Ltd., Daio Paper Corporation, Danimer Scientific, D-CRBN, Debut Biotechnology, DIC Corporation, DIC Products, Inc., Diamond Green Diesel, Dimensional Energy, Dioxide Materials, Dioxycle, DKS Co. Ltd., Domsjö Fabriker, Dow, Inc., DuFor Resins B.V., DuPont, Earthodic Pty Ltd., EarthForm, EcoCeres, Eco Environmental, Eco Fuel Technology, Ecomann Biotechnology Co., Ltd., Ecoshell, Electro-Active Technologies, Eligo Bioscience, Enim, Enginzyme AB, Enzymit, Erebagen, EV Biotech, eversyn, Evolutor, FabricNano, FlexSea, Floreon, Gevo, Ginkgo Bioworks, Heraeus Remloy, HyProMag, Hyfé, Invizyne Technologies, JPM Silicon GmbH, LanzaTech, Librec AG, Lygos, MagREEsource, Mammoth Biosciences, MetaCycler BioInnovations, Mi Terro, NeoMetals, Noveon Magnetics, Novozymes A/S, NTx, Origin Materials, Phoenix Tailings, PlantSwitch, Posco, Pow.bio, Protein Evolution, REEtec, Rivalia Chemical, Samsara Eco, SiTration, Solugen, Sumitomo and Summit Nanotech, Synthego, Taiwan Bio-Manufacturing Corp. (TBMC), Teijin Limited, Twist Bioscience, Uluu, Van Heron Labs, Verde Bioresins, Versalis, Xampla and more....
- Market Forecasts and Data Analysis
This report is relevant for:
- Chemical industry executives and strategists
- Sustainability officers and environmental managers
- Investors and financial analysts
- R&D professionals
- Policy makers and regulatory bodies
- Environmental NGOs
- Academic researchers
1 EXECUTIVE SUMMARY 51
- 1.1 The Need for a New Era in the Chemical Industry 51
- 1.2 Defining the New Era of Chemicals 52
- 1.3 Global Drivers and Trends 52
- 1.4 The Changing Landscape of the Chemical Industry 53
- 1.4.1 Historical Context: From Coal to Oil to Renewables 53
- 1.4.2 Current State of the Global Chemical Industry 53
- 1.4.3 Environmental Challenges and Regulatory Pressures 54
- 1.4.4 Shifting Consumer Demands and Market Dynamics 54
- 1.4.5 The Role of Digitalization and Industry 4.0 54
- 1.5 Emerging and Transforming Markets in the New Era of Chemicals 56
- 1.5.1 Sustainable Agriculture Chemicals 56
- 1.5.2 Green Cosmetics and Personal Care 56
- 1.5.3 Sustainable Packaging 57
- 1.5.4 Eco-friendly Paints and Coatings 57
- 1.5.5 Alternative Fuels and Lubricants 58
- 1.5.6 Pharmaceuticals and Healthcare 58
- 1.5.7 Water Treatment and Purification 59
- 1.5.8 Carbon Capture and Utilization Products 59
- 1.5.9 Advanced Materials for 3D Printing 60
- 1.5.10 Sustainable Mining and Metallurgy 61
2 FEEDSTOCKS 62
- 2.1 Sustainable Feedstocks: The Foundation of the New Era 62
- 2.2 Overview of Sustainable Feedstock Options 62
- 2.3 Biomass as a Chemical Feedstock 63
- 2.3.1 Types of Biomass and Their Chemical Compositions 63
- 2.3.2 Pretreatment and Conversion Technologies 63
- 2.3.3 Challenges in Scaling Up Biomass Utilization 64
- 2.4 CO2 as a Carbon Source 64
- 2.4.1 CO2 Capture Technologies 65
- 2.4.2 Chemical Conversion Pathways for CO2 65
- 2.4.3 Economic and Technical Barriers to CO2 Utilization 66
- 2.5 Waste Valorization 67
- 2.5.1 Municipal Solid Waste as a Feedstock 67
- 2.5.2 Industrial Waste Streams and By-products 67
- 2.5.3 Plastic Waste Recycling and Upcycling 68
- 2.6 Renewable (Green) Hydrogen 69
- 2.6.1 Electrolysis Technologies 69
- 2.6.2 Integration of Renewable Energy in Hydrogen Production 70
- 2.6.3 Hydrogen's Role in Chemical Synthesis 70
3 GREEN CHEMISTRY PRINCIPLES AND APPLICATIONS 72
- 3.1 The 12 Principles of Green Chemistry 72
- 3.2 Atom Economy and Step Economy in Synthesis 72
- 3.3 Solvent Reduction and Green Solvents 73
- 3.3.1 Water as a Reaction Medium 73
- 3.3.2 Ionic Liquids and Deep Eutectic Solvents 74
- 3.3.3 Supercritical Fluids in Chemical Processes 74
- 3.4 Catalysis for Green Chemistry 74
- 3.4.1 Biocatalysis and Enzyme Engineering 74
- 3.4.2 Heterogeneous Catalysis Advancements 75
- 3.4.3 Photocatalysis and Electrocatalysis 76
- 3.5 Green Metrics and Life Cycle Assessment in Chemistry 77
4 CIRCULAR ECONOMY IN THE CHEMICAL INDUSTRY 79
- 4.1 Principles of Circular Economy 79
- 4.2 Design for Circularity in Chemical Products 80
- 4.3 Chemical Recycling Technologies 81
- 4.3.1 Applications 81
- 4.3.2 Pyrolysis 82
- 4.3.2.1 Non-catalytic 82
- 4.3.2.2 Catalytic 83
- 4.3.2.2.1 Polystyrene pyrolysis 85
- 4.3.2.2.2 Pyrolysis for production of bio fuel 86
- 4.3.2.2.3 Used tires pyrolysis 89
- 4.3.2.2.3.1 Conversion to biofuel 90
- 4.3.2.2.4 Co-pyrolysis of biomass and plastic wastes 91
- 4.3.2.3 Companies and capacities 92
- 4.3.3 Gasification 93
- 4.3.3.1 Technology overview 93
- 4.3.3.1.1 Syngas conversion to methanol 94
- 4.3.3.1.2 Biomass gasification and syngas fermentation 96
- 4.3.3.1.3 Biomass gasification and syngas thermochemical conversion 97
- 4.3.3.2 Companies and capacities (current and planned) 97
- 4.3.3.1 Technology overview 93
- 4.3.4 Dissolution 98
- 4.3.4.1 Technology overview 98
- 4.3.4.2 Companies and capacities (current and planned) 99
- 4.3.5 Depolymerisation 99
- 4.3.5.1 Hydrolysis 101
- 4.3.5.1.1 Technology overview 101
- 4.3.5.2 Enzymolysis 102
- 4.3.5.2.1 Technology overview 102
- 4.3.5.3 Methanolysis 103
- 4.3.5.3.1 Technology overview 103
- 4.3.5.4 Glycolysis 104
- 4.3.5.4.1 Technology overview 104
- 4.3.5.5 Aminolysis 105
- 4.3.5.5.1 Technology overview 105
- 4.3.5.6 Companies and capacities (current and planned) 106
- 4.3.5.1 Hydrolysis 101
- 4.3.6 Other advanced chemical recycling technologies 107
- 4.3.6.1 Hydrothermal cracking 107
- 4.3.6.2 Pyrolysis with in-line reforming 107
- 4.3.6.3 Microwave-assisted pyrolysis 108
- 4.3.6.4 Plasma pyrolysis 109
- 4.3.6.5 Plasma gasification 109
- 4.3.6.6 Supercritical fluids 110
- 4.4 Upcycling of Chemical Waste 110
- 4.5 Circular Business Models in the Chemical Sector 111
- 4.6 Challenges and Opportunities in Implementing Circularity 112
- 4.7 Companies 113
5 ELECTRIFICATION OF CHEMICAL PROCESSES 124
- 5.1 The Role of Renewable Electricity in Chemical Production 124
- 5.2 Electrochemical Synthesis 125
- 5.2.1 Electroorganic Synthesis 126
- 5.2.2 Electrochemical CO2 Reduction 127
- 5.2.3 Electrochemical Nitrogen Fixation 127
- 5.3 Plasma Chemistry 128
- 5.4 Microwave-Assisted Chemistry 128
- 5.5 Integration of Power-to-X Technologies in Chemical Production 129
6 DIGITALIZATION AND INDUSTRY 4.0 IN CHEMISTRY 130
- 6.1 Big Data and Advanced Analytics in Chemical Research 130
- 6.2 Artificial Intelligence and Machine Learning Applications 131
- 6.2.1 In Silico Design of Molecules and Materials 132
- 6.2.2 Process Optimization and Predictive Maintenance 132
- 6.2.3 Automated Synthesis and High-Throughput Experimentation 133
- 6.3 Digital Twins in Chemical Plant Operations 133
- 6.4 Blockchain for Supply Chain Transparency and Traceability 135
- 6.5 Cybersecurity Challenges in the Digitalized Chemical Industry 136
7 ADVANCED MANUFACTURING TECHNOLOGIES 137
- 7.1 Continuous Flow Chemistry 138
- 7.1.1 Microreactors and Process Intensification 138
- 7.1.2 Advantages in Pharmaceuticals and Fine Chemicals 139
- 7.1.3 Challenges in Scale-up and Implementation 140
- 7.2 Modular and Distributed Manufacturing 140
- 7.3 3D Printing of Chemicals and Materials 141
- 7.3.1 Direct Ink Writing and Reactive Printing 141
- 7.3.2 Applications in Custom Synthesis and Formulation 142
- 7.4 Advanced Process Control and Real-time Monitoring 143
- 7.5 Flexible and Adaptable Production Systems 143
8 BIOREFINING AND INDUSTRIAL BIOTECHNOLOGY 145
- 8.1 Biorefinery Concepts and Configurations 145
- 8.1.1 Biorefinery Classifications 146
- 8.1.2 Biorefinery Configurations 147
- 8.1.2.1 Lignocellulosic Biorefinery: 147
- 8.1.2.2 Whole-Crop Biorefinery 147
- 8.1.2.3 Green Biorefinery 147
- 8.1.2.4 Thermochemical Biorefinery 148
- 8.1.2.5 Marine Biorefinery 148
- 8.1.2.6 Integrated Forest Biorefinery 148
- 8.1.2.7 Integration and Process Intensification 149
- 8.2 Lignocellulosic Biomass Processing 150
- 8.3 Algal Biorefineries 150
- 8.4 Upstream Processing 151
- 8.4.1 Cell Culture 151
- 8.4.1.1 Overview 151
- 8.4.1.2 Types of Cell Culture Systems 151
- 8.4.1.3 Factors Affecting Cell Culture Performance 152
- 8.4.1.4 Advances in Cell Culture Technology 153
- 8.4.1.4.1 Single-use systems 153
- 8.4.1.4.2 Process analytical technology (PAT) 153
- 8.4.1.4.3 Cell line development 153
- 8.4.1 Cell Culture 151
- 8.5 Fermentation 154
- 8.5.1 Overview 154
- 8.5.1.1 Types of Fermentation Processes 154
- 8.5.1.2 Factors Affecting Fermentation Performance 154
- 8.5.1.3 Advances in Fermentation Technology 155
- 8.5.1.3.1 High-cell-density fermentation 155
- 8.5.1.3.2 Continuous processing 155
- 8.5.1.3.3 Metabolic engineering 156
- 8.5.1 Overview 154
- 8.6 Downstream Processing 156
- 8.6.1 Purification 156
- 8.6.1.1 Overview 156
- 8.6.1.2 Types of Purification Methods 156
- 8.6.1.2.1 Factors Affecting Purification Performance 156
- 8.6.1.3 Advances in Purification Technology 157
- 8.6.1.3.1 Affinity chromatography 157
- 8.6.1.3.2 Membrane chromatography 158
- 8.6.1.3.3 Continuous chromatography 158
- 8.6.1 Purification 156
- 8.7 Formulation 159
- 8.7.1 Overview 159
- 8.7.1.1 Types of Formulation Methods 159
- 8.7.1.2 Factors Affecting Formulation Performance 159
- 8.7.1.3 Advances in Formulation Technology 160
- 8.7.1.3.1 Controlled release 160
- 8.7.1.3.2 Nanoparticle formulation 160
- 8.7.1.3.3 3D printing 160
- 8.7.1 Overview 159
- 8.8 Bioprocess Development 161
- 8.8.1 Scale-up 161
- 8.8.1.1 Overview 161
- 8.8.1.2 Factors Affecting Scale-up Performance 161
- 8.8.1.3 Scale-up Strategies 162
- 8.8.2 Optimization 163
- 8.8.2.1 Overview 163
- 8.8.2.2 Factors Affecting Optimization Performance 163
- 8.8.2.3 Optimization Strategies 164
- 8.8.1 Scale-up 161
- 8.9 Analytical Methods 165
- 8.9.1 Quality Control 165
- 8.9.1.1 Overview 165
- 8.9.1.2 Types of Quality Control Tests 165
- 8.9.1.3 Factors Affecting Quality Control Performance 165
- 8.9.2 Characterization 166
- 8.9.2.1 Overview 166
- 8.9.2.2 Types of Characterization Methods 167
- 8.9.2.3 Factors Affecting Characterization Performance 168
- 8.9.1 Quality Control 165
- 8.10 Scale of Production 169
- 8.10.1 Laboratory Scale 169
- 8.10.1.1 Overview 169
- 8.10.1.2 Scale and Equipment 169
- 8.10.1.3 Advantages 169
- 8.10.1.4 Disadvantages 170
- 8.10.2 Pilot Scale 170
- 8.10.2.1 Overview 170
- 8.10.2.2 Scale and Equipment 170
- 8.10.2.3 Advantages 171
- 8.10.2.4 Disadvantages 171
- 8.10.3 Commercial Scale 172
- 8.10.3.1 Overview 172
- 8.10.3.2 Scale and Equipment 172
- 8.10.3.3 Advantages 173
- 8.10.3.4 Disadvantages 173
- 8.10.1 Laboratory Scale 169
- 8.11 Mode of Operation 174
- 8.11.1 Batch Production 174
- 8.11.1.1 Overview 174
- 8.11.1.2 Advantages 175
- 8.11.1.3 Disadvantages 175
- 8.11.1.4 Applications 175
- 8.11.2 Fed-batch Production 176
- 8.11.2.1 Overview 176
- 8.11.2.2 Advantages 176
- 8.11.2.3 Disadvantages 176
- 8.11.2.4 Applications 177
- 8.11.3 Continuous Production 177
- 8.11.3.1 Overview 177
- 8.11.3.2 Advantages 177
- 8.11.3.3 Disadvantages 178
- 8.11.3.4 Applications 178
- 8.11.4 Cell factories for biomanufacturing 178
- 8.11.5 Perfusion Culture 180
- 8.11.5.1 Overview 180
- 8.11.5.2 Advantages 180
- 8.11.5.3 Disadvantages 180
- 8.11.5.4 Applications 181
- 8.11.6 Other Modes of Operation 181
- 8.11.6.1 Immobilized Cell Culture 181
- 8.11.6.2 Two-Stage Production 181
- 8.11.6.3 Hybrid Systems 181
- 8.11.1 Batch Production 174
- 8.12 Host Organisms 182
9 CO2 UTILIZATION TECHNOLOGIES 185
- 9.1 Overview 185
- 9.2 CO2 non-conversion and conversion technology 185
- 9.3 Carbon utilization business models 190
