The Global Market for Sustainable Chemicals 2025-2035

0

cover

cover

  • Published: October 2024
  • Pages: 1,002
  • Tables: 449
  • Figures: 149

 

The new era of chemicals represents a paradigm shift in the chemical industry, driven by the need for sustainability, technological advancements, and changing market demands. This transformation is characterized by a move away from fossil-based feedstocks towards renewable and circular resources, coupled with innovative production methods that minimize environmental impact. Key aspects of this new era include:

  • Sustainable Feedstocks: Utilization of biomass, CO2, and waste materials as raw materials for chemical production, reducing dependence on fossil resources.
  • Green Chemistry: Application of principles that reduce or eliminate the use and generation of hazardous substances in chemical processes.
  • Circular Economy: Design of chemical products and processes for reuse, recycling, and upcycling, minimizing waste and maximizing resource efficiency.
  • Electrification: Integration of renewable electricity in chemical processes, including electrocatalysis and electrochemical synthesis.
  • Digitalization: Use of AI, machine learning, and advanced analytics to optimize processes and accelerate innovation.

 

Technology areas covered in this new era include:

  • Biorefining: Converting biomass into a spectrum of valuable chemicals and materials.
  • CO2 Utilization: Capturing and converting CO2 into chemicals, fuels, and materials.
  • Advanced Catalysis: Developing highly selective and efficient catalysts for sustainable processes.
  • Synthetic Biology: Engineering microorganisms to produce chemicals from renewable feedstocks.
  • Flow Chemistry: Continuous manufacturing processes for improved efficiency and control.
  • Additive Manufacturing: 3D printing of chemicals and materials for customized production.
  • Advanced Materials: Developing sustainable, high-performance materials like bioplastics and advanced composites.
  • Green Solvents: Creating bio-based and low-impact solvents to replace harmful traditional solvents.
  • Process Intensification: Designing more compact, efficient, and integrated chemical processes.
  • Waste Valorization: Converting waste streams into valuable chemicals and materials.
  • Artificial Intelligence in Chemical Design: The use of AI and machine learning for molecular design, process optimization, and predictive modeling is becoming a significant market area in chemical innovation.
  • Personalized Chemistry: This includes the development of customized chemicals and materials for personalized medicine, cosmetics, and other consumer products.
  • Quantum Chemistry: Although still emerging, this field uses quantum mechanical principles to develop new materials and chemical processes, potentially revolutionizing various industries.

 

This new era of chemicals is not just about individual technologies but their integration into holistic, sustainable chemical value chains. It promises to deliver innovative solutions to global challenges while creating new economic opportunities and reducing the environmental footprint of the chemical industry. This report analyzes the sustainable chemicals market, offering insights into trends, technologies, and market opportunities from 2025 to 2035. Report contents include:

  • Market Drivers and Trends
  • Sustainable Feedstocks and Green Chemistry
  • Circular Economy in the Chemical Industry
  • Emerging Technologies and Manufacturing Processes
    • Electrification of chemical processes
    • Digitalization and Industry 4.0 applications
    • Advanced manufacturing technologies
    • Biorefining and industrial biotechnology
    • CO2 utilization technologies
    • Advanced catalysts
    • Synthetic biology and metabolic engineering
  • Market Segments and Applications:
    • Sustainable materials and polymers
    • Green solvents and process chemicals
    • Sustainable agriculture chemicals
    • Renewable energy technologies
    • Sustainable construction materials
    • Green cosmetics and personal care products
    • Sustainable packaging
    • Eco-friendly paints and coatings
    • Green electronics
    • Sustainable textiles and fibers
    • Alternative fuels and lubricants
    • Pharmaceuticals and healthcare applications
    • Water treatment and purification solutions
    • Carbon capture and utilization products
    • Industrial biotechnology products
    • Advanced materials for 3D printing
  • Regulatory Landscape and Policy Analysis
  • Economic Aspects and Business Models
  • Future Outlook and Emerging Trends
  • Company Profiles and Competitive Landscape-profiles of over 1,000 key players in the sustainable chemicals market, analyzing their strategies, products, and market positions. Companies profiled include Aanika Biosciences, ACCUREC-Recycling GmbH, Aduro Clean Technologies, Aemetis, Agra Energy, Agilyx, Air Company, Aircela, Algenol, Allozymes, Alpha Biofuels, AM Green, Amyris, Andritz, APChemi, Apeiron Bioenergy, Aperam BioEnergia, Applied Research Associates (ARA), Aralez Bio, Arcadia eFuels, Ascend Elements, ASB Biodiesel, Atmonia, Avalon BioEnergy, Avantium, Avioxx, BANiQL, BASF, BBCA Biochemical & GALACTIC Lactic Acid, BBGI, BDI-BioEnergy International, BEE Biofuel, Benefuel, Bio2Oil, Bio-Oils, Biofibre GmbH, Bioform Technologies, Biofine Technology, Biofy, BiogasClean, BIOD Energy, Biojet, Biokemik, BIOLO, BioLogiQ, Inc., Biome Bioplastics, Biomass Resin Holdings Co., Ltd., Biomatter, BIO-FED, BIO-LUTIONS International AG, Bioplastech Ltd, BioSmart Nano, BIOTEC GmbH & Co. KG, Biovectra, Biovox GmbH, BlockTexx Pty Ltd., Bloom Biorenewables, Blue BioFuels, Blue Ocean Closures, BlueAlp Technology, Bluepha Beijing Lanjing Microbiology Technology Co., Ltd., BOBST, Borealis AG, Braskem, Braven Environmental, Brightmark Energy, Brightplus Oy, bse Methanol, BTG Bioliquids, Bucha Bio, Business Innovation Partners Co., Ltd., Buyo, Byogy Renewables, C1 Green Chemicals, Caphenia, Carbiolice, Carbios, Carbonade, CarbonBridge, Carbon Collect, Carbon Engineering, Carbon Infinity, Carbon Neutral Fuels, Carbon Recycling International, Carbon Sink, Carbyon, Cardia Bioplastics Ltd., CARAPAC Company, Cargill, Cascade Biocatalysts, Cass Materials Pty Ltd, Cassandra Oil, Casterra Ag, Celanese Corporation, Celtic Renewables, Cellugy, Cellutech AB (Stora Enso), Cereal Process Technologies (CPT), CERT Systems, CF Industries Holdings, Chemkey Advanced Materials Technology (Shanghai) Co., Ltd., Chemol Company (Seydel), Chitose Bio Evolution, Circla Nordic, Cirba Solutions, CJ Biomaterials, Inc., CleanJoule, Climeworks, Coastgrass ApS, CNF Biofuel, Concord Blue Engineering, Constructive Bio, Cool Planet Energy Systems, Corumat, Inc., Corsair Group International, Coval Energy, Crimson Renewable Energy, Cruz Foam, Cryotech, CuanTec Ltd., Cyclic Materials, C-Zero, Daicel Polymer Ltd., Daio Paper Corporation, Danimer Scientific, D-CRBN, Debut Biotechnology, DIC Corporation, DIC Products, Inc., Diamond Green Diesel, Dimensional Energy, Dioxide Materials, Dioxycle, DKS Co. Ltd., Domsjö Fabriker, Dow, Inc., DuFor Resins B.V., DuPont, Earthodic Pty Ltd., EarthForm, EcoCeres, Eco Environmental, Eco Fuel Technology, Ecomann Biotechnology Co., Ltd., Ecoshell, Electro-Active Technologies, Eligo Bioscience, Enim, Enginzyme AB, Enzymit, Erebagen, EV Biotech, eversyn, Evolutor, FabricNano, FlexSea, Floreon, Gevo, Ginkgo Bioworks, Heraeus Remloy, HyProMag, Hyfé, Invizyne Technologies, JPM Silicon GmbH, LanzaTech, Librec AG, Lygos, MagREEsource, Mammoth Biosciences, MetaCycler BioInnovations, Mi Terro, NeoMetals, Noveon Magnetics, Novozymes A/S, NTx, Origin Materials, Phoenix Tailings, PlantSwitch, Posco, Pow.bio, Protein Evolution, REEtec, Rivalia Chemical, Samsara Eco, SiTration, Solugen, Sumitomo and Summit Nanotech, Synthego, Taiwan Bio-Manufacturing Corp. (TBMC), Teijin Limited, Twist Bioscience, Uluu, Van Heron Labs, Verde Bioresins, Versalis, Xampla and more....
  • Market Forecasts and Data Analysis

 

This report is relevant for:

  • Chemical industry executives and strategists
  • Sustainability officers and environmental managers
  • Investors and financial analysts
  • R&D professionals
  • Policy makers and regulatory bodies
  • Environmental NGOs
  • Academic researchers

 

 

1             EXECUTIVE SUMMARY            51

  • 1.1        The Need for a New Era in the Chemical Industry  51
  • 1.2        Defining the New Era of Chemicals 52
  • 1.3        Global Drivers and Trends     52
  • 1.4        The Changing Landscape of the Chemical Industry             53
    • 1.4.1    Historical Context: From Coal to Oil to Renewables            53
    • 1.4.2    Current State of the Global Chemical Industry       53
    • 1.4.3    Environmental Challenges and Regulatory Pressures        54
    • 1.4.4    Shifting Consumer Demands and Market Dynamics           54
    • 1.4.5    The Role of Digitalization and Industry 4.0 54
  • 1.5        Emerging and Transforming Markets in the New Era of Chemicals             56
    • 1.5.1    Sustainable Agriculture Chemicals 56
    • 1.5.2    Green Cosmetics and Personal Care             56
    • 1.5.3    Sustainable Packaging            57
    • 1.5.4    Eco-friendly Paints and Coatings      57
    • 1.5.5    Alternative Fuels and Lubricants      58
    • 1.5.6    Pharmaceuticals and Healthcare     58
    • 1.5.7    Water Treatment and Purification     59
    • 1.5.8    Carbon Capture and Utilization Products   59
    • 1.5.9    Advanced Materials for 3D Printing 60
    • 1.5.10 Sustainable Mining and Metallurgy 61

 

2             FEEDSTOCKS 62

  • 2.1        Sustainable Feedstocks: The Foundation of the New Era 62
  • 2.2        Overview of Sustainable Feedstock Options            62
  • 2.3        Biomass as a Chemical Feedstock  63
    • 2.3.1    Types of Biomass and Their Chemical Compositions        63
    • 2.3.2    Pretreatment and Conversion Technologies             63
    • 2.3.3    Challenges in Scaling Up Biomass Utilization         64
  • 2.4        CO2 as a Carbon Source        64
    • 2.4.1    CO2 Capture Technologies   65
    • 2.4.2    Chemical Conversion Pathways for CO2    65
    • 2.4.3    Economic and Technical Barriers to CO2 Utilization           66
  • 2.5        Waste Valorization     67
    • 2.5.1    Municipal Solid Waste as a Feedstock          67
    • 2.5.2    Industrial Waste Streams and By-products               67
    • 2.5.3    Plastic Waste Recycling and Upcycling        68
  • 2.6        Renewable (Green) Hydrogen             69
    • 2.6.1    Electrolysis Technologies      69
    • 2.6.2    Integration of Renewable Energy in Hydrogen Production                70
    • 2.6.3    Hydrogen's Role in Chemical Synthesis       70

 

3             GREEN CHEMISTRY PRINCIPLES AND APPLICATIONS      72

  • 3.1        The 12 Principles of Green Chemistry           72
  • 3.2        Atom Economy and Step Economy in Synthesis    72
  • 3.3        Solvent Reduction and Green Solvents        73
    • 3.3.1    Water as a Reaction Medium              73
    • 3.3.2    Ionic Liquids and Deep Eutectic Solvents   74
    • 3.3.3    Supercritical Fluids in Chemical Processes              74
  • 3.4        Catalysis for Green Chemistry           74
    • 3.4.1    Biocatalysis and Enzyme Engineering           74
    • 3.4.2    Heterogeneous Catalysis Advancements   75
    • 3.4.3    Photocatalysis and Electrocatalysis               76
  • 3.5        Green Metrics and Life Cycle Assessment in Chemistry   77

 

4             CIRCULAR ECONOMY IN THE CHEMICAL INDUSTRY         79

  • 4.1        Principles of Circular Economy         79
  • 4.2        Design for Circularity in Chemical Products              80
  • 4.3        Chemical Recycling Technologies    81
    • 4.3.1    Applications   81
    • 4.3.2    Pyrolysis            82
      • 4.3.2.1 Non-catalytic 82
      • 4.3.2.2 Catalytic            83
        • 4.3.2.2.1           Polystyrene pyrolysis 85
        • 4.3.2.2.2           Pyrolysis for production of bio fuel  86
        • 4.3.2.2.3           Used tires pyrolysis   89
        • 4.3.2.2.3.1      Conversion to biofuel               90
        • 4.3.2.2.4           Co-pyrolysis of biomass and plastic wastes             91
      • 4.3.2.3 Companies and capacities  92
    • 4.3.3    Gasification    93
      • 4.3.3.1 Technology overview 93
        • 4.3.3.1.1           Syngas conversion to methanol        94
        • 4.3.3.1.2           Biomass gasification and syngas fermentation       96
        • 4.3.3.1.3           Biomass gasification and syngas thermochemical conversion    97
      • 4.3.3.2 Companies and capacities (current and planned)                97
    • 4.3.4    Dissolution     98
      • 4.3.4.1 Technology overview 98
      • 4.3.4.2 Companies and capacities (current and planned)                99
    • 4.3.5    Depolymerisation       99
      • 4.3.5.1 Hydrolysis        101
        • 4.3.5.1.1           Technology overview 101
      • 4.3.5.2 Enzymolysis   102
        • 4.3.5.2.1           Technology overview 102
      • 4.3.5.3 Methanolysis 103
        • 4.3.5.3.1           Technology overview 103
      • 4.3.5.4 Glycolysis         104
        • 4.3.5.4.1           Technology overview 104
      • 4.3.5.5 Aminolysis      105
        • 4.3.5.5.1           Technology overview 105
      • 4.3.5.6 Companies and capacities (current and planned)                106
    • 4.3.6    Other advanced chemical recycling technologies 107
      • 4.3.6.1 Hydrothermal cracking           107
      • 4.3.6.2 Pyrolysis with in-line reforming          107
      • 4.3.6.3 Microwave-assisted pyrolysis             108
      • 4.3.6.4 Plasma pyrolysis         109
      • 4.3.6.5 Plasma gasification   109
      • 4.3.6.6 Supercritical fluids     110
  • 4.4        Upcycling of Chemical Waste             110
  • 4.5        Circular Business Models in the Chemical Sector 111
  • 4.6        Challenges and Opportunities in Implementing Circularity            112
  • 4.7        Companies     113

 

5             ELECTRIFICATION OF CHEMICAL PROCESSES      124

  • 5.1        The Role of Renewable Electricity in Chemical Production             124
  • 5.2        Electrochemical Synthesis   125
    • 5.2.1    Electroorganic Synthesis       126
    • 5.2.2    Electrochemical CO2 Reduction      127
    • 5.2.3    Electrochemical Nitrogen Fixation  127
  • 5.3        Plasma Chemistry      128
  • 5.4        Microwave-Assisted Chemistry         128
  • 5.5        Integration of Power-to-X Technologies in Chemical Production 129

