The Global Market for Sustainable Packaging 2025-2035

0

cover

cover

  • Published: March 2025
  • Pages: 525
  • Tables: 92
  • Figures: 133
  • Companies profiled: 290

 

Sustainable packaging  encompasses designs and materials that reduce the consumption of resources, utilize renewable or recycled inputs, and provide responsible end-of-life options such as recyclability, compostability, or reusability. True sustainable packaging balances ecological considerations with economic and social factors, addressing everything from raw material sourcing to manufacturing processes, distribution efficiency, consumer use, and disposal. Rather than focusing solely on a single attribute like biodegradability, comprehensive sustainable packaging approaches consider multiple environmental indicators including carbon footprint, water usage, and waste reduction. Companies increasingly view sustainable packaging as both an environmental responsibility and a business imperative, driven by consumer demand, regulatory pressures, and corporate sustainability commitments. The concept emphasizes designing packaging systems that work effectively while minimizing negative environmental externalities, often guided by principles of circular economy that aim to keep materials in productive use rather than becoming waste.

The global sustainable packaging market has experienced robust growth in recent years, driven by converging factors including heightened consumer environmental awareness, stringent regulatory frameworks, corporate sustainability targets, and technological innovations. Paper and board materials currently dominate the sustainable packaging landscape, accounting for roughly 40% of the market share due to their renewable nature, recyclability, and consumer acceptance. Bio-based plastics represent the fastest-growing segment, expanding at nearly 10% annually as manufacturers seek alternatives to conventional petroleum-based plastics. Recycled plastics also continue gaining market share as recycling infrastructure improves and brands commit to incorporating post-consumer recycled content.

Several key trends are shaping the future outlook. Material innovation remains paramount, with significant R&D investments in novel biomaterials, advanced recycling technologies, and compostable solutions. Packaging design is evolving toward minimalism and mono-materials to improve recyclability. Digital technologies like blockchain and smart packaging are enhancing supply chain transparency and enabling better end-of-life management.

The market faces challenges including higher costs of sustainable alternatives, technical limitations in material performance, and inconsistent waste management infrastructure globally. However, economies of scale and technological advancements are gradually reducing cost premiums, while performance gaps with conventional materials continue to narrow. Looking ahead, the market is poised for accelerated transformation as regulatory pressures intensify worldwide. The EU's Packaging and Packaging Waste Directive revision, plastic taxes, and extended producer responsibility schemes are creating strong incentives for sustainable solutions. Major brands' public commitments to make all packaging recyclable, reusable, or compostable by 2025-2030 are driving further innovation and market growth.

The Global Market for Sustainable Packaging 2025-2035 is an extensive analysis available of the global sustainable packaging market, covering all major segments, materials, technologies, and regional developments with forecasts spanning 2025-2035. As regulatory pressures, consumer demands, and corporate sustainability commitments accelerate the transition away from conventional packaging, this report provides critical intelligence for businesses across the packaging value chain.

Report Contents include :