- 9.3.1 Benefits of carbon utilization 191
- 9.3.2 Market challenges 193
- 9.4 Co2 utilization pathways 194
- 9.5 Conversion processes 196
- 9.5.1 Thermochemical 196
- 9.5.1.1 Process overview 197
- 9.5.1.2 Plasma-assisted CO2 conversion 199
- 9.5.2 Electrochemical conversion of CO2 200
- 9.5.2.1 Process overview 201
- 9.5.3 Photocatalytic and photothermal catalytic conversion of CO2 202
- 9.5.4 Catalytic conversion of CO2 203
- 9.5.5 Biological conversion of CO2 203
- 9.5.6 Copolymerization of CO2 206
- 9.5.7 Mineral carbonation 207
- 9.5.1 Thermochemical 196
- 9.6 CO2-derived products 211
- 9.6.1 Fuels 211
- 9.6.1.1 Overview 212
- 9.6.1.2 Production routes 214
- 9.6.1.3 CO₂ -fuels in road vehicles 215
- 9.6.1.4 CO₂ -fuels in shipping 216
- 9.6.1.5 CO₂ -fuels in aviation 216
- 9.6.1.6 Power-to-methane 216
- 9.6.1.6.1 Biological fermentation 217
- 9.6.1.6.2 Costs 217
- 9.6.1.7 Algae based biofuels 220
- 9.6.1.8 CO₂-fuels from solar 221
- 9.6.1.9 Companies 223
- 9.6.1.10 Challenges 225
- 9.6.2 Chemicals and polymers 225
- 9.6.2.1 Polycarbonate from CO₂ 226
- 9.6.2.2 Carbon nanostructures 226
- 9.6.2.3 Scalability 228
- 9.6.2.4 Applications 229
- 9.6.2.4.1 Urea production 229
- 9.6.2.4.2 CO₂-derived polymers 229
- 9.6.2.4.3 Inert gas in semiconductor manufacturing 230
- 9.6.2.4.4 Carbon nanotubes 230
- 9.6.2.5 Companies 231
- 9.6.3 Construction materials 232
- 9.6.3.1 Overview 232
- 9.6.3.2 CCUS technologies 235
- 9.6.3.3 Carbonated aggregates 238
- 9.6.3.4 Additives during mixing 239
- 9.6.3.5 Concrete curing 240
- 9.6.3.6 Costs 240
- 9.6.3.7 Market trends and business models 241
- 9.6.3.8 Companies 244
- 9.6.3.9 Challenges 245
- 9.6.4 CO2 Utilization in Biological Yield-Boosting 246
- 9.6.4.1 Overview 246
- 9.6.4.2 Applications 246
- 9.6.4.2.1 Greenhouses 246
- 9.6.4.2.2 Algae cultivation 246
- 9.6.4.2.2.1 CO₂-enhanced algae cultivation: open systems 247
- 9.6.4.2.2.2 CO₂-enhanced algae cultivation: closed systems 247
- 9.6.4.2.3 Microbial conversion 249
- 9.6.4.2.4 Food and feed production 250
- 9.6.4.3 Companies 250
- 9.6.1 Fuels 211
- 9.7 CO₂ Utilization in Enhanced Oil Recovery 251
- 9.7.1 Overview 251
- 9.7.1.1 Process 252
- 9.7.1.2 CO₂ sources 253
- 9.7.2 CO₂-EOR facilities and projects 253
- 9.7.3 Challenges 254
- 9.7.1 Overview 251
- 9.8 Enhanced mineralization 255
- 9.8.1 Advantages 255
- 9.8.2 In situ and ex-situ mineralization 255
- 9.8.3 Enhanced mineralization pathways 256
- 9.8.4 Challenges 257
10 ADVANCED CATALYSTS FOR SUSTAINABLE CHEMISTRY 259
- 10.1 Overview of biocatalyst technology 259
- 10.1.1 Biotransformations 259
- 10.1.2 Cascade biocatalysis 259
- 10.1.3 Co-factor recycling 260
- 10.1.4 Immobilization 260
- 10.2 Types of biocatalysts 260
- 10.2.1 Microorganisms 261
- 10.2.1.1 Bacteria 262
- 10.2.1.2 Fungi 262
- 10.2.1.3 Yeast 263
- 10.2.1.4 Archaea 263
- 10.2.1.5 Algae 263
- 10.2.1.6 Cyanobacteria 264
- 10.2.2 Engineered biocatalysts 266
- 10.2.2.1 Directed Evolution 266
- 10.2.2.2 Rational Design 267
- 10.2.2.3 Semi-Rational Design 267
- 10.2.2.4 Immobilization 268
- 10.2.2.5 Fusion Proteins 268
- 10.2.3 Enzymes 269
- 10.2.3.1 Detergent Enzymes 269
- 10.2.3.2 Food Processing Enzymes 269
- 10.2.3.3 Textile Processing Enzymes 270
- 10.2.3.4 Paper and Pulp Processing Enzymes 271
- 10.2.3.5 Leather Processing Enzymes 271
- 10.2.3.6 Biofuel Production Enzymes 272
- 10.2.3.7 Animal Feed Enzymes 272
- 10.2.3.8 Pharmaceutical and Diagnostic Enzymes 273
- 10.2.3.9 Waste Management and Bioremediation Enzymes 273
- 10.2.3.10 Agriculture and Crop Improvement Enzymes 274
- 10.2.4 Other types 276
- 10.2.4.1 Ribozymes 276
- 10.2.4.2 DNAzymes 277
- 10.2.4.3 Abzymes 277
- 10.2.4.4 Nanozymes 277
- 10.2.4.5 Organocatalysts 278
- 10.2.1 Microorganisms 261
- 10.3 Production methods and processes 278
- 10.3.1 Fermentation 279
- 10.3.2 Recombinant DNA technology 281
- 10.3.3 ell-Free Protein Synthesis 281
- 10.3.4 Extraction from Natural Sources 282
- 10.3.5 Solid-State Fermentation 282
- 10.4 Emerging technologies and innovations in biocatalysis 283
- 10.4.1 Synthetic biology and metabolic engineering 283
- 10.4.1.1 Batch biomanufacturing 286
- 10.4.1.2 Continuous biomanufacturing 287
- 10.4.1.3 Fermentation Processes 287
- 10.4.1.4 Cell-free synthesis 288
- 10.4.2 Generative biology and Artificial Intelligence (AI) 290
- 10.4.2.1 Molecular Dynamics Simulations 292
- 10.4.2.2 Quantum Mechanical Calculations 292
- 10.4.2.3 Systems Biology Modeling 293
- 10.4.2.4 Metabolic Engineering Modeling 293
- 10.4.3 Genome engineering 294
- 10.4.4 Immobilization and encapsulation techniques 295
- 10.4.5 Biomimetics 296
- 10.4.6 Nanoparticle-based biocatalysts 296
- 10.4.7 Biocatalytic cascades and multi-enzyme systems 297
- 10.4.8 Microfluidics 298
- 10.4.1 Synthetic biology and metabolic engineering 283
- 10.5 Companies 299
11 SYNTHETIC BIOLOGY AND METABOLIC ENGINEERING 302
- 11.1 Metabolic engineering 302
- 11.2 Gene and DNA synthesis 305
- 11.3 Gene Synthesis and Assembly 306
- 11.4 Genome engineering 308
- 11.4.1 CRISPR 308
- 11.4.1.1 CRISPR/Cas9-modified biosynthetic pathways 308
- 11.4.1.2 TALENs 309
- 11.4.1.3 ZFNs 309
- 11.4.1 CRISPR 308
- 11.5 Protein/Enzyme Engineering 311
- 11.6 Synthetic genomics 312
- 11.6.1 Principles of Synthetic Genomics 313
- 11.6.2 Synthetic Chromosomes and Genomes 313
- 11.7 Strain construction and optimization 315
- 11.8 Smart bioprocessing 315
- 11.9 Chassis organisms 317
- 11.10 Biomimetics 318
- 11.11 Sustainable materials 319
- 11.12 Robotics and automation 319
- 11.12.1 Robotic cloud laboratories 320
- 11.12.2 Automating organism design 320
- 11.12.3 Artificial intelligence and machine learning 320
- 11.13 Bioinformatics and computational tools 321
- 11.13.1 Role of Bioinformatics in Synthetic Biology 321
- 11.13.2 Computational Tools for Design and Analysis 321
- 11.14 Xenobiology and expanded genetic alphabets 324
- 11.15 Biosensors and bioelectronics 324
- 11.16 Feedstocks 325
- 11.16.1 C1 feedstocks 328
- 11.16.1.1 Advantages 328
- 11.16.1.2 Pathways 329
- 11.16.1.3 Challenges 329
- 11.16.1.4 Non-methane C1 feedstocks 330
- 11.16.1.5 Gas fermentation 331
- 11.16.2 C2 feedstocks 331
- 11.16.3 Biological conversion of CO2 331
- 11.16.4 Food processing wastes 335
- 11.16.4.1 Syngas 335
- 11.16.4.2 Glycerol 335
- 11.16.4.3 Methane 335
- 11.16.4.4 Municipal solid wastes 339
- 11.16.4.5 Plastic wastes 339
- 11.16.4.6 Plant oils 340
- 11.16.4.7 Starch 340
- 11.16.4.8 Sugars 341
- 11.16.4.9 Used cooking oils 341
- 11.16.4.10 Green hydrogen production 342
- 11.16.4.11 Blue hydrogen production 343
- 11.16.5 Marine biotechnology 345
- 11.16.5.1 Cyanobacteria 346
- 11.16.5.2 Macroalgae 347
- 11.16.5.3 Companies 348
- 11.16.1 C1 feedstocks 328
12 GREEN SOLVENTS AND ALTERNATIVE REACTION MEDIA 361
- 12.1 Bio-based Solvents 361
- 12.2 Switchable Solvents 361
- 12.3 Deep Eutectic Solvents (DES) 362
- 12.4 Supercritical Fluids in Industrial Applications 362
- 12.5 Solvent-free Reactions and Mechanochemistry 363
- 12.6 Solvent Selection Tools and Frameworks 364
- 12.7 Companies 366
13 WASTE VALORIZATION AND RESOURCE RECOVERY 368
- 13.1 Municipal Solid Waste to Chemicals 368
- 13.2 Agricultural and Food Waste Valorization 369
- 13.3 Critical Material Extraction Technology 370
- 13.3.1 Recovery of critical materials from secondary sources (e.g., end-of-life products, industrial waste) 373
- 13.3.2 Critical rare-earth element recovery from secondary sources 374
- 13.3.3 Li-ion battery technology metal recovery 375
- 13.3.4 Critical semiconductor materials recovery 376
- 13.3.5 Critical semiconductor materials recovery 376
- 13.3.6 Critical platinum group metal recovery 378
- 13.3.7 Critical platinum Group metal recovery 378
- 13.4 Wastewater Treatment and Resource Recovery 379
- 13.4.1 Bio-based Flocculants and Coagulants 379
- 13.4.2 Green Oxidants and Disinfectants 380
- 13.4.3 Sustainable Membrane Materials 381
- 13.4.3.1 Bio-based polymer membranes 381
- 13.4.3.2 Ceramic membranes from recycled materials 382
- 13.4.3.3 Self-healing membranes 383
- 13.4.4 Advanced Adsorbents for Contaminant Removal 384
- 13.4.4.1 Biochar 384
- 13.4.4.2 Activated carbon from waste biomass 385
- 13.4.4.3 Green zeolites and MOFs (Metal-Organic Frameworks) 385
- 13.4.5 Nutrient Recovery Technologies 386
- 13.4.6 Resource Recovery from Industrial Wastewater 387
- 13.4.7 Bioelectrochemical Systems 387
- 13.4.8 Green Solvents in Extraction Processes 388
- 13.4.9 Photocatalytic Materials 389
- 13.4.10 Biodegradable Chelating Agents 389
- 13.4.11 Biocatalysts for Wastewater Treatment 390
- 13.4.12 Advanced Adsorption Materials 391
- 13.4.13 Sustainable pH Adjustment Chemicals 392
- 13.5 Mining Waste Valorization 393
- 13.5.1 Bioleaching and Biooxidation 393
- 13.5.2 Green Lixiviants for Metal Extraction 393
- 13.5.3 Phytomining and Phytoremediation 394
- 13.5.4 Sustainable Flotation Chemicals 394
- 13.5.5 Electrochemical Recovery Methods 395
- 13.5.6 Geopolymers and Mine Tailings Utilization 395
- 13.5.7 CO2 Mineralization 396
- 13.5.8 Sustainable Remediation Technologies 396
- 13.5.9 Waste-to-Energy Technologies 397
- 13.5.10 Advanced Separation Techniques 398
- 13.6 Companies 399
14 ENERGY EFFICIENCY AND RENEWABLE ENERGY INTEGRATION 409
- 14.1 Energy Efficiency Measures in Chemical Plants 409
- 14.2 Heat Recovery and Pinch Analysis 409
- 14.3 Renewable Energy Sources in Chemical Production 410
- 14.4 Energy Storage Technologies for Process Industries 411
- 14.5 Combined Heat and Power (CHP) Systems 411
- 14.6 Industrial Symbiosis and Energy Integration 412
15 SAFETY AND SUSTAINABILITY ASSESSMENT 414
- 15.1 Green Chemistry Metrics and Sustainability Indicators 414
- 15.2 Life Cycle Assessment (LCA) in Chemical Processes 415
- 15.3 Safety by Design Principles 416
- 15.4 Risk Assessment and Management in New Chemical Technologies 417
- 15.5 Environmental Impact Assessment 417
- 15.6 Social and Ethical Considerations in the New Era of Chemicals 418
16 REGULATIONS AND POLICY 420
- 16.1 Global Chemical Regulations and Their Evolution 421
- 16.2 Environmental Policies Driving Sustainable Chemistry 421
- 16.3 Incentives and Support Mechanisms for Green Chemistry 422
- 16.4 Challenges in Regulating Emerging Technologies 423
- 16.5 International Cooperation and Harmonization Efforts 423
17 MARKETS AND PRODUCTS 424
- 17.1 Sustainable Materials and Polymers 425
- 17.1.1 Bioplastics and Biodegradable Polymers 425
- 17.1.1.1 Polylactic acid (Bio-PLA) 425
- 17.1.1.1.1 Overview 425
- 17.1.1.1.2 Properties 426
- 17.1.1.1.3 Applications 426
- 17.1.1.1.4 Advantages 427
- 17.1.1.1.5 Commercial examples 427
- 17.1.1.2 Polyethylene terephthalate (Bio-PET) 428
- 17.1.1.2.1 Overview 428
- 17.1.1.2.2 Properties 429
- 17.1.1.2.3 Applications 429
- 17.1.1.2.4 Commercial examples 429
- 17.1.1.3 Polytrimethylene terephthalate (Bio-PTT) 430
- 17.1.1.3.1 Overview 430
- 17.1.1.3.2 Production Process 430
- 17.1.1.3.3 Properties 430
- 17.1.1.3.4 Applications 430
- 17.1.1.3.5 Commercial examples 431
- 17.1.1.4 Polyethylene furanoate (Bio-PEF) 431
- 17.1.1.4.1 Overview 431
- 17.1.1.4.2 Properties 431
- 17.1.1.4.3 Applications 432
- 17.1.1.4.4 Commercial examples 432
- 17.1.1.5 Bio-PA 432
- 17.1.1.5.1 Overview 432
- 17.1.1.5.2 Properties 433
- 17.1.1.5.3 Commercial examples 433
- 17.1.1.6 Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters 433
- 17.1.1.6.1 Overview 433
- 17.1.1.6.2 Properties 434