 

6             DIGITALIZATION AND INDUSTRY 4.0 IN CHEMISTRY           130

  • 6.1        Big Data and Advanced Analytics in Chemical Research 130
  • 6.2        Artificial Intelligence and Machine Learning Applications               131
    • 6.2.1    In Silico Design of Molecules and Materials              132
    • 6.2.2    Process Optimization and Predictive Maintenance              132
    • 6.2.3    Automated Synthesis and High-Throughput Experimentation       133
  • 6.3        Digital Twins in Chemical Plant Operations               133
  • 6.4        Blockchain for Supply Chain Transparency and Traceability          135
  • 6.5        Cybersecurity Challenges in the Digitalized Chemical Industry   136

 

7             ADVANCED MANUFACTURING TECHNOLOGIES  137

  • 7.1        Continuous Flow Chemistry 138
    • 7.1.1    Microreactors and Process Intensification 138
    • 7.1.2    Advantages in Pharmaceuticals and Fine Chemicals         139
    • 7.1.3    Challenges in Scale-up and Implementation           140
  • 7.2        Modular and Distributed Manufacturing     140
  • 7.3        3D Printing of Chemicals and Materials       141
    • 7.3.1    Direct Ink Writing and Reactive Printing       141
    • 7.3.2    Applications in Custom Synthesis and Formulation            142
  • 7.4        Advanced Process Control and Real-time Monitoring        143
  • 7.5        Flexible and Adaptable Production Systems             143

 

8             BIOREFINING AND INDUSTRIAL BIOTECHNOLOGY            145

  • 8.1        Biorefinery Concepts and Configurations  145
    • 8.1.1    Biorefinery Classifications   146
    • 8.1.2    Biorefinery Configurations    147
      • 8.1.2.1 Lignocellulosic Biorefinery:  147
      • 8.1.2.2 Whole-Crop Biorefinery          147
      • 8.1.2.3 Green Biorefinery        147
      • 8.1.2.4 Thermochemical Biorefinery               148
      • 8.1.2.5 Marine Biorefinery      148
      • 8.1.2.6 Integrated Forest Biorefinery               148
      • 8.1.2.7 Integration and Process Intensification        149
  • 8.2        Lignocellulosic Biomass Processing              150
  • 8.3        Algal Biorefineries       150
  • 8.4        Upstream Processing               151
    • 8.4.1    Cell Culture     151
      • 8.4.1.1 Overview           151
      • 8.4.1.2 Types of Cell Culture Systems            151
      • 8.4.1.3 Factors Affecting Cell Culture Performance              152
      • 8.4.1.4 Advances in Cell Culture Technology             153
        • 8.4.1.4.1           Single-use systems   153
        • 8.4.1.4.2           Process analytical technology (PAT)               153
        • 8.4.1.4.3           Cell line development              153
  • 8.5        Fermentation 154
    • 8.5.1    Overview           154
      • 8.5.1.1 Types of Fermentation Processes    154
      • 8.5.1.2 Factors Affecting Fermentation Performance          154
      • 8.5.1.3 Advances in Fermentation Technology         155
        • 8.5.1.3.1           High-cell-density fermentation          155
        • 8.5.1.3.2           Continuous processing           155
        • 8.5.1.3.3           Metabolic engineering             156
  • 8.6        Downstream Processing        156
    • 8.6.1    Purification      156
      • 8.6.1.1 Overview           156
      • 8.6.1.2 Types of Purification Methods            156
        • 8.6.1.2.1           Factors Affecting Purification Performance               156
      • 8.6.1.3 Advances in Purification Technology              157
        • 8.6.1.3.1           Affinity chromatography         157
        • 8.6.1.3.2           Membrane chromatography 158
        • 8.6.1.3.3           Continuous chromatography              158
  • 8.7        Formulation    159
    • 8.7.1    Overview           159
      • 8.7.1.1 Types of Formulation Methods           159
      • 8.7.1.2 Factors Affecting Formulation Performance             159
      • 8.7.1.3 Advances in Formulation Technology            160
        • 8.7.1.3.1           Controlled release      160
        • 8.7.1.3.2           Nanoparticle formulation      160
        • 8.7.1.3.3           3D printing       160
  • 8.8        Bioprocess Development      161
    • 8.8.1    Scale-up            161
      • 8.8.1.1 Overview           161
      • 8.8.1.2 Factors Affecting Scale-up Performance     161
      • 8.8.1.3 Scale-up Strategies    162
    • 8.8.2    Optimization  163
      • 8.8.2.1 Overview           163
      • 8.8.2.2 Factors Affecting Optimization Performance            163
      • 8.8.2.3 Optimization Strategies           164
  • 8.9        Analytical Methods    165
    • 8.9.1    Quality Control             165
      • 8.9.1.1 Overview           165
      • 8.9.1.2 Types of Quality Control Tests            165
      • 8.9.1.3 Factors Affecting Quality Control Performance      165
    • 8.9.2    Characterization          166
      • 8.9.2.1 Overview           166
      • 8.9.2.2 Types of Characterization Methods 167
      • 8.9.2.3 Factors Affecting Characterization Performance   168
  • 8.10     Scale of Production   169
    • 8.10.1 Laboratory Scale         169
      • 8.10.1.1            Overview           169
      • 8.10.1.2            Scale and Equipment               169
      • 8.10.1.3            Advantages     169
      • 8.10.1.4            Disadvantages             170
    • 8.10.2 Pilot Scale        170
      • 8.10.2.1            Overview           170
      • 8.10.2.2            Scale and Equipment               170
      • 8.10.2.3            Advantages     171
      • 8.10.2.4            Disadvantages             171
    • 8.10.3 Commercial Scale      172
      • 8.10.3.1            Overview           172
      • 8.10.3.2            Scale and Equipment               172
      • 8.10.3.3            Advantages     173
      • 8.10.3.4            Disadvantages             173
  • 8.11     Mode of Operation     174
    • 8.11.1 Batch Production        174
      • 8.11.1.1            Overview           174
      • 8.11.1.2            Advantages     175
      • 8.11.1.3            Disadvantages             175
      • 8.11.1.4            Applications   175
    • 8.11.2 Fed-batch Production              176
      • 8.11.2.1            Overview           176
      • 8.11.2.2            Advantages     176
      • 8.11.2.3            Disadvantages             176
      • 8.11.2.4            Applications   177
    • 8.11.3 Continuous Production           177
      • 8.11.3.1            Overview           177
      • 8.11.3.2            Advantages     177
      • 8.11.3.3            Disadvantages             178
      • 8.11.3.4            Applications   178
    • 8.11.4 Cell factories for biomanufacturing 178
    • 8.11.5 Perfusion Culture        180
      • 8.11.5.1            Overview           180
      • 8.11.5.2            Advantages     180
      • 8.11.5.3            Disadvantages             180
      • 8.11.5.4            Applications   181
    • 8.11.6 Other Modes of Operation     181
      • 8.11.6.1            Immobilized Cell Culture       181
      • 8.11.6.2            Two-Stage Production              181
      • 8.11.6.3            Hybrid Systems            181
  • 8.12     Host Organisms          182

 

9             CO2 UTILIZATION TECHNOLOGIES 185

  • 9.1        Overview           185
  • 9.2        CO2 non-conversion and conversion technology  185
  • 9.3        Carbon utilization business models               190
    • 9.3.1    Benefits of carbon utilization              191
    • 9.3.2    Market challenges      193
  • 9.4        Co2 utilization pathways        194
  • 9.5        Conversion processes             196
    • 9.5.1    Thermochemical         196
      • 9.5.1.1 Process overview        197
      • 9.5.1.2 Plasma-assisted CO2 conversion    199
    • 9.5.2    Electrochemical conversion of CO2               200
      • 9.5.2.1 Process overview        201
    • 9.5.3    Photocatalytic and photothermal catalytic conversion of CO2    202
    • 9.5.4    Catalytic conversion of CO2                203
    • 9.5.5    Biological conversion of CO2              203
    • 9.5.6    Copolymerization of CO2      206
    • 9.5.7    Mineral carbonation  207
  • 9.6        CO2-derived products             211
    • 9.6.1    Fuels    211
      • 9.6.1.1 Overview           212
      • 9.6.1.2 Production routes       214
      • 9.6.1.3 CO₂ -fuels in road vehicles    215
      • 9.6.1.4 CO₂ -fuels in shipping              216
      • 9.6.1.5 CO₂ -fuels in aviation                216
      • 9.6.1.6 Power-to-methane     216
        • 9.6.1.6.1           Biological fermentation           217
        • 9.6.1.6.2           Costs  217
      • 9.6.1.7 Algae based biofuels 220
      • 9.6.1.8 CO₂-fuels from solar 221
      • 9.6.1.9 Companies     223
      • 9.6.1.10            Challenges      225
    • 9.6.2    Chemicals and polymers       225
      • 9.6.2.1 Polycarbonate from CO₂         226
      • 9.6.2.2 Carbon nanostructures          226
      • 9.6.2.3 Scalability        228
      • 9.6.2.4 Applications   229
        • 9.6.2.4.1           Urea production           229
        • 9.6.2.4.2           CO₂-derived polymers             229
        • 9.6.2.4.3           Inert gas in semiconductor manufacturing 230
        • 9.6.2.4.4           Carbon nanotubes     230
      • 9.6.2.5 Companies     231
    • 9.6.3    Construction materials           232
      • 9.6.3.1 Overview           232
      • 9.6.3.2 CCUS technologies   235
      • 9.6.3.3 Carbonated aggregates          238
      • 9.6.3.4 Additives during mixing           239
      • 9.6.3.5 Concrete curing           240
      • 9.6.3.6 Costs  240
      • 9.6.3.7 Market trends and business models              241
      • 9.6.3.8 Companies     244
      • 9.6.3.9 Challenges      245
    • 9.6.4    CO2 Utilization in Biological Yield-Boosting              246
      • 9.6.4.1 Overview           246
      • 9.6.4.2 Applications   246
        • 9.6.4.2.1           Greenhouses 246
        • 9.6.4.2.2           Algae cultivation          246
          • 9.6.4.2.2.1      CO₂-enhanced algae cultivation: open systems    247
          • 9.6.4.2.2.2      CO₂-enhanced algae cultivation: closed systems 247
        • 9.6.4.2.3           Microbial conversion 249
        • 9.6.4.2.4           Food and feed production     250
      • 9.6.4.3 Companies     250
  • 9.7        CO₂ Utilization in Enhanced Oil Recovery   251
    • 9.7.1    Overview           251
      • 9.7.1.1 Process              252
      • 9.7.1.2 CO₂ sources   253
    • 9.7.2    CO₂-EOR facilities and projects         253
    • 9.7.3    Challenges      254
  • 9.8        Enhanced mineralization       255
    • 9.8.1    Advantages     255
    • 9.8.2    In situ and ex-situ mineralization      255
    • 9.8.3    Enhanced mineralization pathways                256
    • 9.8.4    Challenges      257

 

10          ADVANCED CATALYSTS FOR SUSTAINABLE CHEMISTRY  259

  • 10.1     Overview of biocatalyst technology 259
    • 10.1.1 Biotransformations   259
    • 10.1.2 Cascade biocatalysis               259
    • 10.1.3 Co-factor recycling    260
    • 10.1.4 Immobilization             260
  • 10.2     Types of biocatalysts 260
    • 10.2.1 Microorganisms          261
      • 10.2.1.1            Bacteria             262
      • 10.2.1.2            Fungi   262
      • 10.2.1.3            Yeast   263
      • 10.2.1.4            Archaea             263
      • 10.2.1.5            Algae   263
      • 10.2.1.6            Cyanobacteria              264
    • 10.2.2 Engineered biocatalysts         266
      • 10.2.2.1            Directed Evolution      266
      • 10.2.2.2            Rational Design            267
      • 10.2.2.3            Semi-Rational Design              267
      • 10.2.2.4            Immobilization             268
      • 10.2.2.5            Fusion Proteins            268
    • 10.2.3 Enzymes           269
      • 10.2.3.1            Detergent Enzymes    269
      • 10.2.3.2            Food Processing Enzymes    269
      • 10.2.3.3            Textile Processing Enzymes  270
      • 10.2.3.4            Paper and Pulp Processing Enzymes             271
      • 10.2.3.5            Leather Processing Enzymes               271
      • 10.2.3.6            Biofuel Production Enzymes                272
      • 10.2.3.7            Animal Feed Enzymes              272
      • 10.2.3.8            Pharmaceutical and Diagnostic Enzymes  273
      • 10.2.3.9            Waste Management and Bioremediation Enzymes              273
      • 10.2.3.10         Agriculture and Crop Improvement Enzymes           274
    • 10.2.4 Other types     276
      • 10.2.4.1            Ribozymes       276
      • 10.2.4.2            DNAzymes       277
      • 10.2.4.3            Abzymes           277
      • 10.2.4.4            Nanozymes     277
      • 10.2.4.5            Organocatalysts          278
  • 10.3     Production methods and processes              278
    • 10.3.1 Fermentation 279
    • 10.3.2 Recombinant DNA technology           281
    • 10.3.3 ell-Free Protein Synthesis      281
    • 10.3.4 Extraction from Natural Sources       282
    • 10.3.5 Solid-State Fermentation       282
  • 10.4     Emerging technologies and innovations in biocatalysis    283
    • 10.4.1 Synthetic biology and metabolic engineering           283
      • 10.4.1.1            Batch biomanufacturing        286
      • 10.4.1.2            Continuous biomanufacturing          287
      • 10.4.1.3            Fermentation Processes        287
      • 10.4.1.4            Cell-free synthesis     288
    • 10.4.2 Generative biology and Artificial Intelligence (AI)   290
      • 10.4.2.1            Molecular Dynamics Simulations    292
      • 10.4.2.2            Quantum Mechanical Calculations                292
      • 10.4.2.3            Systems Biology Modeling    293
      • 10.4.2.4            Metabolic Engineering Modeling       293
    • 10.4.3 Genome engineering 294
    • 10.4.4 Immobilization and encapsulation techniques       295
    • 10.4.5 Biomimetics   296
    • 10.4.6 Nanoparticle-based biocatalysts     296
    • 10.4.7 Biocatalytic cascades and multi-enzyme systems               297
    • 10.4.8 Microfluidics  298
  • 10.5     Companies     299

 