  • Market Segmentation Analysis:
    • Packaging materials (biodegradable polymers, paper/board, bioplastics)
    • Packaging product types (rigid, flexible, paper/board)
    • End-use markets (food & beverage, consumer goods, e-commerce)
    • Regions (North America, Europe, Asia-Pacific, Rest of World)
  • Material Technologies:
    • Biodegradable and compostable materials (PLA, PHA, PBAT, TPS)
    • Paper and fiber-based alternatives (including novel barrier coatings)
    • Bio-based conventional polymers (Bio-PE, Bio-PET, Bio-PP)
    • Advanced recycled materials (mechanical and chemical recycling)
    • Emerging technologies (seaweed, mycelium, nanocellulose)
  • Packaging Applications: 
    • Paper and board packaging developments
    • Food packaging innovations
    • Flexible packaging solutions
    • Rigid packaging advancements
    • Carbon capture-derived materials
  • Sustainability Metrics: 
    • Life cycle assessments (LCAs)
    • Carbon footprint comparisons
    • End-of-life scenarios
    • Recycling technologies for sustainable materials
  • Recycling Technologies:
    • Mechanical recycling advancements
    • Chemical recycling technologies (pyrolysis, gasification, depolymerization)
    • Sorting and processing innovations
    • Infrastructure development
  • Market Drivers and Challenges: 
    • Regulatory frameworks and policy developments
    • Consumer preferences and willingness to pay
    • Brand owner commitments and initiatives
    • Technical limitations and innovation progress
    • Cost dynamics and economic factors
  • Competitive Landscape: Profiles of 290+ companies across the value chain, including:
    • Material developers and suppliers
    • Packaging converters and manufacturers
    • Brand owners implementing sustainable solutions
    • Technology providers and innovators. Companies profiled include 9Fiber, Acorn Pulp Group, ADBioplastics, Advanced Biochemical (Thailand), Advanced Paper Forming, Aeropowder, AGRANA Staerke, Agrosustain, Ahlstrom-Munksjö, AIM Sweden, Akorn Technology, Alberta Innovates/Innotech Materials, Alter Eco Pulp, Alterpacks, AmicaTerra, An Phát Bioplastics, Anellotech, Ankor Bioplastics, ANPOLY, Apeel Sciences, Applied Bioplastics, Aquapak Polymers, Archer Daniel Midland, Arekapak, Arkema, Arrow Greentech, Attis Innovations, Asahi Kasei Chemicals, Avantium, Avani Eco, Avient Corporation, Balrampur Chini Mills, BASF, Berry Global, Be Green Packaging, Bioelements Group, Bio Fab NZ, BIO-FED, Biofibre, Biokemik, BIOLO, BioLogiQ, BIO-LUTIONS International, Biomass Resin Holdings, Biome Bioplastics, BIOTEC, Bio2Coat, Bioform Technologies, Biovox, Bioplastech, BioSmart Nano, BlockTexx, Blue Ocean Closures, Bluepha Beijing Lanjing Microbiology Technology, BOBST, Borealis, Brightplus, Buhl Paperform, Business Innovation Partners, CapaTec, Carbiolice, Carbios, Cass Materials, Cardia Bioplastics, CARAPAC Company, Celanese, Cellugy, Cellutech, Celwise, Chemol Company, Chemkey Advanced Materials Technology, Chinova Bioworks, Cirkla, CJ Biomaterials, CKF, Coastgrass, Constantia Flexibles, Corumat, Cruz Foam, CuanTec, and Cullen Eco-Friendly Packaging and more. 
  • Future Outlook:
    • Emerging technologies and materials
    • Market growth projections through 2035
    • Industry transformation scenarios
    • Investment opportunities and risk assessment

 

 

 

1             EXECUTIVE SUMMARY            26

  • 1.1        Global Packaging Market       26
  • 1.2        What is sustainable packaging?       27
  • 1.3        The Global Market for Sustainable Packaging          29
    • 1.3.1    By packaging materials           29
      • 1.3.1.1 Tonnes                29
      • 1.3.1.2 Revenues          30
    • 1.3.2    By packaging product type    32
      • 1.3.2.1 Tonnes                32
      • 1.3.2.2 Revenues          32
    • 1.3.3    By end-use market     33
      • 1.3.3.1 Tonnes                34
      • 1.3.3.2 Revenues          35
    • 1.3.4    By region           36
      • 1.3.4.1 Tonnes                36
      • 1.3.4.2 Revenues          37
  • 1.4        Main types       38
  • 1.5        Prices  41
  • 1.6        Commercial products              42
  • 1.7        Market Trends                45
  • 1.8        Market Drivers for recent growth in Sustainable Packaging            46
  • 1.9        Challenges for Biodegradable and Compostable Packaging         47

 

2             INTRODUCTION          50

  • 2.1        Market overview           50
  • 2.2        Types of sustainable packaging materials  51
    • 2.2.1    Biodegradable and Compostable Materials              51
      • 2.2.1.1 PLA (Polylactic Acid) 51
      • 2.2.1.2 Bagasse            52
      • 2.2.1.3 Mushroom Packaging              53
      • 2.2.1.4 Seaweed-Based Materials    55
    • 2.2.2    Paper and Fiber-Based Materials      56
      • 2.2.2.1 Recycled Paper/Cardboard  56
      • 2.2.2.2 Molded Pulp   57
      • 2.2.2.3 Bamboo Packaging   58
    • 2.2.3    Bio-Based Plastics     59
      • 2.2.3.1 Bio-PE and Bio-PET    59
      • 2.2.3.2 PHAs (Polyhydroxyalkanoates)          61
    • 2.2.4    Reusable and Upcycled Materials   62
      • 2.2.4.1 Glass   62
      • 2.2.4.2 Aluminum        64
      • 2.2.4.3 Upcycled Agricultural Waste               66
    • 2.2.5    Other Materials            67
      • 2.2.5.1 Edible Packaging         67
      • 2.2.5.2 Cellulose-Based Films            68
      • 2.2.5.3 Algae-Based Materials             70
  • 2.3        Packaging lifecycle     71
    • 2.3.1    Raw materials               71
    • 2.3.2    Manufacturing              72
    • 2.3.3    Transport          73
    • 2.3.4    Packaging in-use         74
    • 2.3.5    End of life         75