- 17.1.1.6.3 Applications 434
- 17.1.1.6.4 Commercial examples 434
- 17.1.1.7 Polybutylene succinate (PBS) and copolymers 435
- 17.1.1.7.1 Overview 435
- 17.1.1.7.2 Properties 435
- 17.1.1.7.3 Applications 435
- 17.1.1.7.4 Commercial examples 436
- 17.1.1.8 Polypropylene (Bio-PP) 436
- 17.1.1.8.1 Overview 436
- 17.1.1.8.2 Properties 436
- 17.1.1.8.3 Applications 437
- 17.1.1.8.4 Commercial examples 437
- 17.1.1.9 Polyhydroxyalkanoates (PHA) 437
- 17.1.1.9.1 Properties 437
- 17.1.1.9.2 Applications 438
- 17.1.1.9.3 Commercial examples 439
- 17.1.1.10 Starch-based blends 439
- 17.1.1.10.1 Overview 439
- 17.1.1.10.2 Properties 440
- 17.1.1.10.3 Applications 440
- 17.1.1.10.4 Commercial examples 440
- 17.1.1.11 Cellulose 441
- 17.1.1.11.1 Feedstocks 441
- 17.1.1.12 Microfibrillated cellulose (MFC) 441
- 17.1.1.12.1 Properties 441
- 17.1.1.13 Nanocellulose 442
- 17.1.1.13.1 Cellulose nanocrystals 442
- 17.1.1.13.1.1 Applications 442
- 17.1.1.13.2 Cellulose nanofibers 444
- 17.1.1.13.2.1 Applications 444
- 17.1.1.13.2.1.1 Reinforcement and barrier 449
- 17.1.1.13.2.1.2 Biodegradable food packaging foil and films 449
- 17.1.1.13.2.1.3 Paperboard coatings 449
- 17.1.1.13.2.1 Applications 444
- 17.1.1.13.3 Bacterial Nanocellulose (BNC) 450
- 17.1.1.13.3.1 Applications in packaging 452
- 17.1.1.13.3.2 Commercial examples 453
- 17.1.1.13.1 Cellulose nanocrystals 442
- 17.1.1.14 Protein-based bioplastics in packaging 453
- 17.1.1.14.1 Feedstocks 453
- 17.1.1.14.2 Commercial examples 455
- 17.1.1.15 Alginate 455
- 17.1.1.15.1 Overview 455
- 17.1.1.15.2 Production 457
- 17.1.1.15.3 Applications 457
- 17.1.1.15.4 Producers 457
- 17.1.1.16 Mycelium 458
- 17.1.1.16.1 Overview 458
- 17.1.1.16.2 Applications 459
- 17.1.1.16.3 Commercial examples 459
- 17.1.1.17 Chitosan 459
- 17.1.1.17.1 Overview 459
- 17.1.1.17.2 Applications 460
- 17.1.1.17.3 Commercial examples 460
- 17.1.1.18 Bio-naphtha 462
- 17.1.1.18.1 Overview 462
- 17.1.1.18.2 Markets and applications 462
- 17.1.1.18.3 Commercial examples 464
- 17.1.1.1 Polylactic acid (Bio-PLA) 425
- 17.1.2 Recycled and Upcycled Plastics 464
- 17.1.3 High-Performance Bio-based Materials 465
- 17.1.4 Companies 466
- 17.1.1 Bioplastics and Biodegradable Polymers 425
- 17.2 Sustainable Agriculture Chemicals 502
- 17.2.1 Overview 502
- 17.2.2 Biopesticides and Biocontrol Agents 502
- 17.2.3 Precision Agriculture Chemicals 502
- 17.2.4 Controlled-Release Fertilizers 503
- 17.2.5 Biostimulants 504
- 17.2.6 Microbials 508
- 17.2.6.1 Overview 508
- 17.2.6.2 Microbial biostimulants and biofertilizers 508
- 17.2.6.3 Microbiome manipulation 509
- 17.2.6.4 Prebiotics 509
- 17.2.7 Biochemicals 510
- 17.2.8 Semiochemicals 510
- 17.2.9 Macrobials 514
- 17.2.10 Biopesticides 514
- 17.2.10.1 Natural herbicides and insecticides 515
- 17.2.11 Companies 516
- 17.3 Sustainable Construction Materials 529
- 17.3.1 Established bio-based construction materials 529
- 17.3.2 Hemp-based Materials 531
- 17.3.2.1 Hemp Concrete (Hempcrete) 531
- 17.3.2.2 Hemp Fiberboard 531
- 17.3.2.3 Hemp Insulation 532
- 17.3.3 Mycelium-based Materials 532
- 17.3.3.1 Insulation 533
- 17.3.3.2 Structural Elements 533
- 17.3.3.3 Acoustic Panels 533
- 17.3.3.4 Decorative Elements 534
- 17.3.4 Sustainable Concrete and Cement Alternatives 534
- 17.3.4.1 Geopolymer Concrete 534
- 17.3.4.2 Recycled Aggregate Concrete 535
- 17.3.4.3 Lime-Based Materials 535
- 17.3.4.4 Self-healing concrete 536
- 17.3.4.4.1 Bioconcrete 537
- 17.3.4.4.2 Fiber concrete 538
- 17.3.4.5 Microalgae biocement 539
- 17.3.4.6 Carbon-negative concrete 540
- 17.3.4.7 Biomineral binders 541
- 17.3.5 Natural Fiber Composites 541
- 17.3.5.1 Types of Natural Fibers 542
- 17.3.5.2 Properties 542
- 17.3.5.3 Applications in Construction 542
- 17.3.6 Cellulose nanofibers 543
- 17.3.6.1 Sandwich composites 543
- 17.3.6.2 Cement additives 543
- 17.3.6.3 Pump primers 544
- 17.3.6.4 Insulation materials 544
- 17.3.7 Sustainable Insulation Materials 545
- 17.3.7.1 Types of sustainable insulation materials 545
- 17.3.7.2 Biobased and sustainable aerogels (bio-aerogels) 545
- 17.3.8 Companies 547
- 17.4 Sustainable Packaging 558
- 17.4.1 Paper and board packaging 558
- 17.4.2 Food packaging 558
- 17.4.2.1 Bio-Based films and trays 559
- 17.4.2.2 Bio-Based pouches and bags 559
- 17.4.2.3 Bio-Based textiles and nets 559
- 17.4.2.4 Bioadhesives 560
- 17.4.2.4.1 Starch 561
- 17.4.2.4.2 Cellulose 561
- 17.4.2.4.3 Protein-Based 561
- 17.4.2.5 Barrier coatings and films 561
- 17.4.2.5.1 Polysaccharides 562
- 17.4.2.5.1.1 Chitin 563
- 17.4.2.5.1.2 Chitosan 563
- 17.4.2.5.1.3 Starch 563
- 17.4.2.5.2 Poly(lactic acid) (PLA) 563
- 17.4.2.5.3 Poly(butylene Succinate) 563
- 17.4.2.5.4 Functional Lipid and Proteins Based Coatings 563
- 17.4.2.5.1 Polysaccharides 562
- 17.4.2.6 Active and Smart Food Packaging 564
- 17.4.2.6.1 Active Materials and Packaging Systems 564
- 17.4.2.6.2 Intelligent and Smart Food Packaging 565
- 17.4.2.7 Antimicrobial films and agents 566
- 17.4.2.7.1 Natural 567
- 17.4.2.7.2 Inorganic nanoparticles 567
- 17.4.2.7.3 Biopolymers 567
- 17.4.2.8 Bio-based Inks and Dyes 568
- 17.4.2.9 Edible films and coatings 568
- 17.4.2.9.1 Overview 568
- 17.4.2.9.2 Commercial examples 570
- 17.4.2.10 Types of bio-based coatings and films in packaging 571
- 17.4.2.10.1 Polyurethane coatings 571
- 17.4.2.10.1.1 Properties 571
- 17.4.2.10.1.2 Bio-based polyurethane coatings 572
- 17.4.2.10.1.3 Products 573
- 17.4.2.10.2 Acrylate resins 573
- 17.4.2.10.2.1 Properties 573
- 17.4.2.10.2.2 Bio-based acrylates 574
- 17.4.2.10.2.3 Products 574
- 17.4.2.10.3 Polylactic acid (Bio-PLA) 574
- 17.4.2.10.3.1 Properties 576
- 17.4.2.10.3.2 Bio-PLA coatings and films 576
- 17.4.2.10.4 Polyhydroxyalkanoates (PHA) coatings 577
- 17.4.2.10.5 Cellulose coatings and films 578
- 17.4.2.10.5.1 Microfibrillated cellulose (MFC) 578
- 17.4.2.10.5.2 Cellulose nanofibers 578
- 17.4.2.10.5.2.1 Properties 579
- 17.4.2.10.5.2.2 Product developers 580
- 17.4.2.10.6 Lignin coatings 582
- 17.4.2.10.7 Protein-based biomaterials for coatings 582
- 17.4.2.10.7.1 Plant derived proteins 582
- 17.4.2.10.7.2 Animal origin proteins 583
- 17.4.2.10.1 Polyurethane coatings 571
- 17.4.3 Carbon capture derived materials for packaging 584
- 17.4.3.1 Benefits of carbon utilization for plastics feedstocks 585
- 17.4.3.2 CO₂-derived polymers and plastics 587
- 17.4.3.3 CO2 utilization products 588
- 17.4.4 Companies 589
- 17.5 Green Cosmetics and Personal Care 605
- 17.5.1 Natural and Bio-based Ingredients 605
- 17.5.2 Microplastic Alternatives 606
- 17.5.2.1 Natural hard materials 608
- 17.5.2.2 Polysaccharides 608
- 17.5.2.2.1 Starch 608
- 17.5.2.2.2 Cellulose 609
- 17.5.2.2.2.1 Microcrystalline cellulose (MCC) 609
- 17.5.2.2.2.2 Regenerated cellulose microspheres 609
- 17.5.2.2.2.3 Cellulose nanocrystals 609
- 17.5.2.2.2.4 Bacterial nanocellulose (BNC) 610
- 17.5.2.2.3 Chitin 611
- 17.5.2.3 Proteins 611
- 17.5.2.3.1 Collagen/Gelatin 611
- 17.5.2.3.2 Casein 611
- 17.5.2.4 Polyesters 612
- 17.5.2.4.1 Polyhydroxyalkanoates 612
- 17.5.2.4.2 Polylactic acid 613
- 17.5.2.5 Other natural polymers 614
- 17.5.2.5.1 Lignin 614
- 17.5.2.5.1.1 Description 614
- 17.5.2.5.1.2 Applications and commercial status 616
- 17.5.2.5.1 Lignin 614
- 17.5.2.5.2 Alginate 618
- 17.5.2.5.2.1 Applications and commercial status 618
- 17.5.3 Waterless Formulations 619
- 17.5.4 Companies 620
- 17.6 Bio-based and Eco-Friendly Paints and Coatings 623
- 17.6.1 UV-cure 623
- 17.6.2 Waterborne coatings 624
- 17.6.3 Treatments with less or no solvents 624
- 17.6.4 Hyperbranched polymers for coatings 624
- 17.6.5 Powder coatings 624
- 17.6.6 High solid (HS) coatings 625
- 17.6.7 Use of bio-based materials in coatings 626
- 17.6.7.1 Biopolymers 626
- 17.6.7.2 Coatings based on agricultural waste 626
- 17.6.7.3 Vegetable oils and fatty acids 627
- 17.6.7.4 Proteins 627
- 17.6.7.5 Cellulose 627
- 17.6.7.6 Plant-Based wax coatings 628
- 17.6.8 Barrier coatings 629
- 17.6.8.1 Polysaccharides 631
- 17.6.8.1.1 Chitin 631
- 17.6.8.1.2 Chitosan 631
- 17.6.8.1.3 Starch 631
- 17.6.8.2 Poly(lactic acid) (PLA) 631
- 17.6.8.3 Poly(butylene Succinate 632
- 17.6.8.4 Functional Lipid and Proteins Based Coatings 632
- 17.6.8.1 Polysaccharides 631
- 17.6.9 Alkyd coatings 633
- 17.6.9.1 Alkyd resin properties 633
- 17.6.9.2 Bio-based alkyd coatings 634
- 17.6.9.3 Products 635
- 17.6.10 Polyurethane coatings 636
- 17.6.10.1 Properties 636
- 17.6.10.2 Bio-based polyurethane coatings 637
- 17.6.10.2.1 Bio-based polyols 637
- 17.6.10.2.2 Non-isocyanate polyurethane (NIPU) 638
- 17.6.10.3 Products 638
- 17.6.11 Epoxy coatings 639
- 17.6.11.1 Properties 639
- 17.6.11.2 Bio-based epoxy coatings 639
- 17.6.11.3 Products 641
- 17.6.12 Acrylate resins 641
- 17.6.12.1 Properties 641
- 17.6.12.2 Bio-based acrylates 642
- 17.6.12.3 Products 642
- 17.6.13 Polylactic acid (Bio-PLA) 643
- 17.6.13.1 Bio-PLA coatings and films 644
- 17.6.14 Polyhydroxyalkanoates (PHA) 645
- 17.6.15 Microfibrillated cellulose (MFC) 645
- 17.6.16 Cellulose nanofibers 646
- 17.6.17 Bacterial Nanocellulose (BNC) 649
- 17.6.18 Rosins 649
- 17.6.19 Bio-based carbon black 650
- 17.6.19.1 Lignin-based 650
- 17.6.19.2 Algae-based 650
- 17.6.20 Lignin 650
- 17.6.21 Antimicrobial films and agents 651
- 17.6.21.1 Natural 652
- 17.6.21.2 Inorganic nanoparticles 652
- 17.6.21.3 Biopolymers 652
- 17.6.22 Nanocoatings 653
- 17.6.23 Protein-based biomaterials for coatings 654
- 17.6.23.1 Plant derived proteins 654
- 17.6.23.2 Animal origin proteins 654
- 17.6.24 Algal coatings 656
- 17.6.25 Polypeptides 658
- 17.6.26 Companies 658
- 17.7 Green Electronics 669
- 17.7.1 Biodegradable Electronics 669
- 17.7.2 Recycled and Recoverable Electronic Materials 669
- 17.7.3 Conventional electronics manufacturing 670
- 17.7.4 Benefits of Green Electronics manufacturing 670
- 17.7.5 Challenges in adopting Green Electronics manufacturing 671
- 17.7.6 Green Electronics Manufacturing 672
- 17.7.7 Sustainability in PCB manufacturing 673
- 17.7.7.1 Sustainable cleaning of PCBs 674
- 17.7.8 Design of PCBs for sustainability 674
- 17.7.8.1 Rigid 676
- 17.7.8.2 Flexible 676
- 17.7.8.3 Additive manufacturing 677
- 17.7.8.4 In-mold elctronics (IME) 678
- 17.7.9 Materials 679
- 17.7.9.1 Metal cores 679
- 17.7.9.2 Recycled laminates 679
- 17.7.9.3 Conductive inks 679
- 17.7.9.4 Green and lead-free solder 681
- 17.7.9.5 Biodegradable substrates 682
- 17.7.9.5.1 Bacterial Cellulose 683
- 17.7.9.5.2 Mycelium 684
- 17.7.9.5.3 Lignin 685
- 17.7.9.5.4 Cellulose Nanofibers 687
- 17.7.9.5.5 Soy Protein 690
- 17.7.9.5.6 Algae 690
- 17.7.9.5.7 PHAs 690
- 17.7.9.6 Biobased inks 691
- 17.7.10 Substrates 692
- 17.7.10.1 Halogen-free FR4 692
- 17.7.10.1.1 FR4 limitations 692
- 17.7.10.1.2 FR4 alternatives 693
- 17.7.10.1.3 Bio-Polyimide 694
- 17.7.10.2 Metal-core PCBs 695
- 17.7.10.3 Biobased PCBs 695
- 17.7.10.3.1 Flexible (bio) polyimide PCBs 696
- 17.7.10.3.2 Recent commercial activity 697
- 17.7.10.4 Paper-based PCBs 698
- 17.7.10.5 PCBs without solder mask 698
- 17.7.10.6 Thinner dielectrics 699
- 17.7.10.7 Recycled plastic substrates 699
- 17.7.10.8 Flexible substrates 699
- 17.7.10.1 Halogen-free FR4 692
- 17.7.11 Sustainable patterning and metallization in electronics manufacturing 699
- 17.7.11.1 Introduction 699
- 17.7.11.2 Issues with sustainability 700
- 17.7.11.3 Regeneration and reuse of etching chemicals 700
- 17.7.11.4 Transition from Wet to Dry phase patterning 701