11          SYNTHETIC BIOLOGY AND METABOLIC ENGINEERING    302

  • 11.1     Metabolic engineering             302
  • 11.2     Gene and DNA synthesis       305
  • 11.3     Gene Synthesis and Assembly           306
  • 11.4     Genome engineering 308
    • 11.4.1 CRISPR              308
      • 11.4.1.1            CRISPR/Cas9-modified biosynthetic pathways      308
      • 11.4.1.2            TALENs               309
      • 11.4.1.3            ZFNs    309
  • 11.5     Protein/Enzyme Engineering                311
  • 11.6     Synthetic genomics   312
    • 11.6.1 Principles of Synthetic Genomics    313
    • 11.6.2 Synthetic Chromosomes and Genomes      313
  • 11.7     Strain construction and optimization            315
  • 11.8     Smart bioprocessing 315
  • 11.9     Chassis organisms    317
  • 11.10  Biomimetics   318
  • 11.11  Sustainable materials              319
  • 11.12  Robotics and automation      319
    • 11.12.1              Robotic cloud laboratories   320
    • 11.12.2              Automating organism design              320
    • 11.12.3              Artificial intelligence and machine learning              320
  • 11.13  Bioinformatics and computational tools     321
    • 11.13.1              Role of Bioinformatics in Synthetic Biology               321
    • 11.13.2              Computational Tools for Design and Analysis         321
  • 11.14  Xenobiology and expanded genetic alphabets        324
  • 11.15  Biosensors and bioelectronics           324
  • 11.16  Feedstocks      325
    • 11.16.1              C1 feedstocks               328
      • 11.16.1.1         Advantages     328
      • 11.16.1.2         Pathways          329
      • 11.16.1.3         Challenges      329
      • 11.16.1.4         Non-methane C1 feedstocks              330
      • 11.16.1.5         Gas fermentation        331
    • 11.16.2              C2 feedstocks               331
    • 11.16.3              Biological conversion of CO2              331
    • 11.16.4              Food processing wastes         335
      • 11.16.4.1         Syngas               335
      • 11.16.4.2         Glycerol             335
      • 11.16.4.3         Methane            335
      • 11.16.4.4         Municipal solid wastes            339
      • 11.16.4.5         Plastic wastes               339
      • 11.16.4.6         Plant oils           340
      • 11.16.4.7         Starch 340
      • 11.16.4.8         Sugars 341
      • 11.16.4.9         Used cooking oils       341
      • 11.16.4.10      Green hydrogen production 342
      • 11.16.4.11      Blue hydrogen production     343
    • 11.16.5              Marine biotechnology              345
      • 11.16.5.1         Cyanobacteria              346
      • 11.16.5.2         Macroalgae     347
      • 11.16.5.3         Companies     348

 

12          GREEN SOLVENTS AND ALTERNATIVE REACTION MEDIA 361

  • 12.1     Bio-based Solvents    361
  • 12.2     Switchable Solvents  361
  • 12.3     Deep Eutectic Solvents (DES)             362
  • 12.4     Supercritical Fluids in Industrial Applications         362
  • 12.5     Solvent-free Reactions and Mechanochemistry    363
  • 12.6     Solvent Selection Tools and Frameworks    364
  • 12.7     Companies     366

 

13          WASTE VALORIZATION AND RESOURCE RECOVERY          368

  • 13.1     Municipal Solid Waste to Chemicals             368
  • 13.2     Agricultural and Food Waste Valorization   369
  • 13.3     Critical Material Extraction Technology        370
    • 13.3.1 Recovery of critical materials from secondary sources (e.g., end-of-life products, industrial waste) 373
    • 13.3.2 Critical rare-earth element recovery from secondary sources      374
    • 13.3.3 Li-ion battery technology metal recovery    375
    • 13.3.4 Critical semiconductor materials recovery                376
    • 13.3.5 Critical semiconductor materials recovery                376
    • 13.3.6 Critical platinum group metal recovery        378
    • 13.3.7 Critical platinum Group metal recovery       378
  • 13.4     Wastewater Treatment and Resource Recovery     379
    • 13.4.1 Bio-based Flocculants and Coagulants      379
    • 13.4.2 Green Oxidants and Disinfectants  380
    • 13.4.3 Sustainable Membrane Materials    381
      • 13.4.3.1            Bio-based polymer membranes       381
      • 13.4.3.2            Ceramic membranes from recycled materials        382
      • 13.4.3.3            Self-healing membranes        383
    • 13.4.4 Advanced Adsorbents for Contaminant Removal 384
      • 13.4.4.1            Biochar              384
      • 13.4.4.2            Activated carbon from waste biomass         385
      • 13.4.4.3            Green zeolites and MOFs (Metal-Organic Frameworks)    385
    • 13.4.5 Nutrient Recovery Technologies        386
    • 13.4.6 Resource Recovery from Industrial Wastewater     387
    • 13.4.7 Bioelectrochemical Systems              387
    • 13.4.8 Green Solvents in Extraction Processes       388
    • 13.4.9 Photocatalytic Materials        389
    • 13.4.10              Biodegradable Chelating Agents      389
    • 13.4.11              Biocatalysts for Wastewater Treatment        390
    • 13.4.12              Advanced Adsorption Materials        391
    • 13.4.13              Sustainable pH Adjustment Chemicals       392
  • 13.5     Mining Waste Valorization     393
    • 13.5.1 Bioleaching and Biooxidation             393
    • 13.5.2 Green Lixiviants for Metal Extraction              393
    • 13.5.3 Phytomining and Phytoremediation                394
    • 13.5.4 Sustainable Flotation Chemicals     394
    • 13.5.5 Electrochemical Recovery Methods               395
    • 13.5.6 Geopolymers and Mine Tailings Utilization 395
    • 13.5.7 CO2 Mineralization    396
    • 13.5.8 Sustainable Remediation Technologies       396
    • 13.5.9 Waste-to-Energy Technologies           397
    • 13.5.10              Advanced Separation Techniques    398
  • 13.6     Companies     399

 

14          ENERGY EFFICIENCY AND RENEWABLE ENERGY INTEGRATION               409

  • 14.1     Energy Efficiency Measures in Chemical Plants     409
  • 14.2     Heat Recovery and Pinch Analysis  409
  • 14.3     Renewable Energy Sources in Chemical Production           410
  • 14.4     Energy Storage Technologies for Process Industries            411
  • 14.5     Combined Heat and Power (CHP) Systems               411
  • 14.6     Industrial Symbiosis and Energy Integration             412

 

15          SAFETY AND SUSTAINABILITY ASSESSMENT            414

  • 15.1     Green Chemistry Metrics and Sustainability Indicators     414
  • 15.2     Life Cycle Assessment (LCA) in Chemical Processes         415
  • 15.3     Safety by Design Principles   416
  • 15.4     Risk Assessment and Management in New Chemical Technologies         417
  • 15.5     Environmental Impact Assessment                417
  • 15.6     Social and Ethical Considerations in the New Era of Chemicals 418

 

16          REGULATIONS AND POLICY 420

  • 16.1     Global Chemical Regulations and Their Evolution 421
  • 16.2     Environmental Policies Driving Sustainable Chemistry     421
  • 16.3     Incentives and Support Mechanisms for Green Chemistry             422
  • 16.4     Challenges in Regulating Emerging Technologies  423
  • 16.5     International Cooperation and Harmonization Efforts       423

 