 

3              MATERIALS IN SUSTAINABLE PACKAGING        75

  • 3.1        Materials innovation 75
  • 3.2        Active packaging         76
  • 3.3        Monomaterial packaging       76
  • 3.4        Conventional polymer materials used in packaging            77
    • 3.4.1    Polyolefins: Polypropylene and polyethylene            77
      • 3.4.1.1 Overview           77
      • 3.4.1.2 Grades               78
      • 3.4.1.3 Producers         78
    • 3.4.2    PET and other polyester polymers   79
      • 3.4.2.1 Overview           79
    • 3.4.3    Renewable and bio-based polymers for packaging             80
    • 3.4.4    Comparison of synthetic fossil-based and bio-based polymers  82
    • 3.4.5    Processes for bioplastics in packaging        82
    • 3.4.6    End-of-life treatment of bio-based and sustainable packaging   83
  • 3.5        Synthetic bio-based packaging materials   84
    • 3.5.1    Polylactic acid (Bio-PLA)        84
      • 3.5.1.1 Overview           84
      • 3.5.1.2 Properties         85
      • 3.5.1.3 Applications   85
      • 3.5.1.4 Advantages     86
      • 3.5.1.5 Challenges      86
      • 3.5.1.6 Commercial examples            87
    • 3.5.2    Polyethylene terephthalate (Bio-PET)            87
      • 3.5.2.1 Overview           87
      • 3.5.2.2 Properties         88
      • 3.5.2.3 Applications   88
      • 3.5.2.4 Advantages of Bio-PET in Packaging              89
      • 3.5.2.5 Challenges and Limitations 89
      • 3.5.2.6 Commercial examples            90
    • 3.5.3    Polytrimethylene terephthalate (Bio-PTT)   91
      • 3.5.3.1 Overview           91
      • 3.5.3.2 Production Process   91
      • 3.5.3.3 Properties         91
      • 3.5.3.4 Applications   91
      • 3.5.3.5 Advantages of Bio-PTT in Packaging               92
      • 3.5.3.6 Challenges and Limitations 92
      • 3.5.3.7 Commercial examples            92
    • 3.5.4    Polyethylene furanoate (Bio-PEF)     93
      • 3.5.4.1 Overview           93
      • 3.5.4.2 Properties         93
      • 3.5.4.3 Applications   93
      • 3.5.4.4 Advantages of Bio-PEF in Packaging              94
      • 3.5.4.5 Challenges and Limitations 94
      • 3.5.4.6 Commercial examples            94
    • 3.5.5    Bio-PA 95
      • 3.5.5.1 Overview           95
      • 3.5.5.2 Properties         95
      • 3.5.5.3 Applications in Packaging     95
      • 3.5.5.4 Advantages of Bio-PA in Packaging 96
      • 3.5.5.5 Challenges and Limitations 96
      • 3.5.5.6 Commercial examples            96
    • 3.5.6    Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters                97
      • 3.5.6.1 Overview           97
      • 3.5.6.2 Properties         97
      • 3.5.6.3 Applications in Packaging     97
      • 3.5.6.4 Advantages of Bio-PBAT in Packaging           98
      • 3.5.6.5 Challenges and Limitations 98
      • 3.5.6.6 Commercial examples            98
    • 3.5.7    Polybutylene succinate (PBS) and copolymers       98
      • 3.5.7.1 Overview           98
      • 3.5.7.2 Properties         99
      • 3.5.7.3 Applications in Packaging     99
      • 3.5.7.4 Advantages of Bio-PBS and Co-polymers in Packaging     100
      • 3.5.7.5 Challenges and Limitations 100
      • 3.5.7.6 Commercial examples            100
    • 3.5.8    Polypropylene (Bio-PP)            101
      • 3.5.8.1 Overview           101
      • 3.5.8.2 Properties         101
      • 3.5.8.3 Applications in Packaging     101
      • 3.5.8.4 Advantages of Bio-PP in Packaging 101
      • 3.5.8.5 Challenges and Limitations 102
      • 3.5.8.6 Commercial examples            102
  • 3.6        Natural bio-based packaging materials       102
    • 3.6.1    Polyhydroxyalkanoates (PHA)             102
      • 3.6.1.1 Properties         103
      • 3.6.1.2 Applications in Packaging     103
      • 3.6.1.3 Advantages of PHA in Packaging      104
      • 3.6.1.4 Challenges and Limitations 105
      • 3.6.1.5 Commercial examples            105
    • 3.6.2    Starch-based blends 105
      • 3.6.2.1 Overview           105
      • 3.6.2.2 Properties         106
      • 3.6.2.3 Applications in Packaging     106
      • 3.6.2.4 Advantages of Starch-Based Blends in Packaging 106
      • 3.6.2.5 Challenges and Limitations 106
      • 3.6.2.6 Commercial examples            107
    • 3.6.3    Cellulose          107
      • 3.6.3.1 Feedstocks      107
        • 3.6.3.1.1           Wood  108
        • 3.6.3.1.2           Plant    108
        • 3.6.3.1.3           Tunicate             108
        • 3.6.3.1.4           Algae   109
        • 3.6.3.1.5           Bacteria             109
      • 3.6.3.2 Microfibrillated cellulose (MFC)        110
        • 3.6.3.2.1           Properties         110
      • 3.6.3.3 Nanocellulose               111
        • 3.6.3.3.1           Cellulose nanocrystals           111
          • 3.6.3.3.1.1      Applications in packaging     111
        • 3.6.3.3.2           Cellulose nanofibers 112
          • 3.6.3.3.2.1      Applications in packaging     113
        • 3.6.3.3.3           Bacterial Nanocellulose (BNC)          119
          • 3.6.3.3.3.1      Applications in packaging     121
      • 3.6.3.4 Commercial examples            122
    • 3.6.4    Protein-based bioplastics in packaging       122
      • 3.6.4.1 Feedstocks      122
      • 3.6.4.2 Commercial examples            124
    • 3.6.5    Lipids and waxes for packaging         124
      • 3.6.5.1 Overview           124
      • 3.6.5.2 Commercial examples            125
    • 3.6.6    Seaweed-based packaging  125
      • 3.6.6.1 Overview           125
      • 3.6.6.2 Production       126
      • 3.6.6.3 Applications in packaging     127
      • 3.6.6.4 Producers         127
    • 3.6.7    Mycelium          127
      • 3.6.7.1 Overview           127
      • 3.6.7.2 Applications in packaging     128
      • 3.6.7.3 Commercial examples            129
    • 3.6.8    Chitosan           129
      • 3.6.8.1 Overview           129
      • 3.6.8.2 Applications in packaging     130
      • 3.6.8.3 Commercial examples            130
    • 3.6.9    Bio-naphtha   132
      • 3.6.9.1 Overview           132
      • 3.6.9.2 Markets and applications      132
      • 3.6.9.3 Commercial examples            134