- 17.7.11.5 Print-and-plate 702
- 17.7.11.6 Approaches 703
- 17.7.11.6.1 Direct Printed Electronics 703
- 17.7.11.6.2 Photonic Sintering 704
- 17.7.11.6.3 Biometallization 704
- 17.7.11.6.4 Plating Resist Alternatives 705
- 17.7.11.6.5 Laser-Induced Forward Transfer 705
- 17.7.11.6.6 Electrohydrodynamic Printing 707
- 17.7.11.6.7 Electrically conductive adhesives (ECAs 708
- 17.7.11.6.8 Green electroless plating 709
- 17.7.11.6.9 Smart Masking 710
- 17.7.11.6.10 Component Integration 710
- 17.7.11.6.11 Bio-inspired material deposition 711
- 17.7.11.6.12 Multi-material jetting 711
- 17.7.11.6.13 Vacuumless deposition 713
- 17.7.11.6.14 Upcycling waste streams 713
- 17.7.12 Sustainable attachment and integration of components 713
- 17.7.12.1 Conventional component attachment materials 713
- 17.7.12.2 Materials 715
- 17.7.12.2.1 Conductive adhesives 715
- 17.7.12.2.2 Biodegradable adhesives 715
- 17.7.12.2.3 Magnets 715
- 17.7.12.2.4 Bio-based solders 715
- 17.7.12.2.5 Bio-derived solders 716
- 17.7.12.2.6 Recycled plastics 716
- 17.7.12.2.7 Nano adhesives 716
- 17.7.12.2.8 Shape memory polymers 717
- 17.7.12.2.9 Photo-reversible polymers 718
- 17.7.12.2.10 Conductive biopolymers 718
- 17.7.12.3 Processes 719
- 17.7.12.3.1 Traditional thermal processing methods 720
- 17.7.12.3.2 Low temperature solder 720
- 17.7.12.3.3 Reflow soldering 723
- 17.7.12.3.4 Induction soldering 723
- 17.7.12.3.5 UV curing 724
- 17.7.12.3.6 Near-infrared (NIR) radiation curing 724
- 17.7.12.3.7 Photonic sintering/curing 725
- 17.7.12.3.8 Hybrid integration 725
- 17.7.13 Sustainable integrated circuits 725
- 17.7.13.1 IC manufacturing 725
- 17.7.13.2 Sustainable IC manufacturing 726
- 17.7.13.3 Wafer production 727
- 17.7.13.3.1 Silicon 727
- 17.7.13.3.2 Gallium nitride ICs 728
- 17.7.13.3.3 Flexible ICs 728
- 17.7.13.3.4 Fully printed organic ICs 729
- 17.7.13.4 Oxidation methods 729
- 17.7.13.4.1 Sustainable oxidation 729
- 17.7.13.4.2 Metal oxides 730
- 17.7.13.4.3 Recycling 731
- 17.7.13.4.4 Thin gate oxide layers 731
- 17.7.13.5 Patterning and doping 732
- 17.7.13.5.1 Processes 732
- 17.7.13.5.1.1 Wet etching 732
- 17.7.13.5.1.2 Dry plasma etching 732
- 17.7.13.5.1.3 Lift-off patterning 733
- 17.7.13.5.1.4 Surface doping 733
- 17.7.13.5.1 Processes 732
- 17.7.13.6 Metallization 734
- 17.7.13.6.1 Evaporation 734
- 17.7.13.6.2 Plating 734
- 17.7.13.6.3 Printing 735
- 17.7.13.6.3.1 Printed metal gates for organic thin film transistors 735
- 17.7.13.6.4 Physical vapour deposition (PVD) 735
- 17.7.14 End of life 735
- 17.7.14.1 Hazardous waste 736
- 17.7.14.2 Emissions 737
- 17.7.14.3 Water Usage 738
- 17.7.14.4 Recycling 738
- 17.7.14.4.1 Mechanical recycling 739
- 17.7.14.4.2 Electro-Mechanical Separation 740
- 17.7.14.4.3 Chemical Recycling 740
- 17.7.14.4.4 Electrochemical Processes 741
- 17.7.14.4.5 Thermal Recycling 741
- 17.7.15 Green Certification 741
- 17.7.16 Companies 742
- 17.8 Sustainable Textiles and Fibers 746
- 17.8.1 Types of bio-based fibres 746
- 17.8.1.1 Natural fibres 747
- 17.8.1.2 Main-made bio-based fibres 749
- 17.8.2 Bio-based synthetics 749
- 17.8.3 Recyclability of bio-based fibres 750
- 17.8.4 Lyocell 751
- 17.8.5 Bacterial cellulose 751
- 17.8.6 Algae textiles 752
- 17.8.7 Bio-based leather 753
- 17.8.7.1 Properties of bio-based leathers 756
- 17.8.7.1.1 Tear strength. 756
- 17.8.7.1.2 Tensile strength 757
- 17.8.7.1.3 Bally flexing 757
- 17.8.7.2 Comparison with conventional leathers 757
- 17.8.7.3 Comparative analysis of bio-based leathers 760
- 17.8.7.4 Plant-based leather 761
- 17.8.7.4.1 Overview 761
- 17.8.7.4.2 Production processes 761
- 17.8.7.4.2.1 Feedstocks 762
- 17.8.7.4.2.1 Agriculture Residues 762
- 17.8.7.4.2.2 Food Processing Waste 762
- 17.8.7.4.2.3 Invasive Plants 762
- 17.8.7.4.2.4 Culture-Grown Inputs 762
- 17.8.7.4.2.5 Textile-Based 762
- 17.8.7.4.2.6 Bio-Composite 763
- 17.8.7.4.2.1 Feedstocks 762
- 17.8.7.4.3 Products 764
- 17.8.7.4.4 Market players 764
- 17.8.7.5 Mycelium leather 766
- 17.8.7.5.1 Overview 766
- 17.8.7.5.2 Production process 768
- 17.8.7.5.2.1 Growth conditions 768
- 17.8.7.5.2.2 Tanning Mycelium Leather 769
- 17.8.7.5.2.3 Dyeing Mycelium Leather 769
- 17.8.7.5.3 Products 769
- 17.8.7.5.4 Market players 770
- 17.8.7.6 Microbial leather 771
- 17.8.7.6.1 Overview 771
- 17.8.7.6.2 Production process 771
- 17.8.7.6.3 Fermentation conditions 771
- 17.8.7.6.4 Harvesting 772
- 17.8.7.6.5 Products 773
- 17.8.7.6.6 Market players 775
- 17.8.7.7 Lab grown leather 776
- 17.8.7.7.1 Overview 776
- 17.8.7.7.2 Production process 776
- 17.8.7.7.3 Products 777
- 17.8.7.7.4 Market players 777
- 17.8.7.8 Protein-based leather 778
- 17.8.7.8.1 Overview 778
- 17.8.7.8.2 Production process 779
- 17.8.7.8.3 Commercial activity 779
- 17.8.7.9 Sustainable textiles coatings and dyes 780
- 17.8.7.9.1 Overview 780
- 17.8.7.9.1.1 Coatings 780
- 17.8.7.9.1.2 Dyes 781
- 17.8.7.9.2 Commercial activity 781
- 17.8.7.9.1 Overview 780
- 17.8.7.1 Properties of bio-based leathers 756
- 17.8.8 Companies 782
- 17.8.1 Types of bio-based fibres 746
- 17.9 Alternative Fuels and Lubricants 786
- 17.9.1 Biofuels and Synthetic Fuels 786
- 17.9.2 Biodiesel 786
- 17.9.2.1 Biodiesel by generation 787
- 17.9.2.2 Production of biodiesel and other biofuels 788
- 17.9.2.2.1 Pyrolysis of biomass 789
- 17.9.2.2.2 Vegetable oil transesterification 791
- 17.9.2.2.3 Vegetable oil hydrogenation (HVO) 793
- 17.9.2.2.3.1 Production process 793
- 17.9.2.2.4 Biodiesel from tall oil 794
- 17.9.2.2.5 Fischer-Tropsch BioDiesel 794
- 17.9.2.2.6 Hydrothermal liquefaction of biomass 796
- 17.9.2.2.7 CO2 capture and Fischer-Tropsch (FT) 797
- 17.9.2.2.8 Dymethyl ether (DME) 797
- 17.9.2.3 Prices 797
- 17.9.2.4 Global production and consumption 798
- 17.9.3 Renewable diesel 800
- 17.9.3.1 Production 801
- 17.9.3.2 SWOT analysis 801
- 17.9.3.3 Global consumption 802
- 17.9.3.4 Prices 804
- 17.9.4 Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel) 805
- 17.9.4.1 Description 805
- 17.9.4.2 SWOT analysis 806
- 17.9.4.3 Global production and consumption 806
- 17.9.4.4 Production pathways 807
- 17.9.4.5 Prices 809
- 17.9.4.6 Bio-aviation fuel production capacities 809
- 17.9.4.7 Market challenges 810
- 17.9.4.8 Global consumption 810
- 17.9.5 Bio-naphtha 811
- 17.9.5.1 Overview 811
- 17.9.5.2 SWOT analysis 812
- 17.9.5.3 Markets and applications 813
- 17.9.5.4 Prices 814
- 17.9.5.5 Production capacities, by producer, current and planned 815
- 17.9.5.6 Production capacities, total (tonnes), historical, current and planned 816
- 17.9.6 Biomethanol 817
- 17.9.6.1 SWOT analysis 817
- 17.9.6.2 Methanol-to gasoline technology 818
- 17.9.6.2.1 Production processes 819
- 17.9.6.2.1.1 Anaerobic digestion 820
- 17.9.6.2.1.2 Biomass gasification 820
- 17.9.6.2.1.3 Power to Methane 821
- 17.9.7 Ethanol 822
- 17.9.7.1 Technology description 822
- 17.9.7.2 1G Bio-Ethanol 822
- 17.9.7.3 SWOT analysis 823
- 17.9.7.4 Ethanol to jet fuel technology 823
- 17.9.7.5 Methanol from pulp & paper production 824
- 17.9.7.6 Sulfite spent liquor fermentation 824
- 17.9.7.7 Gasification 825
- 17.9.7.7.1 Biomass gasification and syngas fermentation 825
- 17.9.7.7.2 Biomass gasification and syngas thermochemical conversion 825
- 17.9.7.8 CO2 capture and alcohol synthesis 826
- 17.9.7.9 Biomass hydrolysis and fermentation 826
- 17.9.7.9.1 Separate hydrolysis and fermentation 826
- 17.9.7.9.2 Simultaneous saccharification and fermentation (SSF) 827
- 17.9.7.9.3 Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF) 827
- 17.9.7.9.4 Simultaneous saccharification and co-fermentation (SSCF) 827
- 17.9.7.9.5 Direct conversion (consolidated bioprocessing) (CBP) 827
- 17.9.7.10 Global ethanol consumption 829
- 17.9.8 Biobutanol 830
- 17.9.8.1 Production 832
- 17.9.8.2 Prices 832
- 17.9.9 Biomass-based Gas 832
- 17.9.9.1 Biomethane 834
- 17.9.9.2 Production pathways 836
- 17.9.9.2.1 Landfill gas recovery 836
- 17.9.9.2.2 Anaerobic digestion 837
- 17.9.9.2.3 Thermal gasification 838
- 17.9.9.3 SWOT analysis 838
- 17.9.9.4 Global production 839
- 17.9.9.5 Prices 839
- 17.9.9.5.1 Raw Biogas 839
- 17.9.9.5.2 Upgraded Biomethane 840
- 17.9.9.6 Bio-LNG 840
- 17.9.9.6.1 Markets 840
- 17.9.9.6.1.1 Trucks 840
- 17.9.9.6.1.2 Marine 840
- 17.9.9.6.2 Production 840
- 17.9.9.6.3 Plants 841
- 17.9.9.6.1 Markets 840
- 17.9.9.7 bio-CNG (compressed natural gas derived from biogas) 841
- 17.9.9.8 Carbon capture from biogas 841
- 17.9.10 Biosyngas 842
- 17.9.10.1 Production 842
- 17.9.10.2 Prices 843
- 17.9.11 Biohydrogen 844
- 17.9.11.1 Description 844
- 17.9.11.2 SWOT analysis 845
- 17.9.11.3 Production of biohydrogen from biomass 845
- 17.9.11.3.1 Biological Conversion Routes 846
- 17.9.11.3.1.1 Bio-photochemical Reaction 846
- 17.9.11.3.1.2 Fermentation and Anaerobic Digestion 846
- 17.9.11.3.2 Thermochemical conversion routes 847
- 17.9.11.3.2.1 Biomass Gasification 847
- 17.9.11.3.2.2 Biomass Pyrolysis 847
- 17.9.11.3.2.3 Biomethane Reforming 847
- 17.9.11.3.1 Biological Conversion Routes 846
- 17.9.11.4 Applications 848
- 17.9.11.5 Prices 849
- 17.9.12 Biochar in biogas production 849
- 17.9.13 Bio-DME 849
- 17.9.14 Chemical recycling for biofuels 850
- 17.9.14.1 Plastic pyrolysis 850
- 17.9.14.2 Used tires pyrolysis 850
- 17.9.14.2.1 Conversion to biofuel 852
- 17.9.14.3 Co-pyrolysis of biomass and plastic wastes 853
- 17.9.14.4 Gasification 853
- 17.9.14.4.1 Syngas conversion to methanol 854
- 17.9.14.4.2 Biomass gasification and syngas fermentation 858
- 17.9.14.4.3 Biomass gasification and syngas thermochemical conversion 858
- 17.9.14.5 Hydrothermal cracking 858
- 17.9.15 Electrofuels (E-fuels, power-to-gas/liquids/fuels) 859
- 17.9.15.1 Introduction 859
- 17.9.15.2 Benefits of e-fuels 862
- 17.9.15.3 Feedstocks 863
- 17.9.15.3.1 Hydrogen electrolysis 863
- 17.9.15.4 CO2 capture 863
- 17.9.15.5 Production 864
- 17.9.15.5.1 eFuel production facilities, current and planned 866
- 17.9.15.6 Companies 867
- 17.9.16 Algae-derived biofuels 867
- 17.9.16.1 Technology description 867
- 17.9.16.1.1 Conversion pathways 867
- 17.9.16.2 Production 868
- 17.9.16.3 Market challenges 869
- 17.9.16.4 Prices 870
- 17.9.16.5 Producers 871
- 17.9.16.1 Technology description 867
- 17.9.17 Green Ammonia 871
- 17.9.17.1 Production 871
- 17.9.17.1.1 Decarbonisation of ammonia production 873
- 17.9.17.1.2 Green ammonia projects 874
- 17.9.17.2 Green ammonia synthesis methods 874
- 17.9.17.2.1 Haber-Bosch process 874
- 17.9.17.2.2 Biological nitrogen fixation 875
- 17.9.17.2.3 Electrochemical production 876
- 17.9.17.2.4 Chemical looping processes 876
- 17.9.17.3 Blue ammonia 876
- 17.9.17.3.1 Blue ammonia projects 876
- 17.9.17.3.2 Markets and applications 877
- 17.9.17.3.3 Chemical energy storage 877
- 17.9.17.3.4 Ammonia fuel cells 877
- 17.9.17.3.5 Marine fuel 878
- 17.9.17.3.6 Prices 879
- 17.9.17.4 Companies and projects 881
- 17.9.17.1 Production 871
- 17.9.18 Bio-oils (pyrolysis oils) 882
- 17.9.18.1 Description 882
- 17.9.18.1.1 Advantages of bio-oils 882
- 17.9.18.2 Production 883
- 17.9.18.2.1 Fast Pyrolysis 883
- 17.9.18.2.2 Costs of production 884
- 17.9.18.2.3 Upgrading 884
- 17.9.18.3 Applications 885
- 17.9.18.4 Bio-oil producers 885
- 17.9.18.5 Prices 886
- 17.9.18.1 Description 882
- 17.9.19 Refuse Derived Fuels (RDF) 886
- 17.9.19.1 Overview 887
- 17.9.19.2 Production 887
- 17.9.19.2.1 Production process 887
- 17.9.19.2.2 Mechanical biological treatment 888