17          MARKETS AND PRODUCTS   424

  • 17.1     Sustainable Materials and Polymers              425
    • 17.1.1 Bioplastics and Biodegradable Polymers    425
      • 17.1.1.1            Polylactic acid (Bio-PLA)        425
        • 17.1.1.1.1        Overview           425
        • 17.1.1.1.2        Properties         426
        • 17.1.1.1.3        Applications   426
        • 17.1.1.1.4        Advantages     427
        • 17.1.1.1.5        Commercial examples            427
      • 17.1.1.2            Polyethylene terephthalate (Bio-PET)            428
        • 17.1.1.2.1        Overview           428
        • 17.1.1.2.2        Properties         429
        • 17.1.1.2.3        Applications   429
        • 17.1.1.2.4        Commercial examples            429
      • 17.1.1.3            Polytrimethylene terephthalate (Bio-PTT)   430
        • 17.1.1.3.1        Overview           430
        • 17.1.1.3.2        Production Process   430
        • 17.1.1.3.3        Properties         430
        • 17.1.1.3.4        Applications   430
        • 17.1.1.3.5        Commercial examples            431
      • 17.1.1.4            Polyethylene furanoate (Bio-PEF)     431
        • 17.1.1.4.1        Overview           431
        • 17.1.1.4.2        Properties         431
        • 17.1.1.4.3        Applications   432
        • 17.1.1.4.4        Commercial examples            432
      • 17.1.1.5            Bio-PA 432
        • 17.1.1.5.1        Overview           432
        • 17.1.1.5.2        Properties         433
        • 17.1.1.5.3        Commercial examples            433
      • 17.1.1.6            Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters                433
        • 17.1.1.6.1        Overview           433
        • 17.1.1.6.2        Properties         434
        • 17.1.1.6.3        Applications   434
        • 17.1.1.6.4        Commercial examples            434
      • 17.1.1.7            Polybutylene succinate (PBS) and copolymers       435
        • 17.1.1.7.1        Overview           435
        • 17.1.1.7.2        Properties         435
        • 17.1.1.7.3        Applications   435
        • 17.1.1.7.4        Commercial examples            436
      • 17.1.1.8            Polypropylene (Bio-PP)            436
        • 17.1.1.8.1        Overview           436
        • 17.1.1.8.2        Properties         436
        • 17.1.1.8.3        Applications   437
        • 17.1.1.8.4        Commercial examples            437
      • 17.1.1.9            Polyhydroxyalkanoates (PHA)             437
        • 17.1.1.9.1        Properties         437
        • 17.1.1.9.2        Applications   438
        • 17.1.1.9.3        Commercial examples            439
      • 17.1.1.10         Starch-based blends 439
        • 17.1.1.10.1     Overview           439
        • 17.1.1.10.2     Properties         440
        • 17.1.1.10.3     Applications   440
        • 17.1.1.10.4     Commercial examples            440
      • 17.1.1.11         Cellulose          441
        • 17.1.1.11.1     Feedstocks      441
      • 17.1.1.12         Microfibrillated cellulose (MFC)        441
        • 17.1.1.12.1     Properties         441
      • 17.1.1.13         Nanocellulose               442
        • 17.1.1.13.1     Cellulose nanocrystals           442
          • 17.1.1.13.1.1 Applications   442
        • 17.1.1.13.2     Cellulose nanofibers 444
          • 17.1.1.13.2.1 Applications   444
            • 17.1.1.13.2.1.1            Reinforcement and barrier    449
            • 17.1.1.13.2.1.2            Biodegradable food packaging foil and films            449
          • 17.1.1.13.2.1.3            Paperboard coatings 449
        • 17.1.1.13.3     Bacterial Nanocellulose (BNC)          450
          • 17.1.1.13.3.1 Applications in packaging     452
          • 17.1.1.13.3.2 Commercial examples            453
      • 17.1.1.14         Protein-based bioplastics in packaging       453
        • 17.1.1.14.1     Feedstocks      453
        • 17.1.1.14.2     Commercial examples            455
      • 17.1.1.15         Alginate              455
        • 17.1.1.15.1     Overview           455
        • 17.1.1.15.2     Production       457
        • 17.1.1.15.3     Applications   457
        • 17.1.1.15.4     Producers         457
      • 17.1.1.16         Mycelium          458
        • 17.1.1.16.1     Overview           458
        • 17.1.1.16.2     Applications   459
        • 17.1.1.16.3     Commercial examples            459
      • 17.1.1.17         Chitosan           459
        • 17.1.1.17.1     Overview           459
        • 17.1.1.17.2     Applications   460
        • 17.1.1.17.3     Commercial examples            460
      • 17.1.1.18         Bio-naphtha   462
        • 17.1.1.18.1     Overview           462
        • 17.1.1.18.2     Markets and applications      462
        • 17.1.1.18.3     Commercial examples            464
    • 17.1.2 Recycled and Upcycled Plastics       464
    • 17.1.3 High-Performance Bio-based Materials       465
    • 17.1.4 Companies     466
  • 17.2     Sustainable Agriculture Chemicals 502
    • 17.2.1 Overview           502
    • 17.2.2 Biopesticides and Biocontrol Agents             502
    • 17.2.3 Precision Agriculture Chemicals      502
    • 17.2.4 Controlled-Release Fertilizers            503
    • 17.2.5 Biostimulants 504
    • 17.2.6 Microbials        508
      • 17.2.6.1            Overview           508
      • 17.2.6.2            Microbial biostimulants and biofertilizers  508
      • 17.2.6.3            Microbiome manipulation    509
      • 17.2.6.4            Prebiotics         509
    • 17.2.7 Biochemicals 510
    • 17.2.8 Semiochemicals         510
    • 17.2.9 Macrobials      514
    • 17.2.10              Biopesticides 514
      • 17.2.10.1         Natural herbicides and insecticides               515
    • 17.2.11              Companies     516
  • 17.3     Sustainable Construction Materials               529
    • 17.3.1 Established bio-based construction materials       529
    • 17.3.2 Hemp-based Materials           531
      • 17.3.2.1            Hemp Concrete (Hempcrete)              531
      • 17.3.2.2            Hemp Fiberboard        531
      • 17.3.2.3            Hemp Insulation          532
    • 17.3.3 Mycelium-based Materials   532
      • 17.3.3.1            Insulation         533
      • 17.3.3.2            Structural Elements  533
      • 17.3.3.3            Acoustic Panels           533
      • 17.3.3.4            Decorative Elements 534
    • 17.3.4 Sustainable Concrete and Cement Alternatives     534
      • 17.3.4.1            Geopolymer Concrete              534
      • 17.3.4.2            Recycled Aggregate Concrete             535
      • 17.3.4.3            Lime-Based Materials              535
      • 17.3.4.4            Self-healing concrete                536
        • 17.3.4.4.1        Bioconcrete    537
        • 17.3.4.4.2        Fiber concrete               538
      • 17.3.4.5            Microalgae biocement             539
      • 17.3.4.6            Carbon-negative concrete     540
      • 17.3.4.7            Biomineral binders     541
    • 17.3.5 Natural Fiber Composites     541
      • 17.3.5.1            Types of Natural Fibers            542
      • 17.3.5.2            Properties         542
      • 17.3.5.3            Applications in Construction              542
    • 17.3.6 Cellulose nanofibers 543
      • 17.3.6.1            Sandwich composites             543
      • 17.3.6.2            Cement additives       543
      • 17.3.6.3            Pump primers                544
      • 17.3.6.4            Insulation materials  544
    • 17.3.7 Sustainable Insulation Materials      545
      • 17.3.7.1            Types of sustainable insulation materials   545
      • 17.3.7.2            Biobased and sustainable aerogels (bio-aerogels)               545
    • 17.3.8 Companies     547
  • 17.4     Sustainable Packaging            558
    • 17.4.1 Paper and board packaging 558
    • 17.4.2 Food packaging           558
      • 17.4.2.1            Bio-Based films and trays      559
      • 17.4.2.2            Bio-Based pouches and bags             559
      • 17.4.2.3            Bio-Based textiles and nets  559
      • 17.4.2.4            Bioadhesives 560
        • 17.4.2.4.1        Starch 561
        • 17.4.2.4.2        Cellulose          561
      • 17.4.2.4.3        Protein-Based               561
      • 17.4.2.5            Barrier coatings and films     561
        • 17.4.2.5.1        Polysaccharides          562
          • 17.4.2.5.1.1   Chitin  563
          • 17.4.2.5.1.2   Chitosan           563
          • 17.4.2.5.1.3   Starch 563
        • 17.4.2.5.2        Poly(lactic acid) (PLA)              563
        • 17.4.2.5.3        Poly(butylene Succinate)       563
        • 17.4.2.5.4        Functional Lipid and Proteins Based Coatings        563
      • 17.4.2.6            Active and Smart Food Packaging   564
        • 17.4.2.6.1        Active Materials and Packaging Systems    564
        • 17.4.2.6.2        Intelligent and Smart Food Packaging           565
      • 17.4.2.7            Antimicrobial films and agents          566
        • 17.4.2.7.1        Natural               567
        • 17.4.2.7.2        Inorganic nanoparticles          567
        • 17.4.2.7.3        Biopolymers   567
      • 17.4.2.8            Bio-based Inks and Dyes        568
      • 17.4.2.9            Edible films and coatings       568
        • 17.4.2.9.1        Overview           568
        • 17.4.2.9.2        Commercial examples            570
      • 17.4.2.10         Types of bio-based coatings and films in packaging           571
        • 17.4.2.10.1     Polyurethane coatings             571
          • 17.4.2.10.1.1 Properties         571
          • 17.4.2.10.1.2 Bio-based polyurethane coatings     572
        • 17.4.2.10.1.3 Products           573
        • 17.4.2.10.2     Acrylate resins              573
          • 17.4.2.10.2.1 Properties         573
          • 17.4.2.10.2.2 Bio-based acrylates  574
          • 17.4.2.10.2.3 Products           574
        • 17.4.2.10.3     Polylactic acid (Bio-PLA)        574
          • 17.4.2.10.3.1 Properties         576
          • 17.4.2.10.3.2 Bio-PLA coatings and films  576
        • 17.4.2.10.4     Polyhydroxyalkanoates (PHA) coatings         577
        • 17.4.2.10.5     Cellulose coatings and films               578
          • 17.4.2.10.5.1 Microfibrillated cellulose (MFC)        578
          • 17.4.2.10.5.2 Cellulose nanofibers 578
            • 17.4.2.10.5.2.1            Properties         579
            • 17.4.2.10.5.2.2            Product developers    580
        • 17.4.2.10.6     Lignin coatings              582
        • 17.4.2.10.7     Protein-based biomaterials for coatings      582
          • 17.4.2.10.7.1 Plant derived proteins              582
          • 17.4.2.10.7.2 Animal origin proteins              583
    • 17.4.3 Carbon capture derived materials for packaging   584
      • 17.4.3.1            Benefits of carbon utilization for plastics feedstocks         585
      • 17.4.3.2            CO₂-derived polymers and plastics 587
      • 17.4.3.3            CO2 utilization products        588
    • 17.4.4 Companies     589
  • 17.5     Green Cosmetics and Personal Care             605
    • 17.5.1 Natural and Bio-based Ingredients  605
    • 17.5.2 Microplastic Alternatives        606
      • 17.5.2.1            Natural hard materials             608
      • 17.5.2.2            Polysaccharides          608
        • 17.5.2.2.1        Starch 608
        • 17.5.2.2.2        Cellulose          609
          • 17.5.2.2.2.1   Microcrystalline cellulose (MCC)     609
          • 17.5.2.2.2.2   Regenerated cellulose microspheres            609
          • 17.5.2.2.2.3   Cellulose nanocrystals           609
          • 17.5.2.2.2.4   Bacterial nanocellulose (BNC)           610
        • 17.5.2.2.3        Chitin  611
      • 17.5.2.3            Proteins             611
        • 17.5.2.3.1        Collagen/Gelatin         611
        • 17.5.2.3.2        Casein                611
      • 17.5.2.4            Polyesters        612
        • 17.5.2.4.1        Polyhydroxyalkanoates           612
        • 17.5.2.4.2        Polylactic acid              613
      • 17.5.2.5            Other natural polymers           614
        • 17.5.2.5.1        Lignin  614
          • 17.5.2.5.1.1   Description     614
          • 17.5.2.5.1.2   Applications and commercial status             616
      • 17.5.2.5.2        Alginate              618
        • 17.5.2.5.2.1   Applications and commercial status             618
    • 17.5.3 Waterless Formulations         619
    • 17.5.4 Companies     620
  • 17.6     Bio-based and Eco-Friendly Paints and Coatings  623
    • 17.6.1 UV-cure             623
    • 17.6.2 Waterborne coatings 624
    • 17.6.3 Treatments with less or no solvents                624
    • 17.6.4 Hyperbranched polymers for coatings          624
    • 17.6.5 Powder coatings          624
    • 17.6.6 High solid (HS) coatings          625
    • 17.6.7 Use of bio-based materials in coatings         626
      • 17.6.7.1            Biopolymers   626
      • 17.6.7.2            Coatings based on agricultural waste           626
      • 17.6.7.3            Vegetable oils and fatty acids             627
      • 17.6.7.4            Proteins             627
      • 17.6.7.5            Cellulose          627
      • 17.6.7.6            Plant-Based wax coatings     628
    • 17.6.8 Barrier coatings            629
      • 17.6.8.1            Polysaccharides          631
        • 17.6.8.1.1        Chitin  631
        • 17.6.8.1.2        Chitosan           631
        • 17.6.8.1.3        Starch 631
      • 17.6.8.2            Poly(lactic acid) (PLA)              631
      • 17.6.8.3            Poly(butylene Succinate         632
      • 17.6.8.4            Functional Lipid and Proteins Based Coatings        632
    • 17.6.9 Alkyd coatings               633
      • 17.6.9.1            Alkyd resin properties               633
      • 17.6.9.2            Bio-based alkyd coatings       634
      • 17.6.9.3            Products           635
    • 17.6.10              Polyurethane coatings             636
      • 17.6.10.1         Properties         636
      • 17.6.10.2         Bio-based polyurethane coatings     637
        • 17.6.10.2.1     Bio-based polyols       637
        • 17.6.10.2.2     Non-isocyanate polyurethane (NIPU)            638
      • 17.6.10.3         Products           638
    • 17.6.11              Epoxy coatings              639
      • 17.6.11.1         Properties         639
      • 17.6.11.2         Bio-based epoxy coatings     639
      • 17.6.11.3         Products           641
    • 17.6.12              Acrylate resins              641
      • 17.6.12.1         Properties         641
      • 17.6.12.2         Bio-based acrylates  642
      • 17.6.12.3         Products           642
    • 17.6.13              Polylactic acid (Bio-PLA)        643
      • 17.6.13.1         Bio-PLA coatings and films  644
    • 17.6.14              Polyhydroxyalkanoates (PHA)             645
    • 17.6.15              Microfibrillated cellulose (MFC)        645
    • 17.6.16              Cellulose nanofibers 646
    • 17.6.17              Bacterial Nanocellulose (BNC)          649
    • 17.6.18              Rosins 649
    • 17.6.19              Bio-based carbon black         650
      • 17.6.19.1         Lignin-based  650
      • 17.6.19.2         Algae-based   650
    • 17.6.20              Lignin  650
    • 17.6.21              Antimicrobial films and agents          651
      • 17.6.21.1         Natural               652
      • 17.6.21.2         Inorganic nanoparticles          652
      • 17.6.21.3         Biopolymers   652
    • 17.6.22              Nanocoatings 653
    • 17.6.23              Protein-based biomaterials for coatings      654
      • 17.6.23.1         Plant derived proteins              654
      • 17.6.23.2         Animal origin proteins              654
    • 17.6.24              Algal coatings 656
    • 17.6.25              Polypeptides  658
    • 17.6.26              Companies     658
  • 17.7     Green Electronics       669
    • 17.7.1 Biodegradable Electronics    669
    • 17.7.2 Recycled and Recoverable Electronic Materials     669
    • 17.7.3 Conventional electronics manufacturing   670
    • 17.7.4 Benefits of Green Electronics manufacturing          670
    • 17.7.5 Challenges in adopting Green Electronics manufacturing              671
    • 17.7.6 Green Electronics Manufacturing    672
    • 17.7.7 Sustainability in PCB manufacturing             673
      • 17.7.7.1            Sustainable cleaning of PCBs             674
    • 17.7.8 Design of PCBs for sustainability     674
      • 17.7.8.1            Rigid    676
      • 17.7.8.2            Flexible               676
      • 17.7.8.3            Additive manufacturing          677
      • 17.7.8.4            In-mold elctronics (IME)         678
    • 17.7.9 Materials           679
      • 17.7.9.1            Metal cores     679
      • 17.7.9.2            Recycled laminates   679
      • 17.7.9.3            Conductive inks           679
      • 17.7.9.4            Green and lead-free solder   681
      • 17.7.9.5            Biodegradable substrates     682
        • 17.7.9.5.1        Bacterial Cellulose     683
        • 17.7.9.5.2        Mycelium          684
        • 17.7.9.5.3        Lignin  685
        • 17.7.9.5.4        Cellulose Nanofibers               687
        • 17.7.9.5.5        Soy Protein      690
        • 17.7.9.5.6        Algae   690
        • 17.7.9.5.7        PHAs   690
      • 17.7.9.6            Biobased inks                691
    • 17.7.10              Substrates       692
      • 17.7.10.1         Halogen-free FR4        692
        • 17.7.10.1.1     FR4 limitations             692
        • 17.7.10.1.2     FR4 alternatives           693
        • 17.7.10.1.3     Bio-Polyimide 694
      • 17.7.10.2         Metal-core PCBs         695
      • 17.7.10.3         Biobased PCBs             695
        • 17.7.10.3.1     Flexible (bio) polyimide PCBs             696
        • 17.7.10.3.2     Recent commercial activity  697
      • 17.7.10.4         Paper-based PCBs     698
      • 17.7.10.5         PCBs without solder mask   698
      • 17.7.10.6         Thinner dielectrics      699
      • 17.7.10.7         Recycled plastic substrates 699
      • 17.7.10.8         Flexible substrates     699
    • 17.7.11              Sustainable patterning and metallization in electronics manufacturing 699
      • 17.7.11.1         Introduction    699
      • 17.7.11.2         Issues with sustainability      700
      • 17.7.11.3         Regeneration and reuse of etching chemicals         700
      • 17.7.11.4         Transition from Wet to Dry phase patterning             701
      • 17.7.11.5         Print-and-plate              702
      • 17.7.11.6         Approaches    703
        • 17.7.11.6.1     Direct Printed Electronics      703
        • 17.7.11.6.2     Photonic Sintering      704
        • 17.7.11.6.3     Biometallization          704
        • 17.7.11.6.4     Plating Resist Alternatives     705
        • 17.7.11.6.5     Laser-Induced Forward Transfer       705
        • 17.7.11.6.6     Electrohydrodynamic Printing            707
        • 17.7.11.6.7     Electrically conductive adhesives (ECAs    708
        • 17.7.11.6.8     Green electroless plating       709
        • 17.7.11.6.9     Smart Masking             710
        • 17.7.11.6.10  Component Integration           710
        • 17.7.11.6.11  Bio-inspired material deposition      711
        • 17.7.11.6.12  Multi-material jetting 711
        • 17.7.11.6.13  Vacuumless deposition          713
        • 17.7.11.6.14  Upcycling waste streams      713
    • 17.7.12              Sustainable attachment and integration of components 713
      • 17.7.12.1         Conventional component attachment materials   713
      • 17.7.12.2         Materials           715
        • 17.7.12.2.1     Conductive adhesives             715
        • 17.7.12.2.2     Biodegradable adhesives      715
        • 17.7.12.2.3     Magnets            715
        • 17.7.12.2.4     Bio-based solders      715
        • 17.7.12.2.5     Bio-derived solders   716
        • 17.7.12.2.6     Recycled plastics       716
        • 17.7.12.2.7     Nano adhesives           716
        • 17.7.12.2.8     Shape memory polymers       717
        • 17.7.12.2.9     Photo-reversible polymers    718
        • 17.7.12.2.10  Conductive biopolymers        718
      • 17.7.12.3         Processes        719
      • 17.7.12.3.1     Traditional thermal processing methods     720
        • 17.7.12.3.2     Low temperature solder          720
        • 17.7.12.3.3     Reflow soldering          723
        • 17.7.12.3.4     Induction soldering    723
        • 17.7.12.3.5     UV curing          724
        • 17.7.12.3.6     Near-infrared (NIR) radiation curing 724
        • 17.7.12.3.7     Photonic sintering/curing       725
        • 17.7.12.3.8     Hybrid integration       725