 

4             PACKAGING RECYCLING       135

  • 4.1        Mechanical recycling                136
    • 4.1.1    Closed-loop mechanical recycling  137
    • 4.1.2    Open-loop mechanical recycling      137
    • 4.1.3    Polymer types, use, and recovery     137
  • 4.2        Advanced chemical recycling             138
    • 4.2.1    Main streams of plastic waste            138
    • 4.2.2    Comparison of mechanical and advanced chemical recycling    139
  • 4.3        Capacities       139
  • 4.4        Global polymer demand 2022-2040, segmented by recycling technology            141
  • 4.5        Global market by recycling process 2020-2024, metric tons         142
  • 4.6        Chemically recycled plastic products           143
  • 4.7        Market map    144
  • 4.8        Value chain     146
  • 4.9        Life Cycle Assessments (LCA) of advanced plastics recycling processes             147
  • 4.10     Pyrolysis            148
    • 4.10.1 Non-catalytic 148
    • 4.10.2 Catalytic            150
      • 4.10.2.1            Polystyrene pyrolysis 151
      • 4.10.2.2            Pyrolysis for production of bio fuel  152
      • 4.10.2.3            Used tires pyrolysis   155
        • 4.10.2.3.1        Conversion to biofuel               156
      • 4.10.2.4            Co-pyrolysis of biomass and plastic wastes             157
    • 4.10.3 SWOT analysis              157
    • 4.10.4 Companies and capacities  158
  • 4.11     Gasification    159
    • 4.11.1 Technology overview 159
      • 4.11.1.1            Syngas conversion to methanol        160
      • 4.11.1.2            Biomass gasification and syngas fermentation       164
      • 4.11.1.3            Biomass gasification and syngas thermochemical conversion    164
    • 4.11.2 SWOT analysis              165
    • 4.11.3 Companies and capacities (current and planned)                165
  • 4.12     Dissolution     166
    • 4.12.1 Technology overview 166
    • 4.12.2 SWOT analysis              167
    • 4.12.3 Companies and capacities (current and planned)                168
  • 4.13     Depolymerisation       169
    • 4.13.1 Hydrolysis        170
      • 4.13.1.1            Technology overview 171
      • 4.13.1.2            SWOT analysis              172
    • 4.13.2 Enzymolysis   172
      • 4.13.2.1            Technology overview 172
      • 4.13.2.2            SWOT analysis              173
    • 4.13.3 Methanolysis 174
      • 4.13.3.1            Technology overview 174
      • 4.13.3.2            SWOT analysis              175
    • 4.13.4 Glycolysis         176
      • 4.13.4.1            Technology overview 176
      • 4.13.4.2            SWOT analysis              177
    • 4.13.5 Aminolysis      178
      • 4.13.5.1            Technology overview 178
      • 4.13.5.2            SWOT analysis              179
    • 4.13.6 Companies and capacities (current and planned)                179
  • 4.14     Other advanced chemical recycling technologies 180
    • 4.14.1 Hydrothermal cracking           180
    • 4.14.2 Pyrolysis with in-line reforming          181
    • 4.14.3 Microwave-assisted pyrolysis             181
    • 4.14.4 Plasma pyrolysis         182
    • 4.14.5 Plasma gasification   183
    • 4.14.6 Supercritical fluids     183

 