- 17.9.19.3 Markets 888
- 17.9.20 Bio-based Lubricants 889
- 17.9.21 Companies 890
- 17.10 Green Pharmaceuticals and Healthcare 903
- 17.10.1 Green Pharmaceutical Synthesis 903
- 17.10.1.1 Green Solvents 903
- 17.10.1.1.1 Supercritical CO2 (scCO2) 903
- 17.10.1.1.2 Ionic Liquids 904
- 17.10.1.1.3 Bio-based Solvents 904
- 17.10.1.1.4 Water-based Reactions 904
- 17.10.1.2 Catalysis 905
- 17.10.1.2.1 Biocatalysis (Enzymes and Whole-cell Catalysts) 905
- 17.10.1.2.2 Heterogeneous Catalysts 905
- 17.10.1.2.3 Organocatalysts 906
- 17.10.1.2.4 Photocatalysis 906
- 17.10.1.3 Continuous Flow Chemistry 906
- 17.10.1.3.1 Microreactors 906
- 17.10.1.3.2 Flow Photochemistry 907
- 17.10.1.3.3 Electrochemical Flow Cells 907
- 17.10.1.4 Alternative Energy Sources 907
- 17.10.1.4.1 Microwave-assisted Synthesis 908
- 17.10.1.4.2 Ultrasound-assisted Reactions 908
- 17.10.1.4.3 Mechanochemistry (Ball Milling) 908
- 17.10.1.5 Green Oxidation and Reduction Methods 909
- 17.10.1.5.1 Electrochemical oxidation/reduction 909
- 17.10.1.5.2 Photochemical reactions 909
- 17.10.1.5.3 Hydrogen peroxide as green oxidant 909
- 17.10.1.6 Atom-Economical Reactions 910
- 17.10.1.7 Bio-based Starting Materials 910
- 17.10.1.8 Process Intensification 911
- 17.10.1.9 Green Analytical Techniques 912
- 17.10.1.10 Sustainable Purification Methods 912
- 17.10.1.1 Green Solvents 903
- 17.10.2 Bio-based Drug Delivery Systems 912
- 17.10.2.1 Natural polymers 913
- 17.10.2.1.1 Chitosan and its derivatives 913
- 17.10.2.1.2 Alginate 913
- 17.10.2.1.3 Hyaluronic acid 913
- 17.10.2.1.4 Cellulose and its derivatives 914
- 17.10.2.2 Protein-based Materials 915
- 17.10.2.2.1 Albumin nanoparticles 915
- 17.10.2.2.2 Collagen matrices 915
- 17.10.2.2.3 Silk fibroin scaffolds 915
- 17.10.2.2.4 Gelatin hydrogels 916
- 17.10.2.3 Polysaccharide-based Systems 917
- 17.10.2.3.1 Cyclodextrins 917
- 17.10.2.3.2 Pectin 917
- 17.10.2.3.3 Dextran 917
- 17.10.2.3.4 Pullulan 918
- 17.10.2.4 Lipid-based Carriers 918
- 17.10.2.4.1 Liposomes from natural phospholipids 918
- 17.10.2.4.2 Solid lipid nanoparticles 919
- 17.10.2.4.3 Nanostructured lipid carriers 919
- 17.10.2.5 Plant-derived Materials 920
- 17.10.2.5.1 Guar gum 920
- 17.10.2.5.2 Carrageenan 920
- 17.10.2.5.3 Zein (corn protein) 921
- 17.10.2.5.4 Starch-based materials 921
- 17.10.2.6 Microbial-derived Polymers 922
- 17.10.2.6.1 Polyhydroxyalkanoates (PHAs) 922
- 17.10.2.6.2 Bacterial cellulose 922
- 17.10.2.6.3 Xanthan gum 923
- 17.10.2.7 Stimuli-responsive Biopolymers 924
- 17.10.2.7.1 pH-sensitive alginate derivatives 924
- 17.10.2.7.2 Thermoresponsive chitosan systems 924
- 17.10.2.7.3 Enzyme-responsive materials 925
- 17.10.2.8 Bioconjugation Techniques 926
- 17.10.2.8.1 Click chemistry for polymer modification 926
- 17.10.2.8.2 Enzyme-catalyzed conjugation 926
- 17.10.2.8.3 Photo-initiated crosslinking 926
- 17.10.2.9 Sustainable Particle Formation 927
- 17.10.2.9.1 Spray-drying with green solvents 927
- 17.10.2.9.2 Electrospinning of biopolymers 928
- 17.10.2.9.3 Supercritical fluid-assisted particle formation 928
- 17.10.2.1 Natural polymers 913
- 17.10.3 Sustainable Medical Devices 929
- 17.10.4 Personalized Chemistry in Medicine 930
- 17.10.4.1 Tailored Drug Delivery Systems 931
- 17.10.4.2 Personalized Diagnostic Materials 931
- 17.10.4.3 Custom-synthesized Therapeutics 931
- 17.10.4.4 Biocompatible Materials for Implants 932
- 17.10.4.5 3D-printed Pharmaceuticals 932
- 17.10.4.6 Personalized Nutrient Formulations 932
- 17.10.5 Companies 933
- 17.10.1 Green Pharmaceutical Synthesis 903
- 17.11 Advanced Materials for 3D Printing 938
- 17.11.1 Bio-based 3D Printing Resins 938
- 17.11.2 Recyclable and Reusable 3D Printing Materials 939
- 17.11.3 Functional and Smart 3D Printing Materials 940
- 17.11.4 Companies 940
- 17.12 Artificial Intelligence in Chemical Design 941
- 17.12.1 Machine Learning for Molecular Design 942
- 17.12.2 AI-driven Retrosynthesis Planning 943
- 17.12.3 Predictive Modelling of Chemical Properties 943
- 17.12.4 AI in Process Optimization 944
- 17.12.5 Automated Lab Systems and Robotics 944
- 17.12.6 AI for Materials Discovery and Development 945
- 17.13 Quantum Chemistry Applications 945
- 17.13.1 Quantum Computing for Molecular Simulations 945
- 17.13.2 Quantum Sensors in Chemical Analysis 946
- 17.13.3 Quantum-inspired Algorithms for Property Prediction 946
- 17.13.4 Quantum Approaches to Catalyst Design 947
- 17.13.5 Quantum Chemistry in Drug Discovery 947
- 17.13.6 Quantum Effects in Nanomaterials 948
- 17.13.7 Companies 948
18 ECONOMIC ASPECTS AND BUSINESS MODELS 949
- 18.1 Cost Competitiveness of Sustainable Chemical Technologies 949
- 18.2 Investment Trends in Green Chemistry 950
- 18.3 New Business Models in the Circular Economy 951
- 18.4 Market Dynamics and Consumer Preferences 952
- 18.5 Intellectual Property Considerations 953
- 18.6 Case Studies 954
- 18.6.1 Bio-based Production of Bulk Chemicals 954
- 18.6.2 CO2 to Polymers: Innovating in Materials 955
- 18.6.3 Waste Plastic to Fuels and Chemicals 955
- 18.6.4 Green Pharmaceutical Manufacturing 955
- 18.6.5 Sustainable Agriculture Chemicals 956
- 18.6.6 Circular Economy in Action: Closing the Loop in Packaging 956
- 18.6.7 Revolutionizing Textiles: From Petrochemicals to Bio-based Fibers 956
19 FUTURE OUTLOOK AND EMERGING TRENDS 956
- 19.1 Convergence of Bio, Nano, and Information Technologies 957
- 19.2 Quantum Computing in Chemical Research and Development 957
- 19.3 Space-based Manufacturing of Chemicals 958
- 19.4 Artificial Photosynthesis and Solar Fuels 959
- 19.5 Personalized and On-demand Chemical Manufacturing 959
- 19.6 The Role of Chemistry in Achieving Net-Zero Emissions 960
- 19.7 Circular Economy Solutions 961
- 19.8 Artificial Intelligence and Digitalization Impact 962
- 19.9 Quantum Chemistry Prospects 963
20 APPENDICES 964
- 20.1 Glossary of Terms 964
- 20.2 List of Abbreviations 964
- 20.3 Research Methodology 965
21 REFERENCES 966
List of Tables
- Table 1. Global drivers and trends in sustainable chemicals. 52
- Table 2. Role of Digitalization and Industry 4.0 in Sustainable Chemicals. 55
- Table 3. Types of sustainable chemicals and applications in agriculture. 56
- Table 4. Types of sustainable chemicals and applications in Green Cosmetics and Personal Care. 56
- Table 5. Types of sustainable chemicals and applications in Sustainable Packaging. 57
- Table 6. Types of sustainable chemicals and applications in Eco-friendly Paints and Coatings. 57
- Table 7. Types of sustainable chemicals and applications in Alternative Fuels and Lubricants. 58
- Table 8. Types of sustainable chemicals and applications in Pharmaceuticals and Healthcare. 58
- Table 9. Types of sustainable chemicals and applications in Water Treatment and Purification. 59
- Table 10. Sustainable Chemicals and Materials in Carbon Capture and Utilization. 60
- Table 11. Types of sustainable chemicals and applications in Advanced Materials for 3D Printing. 60
- Table 12. Sustainable Mining and Metallurgy. 61
- Table 13. Comparison of traditional and sustainable chemical feedstocks. 62
- Table 14. Types of Biomass and Their Chemical Compositions. 63
- Table 15. Pretreatment and Conversion Technologies. 63
- Table 16. Challenges in Scaling Up Biomass Utilization. 64
- Table 17. CO2 Capture Technologies. 65
- Table 18. Chemical Conversion Pathways for CO2. 65
- Table 19. Economic and Technical Barriers to CO2 Utilization. 67
- Table 20. Industrial Waste Streams and By-products. 68
- Table 21. Electrolysis Technologies. 69
- Table 22. Types of biocatalysts. 75
- Table 23. Heterogeneous Catalysis Advancements. 75
- Table 24. Photocatalysis vs Electrocatalysis. 76
- Table 25. Applications of chemically recycled materials. 81
- Table 26. Summary of non-catalytic pyrolysis technologies. 83
- Table 27. Summary of catalytic pyrolysis technologies. 84
- Table 28. Summary of pyrolysis technique under different operating conditions. 87
- Table 29. Biomass materials and their bio-oil yield. 88
- Table 30. Biofuel production cost from the biomass pyrolysis process. 89
- Table 31. Pyrolysis companies and plant capacities, current and planned. 92
- Table 32. Summary of gasification technologies. 93
- Table 33. Advanced recycling (Gasification) companies. 97
- Table 34. Summary of dissolution technologies. 98
- Table 35. Advanced recycling (Dissolution) companies 99
- Table 36. Depolymerisation processes for PET, PU, PC and PA, products and yields. 100
- Table 37. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 101
- Table 38. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 102
- Table 39. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 103
- Table 40. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 104
- Table 41. Summary of aminolysis technologies. 105
- Table 42. Advanced recycling (Depolymerisation) companies and capacities (current and planned). 106
- Table 43. Overview of hydrothermal cracking for advanced chemical recycling. 107
- Table 44. Overview of Pyrolysis with in-line reforming for advanced chemical recycling. 107
- Table 45. Overview of microwave-assisted pyrolysis for advanced chemical recycling. 108
- Table 46. Overview of plasma pyrolysis for advanced chemical recycling. 109
- Table 47. Overview of plasma gasification for advanced chemical recycling. 109
- Table 48. Key methods used in upcycling chemical waste. 110
- Table 49. Circular Business Models in the Chemical Sector. 111
- Table 50.Challenges and Opportunities 112
- Table 51. Chemical recycling companies. 113
- Table 52. Methods of electrochemical synthesis. 126
- Table 53. P2X integration in chemical production. 129
- Table 54. AI and ML applications in the chemical industry. 131
- Table 55. Key components and applications of digital twins in chemical plant operations. 134
- Table 56. Key cybersecurity challenges in the digitalized chemical industry. 136
- Table 57. Types of advanced manufacturing technologies in the chemical industry. 137
- Table 58. Key Features of Microreactors and Process Intensification. 139
- Table 59. Advantages in Pharmaceuticals and Fine Chemicals. 139
- Table 60. Challenges in Scale-up and Implementation. 140
- Table 61. Advantages of Modular and Distributed Manufacturing. 140
- Table 62. Challenges in Implementing Modular and Distributed Manufacturing. 141
- Table 63. Comparison of Direct Ink Writing and Reactive Printing. 142
- Table 64. Applications in Custom Synthesis and Formulation. 142
- Table 65. Components of Flexible and Adaptable Production Systems. 144
- Table 66. Feedstock-based Classification 146
- Table 67. Platform-based Classification. 146
- Table 68. Product-based Classification. 146
- Table 69. Process Integration Strategies in Biorefineries. 149
- Table 70. Production capacities of biorefinery lignin producers. 150
- Table 71. Algal Biorefinery Products. 151
- Table 72. Types of Cell Culture Systems. 151
- Table 73. Factors Affecting Cell Culture Performance. 152
- Table 74. Types of Fermentation Processes. 154
- Table 75. Factors Affecting Fermentation Performance. 154
- Table 76. Advances in Fermentation Technology. 155
- Table 77. Types of Purification Methods in Downstream Processing. 156
- Table 78. Factors Affecting Purification Performance. 157
- Table 79. Advances in Purification Technology. 157
- Table 80. Common formulation methods used in biomanufacturing. 159