    • 17.7.13              Sustainable integrated circuits          725
      • 17.7.13.1         IC manufacturing        725
      • 17.7.13.2         Sustainable IC manufacturing           726
      • 17.7.13.3         Wafer production        727
        • 17.7.13.3.1     Silicon 727
        • 17.7.13.3.2     Gallium nitride ICs     728
        • 17.7.13.3.3     Flexible ICs      728
        • 17.7.13.3.4     Fully printed organic ICs         729
      • 17.7.13.4         Oxidation methods    729
        • 17.7.13.4.1     Sustainable oxidation              729
        • 17.7.13.4.2     Metal oxides   730
        • 17.7.13.4.3     Recycling          731
        • 17.7.13.4.4     Thin gate oxide layers                731
      • 17.7.13.5         Patterning and doping              732
        • 17.7.13.5.1     Processes        732
          • 17.7.13.5.1.1 Wet etching     732
          • 17.7.13.5.1.2 Dry plasma etching    732
          • 17.7.13.5.1.3 Lift-off patterning        733
          • 17.7.13.5.1.4 Surface doping             733
      • 17.7.13.6         Metallization  734
        • 17.7.13.6.1     Evaporation    734
        • 17.7.13.6.2     Plating 734
        • 17.7.13.6.3     Printing              735
          • 17.7.13.6.3.1 Printed metal gates for organic thin film transistors            735
        • 17.7.13.6.4     Physical vapour deposition (PVD)    735
    • 17.7.14              End of life         735
      • 17.7.14.1         Hazardous waste        736
      • 17.7.14.2         Emissions        737
      • 17.7.14.3         Water Usage   738
      • 17.7.14.4         Recycling          738
        • 17.7.14.4.1     Mechanical recycling                739
        • 17.7.14.4.2     Electro-Mechanical Separation         740
        • 17.7.14.4.3     Chemical Recycling   740
        • 17.7.14.4.4     Electrochemical Processes  741
        • 17.7.14.4.5     Thermal Recycling      741
    • 17.7.15              Green Certification     741
    • 17.7.16              Companies     742
  • 17.8     Sustainable Textiles and Fibers          746
    • 17.8.1 Types of bio-based fibres       746
      • 17.8.1.1            Natural fibres 747
      • 17.8.1.2            Main-made bio-based fibres               749
    • 17.8.2 Bio-based synthetics                749
    • 17.8.3 Recyclability of bio-based fibres       750
    • 17.8.4 Lyocell                751
    • 17.8.5 Bacterial cellulose      751
    • 17.8.6 Algae textiles  752
    • 17.8.7 Bio-based leather        753
      • 17.8.7.1            Properties of bio-based leathers       756
        • 17.8.7.1.1        Tear strength. 756
        • 17.8.7.1.2        Tensile strength            757
        • 17.8.7.1.3        Bally flexing     757
      • 17.8.7.2            Comparison with conventional leathers      757
      • 17.8.7.3            Comparative analysis of bio-based leathers             760
      • 17.8.7.4            Plant-based leather   761
        • 17.8.7.4.1        Overview           761
        • 17.8.7.4.2        Production processes              761
          • 17.8.7.4.2.1   Feedstocks      762
            • 17.8.7.4.2.1   Agriculture Residues 762
            • 17.8.7.4.2.2   Food Processing Waste          762
            • 17.8.7.4.2.3   Invasive Plants              762
            • 17.8.7.4.2.4   Culture-Grown Inputs              762
            • 17.8.7.4.2.5   Textile-Based  762
            • 17.8.7.4.2.6   Bio-Composite             763
        • 17.8.7.4.3        Products           764
        • 17.8.7.4.4        Market players               764
      • 17.8.7.5            Mycelium leather         766
        • 17.8.7.5.1        Overview           766
        • 17.8.7.5.2        Production process   768
          • 17.8.7.5.2.1   Growth conditions     768
          • 17.8.7.5.2.2   Tanning Mycelium Leather     769
          • 17.8.7.5.2.3   Dyeing Mycelium Leather       769
        • 17.8.7.5.3        Products           769
        • 17.8.7.5.4        Market players               770
      • 17.8.7.6            Microbial leather          771
        • 17.8.7.6.1        Overview           771
        • 17.8.7.6.2        Production process   771
        • 17.8.7.6.3        Fermentation conditions       771
        • 17.8.7.6.4        Harvesting       772
        • 17.8.7.6.5        Products           773
        • 17.8.7.6.6        Market players               775
      • 17.8.7.7            Lab grown leather        776
        • 17.8.7.7.1        Overview           776
        • 17.8.7.7.2        Production process   776
        • 17.8.7.7.3        Products           777
        • 17.8.7.7.4        Market players               777
      • 17.8.7.8            Protein-based leather               778
        • 17.8.7.8.1        Overview           778
        • 17.8.7.8.2        Production process   779
        • 17.8.7.8.3        Commercial activity  779
      • 17.8.7.9            Sustainable textiles coatings and dyes         780
        • 17.8.7.9.1        Overview           780
          • 17.8.7.9.1.1   Coatings            780
          • 17.8.7.9.1.2   Dyes     781
        • 17.8.7.9.2        Commercial activity  781
    • 17.8.8 Companies     782
  • 17.9     Alternative Fuels and Lubricants      786
    • 17.9.1 Biofuels and Synthetic Fuels               786
    • 17.9.2 Biodiesel           786
      • 17.9.2.1            Biodiesel by generation           787
      • 17.9.2.2            Production of biodiesel and other biofuels 788
        • 17.9.2.2.1        Pyrolysis of biomass 789
        • 17.9.2.2.2        Vegetable oil transesterification       791
        • 17.9.2.2.3        Vegetable oil hydrogenation (HVO)  793
          • 17.9.2.2.3.1   Production process   793
        • 17.9.2.2.4        Biodiesel from tall oil                794
        • 17.9.2.2.5        Fischer-Tropsch BioDiesel     794
        • 17.9.2.2.6        Hydrothermal liquefaction of biomass         796
        • 17.9.2.2.7        CO2 capture and Fischer-Tropsch (FT)          797
        • 17.9.2.2.8        Dymethyl ether (DME)              797
      • 17.9.2.3            Prices  797
      • 17.9.2.4            Global production and consumption            798
    • 17.9.3 Renewable diesel        800
      • 17.9.3.1            Production       801
      • 17.9.3.2            SWOT analysis              801
      • 17.9.3.3            Global consumption 802
      • 17.9.3.4            Prices  804
    • 17.9.4 Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel)                805
      • 17.9.4.1            Description     805
      • 17.9.4.2            SWOT analysis              806
      • 17.9.4.3            Global production and consumption            806
      • 17.9.4.4            Production pathways                807
      • 17.9.4.5            Prices  809
      • 17.9.4.6            Bio-aviation fuel production capacities       809
      • 17.9.4.7            Market challenges      810
      • 17.9.4.8            Global consumption 810
    • 17.9.5 Bio-naphtha   811
      • 17.9.5.1            Overview           811
      • 17.9.5.2            SWOT analysis              812
      • 17.9.5.3            Markets and applications      813
      • 17.9.5.4            Prices  814
      • 17.9.5.5            Production capacities, by producer, current and planned               815
      • 17.9.5.6            Production capacities, total (tonnes), historical, current and planned   816
    • 17.9.6 Biomethanol  817
      • 17.9.6.1            SWOT analysis              817
      • 17.9.6.2            Methanol-to gasoline technology     818
      • 17.9.6.2.1        Production processes              819
        • 17.9.6.2.1.1   Anaerobic digestion  820
        • 17.9.6.2.1.2   Biomass gasification 820
        • 17.9.6.2.1.3   Power to Methane       821
    • 17.9.7 Ethanol              822
      • 17.9.7.1            Technology description           822
      • 17.9.7.2            1G Bio-Ethanol             822
      • 17.9.7.3            SWOT analysis              823
      • 17.9.7.4            Ethanol to jet fuel technology             823
      • 17.9.7.5            Methanol from pulp & paper production      824
      • 17.9.7.6            Sulfite spent liquor fermentation      824
      • 17.9.7.7            Gasification    825
        • 17.9.7.7.1        Biomass gasification and syngas fermentation       825
        • 17.9.7.7.2        Biomass gasification and syngas thermochemical conversion    825
      • 17.9.7.8            CO2 capture and alcohol synthesis               826
      • 17.9.7.9            Biomass hydrolysis and fermentation           826
        • 17.9.7.9.1        Separate hydrolysis and fermentation           826
        • 17.9.7.9.2        Simultaneous saccharification and fermentation (SSF)    827
        • 17.9.7.9.3        Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)      827
        • 17.9.7.9.4        Simultaneous saccharification and co-fermentation (SSCF)         827
        • 17.9.7.9.5        Direct conversion (consolidated bioprocessing) (CBP)      827
      • 17.9.7.10         Global ethanol consumption              829
    • 17.9.8 Biobutanol      830
      • 17.9.8.1            Production       832
      • 17.9.8.2            Prices  832
    • 17.9.9 Biomass-based Gas 832
      • 17.9.9.1            Biomethane    834
      • 17.9.9.2            Production pathways                836
        • 17.9.9.2.1        Landfill gas recovery 836
        • 17.9.9.2.2        Anaerobic digestion  837
        • 17.9.9.2.3        Thermal gasification 838
      • 17.9.9.3            SWOT analysis              838
      • 17.9.9.4            Global production      839
      • 17.9.9.5            Prices  839
        • 17.9.9.5.1        Raw Biogas     839
        • 17.9.9.5.2        Upgraded Biomethane            840
      • 17.9.9.6            Bio-LNG             840
        • 17.9.9.6.1        Markets              840
          • 17.9.9.6.1.1   Trucks 840
          • 17.9.9.6.1.2   Marine 840
        • 17.9.9.6.2        Production       840
        • 17.9.9.6.3        Plants 841
      • 17.9.9.7            bio-CNG (compressed natural gas derived from biogas)  841
      • 17.9.9.8            Carbon capture from biogas               841
    • 17.9.10              Biosyngas        842
      • 17.9.10.1         Production       842
      • 17.9.10.2         Prices  843
    • 17.9.11              Biohydrogen   844
      • 17.9.11.1         Description     844
      • 17.9.11.2         SWOT analysis              845
      • 17.9.11.3         Production of biohydrogen from biomass  845
        • 17.9.11.3.1     Biological Conversion Routes             846
          • 17.9.11.3.1.1 Bio-photochemical Reaction              846
          • 17.9.11.3.1.2 Fermentation and Anaerobic Digestion        846
        • 17.9.11.3.2     Thermochemical conversion routes               847
          • 17.9.11.3.2.1 Biomass Gasification               847
          • 17.9.11.3.2.2 Biomass Pyrolysis      847
          • 17.9.11.3.2.3 Biomethane Reforming           847
      • 17.9.11.4         Applications   848
      • 17.9.11.5         Prices  849
    • 17.9.12              Biochar in biogas production              849
    • 17.9.13              Bio-DME            849
    • 17.9.14              Chemical recycling for biofuels         850
      • 17.9.14.1         Plastic pyrolysis           850
      • 17.9.14.2         Used tires pyrolysis   850
        • 17.9.14.2.1     Conversion to biofuel               852
      • 17.9.14.3         Co-pyrolysis of biomass and plastic wastes             853
      • 17.9.14.4         Gasification    853
        • 17.9.14.4.1     Syngas conversion to methanol        854
        • 17.9.14.4.2     Biomass gasification and syngas fermentation       858
        • 17.9.14.4.3     Biomass gasification and syngas thermochemical conversion    858
      • 17.9.14.5         Hydrothermal cracking           858
    • 17.9.15              Electrofuels (E-fuels, power-to-gas/liquids/fuels) 859
      • 17.9.15.1         Introduction    859
      • 17.9.15.2         Benefits of e-fuels       862
      • 17.9.15.3         Feedstocks      863
        • 17.9.15.3.1     Hydrogen electrolysis               863
      • 17.9.15.4         CO2 capture   863
      • 17.9.15.5         Production       864
        • 17.9.15.5.1     eFuel production facilities, current and planned   866
      • 17.9.15.6         Companies     867
    • 17.9.16              Algae-derived biofuels             867
      • 17.9.16.1         Technology description           867
        • 17.9.16.1.1     Conversion pathways               867
      • 17.9.16.2         Production       868
      • 17.9.16.3         Market challenges      869
      • 17.9.16.4         Prices  870
      • 17.9.16.5         Producers         871
    • 17.9.17              Green Ammonia          871
      • 17.9.17.1         Production       871
        • 17.9.17.1.1     Decarbonisation of ammonia production  873
        • 17.9.17.1.2     Green ammonia projects       874
      • 17.9.17.2         Green ammonia synthesis methods              874
        • 17.9.17.2.1     Haber-Bosch process              874
        • 17.9.17.2.2     Biological nitrogen fixation   875
        • 17.9.17.2.3     Electrochemical production                876
        • 17.9.17.2.4     Chemical looping processes               876
      • 17.9.17.3         Blue ammonia              876
        • 17.9.17.3.1     Blue ammonia projects           876
        • 17.9.17.3.2     Markets and applications      877
        • 17.9.17.3.3     Chemical energy storage       877
        • 17.9.17.3.4     Ammonia fuel cells    877
        • 17.9.17.3.5     Marine fuel      878
        • 17.9.17.3.6     Prices  879
      • 17.9.17.4         Companies and projects        881
    • 17.9.18              Bio-oils (pyrolysis oils)            882
      • 17.9.18.1         Description     882
        • 17.9.18.1.1     Advantages of bio-oils             882
      • 17.9.18.2         Production       883
        • 17.9.18.2.1     Fast Pyrolysis 883
        • 17.9.18.2.2     Costs of production  884
        • 17.9.18.2.3     Upgrading        884
      • 17.9.18.3         Applications   885
      • 17.9.18.4         Bio-oil producers         885
      • 17.9.18.5         Prices  886
    • 17.9.19              Refuse Derived Fuels (RDF)  886
      • 17.9.19.1         Overview           887
      • 17.9.19.2         Production       887
        • 17.9.19.2.1     Production process   887
        • 17.9.19.2.2     Mechanical biological treatment      888
      • 17.9.19.3         Markets              888
    • 17.9.20              Bio-based Lubricants               889
    • 17.9.21              Companies     890
  • 17.10  Green Pharmaceuticals and Healthcare     903
    • 17.10.1              Green Pharmaceutical Synthesis     903
      • 17.10.1.1         Green Solvents             903
        • 17.10.1.1.1     Supercritical CO2 (scCO2)   903
        • 17.10.1.1.2     Ionic Liquids   904
        • 17.10.1.1.3     Bio-based Solvents    904
        • 17.10.1.1.4     Water-based Reactions          904
      • 17.10.1.2         Catalysis           905
        • 17.10.1.2.1     Biocatalysis (Enzymes and Whole-cell Catalysts) 905
        • 17.10.1.2.2     Heterogeneous Catalysts      905
        • 17.10.1.2.3     Organocatalysts          906
        • 17.10.1.2.4     Photocatalysis              906
      • 17.10.1.3         Continuous Flow Chemistry 906
        • 17.10.1.3.1     Microreactors                906
        • 17.10.1.3.2     Flow Photochemistry               907
        • 17.10.1.3.3     Electrochemical Flow Cells  907
      • 17.10.1.4         Alternative Energy Sources   907
        • 17.10.1.4.1     Microwave-assisted Synthesis           908
        • 17.10.1.4.2     Ultrasound-assisted Reactions         908
        • 17.10.1.4.3     Mechanochemistry (Ball Milling)      908
      • 17.10.1.5         Green Oxidation and Reduction Methods   909
        • 17.10.1.5.1     Electrochemical oxidation/reduction            909
        • 17.10.1.5.2     Photochemical reactions      909
        • 17.10.1.5.3     Hydrogen peroxide as green oxidant              909
      • 17.10.1.6         Atom-Economical Reactions              910
      • 17.10.1.7         Bio-based Starting Materials               910
      • 17.10.1.8         Process Intensification            911
      • 17.10.1.9         Green Analytical Techniques               912
      • 17.10.1.10      Sustainable Purification Methods    912
    • 17.10.2              Bio-based Drug Delivery Systems    912
      • 17.10.2.1         Natural polymers        913
        • 17.10.2.1.1     Chitosan and its derivatives 913
        • 17.10.2.1.2     Alginate              913
        • 17.10.2.1.3     Hyaluronic acid            913
        • 17.10.2.1.4     Cellulose and its derivatives                914
      • 17.10.2.2         Protein-based Materials         915
        • 17.10.2.2.1     Albumin nanoparticles            915
        • 17.10.2.2.2     Collagen matrices      915
        • 17.10.2.2.3     Silk fibroin scaffolds 915
        • 17.10.2.2.4     Gelatin hydrogels        916
      • 17.10.2.3         Polysaccharide-based Systems        917
        • 17.10.2.3.1     Cyclodextrins 917
        • 17.10.2.3.2     Pectin  917
        • 17.10.2.3.3     Dextran              917
        • 17.10.2.3.4     Pullulan             918
      • 17.10.2.4         Lipid-based Carriers 918
        • 17.10.2.4.1     Liposomes from natural phospholipids       918
        • 17.10.2.4.2     Solid lipid nanoparticles        919
        • 17.10.2.4.3     Nanostructured lipid carriers              919
      • 17.10.2.5         Plant-derived Materials           920
        • 17.10.2.5.1     Guar gum         920
        • 17.10.2.5.2     Carrageenan  920
        • 17.10.2.5.3     Zein (corn protein)      921
        • 17.10.2.5.4     Starch-based materials          921
      • 17.10.2.6         Microbial-derived Polymers 922
        • 17.10.2.6.1     Polyhydroxyalkanoates (PHAs)          922
        • 17.10.2.6.2     Bacterial cellulose      922
        • 17.10.2.6.3     Xanthan gum 923
      • 17.10.2.7         Stimuli-responsive Biopolymers       924
        • 17.10.2.7.1     pH-sensitive alginate derivatives      924
        • 17.10.2.7.2     Thermoresponsive chitosan systems            924
        • 17.10.2.7.3     Enzyme-responsive materials            925
      • 17.10.2.8         Bioconjugation Techniques  926
        • 17.10.2.8.1     Click chemistry for polymer modification   926
        • 17.10.2.8.2     Enzyme-catalyzed conjugation          926
        • 17.10.2.8.3     Photo-initiated crosslinking 926
      • 17.10.2.9         Sustainable Particle Formation         927
        • 17.10.2.9.1     Spray-drying with green solvents      927
        • 17.10.2.9.2     Electrospinning of biopolymers         928
        • 17.10.2.9.3     Supercritical fluid-assisted particle formation        928
    • 17.10.3              Sustainable Medical Devices              929
    • 17.10.4              Personalized Chemistry in Medicine              930
      • 17.10.4.1         Tailored Drug Delivery Systems         931
      • 17.10.4.2         Personalized Diagnostic Materials   931
      • 17.10.4.3         Custom-synthesized Therapeutics 931
      • 17.10.4.4         Biocompatible Materials for Implants           932
      • 17.10.4.5         3D-printed Pharmaceuticals               932
      • 17.10.4.6         Personalized Nutrient Formulations               932
    • 17.10.5              Companies     933
  • 17.11  Advanced Materials for 3D Printing 938
    • 17.11.1              Bio-based 3D Printing Resins              938
    • 17.11.2              Recyclable and Reusable 3D Printing Materials      939
    • 17.11.3              Functional and Smart 3D Printing Materials              940
    • 17.11.4              Companies     940
  • 17.12  Artificial Intelligence in Chemical Design   941
    • 17.12.1              Machine Learning for Molecular Design       942
    • 17.12.2              AI-driven Retrosynthesis Planning   943
    • 17.12.3              Predictive Modelling of Chemical Properties            943
    • 17.12.4              AI in Process Optimization    944
    • 17.12.5              Automated Lab Systems and Robotics        944
    • 17.12.6              AI for Materials Discovery and Development            945
  • 17.13  Quantum Chemistry Applications   945
    • 17.13.1              Quantum Computing for Molecular Simulations   945
    • 17.13.2              Quantum Sensors in Chemical Analysis     946
    • 17.13.3              Quantum-inspired Algorithms for Property Prediction       946
    • 17.13.4              Quantum Approaches to Catalyst Design  947
    • 17.13.5              Quantum Chemistry in Drug Discovery        947
    • 17.13.6              Quantum Effects in Nanomaterials 948
    • 17.13.7              Companies     948