5             MARKETS AND APPLICATIONS           184

  • 5.1        PAPER AND BOARD PACKAGING      184
    • 5.1.1    Market overview           185
    • 5.1.2    Recycled Paper and Cardboard         186
      • 5.1.2.1 Post-consumer recycled (PCR) content paperboard           186
      • 5.1.2.2 Kraft paper made from recycled fibers          187
      • 5.1.2.3 Corrugated cardboard with high recycled content                188
    • 5.1.3    FSC/PEFC Certified Virgin Fibers      188
      • 5.1.3.1 Sustainably managed forest sources             188
      • 5.1.3.2 Chain-of-custody certified materials             189
    • 5.1.4    Alternative Fiber Sources       190
      • 5.1.4.1 Bamboo-based paper and board     190
      • 5.1.4.2 Agricultural waste fibers (wheat straw, sugarcane bagasse)         191
      • 5.1.4.3 Hemp and flax fiber papers  192
    • 5.1.5    Plastic-Free Barrier Papers   193
      • 5.1.5.1 Clay-coated papers   193
      • 5.1.5.2 Silicone-coated papers           194
      • 5.1.5.3 Mineral oil barrier papers       195
    • 5.1.6    Water-Based Coatings and Adhesives           196
      • 5.1.6.1 Replacing plastic laminations with aqueous coatings        196
      • 5.1.6.2 Plant-based adhesives for box construction             197
    • 5.1.7    Global market size and forecast to 2035     199
      • 5.1.7.1 Tonnes                199
      • 5.1.7.2 Revenues          200
  • 5.2        FOOD PACKAGING     202
    • 5.2.1    Films and trays              202
    • 5.2.2    Pouches and bags      203
    • 5.2.3    Textiles and nets          204
    • 5.2.4    Compostable Food Containers         204
      • 5.2.4.1 PLA (polylactic acid) trays and containers 204
      • 5.2.4.2 Bagasse food service items  205
      • 5.2.4.3 Molded fiber clamshells and trays   206
    • 5.2.5    Biodegradable Films and Wraps       207
      • 5.2.5.1 Cellulose-based films             207
      • 5.2.5.2 PLA films for food wrapping 208
      • 5.2.5.3 Starch-based wraps  209
    • 5.2.6    Bio-Based Barrier Materials 210
      • 5.2.6.1 Paper with biopolymer coatings        211
      • 5.2.6.2 Plant-based waxes for moisture resistance               212
      • 5.2.6.3 Microfibrillated cellulose (MFC) coatings    213
    • 5.2.7    Reusable Food Packaging Systems 214
    • 5.2.8    Bioadhesives 215
      • 5.2.8.1 Starch 215
      • 5.2.8.2 Cellulose          216
      • 5.2.8.3 Protein-Based               216
    • 5.2.9    Barrier coatings and films     216
      • 5.2.9.1 Polysaccharides          217
        • 5.2.9.1.1           Chitin  217
        • 5.2.9.1.2           Chitosan           217
        • 5.2.9.1.3           Starch 218
      • 5.2.9.2 Poly(lactic acid) (PLA)              218
      • 5.2.9.3 Poly(butylene Succinate)       218
      • 5.2.9.4 Functional Lipid and Proteins Based Coatings        218
    • 5.2.10 Active and Smart Food Packaging   218
      • 5.2.10.1            Active Materials and Packaging Systems    218
      • 5.2.10.2            Intelligent and Smart Food Packaging           219
      • 5.2.10.3            Oxygen scavengers from natural materials 221
      • 5.2.10.4            Antimicrobial packaging from plant extracts            221
      • 5.2.10.5            Bio-based sensors for food freshness           222
    • 5.2.11 Antimicrobial films and agents          224
      • 5.2.11.1            Natural               224
      • 5.2.11.2            Inorganic nanoparticles          225
      • 5.2.11.3            Biopolymers   225
    • 5.2.12 Bio-based Inks and Dyes        225
    • 5.2.13 Edible films and coatings       226
      • 5.2.13.1            Overview           226
      • 5.2.13.2            Commercial examples            227
    • 5.2.14 Types of sustainable coatings and films in packaging        229
      • 5.2.14.1            Polyurethane coatings             229
        • 5.2.14.1.1        Properties         229
        • 5.2.14.1.2        Bio-based polyurethane coatings     230
        • 5.2.14.1.3        Products           231
      • 5.2.14.2            Acrylate resins              231
        • 5.2.14.2.1        Properties         231
        • 5.2.14.2.2        Bio-based acrylates  232