- Table 81. Factors Affecting Formulation Performance. 159
- Table 82. Advances in Formulation Technology. 160
- Table 83. Factors Affecting Scale-up Performance in Biomanufacturing. 161
- Table 84. Scale-up Strategies in Biomanufacturing. 162
- Table 85. Factors Affecting Optimization Performance in Biomanufacturing. 163
- Table 86. Optimization Strategies in Biomanufacturing. 164
- Table 87. Types of Quality Control Tests in Biomanufacturing. 165
- Table 88.Factors Affecting Quality Control Performance in Biomanufacturing 166
- Table 89. Factors Affecting Characterization Performance in Biomanufacturing 168
- Table 90. Key fermentation parameters in batch vs continuous biomanufacturing processes. 174
- Table 91. Major microbial cell factories used in industrial biomanufacturing. 179
- Table 92. Comparison of Modes of Operation. 182
- Table 93. Host organisms commonly used in biomanufacturing. 183
- Table 94. CO2 non-conversion and conversion technology, advantages and disadvantages. 185
- Table 95. Carbon utilization revenue forecast by product (US$). 188
- Table 96. Carbon utilization business models. 191
- Table 97. CO2 utilization and removal pathways. 191
- Table 98. Market challenges for CO2 utilization. 193
- Table 99. Example CO2 utilization pathways. 194
- Table 100. CO2 derived products via Thermochemical conversion-applications, advantages and disadvantages. 197
- Table 101. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages. 201
- Table 102. CO2 derived products via biological conversion-applications, advantages and disadvantages. 205
- Table 103. Companies developing and producing CO2-based polymers. 207
- Table 104. Companies developing mineral carbonation technologies. 209
- Table 105. Comparison of emerging CO₂ utilization applications. 210
- Table 106. Main routes to CO₂-fuels. 212
- Table 107. Market overview for CO2 derived fuels. 212
- Table 108. Main routes to CO₂ -fuels 214
- Table 109. Power-to-Methane projects. 218
- Table 110. Microalgae products and prices. 221
- Table 111. Main Solar-Driven CO2 Conversion Approaches. 222
- Table 112. Companies in CO2-derived fuel products. 223
- Table 113. Commodity chemicals and fuels manufactured from CO2. 228
- Table 114. Companies in CO2-derived chemicals products. 231
- Table 115. Carbon capture technologies and projects in the cement sector 236
- Table 116. Prefabricated versus ready-mixed concrete markets . 239
- Table 117. CO₂ utilization business models in building materials. 241
- Table 118. Companies in CO2 derived building materials. 244
- Table 119. Market challenges for CO2 utilization in construction materials. 245
- Table 120. Companies in CO2 Utilization in Biological Yield-Boosting. 250
- Table 121. Applications of CCS in oil and gas production. 251
- Table 122. CO2 EOR/Storage Challenges. 257
- Table 123. Comparison of types of biocatalysts. 260
- Table 124. Types of Microorganism Biocatalysts. 261
- Table 125. Examples of fungal hosts. 262
- Table 126. Commonly used yeast hosts. 263
- Table 127. Common Algal Species Used in Biocatalysis and Their Applications. 264
- Table 128. Common Cyanobacterial Species Used in Biocatalysis and Their Applications. 265
- Table 129. Comparison of Algae and Cyanobacteria in Biocatalysis 265
- Table 130. Types of Engineered Biocatalysts. 266
- Table 131. Types of Detergent Enzymes. 269
- Table 132.Types of Food Processing Enzymes 270
- Table 133. Types of Textile Processing Enzymes. 270
- Table 134. Types of Paper and Pulp Processing Enzymes. 271
- Table 135. Types of Leather Processing Enzymes. 271
- Table 136. Types of Biofuel Production Enzymes. 272
- Table 137. Types of Animal Feed Enzymes. 272
- Table 138. Types of Pharmaceutical and Diagnostic Enzymes. 273
- Table 139. Types of Waste Management and Bioremediation Enzymes. 273
- Table 140. Types of Agriculture and Crop Improvement Enzymes. 274
- Table 141. Comparison of enzyme types. 275
- Table 142. Other Types of Biocatalysts. 276
- Table 143. Production methods for biocatalysts. 278
- Table 144. Fermentation processes. 279
- Table 145. Waste-based feedstocks and biochemicals produced. 279
- Table 146. Microbial and mineral-based feedstocks and biochemicals produced. 280
- Table 147. Comparison of Cell-Free Protein Synthesis Systems. 282
- Table 148. Key biomanufacturing processes utilized in synthetic biology. 284
- Table 149. Molecules produced through industrial biomanufacturing. 285
- Table 150. Continuous vs batch biomanufacturing 285
- Table 151. Key fermentation parameters in batch vs continuous biomanufacturing processes. 286
- Table 152. Synthetic biology fermentation processes. 287
- Table 153. Cell-free versus cell-based systems 288
- Table 154. Key applications of genome engineering. 295
- Table 155. Comparison of Immobilization and Encapsulation Techniques. 296
- Table 156. Types of Nanoparticle Biocatalysts. 297
- Table 157. Types of Biocatalytic Cascades and Multi-Enzyme Systems. 297
- Table 158. Key aspects of microfluidics in biocatalysts. 298
- Table 159. Companies developing biocatalysts. 299
- Table 160. Key tools and techniques used in metabolic engineering for pathway optimization. 302
- Table 161. Key applications of metabolic engineering. 304
- Table 162. Main DNA synthesis technologies 306
- Table 163. Main gene assembly methods. 306
- Table 164. Key applications of genome engineering. 310
- Table 165. Engineered proteins in industrial applications. 312
- Table 166.Key computational tools and their applications in synthetic biology. 322
- Table 167. Feedstocks for synthetic biology. 325
- Table 168. Products from C1 feedstocks in white biotechnology. 330
- Table 169. C2 Feedstock Products. 331
- Table 170. CO2 derived products via biological conversion-applications, advantages and disadvantages. 333
- Table 171. Common starch sources that can be used as feedstocks for producing biochemicals. 341
- Table 172. Biomass processes summary, process description and TRL. 343
- Table 173. Pathways for hydrogen production from biomass. 345
- Table 174. Overview of alginate-description, properties, application and market size. 345
- Table 175. Synthetic Biology Market Players. 348
- Table 176. Types of bio-based solvents. 361
- Table 177. Solvent Selection Tools and Frameworks. 365
- Table 178. Companies developing bio-based solvents. 366
- Table 179. MSW-to-chemicals processes. 368
- Table 180. Agricultural and food waste valorization approaches. 369
- Table 181. Value Proposition for Critical Material Extraction Technologies. 371
- Table 182. Critical Material Extraction Methods Evaluated by Key Performance Metrics. 373
- Table 183. Critical Rare-Earth Element Recovery Technologies from Secondary Sources. 374
- Table 184. Li-ion Battery Technology Metal Recovery Methods-Metal, Recovery Method, Recovery Efficiency, Challenges, Environmental Impact, Economic Viability. 375
- Table 185. Critical Semiconductor Materials Recovery-Material, Primary Source, Recovery Method, Recovery Efficiency, Challenges, Potential Applications. 376
- Table 186. Critical Semiconductor Material Recovery from Secondary Sources. 377
- Table 187. Critical Platinum Group Metal Recovery. 378
- Table 188. Bio-based flocculants and coagulants. 379
- Table 189. Bio-based polymer membranes. 381
- Table 190. Ceramic membranes from recycled materials. 382
- Table 191. Types of Advanced adsorbents. 384
- Table 192. Nutrient recovery technologies. 386
- Table 193. Resource recovery processes:. 387
- Table 194. Types of bioelectrochemical systems. 387
- Table 195. Types of green solvents used in extraction processes. 388
- Table 196. Types of biodegradable chelating agents. 390
- Table 197. Types of biocatalysts used in wastewater treatment. 390
- Table 198. Types of advanced adsorption materials. 391
- Table 199. Types of sustainable pH adjustment chemicals. 392
- Table 200. Green Lixiviants for Metal Extraction. 393
- Table 201. Sustainable Flotation Chemicals. 394
- Table 202. Electrochemical Recovery Methods. 395
- Table 203. Geopolymers and Mine Tailings Utilization. 395
- Table 204. Sustainable remediation technologies . 397
- Table 205. Waste-to-energy technologies . 397
- Table 206. Advanced separation techniques . 398
- Table 207. Companies in waste valorization and resource recovery. 399
- Table 208. Energy Efficiency Measures in Chemical Plants. 409
- Table 209. Renewable Energy Sources in Chemical Production. 410
- Table 210. Energy Storage Technologies for Process Industries. 411
- Table 211. Combined Heat and Power (CHP) Systems. 411
- Table 212. Green Chemistry Metrics and Sustainability Indicators. 414
- Table 213. Key principles of Safety by Design. 416
- Table 214. Key steps in risk assessment for new chemical technologies. 417
- Table 215. Key components of EIA for chemical processes. 418
- Table 216. Environmental Policies Driving Sustainable Chemistry. 421
- Table 217. Incentives and Support Mechanisms for Green Chemistry. 422
- Table 218. Challenges in Regulating Emerging Technologies. 423
- Table 219. International Cooperation and Harmonization Efforts. 423
- Table 220. LDPE film versus PLA, 2019–24 (USD/tonne). 425
- Table 221. PLA properties 426
- Table 222. Applications, advantages and disadvantages of PHAs in packaging. 438
- Table 223. Market overview for cellulose microfibers (microfibrillated cellulose) in paperboard and packaging-market age, key benefits, applications and producers. 441
- Table 224. Applications of nanocrystalline cellulose (CNC). 443
- Table 225. Market overview for cellulose nanofibers in packaging. 445
- Table 226. Applications of Bacterial Nanocellulose in Packaging. 452
- Table 227. Types of protein based-bioplastics, applications and companies. 454
- Table 228. Overview of alginate-description, properties, application and market size. 456
- Table 229. Companies developing algal-based bioplastics. 457
- Table 230. Overview of mycelium fibers-description, properties, drawbacks and applications. 458
- Table 231. Overview of chitosan-description, properties, drawbacks and applications. 460
- Table 232. Commercial Examples of Chitosan-based Films and Coatings and Companies. 460
- Table 233. Bio-based naphtha markets and applications. 462
- Table 234. Bio-naphtha market value chain. 463
- Table 235. Commercial Examples of Bio-Naphtha Packaging and Companies. 464
- Table 236. Bioplastics and biodegradable polymers market players. 466
- Table 237. Biopesticides and Biocontrol Agents. 502
- Table 238. Types of Controlled Release Fertilizers. 503
- Table 239. Common Natural Product Biostimulants and Their Modes of Action. 507
- Table 240. Commercially available microbial bioinsecticides. 509
- Table 241. Common Biochemicals Used in Agriculture. 510
- Table 242. Types of Biopesticides. 514
- Table 243. Sustainable Agriculture Chemicals Market Players. 516
- Table 244. Established bio-based construction materials. 530
- Table 245. Types of self-healing concrete. 536
- Table 246. Types of biobased aerogels. 546
- Table 247. Sustainable Construction Materials Market Players. 547
- Table 248. Pros and cons of different type of food packaging materials. 558
- Table 249. Active Biodegradable Films films and their food applications. 565
- Table 250. Intelligent Biodegradable Films. 565
- Table 251. Edible films and coatings market summary. 568
- Table 252. Types of polyols. 571