 

18          ECONOMIC ASPECTS AND BUSINESS MODELS    949

  • 18.1     Cost Competitiveness of Sustainable Chemical Technologies     949
  • 18.2     Investment Trends in Green Chemistry        950
  • 18.3     New Business Models in the Circular Economy     951
  • 18.4     Market Dynamics and Consumer Preferences         952
  • 18.5     Intellectual Property Considerations             953
  • 18.6     Case Studies  954
    • 18.6.1 Bio-based Production of Bulk Chemicals   954
    • 18.6.2 CO2 to Polymers: Innovating in Materials   955
    • 18.6.3 Waste Plastic to Fuels and Chemicals          955
    • 18.6.4 Green Pharmaceutical Manufacturing         955
    • 18.6.5 Sustainable Agriculture Chemicals 956
    • 18.6.6 Circular Economy in Action: Closing the Loop in Packaging          956
    • 18.6.7 Revolutionizing Textiles: From Petrochemicals to Bio-based Fibers          956

 

19          FUTURE OUTLOOK AND EMERGING TRENDS          956

  • 19.1     Convergence of Bio, Nano, and Information Technologies               957
  • 19.2     Quantum Computing in Chemical Research and Development  957
  • 19.3     Space-based Manufacturing of Chemicals               958
  • 19.4     Artificial Photosynthesis and Solar Fuels    959
  • 19.5     Personalized and On-demand Chemical Manufacturing 959
  • 19.6     The Role of Chemistry in Achieving Net-Zero Emissions  960
  • 19.7     Circular Economy Solutions 961
  • 19.8     Artificial Intelligence and Digitalization Impact       962
  • 19.9     Quantum Chemistry Prospects         963

 

20          APPENDICES  964

  • 20.1     Glossary of Terms       964
  • 20.2     List of Abbreviations  964
  • 20.3     Research Methodology           965

 

21          REFERENCES 966

 