        • 5.2.14.2.3        Products           232
      • 5.2.14.3            Polylactic acid (Bio-PLA)        232
        • 5.2.14.3.1        Properties         234
        • 5.2.14.3.2        Bio-PLA coatings and films  234
      • 5.2.14.4            Polyhydroxyalkanoates (PHA) coatings         235
      • 5.2.14.5            Cellulose coatings and films               236
        • 5.2.14.5.1        Microfibrillated cellulose (MFC)        236
        • 5.2.14.5.2        Cellulose nanofibers 236
          • 5.2.14.5.2.1   Properties         237
          • 5.2.14.5.2.2   Product developers    238
      • 5.2.14.6            Lignin coatings              240
      • 5.2.14.7            Protein-based biomaterials for coatings      240
        • 5.2.14.7.1        Plant derived proteins              240
        • 5.2.14.7.2        Animal origin proteins              241
    • 5.2.15 Global market size and forecast to 2035     242
      • 5.2.15.1            Tonnes                242
      • 5.2.15.2            Revenues          243
  • 5.3        FLEXIBLE PACKAGING              245
    • 5.3.1    Market overview           246
    • 5.3.2    Compostable Flexible Films 246
      • 5.3.2.1 PLA film laminates     246
      • 5.3.2.2 PHAs (polyhydroxyalkanoates) films              247
      • 5.3.2.3 PBAT (polybutylene adipate terephthalate) films   248
      • 5.3.2.4 TPS (thermoplastic starch) films      249
    • 5.3.3    Recyclable Mono-Materials 251
      • 5.3.3.1 All-PE (polyethylene) structures        251
      • 5.3.3.2 All-PP (polypropylene) structures     253
      • 5.3.3.3 Designed for mechanical recycling 254
    • 5.3.4    Paper-Based Flexible Packaging       255
      • 5.3.4.1 High-strength paper with functional coatings          255
      • 5.3.4.2 Paper-plastic hybrid structures with separable layers        256
      • 5.3.4.3 Glassine and greaseproof papers    257
    • 5.3.5    Bio-Based Films          258
      • 5.3.5.1 Bio-PE films (from sugarcane)            258
      • 5.3.5.2 Bio-PET films 259
      • 5.3.5.3 Cellulose-based transparent films  260
    • 5.3.6    Reduced Material Structures               261
      • 5.3.6.1 Ultra-thin films with enhanced performance            262
      • 5.3.6.2 Downgauged materials with reinforcing technologies        263
      • 5.3.6.3 Resource-efficient multi-layer structures   264
    • 5.3.7    Global market size and forecast to 2035     265
      • 5.3.7.1 Tonnes                265
      • 5.3.7.2 Revenues          266
  • 5.4        RIGID PACKAGING      268
    • 5.4.1    Market overview           268
    • 5.4.2    Recycled Plastic Containers                268
      • 5.4.2.1 rPET (recycled polyethylene terephthalate) bottles and containers          268
      • 5.4.2.2 rHDPE (recycled high-density polyethylene) bottles            269
      • 5.4.2.3 PCR polypropylene tubs and containers     270
    • 5.4.3    Bio-Based Rigid Plastics        271
      • 5.4.3.1 Bio-PET bottles (partially plant-based)         271
      • 5.4.3.2 Bio-PE containers       272
      • 5.4.3.3 PLA bottles and jars  273
    • 5.4.4    Refillable/Reusable Systems              274
      • 5.4.4.1 Durable containers designed for multiple uses      274
      • 5.4.4.2 Standardized shapes for refill systems         274
      • 5.4.4.3 Concentrated product formats reducing packaging            276
    • 5.4.5    Alternative Materials 277
      • 5.4.5.1 Mushroom packaging for protective applications 277
      • 5.4.5.2 Molded pulp containers and inserts               278
      • 5.4.5.3 Wood and cork containers for premium products 279
    • 5.4.6    Glass and Metal Alternatives               280
      • 5.4.6.1 Lightweight glass technologies          280
      • 5.4.6.2 Thin-walled aluminum containers   282
      • 5.4.6.3 Tin-free steel packaging         283
    • 5.4.7    Global market and forecasts to 2025            284
      • 5.4.7.1 Tonnes                284
      • 5.4.7.2 Revenues          285
  • 5.5        CARBON CAPTURE DERIVED MATERIALS FOR PACKAGING           287
    • 5.5.1    Benefits of carbon utilization for plastics feedstocks         288
    • 5.5.2    CO₂-derived polymers and plastics 290
    • 5.5.3    CO2 utilization products        291