- Table 253. Polyol producers. 572
- Table 254. Bio-based polyurethane coating products. 573
- Table 255. Bio-based acrylate resin products. 574
- Table 256. Polylactic acid (PLA) market analysis. 575
- Table 257. Commercially available PHAs. 577
- Table 258. Market overview for cellulose nanofibers in paints and coatings. 579
- Table 259. Companies developing cellulose nanofibers products in paints and coatings. 580
- Table 260. Types of protein based-biomaterials, applications and companies. 583
- Table 261. CO2 utilization and removal pathways. 585
- Table 262. CO2 utilization products developed by chemical and plastic producers. 588
- Table 263. Sustainable packaging market players. 589
- Table 264. Natural and Bio-based Ingredients. 606
- Table 265. Biodegradable polymers. 607
- Table 266. CNC properties. 610
- Table 267.Types of PHAs and properties. 612
- Table 268. Technical lignin types and applications. 614
- Table 269. Properties of lignins and their applications. 616
- Table 270. Production capacities of technical lignin producers. 617
- Table 271. Production capacities of biorefinery lignin producers. 618
- Table 272. Examples of Waterless Formulations. 619
- Table 273. Green Cosmetics and Personal Care Market Players. 620
- Table 274. Example envinronmentally friendly coatings, advantages and disadvantages. 623
- Table 275. Plant Waxes. 629
- Table 276. Types of alkyd resins and properties. 633
- Table 277. Market summary for bio-based alkyd coatings-raw materials, advantages, disadvantages, applications and producers. 634
- Table 278. Bio-based alkyd coating products. 635
- Table 279. Types of polyols. 636
- Table 280. Polyol producers. 637
- Table 281. Bio-based polyurethane coating products. 638
- Table 282. Market summary for bio-based epoxy resins. 639
- Table 283. Bio-based polyurethane coating products. 641
- Table 284. Bio-based acrylate resin products. 642
- Table 285. Polylactic acid (PLA) market analysis. 643
- Table 286. Market assessment for cellulose nanofibers in paints and coatings-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global paints and coatings OEMs. 646
- Table 287. Companies developing CNF products in paints and coatings, applications targeted and stage of commercialization. 648
- Table 288. Types of protein based-biomaterials, applications and companies. 655
- Table 289. Overview of algal coatings-description, properties, application and market size. 656
- Table 290. Companies developing algal-based plastics. 657
- Table 291. Eco-friendly Paints and Coatings Market Players. 658
- Table 292. Examples of Biodegradable Electronic Materials and Applications 669
- Table 293. Benefits of Green Electronics Manufacturing 670
- Table 294. Challenges in adopting Green Electronics manufacturing. 671
- Table 295. Key areas where the PCB industry can improve sustainability. 673
- Table 296. Improving sustainability of PCB design. 675
- Table 297. PCB design options for sustainability. 675
- Table 298. Sustainability benefits and challenges associated with 3D printing. 677
- Table 299. Conductive ink producers. 681
- Table 300. Green and lead-free solder companies. 682
- Table 301. Biodegradable substrates for PCBs. 682
- Table 302. Overview of mycelium fibers-description, properties, drawbacks and applications. 684
- Table 303. Application of lignin in composites. 685
- Table 304. Properties of lignins and their applications. 686
- Table 305. Properties of flexible electronics‐cellulose nanofiber film (nanopaper). 688
- Table 306. Companies developing cellulose nanofibers for electronics. 688
- Table 307. Commercially available PHAs. 691
- Table 308. Main limitations of the FR4 material system used for manufacturing printed circuit boards (PCBs). 692
- Table 309. Halogen-free FR4 companies. 695
- Table 310. Properties of biobased PCBs. 696
- Table 311. Applications of flexible (bio) polyimide PCBs. 697
- Table 312. Main patterning and metallization steps in PCB fabrication and sustainable options. 700
- Table 313. Sustainability issues with conventional metallization processes. 700
- Table 314. Benefits of print-and-plate. 702
- Table 315. Sustainable alternative options to standard plating resists used in printed circuit board (PCB) fabrication. 705
- Table 316. Applications for laser induced forward transfer 706
- Table 317. Copper versus silver inks in laser-induced forward transfer (LIFT) for electronics fabrication. 707
- Table 318. Approaches for in-situ oxidation prevention. 707
- Table 319. Market readiness and maturity of different lead-free solders and electrically conductive adhesives (ECAs) for electronics manufacturing. 709
- Table 320. Advantages of green electroless plating. 709
- Table 321. Comparison of component attachment materials. 713
- Table 322. Comparison between sustainable and conventional component attachment materials for printed circuit boards 714
- Table 323. Comparison between the SMAs and SMPs. 717
- Table 324. Comparison of conductive biopolymers versus conventional materials for printed circuit board fabrication. 719
- Table 325. Comparison of curing and reflow processes used for attaching components in electronics assembly. 719
- Table 326. Low temperature solder alloys. 720
- Table 327. Thermally sensitive substrate materials. 721
- Table 328. Limitations of existing IC production. 726
- Table 329. Strategies for improving sustainability in integrated circuit (IC) manufacturing. 726
- Table 330. Comparison of oxidation methods and level of sustainability. 730
- Table 331. Stage of commercialization for oxides. 730
- Table 332. Alternative doping techniques. 733
- Table 333. Metal content mg / Kg in Printed Circuit Boards (PCBs) from waste desktop computers. 739
- Table 334. Chemical recycling methods for handling electronic waste. 740
- Table 335. Electrochemical processes for recycling metals from electronic waste 741
- Table 336. Thermal recycling processes for electronic waste. 741
- Table 337. Green Electronics Market Players. 742
- Table 338. Properties and applications of the main natural fibres 747
- Table 339. Types of sustainable alternative leathers. 754
- Table 340. Properties of bio-based leathers. 756
- Table 341. Comparison with conventional leathers. 758
- Table 342. Price of commercially available sustainable alternative leather products. 759
- Table 343. Comparative analysis of sustainable alternative leathers. 760
- Table 344. Key processing steps involved in transforming plant fibers into leather materials. 761
- Table 345. Current and emerging plant-based leather products. 764
- Table 346. Companies developing plant-based leather products. 764
- Table 347. Overview of mycelium-description, properties, drawbacks and applications. 766
- Table 348. Companies developing mycelium-based leather products. 770
- Table 349. Types of microbial-derived leather alternative. 773
- Table 350. Companies developing microbial leather products. 775
- Table 351. Companies developing plant-based leather products. 777
- Table 352. Types of protein-based leather alternatives. 778
- Table 353. Companies developing protein based leather. 780
- Table 354. Companies developing sustainable coatings and dyes for leather - 781
- Table 355. Sustainable Textiles and Fibers Market Players. 782
- Table 356. Biodiesel by generation. 787
- Table 357. Biodiesel production techniques. 788
- Table 358. Summary of pyrolysis technique under different operating conditions. 789
- Table 359. Biomass materials and their bio-oil yield. 790
- Table 360. Biofuel production cost from the biomass pyrolysis process. 791
- Table 361. Properties of vegetable oils in comparison to diesel. 792
- Table 362. Main producers of HVO and capacities. 794
- Table 363. Example commercial Development of BtL processes. 795
- Table 364. Pilot or demo projects for biomass to liquid (BtL) processes. 795
- Table 365. Global biodiesel consumption, 2010-2035 (M litres/year). 799
- Table 366. Global renewable diesel consumption, 2010-2035 (M litres/year). 803
- Table 367. Renewable diesel price ranges. 804
- Table 368. Advantages and disadvantages of Bio-aviation fuel. 805
- Table 369. Production pathways for Bio-aviation fuel. 807
- Table 370. Current and announced Bio-aviation fuel facilities and capacities. 809
- Table 371. Global bio-jet fuel consumption 2019-2035 (Million litres/year). 811
- Table 372. Bio-based naphtha markets and applications. 813
- Table 373. Bio-naphtha market value chain. 813
- Table 374. Bio-naphtha pricing against petroleum-derived naphtha and related fuel products. 815
- Table 375. Bio-based Naphtha production capacities, by producer. 815
- Table 376. Comparison of biogas, biomethane and natural gas. 820
- Table 377. Processes in bioethanol production. 826
- Table 378. Microorganisms used in CBP for ethanol production from biomass lignocellulosic. 828
- Table 379. Ethanol consumption 2010-2035 (million litres). 829
- Table 380. Biogas feedstocks. 834
- Table 381. Existing and planned bio-LNG production plants. 841
- Table 382. Methods for capturing carbon dioxide from biogas. 842
- Table 383. Comparison of different Bio-H2 production pathways. 846
- Table 384. Markets and applications for biohydrogen. 848
- Table 385. Summary of gasification technologies. 853
- Table 386. Overview of hydrothermal cracking for advanced chemical recycling. 858
- Table 387. Applications of e-fuels, by type. 861
- Table 388. Overview of e-fuels. 862
- Table 389. Benefits of e-fuels. 862
- Table 390. eFuel production facilities, current and planned. 866
- Table 391. E-fuels companies. 867
- Table 392. Algae-derived biofuel producers. 871
- Table 393. Green ammonia projects (current and planned). 874
- Table 394. Blue ammonia projects. 876
- Table 395. Ammonia fuel cell technologies. 877
- Table 396. Market overview of green ammonia in marine fuel. 878
- Table 397. Summary of marine alternative fuels. 879
- Table 398. Estimated costs for different types of ammonia. 880
- Table 399. Main players in green ammonia. 881
- Table 400. Typical composition and physicochemical properties reported for bio-oils and heavy petroleum-derived oils. 883
- Table 401. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil. 883
- Table 402. Main techniques used to upgrade bio-oil into higher-quality fuels. 884
- Table 403. Markets and applications for bio-oil. 885
- Table 404. Bio-oil producers. 885
- Table 405. Key resource recovery technologies 887
- Table 406. Markets and end uses for refuse-derived fuels (RDF). 888
- Table 407. Bio-based lubricants. 889
- Table 408. Alternative Fuels and Lubricants Market Players. 890
- Table 409. Types of Green Solvents in Green Pharmaceutical Synthesis. 903
- Table 410. Catalysis Methods in Green Pharmaceutical Synthesis. 905
- Table 411. Alternative Energy Sources in Pharmaceutical Synthesis. 907
- Table 412. Green Oxidation and Reduction Methods. 909
- Table 413. Atom-Economical Reactions. 910
- Table 414. Bio-based Starting Materials 911
- Table 415. Process Intensification Methods. 911
- Table 416. Green Analytical Techniques. 912
- Table 417. Sustainable Purification Methods. 912
- Table 418. Natural Polymers for Drug Delivery. 914
- Table 419. Protein-based Materials for Drug Delivery. 916
- Table 420. Polysaccharide-based Systems for Drug Delivery. 918
- Table 421. Lipid-based Carriers for Drug Delivery. 920
- Table 422. Plant-derived Materials for Drug Delivery. 921