List of Tables

  • Table 1. Global drivers and trends in sustainable chemicals.        52
  • Table 2. Role of Digitalization and Industry 4.0 in Sustainable Chemicals.           55
  • Table 3. Types of sustainable chemicals and applications in agriculture.             56
  • Table 4. Types of sustainable chemicals and applications in Green Cosmetics and Personal Care.   56
  • Table 5. Types of sustainable chemicals and applications in Sustainable Packaging.  57
  • Table 6. Types of sustainable chemicals and applications in Eco-friendly Paints and Coatings.            57
  • Table 7. Types of sustainable chemicals and applications in Alternative Fuels and Lubricants.            58
  • Table 8. Types of sustainable chemicals and applications in Pharmaceuticals and Healthcare.           58
  • Table 9. Types of sustainable chemicals and applications in Water Treatment and Purification.           59
  • Table 10. Sustainable Chemicals and Materials in Carbon Capture and Utilization.     60
  • Table 11. Types of sustainable chemicals and applications in Advanced Materials for 3D Printing.    60
  • Table 12. Sustainable Mining and Metallurgy.          61
  • Table 13. Comparison of traditional and sustainable chemical feedstocks.       62
  • Table 14. Types of Biomass and Their Chemical Compositions. 63
  • Table 15. Pretreatment and Conversion Technologies.      63
  • Table 16. Challenges in Scaling Up Biomass Utilization.  64
  • Table 17. CO2 Capture Technologies.           65
  • Table 18. Chemical Conversion Pathways for CO2.             65
  • Table 19. Economic and Technical Barriers to CO2 Utilization.    67
  • Table 20. Industrial Waste Streams and By-products.        68
  • Table 21. Electrolysis Technologies.               69
  • Table 22. Types of biocatalysts.         75
  • Table 23. Heterogeneous Catalysis Advancements.            75
  • Table 24. Photocatalysis vs Electrocatalysis.           76
  • Table 25. Applications of chemically recycled materials. 81
  • Table 26. Summary of non-catalytic pyrolysis technologies.         83
  • Table 27. Summary of catalytic pyrolysis technologies.    84
  • Table 28. Summary of pyrolysis technique under different operating conditions.            87
  • Table 29. Biomass materials and their bio-oil yield.             88
  • Table 30. Biofuel production cost from the biomass pyrolysis process. 89
  • Table 31. Pyrolysis companies and plant capacities, current and planned.         92
  • Table 32. Summary of gasification technologies.  93
  • Table 33. Advanced recycling (Gasification) companies. 97
  • Table 34. Summary of dissolution technologies.   98
  • Table 35. Advanced recycling (Dissolution) companies    99
  • Table 36. Depolymerisation processes for PET, PU, PC and PA, products and yields.    100
  • Table 37. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.           101
  • Table 38. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 102
  • Table 39. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 103
  • Table 40. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.           104
  • Table 41. Summary of aminolysis technologies.    105
  • Table 42. Advanced recycling (Depolymerisation) companies and capacities (current and planned).                106
  • Table 43. Overview of hydrothermal cracking for advanced chemical recycling.              107
  • Table 44. Overview of Pyrolysis with in-line reforming for advanced chemical recycling.            107
  • Table 45. Overview of microwave-assisted pyrolysis for advanced chemical recycling.              108
  • Table 46. Overview of plasma pyrolysis for advanced chemical recycling.           109
  • Table 47. Overview of plasma gasification for advanced chemical recycling.     109
  • Table 48. Key methods used in upcycling chemical waste.             110
  • Table 49. Circular Business Models in the Chemical Sector.          111
  • Table 50.Challenges and Opportunities       112
  • Table 51. Chemical recycling companies.  113
  • Table 52. Methods of electrochemical synthesis. 126
  • Table 53. P2X integration in chemical production. 129
  • Table 54. AI and ML applications in the chemical industry.             131
  • Table 55. Key components and applications of digital twins in chemical plant operations.      134
  • Table 56. Key cybersecurity challenges in the digitalized chemical industry.      136
  • Table 57. Types of advanced manufacturing technologies in the chemical industry.     137
  • Table 58. Key Features of Microreactors and Process Intensification.     139
  • Table 59. Advantages in Pharmaceuticals and Fine Chemicals.  139
  • Table 60. Challenges in Scale-up and Implementation.    140
  • Table 61. Advantages of Modular and Distributed Manufacturing.            140
  • Table 62. Challenges in Implementing Modular and Distributed Manufacturing.             141
  • Table 63. Comparison of Direct Ink Writing and Reactive Printing.             142
  • Table 64. Applications in Custom Synthesis and Formulation.     142
  • Table 65. Components of Flexible and Adaptable Production Systems. 144
  • Table 66. Feedstock-based Classification 146
  • Table 67. Platform-based Classification.    146
  • Table 68. Product-based Classification.      146
  • Table 69. Process Integration Strategies in Biorefineries. 149
  • Table 70. Production capacities of biorefinery lignin producers. 150
  • Table 71. Algal Biorefinery Products.              151
  • Table 72. Types of Cell Culture Systems.     151
  • Table 73. Factors Affecting Cell Culture Performance.      152
  • Table 74. Types of Fermentation Processes.             154
  • Table 75. Factors Affecting Fermentation Performance.   154
  • Table 76. Advances in Fermentation Technology.   155
  • Table 77. Types of Purification Methods in Downstream Processing.       156
  • Table 78. Factors Affecting Purification Performance.        157
  • Table 79. Advances in Purification Technology.       157
  • Table 80. Common formulation methods used in biomanufacturing.     159
  • Table 81. Factors Affecting Formulation Performance.      159
  • Table 82. Advances in Formulation Technology.     160
  • Table 83. Factors Affecting Scale-up Performance in Biomanufacturing.             161
  • Table 84. Scale-up Strategies in Biomanufacturing.            162
  • Table 85. Factors Affecting Optimization Performance in Biomanufacturing.    163
  • Table 86. Optimization Strategies in Biomanufacturing.   164
  • Table 87. Types of Quality Control Tests in Biomanufacturing.     165
  • Table 88.Factors Affecting Quality Control Performance in Biomanufacturing  166
  • Table 89. Factors Affecting Characterization Performance in Biomanufacturing             168
  • Table 90. Key fermentation parameters in batch vs continuous biomanufacturing processes.              174
  • Table 91.  Major microbial cell factories used in industrial biomanufacturing.  179
  • Table 92. Comparison of Modes of Operation.        182
  • Table 93. Host organisms commonly used in biomanufacturing.               183
  • Table 94. CO2 non-conversion and conversion technology, advantages and disadvantages. 185
  • Table 95. Carbon utilization revenue forecast by product (US$). 188
  • Table 96. Carbon utilization business models.        191
  • Table 97. CO2 utilization and removal pathways.  191
  • Table 98. Market challenges for CO2 utilization.    193
  • Table 99. Example CO2 utilization pathways.           194
  • Table 100. CO2 derived products via Thermochemical conversion-applications, advantages and disadvantages.            197
  • Table 101. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages.            201
  • Table 102. CO2 derived products via biological conversion-applications, advantages and disadvantages.            205
  • Table 103. Companies developing and producing CO2-based polymers.             207
  • Table 104. Companies developing mineral carbonation technologies.   209
  • Table 105. Comparison of emerging CO₂ utilization applications.              210
  • Table 106. Main routes to CO₂-fuels.              212
  • Table 107. Market overview for CO2 derived fuels.               212
  • Table 108. Main routes to CO₂ -fuels              214
  • Table 109. Power-to-Methane projects.        218
  • Table 110. Microalgae products and prices.              221
  • Table 111. Main Solar-Driven CO2 Conversion Approaches.         222
  • Table 112. Companies in CO2-derived fuel products.        223
  • Table 113. Commodity chemicals and fuels manufactured from CO2.  228
  • Table 114. Companies in CO2-derived chemicals products.         231
  • Table 115. Carbon capture technologies and projects in the cement sector       236
  • Table 116. Prefabricated versus ready-mixed concrete markets .               239
  • Table 117. CO₂ utilization business models in building materials.             241
  • Table 118. Companies in CO2 derived building materials.              244
  • Table 119. Market challenges for CO2 utilization in construction materials.       245
  • Table 120. Companies in CO2 Utilization in Biological Yield-Boosting.   250
  • Table 121. Applications of CCS in oil and gas production.               251
  • Table 122. CO2 EOR/Storage Challenges.  257
  • Table 123. Comparison of types of biocatalysts.    260
  • Table 124. Types of Microorganism Biocatalysts.  261
  • Table 125. Examples of fungal hosts.            262
  • Table 126. Commonly used yeast hosts.     263
  • Table 127. Common Algal Species Used in Biocatalysis and Their Applications.             264
  • Table 128. Common Cyanobacterial Species Used in Biocatalysis and Their Applications.     265
  • Table 129. Comparison of Algae and Cyanobacteria in Biocatalysis         265
  • Table 130. Types of Engineered Biocatalysts.           266
  • Table 131. Types of Detergent Enzymes.      269
  • Table 132.Types of Food Processing Enzymes          270
  • Table 133. Types of Textile Processing Enzymes.    270
  • Table 134. Types of Paper and Pulp Processing Enzymes.                271
  • Table 135. Types of Leather Processing Enzymes. 271
  • Table 136. Types of Biofuel Production Enzymes.  272
  • Table 137. Types of Animal Feed Enzymes. 272
  • Table 138. Types of Pharmaceutical and Diagnostic Enzymes.    273
  • Table 139. Types of Waste Management and Bioremediation Enzymes. 273
  • Table 140. Types of Agriculture and Crop Improvement Enzymes.             274
  • Table 141. Comparison of enzyme types.    275
  • Table 142. Other Types of Biocatalysts.       276
  • Table 143. Production methods for biocatalysts.   278
  • Table 144. Fermentation processes.              279
  • Table 145. Waste-based feedstocks and biochemicals produced.            279
  • Table 146. Microbial and mineral-based feedstocks and biochemicals produced.         280
  • Table 147. Comparison of Cell-Free Protein Synthesis Systems. 282
  • Table 148.  Key biomanufacturing processes utilized in synthetic biology.           284
  • Table 149. Molecules produced through industrial biomanufacturing.  285
  • Table 150. Continuous vs batch biomanufacturing              285
  • Table 151. Key fermentation parameters in batch vs continuous biomanufacturing processes.            286
  • Table 152. Synthetic biology fermentation processes.       287
  • Table 153. Cell-free versus cell-based systems      288
  • Table 154. Key applications of genome engineering.           295
  • Table 155. Comparison of Immobilization and Encapsulation Techniques.         296
  • Table 156. Types of Nanoparticle Biocatalysts.       297
  • Table 157. Types of Biocatalytic Cascades and Multi-Enzyme Systems.                297
  • Table 158. Key aspects of microfluidics in biocatalysts.   298
  • Table 159. Companies developing biocatalysts.    299
  • Table 160. Key tools and techniques used in metabolic engineering for pathway optimization.             302
  • Table 161. Key applications of metabolic engineering.      304
  • Table 162. Main DNA synthesis technologies           306
  • Table 163. Main gene assembly methods.  306
  • Table 164. Key applications of genome engineering.           310
  • Table 165. Engineered proteins in industrial applications.              312
  • Table 166.Key computational tools and their applications in synthetic biology.               322
  • Table 167. Feedstocks for synthetic biology.            325
  • Table 168. Products from C1 feedstocks in white biotechnology.               330
  • Table 169. C2 Feedstock Products. 331
  • Table 170. CO2 derived products via biological conversion-applications, advantages and disadvantages.            333
  • Table 171. Common starch sources that can be used as feedstocks for producing biochemicals.     341
  • Table 172. Biomass processes summary, process description and TRL.               343
  • Table 173. Pathways for hydrogen production from biomass.       345
  • Table 174. Overview of alginate-description, properties, application and market size. 345
  • Table 175. Synthetic Biology Market Players.            348
  • Table 176. Types of bio-based solvents.      361
  • Table 177. Solvent Selection Tools and Frameworks.          365
  • Table 178. Companies developing bio-based solvents.    366
  • Table 179. MSW-to-chemicals processes. 368
  • Table 180. Agricultural and food waste valorization approaches.               369
  • Table 181. Value Proposition for Critical Material Extraction Technologies.         371
  • Table 182. Critical Material Extraction Methods Evaluated by Key Performance Metrics.           373
  • Table 183. Critical Rare-Earth Element Recovery Technologies from Secondary Sources.        374
  • Table 184. Li-ion Battery Technology Metal Recovery Methods-Metal, Recovery Method, Recovery Efficiency, Challenges, Environmental Impact, Economic Viability.          375
  • Table 185. Critical Semiconductor Materials Recovery-Material, Primary Source, Recovery Method, Recovery Efficiency, Challenges, Potential Applications. 376
  • Table 186. Critical Semiconductor Material Recovery from Secondary Sources.             377
  • Table 187. Critical Platinum Group Metal Recovery.            378
  • Table 188. Bio-based flocculants and coagulants.              379
  • Table 189. Bio-based polymer membranes.             381
  • Table 190. Ceramic membranes from recycled materials.              382
  • Table 191. Types of Advanced adsorbents. 384
  • Table 192. Nutrient recovery technologies.               386
  • Table 193. Resource recovery processes:. 387
  • Table 194. Types of bioelectrochemical systems. 387
  • Table 195. Types of green solvents used in extraction processes.              388
  • Table 196. Types of biodegradable chelating agents.          390
  • Table 197. Types of biocatalysts used in wastewater treatment. 390
  • Table 198. Types of advanced adsorption materials.           391
  • Table 199. Types of sustainable pH adjustment chemicals.           392
  • Table 200. Green Lixiviants for Metal Extraction.    393
  • Table 201. Sustainable Flotation Chemicals.           394
  • Table 202. Electrochemical Recovery Methods.     395
  • Table 203. Geopolymers and Mine Tailings Utilization.      395
  • Table 204. Sustainable remediation technologies .              397
  • Table 205. Waste-to-energy technologies . 397
  • Table 206. Advanced separation techniques .          398
  • Table 207. Companies in waste valorization and resource recovery.        399
  • Table 208. Energy Efficiency Measures in Chemical Plants.           409
  • Table 209. Renewable Energy Sources in Chemical Production. 410
  • Table 210. Energy Storage Technologies for Process Industries.  411
  • Table 211. Combined Heat and Power (CHP) Systems.     411
  • Table 212. Green Chemistry Metrics and Sustainability Indicators.          414
  • Table 213. Key principles of Safety by Design.         416
  • Table 214. Key steps in risk assessment for new chemical technologies.             417
  • Table 215. Key components of EIA for chemical processes.           418
  • Table 216. Environmental Policies Driving Sustainable Chemistry.           421
  • Table 217. Incentives and Support Mechanisms for Green Chemistry.   422
  • Table 218. Challenges in Regulating Emerging Technologies.        423
  • Table 219. International Cooperation and Harmonization Efforts.             423
  • Table 220. LDPE film versus PLA, 2019–24 (USD/tonne). 425
  • Table 221. PLA properties      426
  • Table 222. Applications, advantages and disadvantages of PHAs in packaging.              438
  • Table 223. Market overview for cellulose microfibers (microfibrillated cellulose) in paperboard and packaging-market age, key benefits, applications and producers.            441
  • Table 224. Applications of nanocrystalline cellulose (CNC).         443
  • Table 225. Market overview for cellulose nanofibers in packaging.           445
  • Table 226. Applications of Bacterial Nanocellulose in Packaging.             452
  • Table 227. Types of protein based-bioplastics, applications and companies.   454
  • Table 228. Overview of alginate-description, properties, application and market size. 456
  • Table 229. Companies developing algal-based bioplastics.          457
  • Table 230. Overview of mycelium fibers-description, properties, drawbacks and applications.            458
  • Table 231. Overview of chitosan-description, properties, drawbacks and applications.             460
  • Table 232. Commercial Examples of Chitosan-based Films and Coatings and Companies.   460
  • Table 233. Bio-based naphtha markets and applications.               462
  • Table 234. Bio-naphtha market value chain.            463
  • Table 235. Commercial Examples of Bio-Naphtha Packaging and Companies. 464
  • Table 236. Bioplastics and biodegradable polymers market players.       466
  • Table 237. Biopesticides and Biocontrol Agents.   502
  • Table 238. Types of Controlled Release Fertilizers.               503
  • Table 239. Common Natural Product Biostimulants and Their Modes of Action.              507
  • Table 240. Commercially available microbial bioinsecticides.     509
  • Table 241. Common Biochemicals Used in Agriculture.   510
  • Table 242. Types of Biopesticides.   514
  • Table 243. Sustainable Agriculture Chemicals Market Players.    516
  • Table 244. Established bio-based construction materials.             530
  • Table 245. Types of self-healing concrete.  536
  • Table 246. Types of biobased aerogels.        546
  • Table 247. Sustainable Construction Materials Market Players.  547
  • Table 248. Pros and cons of different type of food packaging materials. 558
  • Table 249. Active Biodegradable Films films and their food applications.             565
  • Table 250. Intelligent Biodegradable Films.               565
  • Table 251. Edible films and coatings market summary.    568
  • Table 252. Types of polyols. 571
  • Table 253. Polyol producers.                572
  • Table 254. Bio-based polyurethane coating products.       573
  • Table 255. Bio-based acrylate resin products.         574
  • Table 256. Polylactic acid (PLA) market analysis.  575
  • Table 257. Commercially available PHAs.  577
  • Table 258. Market overview for cellulose nanofibers in paints and coatings.       579
  • Table 259. Companies developing cellulose nanofibers products in paints and coatings.         580
  • Table 260. Types of protein based-biomaterials, applications and companies. 583
  • Table 261. CO2 utilization and removal pathways.                585
  • Table 262. CO2 utilization products developed by chemical and plastic producers.     588
  • Table 263. Sustainable packaging market players.               589
  • Table 264. Natural and Bio-based Ingredients.        606
  • Table 265. Biodegradable polymers.              607
  • Table 266. CNC properties.  610
  • Table 267.Types of PHAs and properties.     612
  • Table 268. Technical lignin types and applications.             614
  • Table 269. Properties of lignins and their applications.     616
  • Table 270. Production capacities of technical lignin producers.  617
  • Table 271. Production capacities of biorefinery lignin producers.              618
  • Table 272. Examples of Waterless Formulations.  619
  • Table 273. Green Cosmetics and Personal Care Market Players. 620
  • Table 274. Example envinronmentally friendly coatings, advantages and disadvantages.        623
  • Table 275. Plant Waxes.          629
  • Table 276. Types of alkyd resins and properties.     633
  • Table 277. Market summary for bio-based alkyd coatings-raw materials, advantages, disadvantages, applications and producers.                634
  • Table 278. Bio-based alkyd coating products.         635
  • Table 279. Types of polyols. 636
  • Table 280. Polyol producers.                637
  • Table 281. Bio-based polyurethane coating products.       638
  • Table 282. Market summary for bio-based epoxy resins.  639
  • Table 283. Bio-based polyurethane coating products.       641
  • Table 284. Bio-based acrylate resin products.         642
  • Table 285. Polylactic acid (PLA) market analysis.  643
  • Table 286. Market assessment for cellulose nanofibers in paints and coatings-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global paints and coatings OEMs.               646
  • Table 287. Companies developing CNF products in paints and coatings, applications targeted and stage of commercialization. 648
  • Table 288. Types of protein based-biomaterials, applications and companies. 655
  • Table 289. Overview of algal coatings-description, properties, application and market size.  656
  • Table 290. Companies developing algal-based plastics.  657
  • Table 291. Eco-friendly Paints and Coatings Market Players.         658
  • Table 292. Examples of Biodegradable Electronic Materials and Applications  669
  • Table 293. Benefits of Green Electronics Manufacturing  670
  • Table 294. Challenges in adopting Green Electronics manufacturing.    671
  • Table 295. Key areas where the PCB industry can improve sustainability.            673
  • Table 296. Improving sustainability of PCB design.              675
  • Table 297. PCB design options for sustainability.  675
  • Table 298.  Sustainability benefits and challenges associated with 3D printing.              677
  • Table 299. Conductive ink producers.           681
  • Table 300.  Green and lead-free solder companies.            682
  • Table 301. Biodegradable substrates for PCBs.      682
  • Table 302. Overview of mycelium fibers-description, properties, drawbacks and applications.            684
  • Table 303. Application of lignin in composites.       685
  • Table 304. Properties of lignins and their applications.     686
  • Table 305. Properties of flexible electronics‐cellulose nanofiber film (nanopaper).       688
  • Table 306. Companies developing cellulose nanofibers for electronics.                688
  • Table 307. Commercially available PHAs.  691
  • Table 308. Main limitations of the FR4 material system used for manufacturing printed circuit boards (PCBs).              692
  • Table 309. Halogen-free FR4 companies.   695
  • Table 310. Properties of biobased PCBs.    696
  • Table 311. Applications of flexible (bio) polyimide PCBs. 697
  • Table 312. Main patterning and metallization steps in PCB fabrication and sustainable options.         700
  • Table 313. Sustainability issues with conventional metallization processes.     700
  • Table 314. Benefits of print-and-plate.          702
  • Table 315. Sustainable alternative options to standard plating resists used in printed circuit board (PCB) fabrication.     705
  • Table 316. Applications for laser induced forward transfer             706
  • Table 317. Copper versus silver inks in laser-induced forward transfer (LIFT) for electronics fabrication.                707
  • Table 318. Approaches for in-situ oxidation prevention.   707
  • Table 319. Market readiness and maturity of different lead-free solders and electrically conductive adhesives (ECAs) for electronics manufacturing. 709
  • Table 320. Advantages of green electroless plating.            709
  • Table 321. Comparison of component attachment materials.     713
  • Table 322. Comparison between sustainable and conventional component attachment materials for printed circuit boards              714
  • Table 323. Comparison between the SMAs and SMPs.      717
  • Table 324. Comparison of conductive biopolymers versus conventional materials for printed circuit board fabrication.       719
  • Table 325. Comparison of curing and reflow processes used for attaching components in electronics assembly.        719
  • Table 326. Low temperature solder alloys. 720
  • Table 327. Thermally sensitive substrate materials.            721
  • Table 328. Limitations of existing IC production.   726
  • Table 329. Strategies for improving sustainability in integrated circuit (IC) manufacturing.      726
  • Table 330. Comparison of oxidation methods and level of sustainability.             730
  • Table 331. Stage of commercialization for oxides. 730
  • Table 332. Alternative doping techniques.  733
  • Table 333.  Metal content mg / Kg in Printed Circuit Boards (PCBs) from waste desktop computers. 739
  • Table 334. Chemical recycling methods for handling electronic waste. 740
  • Table 335.  Electrochemical processes for recycling metals from electronic waste       741
  • Table 336. Thermal recycling processes for electronic waste.      741
  • Table 337. Green Electronics Market Players.           742
  • Table 338. Properties and applications of the main natural fibres              747
  • Table 339. Types of sustainable alternative leathers.          754
  • Table 340. Properties of bio-based leathers.             756
  • Table 341. Comparison with conventional leathers.            758
  • Table 342. Price of commercially available sustainable alternative leather products.  759
  • Table 343. Comparative analysis of sustainable alternative leathers.      760
  • Table 344. Key processing steps involved in transforming plant fibers into leather materials. 761
  • Table 345. Current and emerging plant-based leather products. 764
  • Table 346. Companies developing plant-based leather products.             764
  • Table 347. Overview of mycelium-description, properties, drawbacks and applications.          766
  • Table 348. Companies developing mycelium-based leather products.  770
  • Table 349. Types of microbial-derived leather alternative.               773
  • Table 350. Companies developing microbial leather products.   775
  • Table 351. Companies developing plant-based leather products.             777
  • Table 352. Types of protein-based leather alternatives.     778
  • Table 353. Companies developing protein based leather.                780
  • Table 354. Companies developing sustainable coatings and dyes for leather - 781
  • Table 355. Sustainable Textiles and Fibers Market Players.             782
  • Table 356. Biodiesel by generation. 787
  • Table 357. Biodiesel production techniques.            788
  • Table 358. Summary of pyrolysis technique under different operating conditions.         789
  • Table 359. Biomass materials and their bio-oil yield.          790
  • Table 360. Biofuel production cost from the biomass pyrolysis process.              791
  • Table 361. Properties of vegetable oils in comparison to diesel.  792
  • Table 362. Main producers of HVO and capacities.              794
  • Table 363. Example commercial Development of BtL processes.              795
  • Table 364. Pilot or demo projects for biomass to liquid (BtL) processes.               795
  • Table 365. Global biodiesel consumption, 2010-2035 (M litres/year).     799
  • Table 366. Global renewable diesel consumption, 2010-2035 (M litres/year).   803
  • Table 367. Renewable diesel price ranges. 804
  • Table 368. Advantages and disadvantages of Bio-aviation fuel.   805
  • Table 369. Production pathways for Bio-aviation fuel.        807
  • Table 370. Current and announced Bio-aviation fuel facilities and capacities. 809
  • Table 371. Global bio-jet fuel consumption 2019-2035 (Million litres/year).       811
  • Table 372. Bio-based naphtha markets and applications.               813
  • Table 373. Bio-naphtha market value chain.            813
  • Table 374. Bio-naphtha pricing against petroleum-derived naphtha and related fuel products.            815
  • Table 375. Bio-based Naphtha production capacities, by producer.         815
  • Table 376. Comparison of biogas, biomethane and natural gas. 820
  • Table 377.  Processes in bioethanol production.  826
  • Table 378. Microorganisms used in CBP for ethanol production from biomass lignocellulosic.             828
  • Table 379. Ethanol consumption 2010-2035 (million litres).          829
  • Table 380. Biogas feedstocks.            834
  • Table 381. Existing and planned bio-LNG production plants.        841
  • Table 382. Methods for capturing carbon dioxide from biogas.    842
  • Table 383. Comparison of different Bio-H2 production pathways.             846
  • Table 384. Markets and applications for biohydrogen.       848
  • Table 385. Summary of gasification technologies.                853
  • Table 386. Overview of hydrothermal cracking for advanced chemical recycling.            858
  • Table 387. Applications of e-fuels, by type.                861
  • Table 388. Overview of e-fuels.          862
  • Table 389. Benefits of e-fuels.             862
  • Table 390. eFuel production facilities, current and planned.         866
  • Table 391. E-fuels companies.           867
  • Table 392. Algae-derived biofuel producers.             871
  • Table 393. Green ammonia projects (current and planned).          874
  • Table 394. Blue ammonia projects. 876
  • Table 395. Ammonia fuel cell technologies.              877
  • Table 396. Market overview of green ammonia in marine fuel.      878
  • Table 397. Summary of marine alternative fuels.   879
  • Table 398. Estimated costs for different types of ammonia.          880
  • Table 399. Main players in green ammonia.              881
  • Table 400. Typical composition and physicochemical properties reported for bio-oils and heavy petroleum-derived oils.          883
  • Table 401. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil.                883
  • Table 402. Main techniques used to upgrade bio-oil into higher-quality fuels.   884
  • Table 403. Markets and applications for bio-oil.     885
  • Table 404. Bio-oil producers.              885
  • Table 405. Key resource recovery technologies       887
  • Table 406. Markets and end uses for refuse-derived fuels (RDF).                888
  • Table 407. Bio-based lubricants.      889
  • Table 408. Alternative Fuels and Lubricants Market Players.          890
  • Table 409. Types of Green Solvents in Green Pharmaceutical Synthesis.              903
  • Table 410. Catalysis Methods in Green Pharmaceutical Synthesis.          905
  • Table 411. Alternative Energy Sources in Pharmaceutical Synthesis.      907
  • Table 412. Green Oxidation and Reduction Methods.         909
  • Table 413. Atom-Economical Reactions.    910
  • Table 414. Bio-based Starting Materials       911
  • Table 415. Process Intensification Methods.            911
  • Table 416. Green Analytical Techniques.     912
  • Table 417. Sustainable Purification Methods.          912
  • Table 418. Natural Polymers for Drug Delivery.        914
  • Table 419. Protein-based Materials for Drug Delivery.         916
  • Table 420. Polysaccharide-based Systems for Drug Delivery.        918
  • Table 421. Lipid-based Carriers for Drug Delivery. 920
  • Table 422. Plant-derived Materials for Drug Delivery.          921
  • Table 423. Microbial-derived Polymers for Drug Delivery. 923
  • Table 424. Green Synthesis Methods for Drug Delivery Systems.               923
  • Table 425. Stimuli-responsive Biopolymers for Drug Delivery.      925
  • Table 426. Bioconjugation Techniques for Drug Delivery Systems.            927
  • Table 427. Sustainable Particle Formation Techniques for Drug Delivery.             928
  • Table 428. Types of Sustainable Medical Devices. 929
  • Table 429. Sustainable Healthcare and Biomedicine Market Players.      933
  • Table 430. Types of Bio-based 3D Printing Resins. 938
  • Table 431. Types of Recyclable and Reusable 3D Printing Materials.        939
  • Table 432. Types of Functional and Smart 3D Printing Materials. 940
  • Table 433. Advanced Materials for 3D Printing.       940
  • Table 434. Companies in Quantum Chemistry Applications.        948
  • Table 435. Cost Competitiveness of Sustainable Chemical Technologies            950
  • Table 436. Investment Trends in Green Chemistry 950
  • Table 437. Business Models in the Circular Economy.       951
  • Table 438. Market Dynamics and Consumer Preferences in Sustainable Chemistry.    952
  • Table 439. Intellectual Property Considerations.   953
  • Table 440. Companies developing quantum algorithms for chemical simulations.       957
  • Table 441. Applications in space-based chemical manufacturing.           958
  • Table 442. Artificial photosynthesis approaches.  959
  • Table 443. Applications and benefits of personalized and on-demand chemical manufacturing.       959
  • Table 444. Technologies for achieving Net-Zero.     960
  • Table 445. Examples of circular economy solutions in the chemical industry.  961
  • Table 446. Applications of AI and digitalization in chemicals.       962
  • Table 447. Quantum chemistry applications.          963
  • Table 448. Glossary of terms.              964
  • Table 449. List of Abbreviations.        965