- Table 423. Microbial-derived Polymers for Drug Delivery. 923
- Table 424. Green Synthesis Methods for Drug Delivery Systems. 923
- Table 425. Stimuli-responsive Biopolymers for Drug Delivery. 925
- Table 426. Bioconjugation Techniques for Drug Delivery Systems. 927
- Table 427. Sustainable Particle Formation Techniques for Drug Delivery. 928
- Table 428. Types of Sustainable Medical Devices. 929
- Table 429. Sustainable Healthcare and Biomedicine Market Players. 933
- Table 430. Types of Bio-based 3D Printing Resins. 938
- Table 431. Types of Recyclable and Reusable 3D Printing Materials. 939
- Table 432. Types of Functional and Smart 3D Printing Materials. 940
- Table 433. Advanced Materials for 3D Printing. 940
- Table 434. Companies in Quantum Chemistry Applications. 948
- Table 435. Cost Competitiveness of Sustainable Chemical Technologies 950
- Table 436. Investment Trends in Green Chemistry 950
- Table 437. Business Models in the Circular Economy. 951
- Table 438. Market Dynamics and Consumer Preferences in Sustainable Chemistry. 952
- Table 439. Intellectual Property Considerations. 953
- Table 440. Companies developing quantum algorithms for chemical simulations. 957
- Table 441. Applications in space-based chemical manufacturing. 958
- Table 442. Artificial photosynthesis approaches. 959
- Table 443. Applications and benefits of personalized and on-demand chemical manufacturing. 959
- Table 444. Technologies for achieving Net-Zero. 960
- Table 445. Examples of circular economy solutions in the chemical industry. 961
- Table 446. Applications of AI and digitalization in chemicals. 962
- Table 447. Quantum chemistry applications. 963
- Table 448. Glossary of terms. 964
- Table 449. List of Abbreviations. 965
List of Figures
- Figure 1. CO2 emissions reduction pathway for the chemical sector. 66
- Figure 2. Water extraction methods for natural products. 73
- Figure 3. Circular economy model for the chemical industry. 79
- Figure 4. Schematic layout of a pyrolysis plant. 82
- Figure 5. Waste plastic production pathways to (A) diesel and (B) gasoline 86
- Figure 6. Schematic for Pyrolysis of Scrap Tires. 90
- Figure 7. Used tires conversion process. 91
- Figure 8. Total syngas market by product in MM Nm³/h of Syngas. 94
- Figure 9. Overview of biogas utilization. 95
- Figure 10. Biogas and biomethane pathways. 96
- Figure 11. Products obtained through the different solvolysis pathways of PET, PU, and PA. 100
- Figure 12. Siemens gPROMS Digital Twin schematic. 135
- Figure 13. Applications for CO2. 187
- Figure 14. Cost to capture one metric ton of carbon, by sector. 188
- Figure 15. Life cycle of CO2-derived products and services. 193
- Figure 16. Co2 utilization pathways and products. 196
- Figure 17. Plasma technology configurations and their advantages and disadvantages for CO2 conversion. 199
- Figure 18. Electrochemical CO₂ reduction products. 200
- Figure 19. LanzaTech gas-fermentation process. 203
- Figure 20. Schematic of biological CO2 conversion into e-fuels. 204
- Figure 21. Econic catalyst systems. 206
- Figure 22. Mineral carbonation processes. 209
- Figure 23. Conversion route for CO2-derived fuels and chemical intermediates. 214
- Figure 24. Conversion pathways for CO2-derived methane, methanol and diesel. 214
- Figure 25. CO2 feedstock for the production of e-methanol. 220
- Figure 26. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c 222
- Figure 27. Audi synthetic fuels. 223
- Figure 28. Conversion of CO2 into chemicals and fuels via different pathways. 228
- Figure 29. Conversion pathways for CO2-derived polymeric materials 230
- Figure 30. Conversion pathway for CO2-derived building materials. 233
- Figure 31. Schematic of CCUS in cement sector. 234
- Figure 32. Carbon8 Systems’ ACT process. 238
- Figure 33. CO2 utilization in the Carbon Cure process 239
- Figure 34. Algal cultivation in the desert. 247
- Figure 35. Example pathways for products from cyanobacteria. 249
- Figure 36. Typical Flow Diagram for CO2 EOR. 252
- Figure 37. Large CO2-EOR projects in different project stages by industry. 254
- Figure 38. Carbon mineralization pathways. 257
- Figure 39. Cell-free and cell-based protein synthesis systems. 290
- Figure 40. The design-make-test-learn loop of generative biology. 291
- Figure 41. CRISPR/Cas9 & Targeted Genome Editing. 309
- Figure 42. Genetic Circuit-Assisted Smart Microbial Engineering. 317
- Figure 43. Microbial Chassis Development for Natural Product Biosynthesis. 318
- Figure 44. LanzaTech gas-fermentation process. 332
- Figure 45. Schematic of biological CO2 conversion into e-fuels. 333
- Figure 46. Overview of biogas utilization. 336
- Figure 47. Biogas and biomethane pathways. 338
- Figure 48. Schematic overview of anaerobic digestion process for biomethane production. 338
- Figure 49. BLOOM masterbatch from Algix. 346
- Figure 50. TRL of critical material extraction technologies. 371
- Figure 51. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms. 441
- Figure 52. TEM image of cellulose nanocrystals. 442
- Figure 53. CNC slurry. 443
- Figure 54. CNF gel. 444
- Figure 55. Bacterial nanocellulose shapes 451
- Figure 56. BLOOM masterbatch from Algix. 457
- Figure 57. Luum Temple, constructed from Bamboo. 529
- Figure 58. Typical structure of mycelium-based foam. 532
- Figure 59. Commercial mycelium composite construction materials. 533
- Figure 60. Self-healing concrete test study with cracked concrete (left) and self-healed concrete after 28 days (right). 536
- Figure 61. Self-healing bacteria crack filler for concrete. 537
- Figure 62. Self-healing bio concrete. 538
- Figure 63. Microalgae based biocement masonry bloc. 540
- Figure 64. Types of bio-based materials used for antimicrobial food packaging application. 567
- Figure 65. Water soluble packaging by Notpla. 570
- Figure 66. Examples of edible films in food packaging. 571
- Figure 67. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test. 582
- Figure 68. Applications for CO2. 585
- Figure 69. Life cycle of CO2-derived products and services. 587
- Figure 70. Conversion pathways for CO2-derived polymeric materials 588
- Figure 71. Schematic of production of powder coatings. 625
- Figure 72. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms. 628
- Figure 73. Types of bio-based materials used for antimicrobial food packaging application. 651
- Figure 74. Vapor degreasing. 674
- Figure 75. Multi-layered PCB. 675
- Figure 76. 3D printed PCB. 677
- Figure 77. In-mold electronics prototype devices and products. 678
- Figure 78. Silver nanocomposite ink after sintering and resin bonding of discrete electronic components. 680
- Figure 79. Typical structure of mycelium-based foam. 685
- Figure 80. Flexible electronic substrate made from CNF. 689
- Figure 81. CNF composite. 689
- Figure 82. Oji CNF transparent sheets. 689
- Figure 83. Electronic components using cellulose nanofibers as insulating materials. 690
- Figure 84. Dell's Concept Luna laptop. 698
- Figure 85. Direct-write, precision dispensing, and 3D printing platform for 3D printed electronics. 703
- Figure 86. 3D printed circuit boards from Nano Dimension. 703
- Figure 87. Photonic sintering. 704
- Figure 88. Laser-induced forward transfer (LIFT). 706
- Figure 89. Material jetting 3d printing. 712
- Figure 90. Material jetting 3d printing product. 712
- Figure 91. The molecular mechanism of the shape memory effect under different stimuli. 718
- Figure 92. Supercooled Soldering™ Technology. 722
- Figure 93. Reflow soldering schematic. 723
- Figure 94. Schematic diagram of induction heating reflow. 724
- Figure 95. Fully-printed organic thin-film transistors and circuitry on one-micron-thick polymer films. 729
- Figure 96. Types of PCBs after dismantling waste computers and monitors. 738
- Figure 97. AlgiKicks sneaker, made with the Algiknit biopolymer gel. 752
- Figure 98. Conceptual landscape of next-gen leather materials. 754
- Figure 99. Typical structure of mycelium-based foam. 767
- Figure 100. Hermès bag made of MycoWorks' mycelium leather. 770
- Figure 101. Ganni blazer made from bacterial cellulose. 774
- Figure 102. Bou Bag by GANNI and Modern Synthesis. 775
- Figure 103. Regional production of biodiesel (billion litres). 787
- Figure 104. Flow chart for biodiesel production. 792
- Figure 105. Biodiesel (B20) average prices, current and historical, USD/litre. 798
- Figure 106. Global biodiesel consumption, 2010-2035 (M litres/year). 799
- Figure 107. SWOT analysis for renewable iesel. 802
- Figure 108. Global renewable diesel consumption, 2010-2035 (M litres/year). 803
- Figure 109. SWOT analysis for Bio-aviation fuel. 806
- Figure 110. Global bio-jet fuel consumption to 2019-2035 (Million litres/year). 810
- Figure 111. SWOT analysis for bio-naphtha. 813
- Figure 112. Bio-based naphtha production capacities, 2018-2035 (tonnes). 816
- Figure 113. SWOT analysis biomethanol. 818
- Figure 114. Renewable Methanol Production Processes from Different Feedstocks. 819
- Figure 115. Production of biomethane through anaerobic digestion and upgrading. 820
- Figure 116. Production of biomethane through biomass gasification and methanation. 821
- Figure 117. Production of biomethane through the Power to methane process. 821
- Figure 118. SWOT analysis for ethanol. 823
- Figure 119. Ethanol consumption 2010-2035 (million litres). 829
- Figure 120. Properties of petrol and biobutanol. 831
- Figure 121. Biobutanol production route. 831
- Figure 122. Biogas and biomethane pathways. 833
- Figure 123. Overview of biogas utilization. 835
- Figure 124. Biogas and biomethane pathways. 836
- Figure 125. Schematic overview of anaerobic digestion process for biomethane production. 837
- Figure 126. Schematic overview of biomass gasification for biomethane production. 838
- Figure 127. SWOT analysis for biogas. 839
- Figure 128. Total syngas market by product in MM Nm³/h of Syngas, 2021. 843
- Figure 129. SWOT analysis for biohydrogen. 845
- Figure 130. Waste plastic production pathways to (A) diesel and (B) gasoline 850
- Figure 131. Schematic for Pyrolysis of Scrap Tires. 851
- Figure 132. Used tires conversion process. 852
- Figure 133. Total syngas market by product in MM Nm³/h of Syngas, 2021. 855
- Figure 134. Overview of biogas utilization. 856
- Figure 135. Biogas and biomethane pathways. 857
- Figure 136. Process steps in the production of electrofuels. 860
- Figure 137. Mapping storage technologies according to performance characteristics. 861
- Figure 138. Production process for green hydrogen. 863
- Figure 139. E-liquids production routes. 864
- Figure 140. Fischer-Tropsch liquid e-fuel products. 865
- Figure 141. Resources required for liquid e-fuel production. 865
- Figure 142. Pathways for algal biomass conversion to biofuels. 868
- Figure 143. Algal biomass conversion process for biofuel production. 869
- Figure 144. Classification and process technology according to carbon emission in ammonia production. 872
- Figure 145. Green ammonia production and use. 873
- Figure 146. Schematic of the Haber Bosch ammonia synthesis reaction. 875
- Figure 147. Schematic of hydrogen production via steam methane reformation. 875
- Figure 148. Estimated production cost of green ammonia. 880
- Figure 149. Bio-oil upgrading/fractionation techniques. 884
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com