 

List of Figures

  • Figure 1. CO2 emissions reduction pathway for the chemical sector.      66
  • Figure 2. Water extraction methods for natural products. 73
  • Figure 3. Circular economy model for the chemical industry.       79
  • Figure 4. Schematic layout of a pyrolysis plant.      82
  • Figure 5. Waste plastic production pathways to (A) diesel and (B) gasoline         86
  • Figure 6. Schematic for Pyrolysis of Scrap Tires.    90
  • Figure 7. Used tires conversion process.     91
  • Figure 8. Total syngas market by product in MM Nm³/h of Syngas.             94
  • Figure 9. Overview of biogas utilization.       95
  • Figure 10. Biogas and biomethane pathways.          96
  • Figure 11. Products obtained through the different solvolysis pathways of PET, PU, and PA.    100
  • Figure 12. Siemens gPROMS Digital Twin schematic.         135
  • Figure 13. Applications for CO2.       187
  • Figure 14. Cost to capture one metric ton of carbon, by sector.   188
  • Figure 15. Life cycle of CO2-derived products and services.          193
  • Figure 16. Co2 utilization pathways and products.               196
  • Figure 17. Plasma technology configurations and their advantages and disadvantages for CO2 conversion.     199
  • Figure 18. Electrochemical CO₂ reduction products.          200
  • Figure 19. LanzaTech gas-fermentation process.   203
  • Figure 20. Schematic of biological CO2 conversion into e-fuels. 204
  • Figure 21. Econic catalyst systems.                206
  • Figure 22. Mineral carbonation processes. 209
  • Figure 23. Conversion route for CO2-derived fuels and chemical intermediates.            214
  • Figure 24.  Conversion pathways for CO2-derived methane, methanol and diesel.        214
  • Figure 25. CO2 feedstock for the production of e-methanol.         220
  • Figure 26. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c           222
  • Figure 27. Audi synthetic fuels.          223
  • Figure 28.  Conversion of CO2 into chemicals and fuels via different pathways.              228
  • Figure 29.  Conversion pathways for CO2-derived polymeric materials  230
  • Figure 30. Conversion pathway for CO2-derived building materials.        233
  • Figure 31. Schematic of CCUS in cement sector.  234
  • Figure 32. Carbon8 Systems’ ACT process.               238
  • Figure 33. CO2 utilization in the Carbon Cure process       239
  • Figure 34. Algal cultivation in the desert.     247
  • Figure 35. Example pathways for products from cyanobacteria. 249
  • Figure 36. Typical Flow Diagram for CO2 EOR.        252
  • Figure 37. Large CO2-EOR projects in different project stages by industry.          254
  • Figure 38. Carbon mineralization pathways.             257
  • Figure 39. Cell-free and cell-based protein synthesis systems.   290
  • Figure 40. The design-make-test-learn loop of generative biology.             291
  • Figure 41. CRISPR/Cas9 & Targeted Genome Editing.        309
  • Figure 42. Genetic Circuit-Assisted Smart Microbial Engineering.             317
  • Figure 43. Microbial Chassis Development for Natural Product Biosynthesis.  318
  • Figure 44. LanzaTech gas-fermentation process.   332
  • Figure 45. Schematic of biological CO2 conversion into e-fuels. 333
  • Figure 46. Overview of biogas utilization.    336
  • Figure 47. Biogas and biomethane pathways.          338
  • Figure 48. Schematic overview of anaerobic digestion process for biomethane production.   338
  • Figure 49. BLOOM masterbatch from Algix.               346
  • Figure 50. TRL of critical material extraction technologies.             371
  • Figure 51. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms.      441
  • Figure 52. TEM image of cellulose nanocrystals.   442
  • Figure 53. CNC slurry.              443
  • Figure 54. CNF gel.     444
  • Figure 55. Bacterial nanocellulose shapes 451
  • Figure 56. BLOOM masterbatch from Algix.               457
  • Figure 57. Luum Temple, constructed from Bamboo.         529
  • Figure 58. Typical structure of mycelium-based foam.      532
  • Figure 59. Commercial mycelium composite construction materials.    533
  • Figure 60. Self-healing concrete test study with cracked concrete (left) and self-healed concrete after 28 days (right).              536
  • Figure 61. Self-healing bacteria crack filler for concrete.  537
  • Figure 62. Self-healing bio concrete.              538
  • Figure 63. Microalgae based biocement masonry bloc.    540
  • Figure 64. Types of bio-based materials used for antimicrobial food packaging application.  567
  • Figure 65. Water soluble packaging by Notpla.        570
  • Figure 66. Examples of edible films in food packaging.     571
  • Figure 67. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test.               582
  • Figure 68. Applications for CO2.       585
  • Figure 69. Life cycle of CO2-derived products and services.          587
  • Figure 70.  Conversion pathways for CO2-derived polymeric materials  588
  • Figure 71. Schematic of production of powder coatings.  625
  • Figure 72. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms.      628
  • Figure 73. Types of bio-based materials used for antimicrobial food packaging application.  651
  • Figure 74. Vapor degreasing.               674
  • Figure 75. Multi-layered PCB.              675
  • Figure 76. 3D printed PCB.    677
  • Figure 77. In-mold electronics prototype devices and products. 678
  • Figure 78. Silver nanocomposite ink after sintering and resin bonding of discrete electronic components. 680
  • Figure 79. Typical structure of mycelium-based foam.      685
  • Figure 80. Flexible electronic substrate made from CNF. 689
  • Figure 81. CNF composite.   689
  • Figure 82. Oji CNF transparent sheets.         689
  • Figure 83. Electronic components using cellulose nanofibers as insulating materials.               690
  • Figure 84. Dell's Concept Luna laptop.         698
  • Figure 85.  Direct-write, precision dispensing, and 3D printing platform for 3D printed electronics.    703
  • Figure 86. 3D printed circuit boards from Nano Dimension.          703
  • Figure 87. Photonic sintering.             704
  • Figure 88. Laser-induced forward transfer (LIFT).  706
  • Figure 89. Material jetting 3d printing.           712
  • Figure 90. Material jetting 3d printing product.        712
  • Figure 91. The molecular mechanism of the shape memory effect under different stimuli.     718
  • Figure 92. Supercooled Soldering™ Technology.     722
  • Figure 93. Reflow soldering schematic.        723
  • Figure 94. Schematic diagram of induction heating reflow.             724
  • Figure 95. Fully-printed organic thin-film transistors and circuitry on one-micron-thick polymer films.                729
  • Figure 96. Types of PCBs after dismantling waste computers and monitors.      738
  • Figure 97. AlgiKicks sneaker, made with the Algiknit biopolymer gel.       752
  • Figure 98. Conceptual landscape of next-gen leather materials. 754
  • Figure 99. Typical structure of mycelium-based foam.      767
  • Figure 100. Hermès bag made of MycoWorks' mycelium leather.               770
  • Figure 101. Ganni blazer made from bacterial cellulose.  774
  • Figure 102. Bou Bag by GANNI and Modern Synthesis.      775
  • Figure 103. Regional production of biodiesel (billion litres).           787
  • Figure 104. Flow chart for biodiesel production.    792
  • Figure 105. Biodiesel (B20) average prices, current and historical, USD/litre.     798
  • Figure 106. Global biodiesel consumption, 2010-2035 (M litres/year).   799
  • Figure 107. SWOT analysis for renewable iesel.      802
  • Figure 108. Global renewable diesel consumption, 2010-2035 (M litres/year). 803
  • Figure 109. SWOT analysis for Bio-aviation fuel.    806
  • Figure 110. Global bio-jet fuel consumption to 2019-2035 (Million litres/year). 810
  • Figure 111. SWOT analysis for bio-naphtha.             813
  • Figure 112. Bio-based naphtha production capacities, 2018-2035 (tonnes).     816
  • Figure 113. SWOT analysis biomethanol.   818
  • Figure 114. Renewable Methanol Production Processes from Different Feedstocks.    819
  • Figure 115. Production of biomethane through anaerobic digestion and upgrading.     820
  • Figure 116. Production of biomethane through biomass gasification and methanation.            821
  • Figure 117. Production of biomethane through the Power to methane process.               821
  • Figure 118. SWOT analysis for ethanol.        823
  • Figure 119. Ethanol consumption 2010-2035 (million litres).        829
  • Figure 120. Properties of petrol and biobutanol.    831
  • Figure 121. Biobutanol production route.   831
  • Figure 122. Biogas and biomethane pathways.       833
  • Figure 123. Overview of biogas utilization. 835
  • Figure 124. Biogas and biomethane pathways.       836
  • Figure 125. Schematic overview of anaerobic digestion process for biomethane production. 837
  • Figure 126. Schematic overview of biomass gasification for biomethane production. 838
  • Figure 127. SWOT analysis for biogas.          839
  • Figure 128. Total syngas market by product in MM Nm³/h of Syngas, 2021.         843
  • Figure 129. SWOT analysis for biohydrogen.             845
  • Figure 130. Waste plastic production pathways to (A) diesel and (B) gasoline   850
  • Figure 131. Schematic for Pyrolysis of Scrap Tires.              851
  • Figure 132. Used tires conversion process.               852
  • Figure 133. Total syngas market by product in MM Nm³/h of Syngas, 2021.         855
  • Figure 134. Overview of biogas utilization. 856
  • Figure 135. Biogas and biomethane pathways.       857
  • Figure 136. Process steps in the production of electrofuels.          860
  • Figure 137. Mapping storage technologies according to performance characteristics.               861
  • Figure 138. Production process for green hydrogen.            863
  • Figure 139. E-liquids production routes.      864
  • Figure 140. Fischer-Tropsch liquid e-fuel products.              865
  • Figure 141. Resources required for liquid e-fuel production.         865
  • Figure 142.  Pathways for algal biomass conversion to biofuels. 868
  • Figure 143. Algal biomass conversion process for biofuel production.   869
  • Figure 144. Classification and process technology according to carbon emission in ammonia production.     872
  • Figure 145. Green ammonia production and use. 873
  • Figure 146. Schematic of the Haber Bosch ammonia synthesis reaction.            875
  • Figure 147. Schematic of hydrogen production via steam methane reformation.            875
  • Figure 148. Estimated production cost of green ammonia.            880
  • Figure 149. Bio-oil upgrading/fractionation techniques.   884

 

 

The Global Market for Sustainable Chemicals 2025-2035
The Global Market for Sustainable Chemicals 2025-2035
PDF download/by email.

The Global Market for Sustainable Chemicals 2025-2035
The Global Market for Sustainable Chemicals 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com