 

6             COMPANY PROFILES                292 (290 company profiles)

 

7             RESEARCH METHODOLOGY              521

 

8             REFERENCES 522

 

List of Tables

  • Table 1. Global sustainable packaging market by packaging materials, 2023-2035 (1,000 tonnes).   29
  • Table 2. Global sustainable packaging market by packaging materials, 2023-2035 (Millions USD).    31
  • Table 3. Global sustainable packaging market by packaging product type, 2023-2035 (1,000 tonnes).                32
  • Table 4. Global sustainable packaging market by packaging product type, 2023-2035 (Millions USD).                33
  • Table 5. Global sustainable packaging market by end-use market, 2023-2035 (1,000 tonnes).             34
  • Table 6. Global sustainable packaging market by end-use market, 2023-2035 (Millions USD).             35
  • Table 7. Global sustainable packaging market by region, 2023-2035 (1,000 tonnes).   36
  • Table 8. Global sustainable packaging market by region, 2023-2035 (Millions USD).   37
  • Table 9. Main Types of Sustainable Packaging Materials   38
  • Table 10. Average prices by packaging type, 2024 (US$ per kg).   41
  • Table 11. Average annual prices by bioplastic type, 2020-2023 (US$ per kg).     41
  • Table 12. Recent sustainable packaging products.              42
  • Table 13. Market trends in Sustainable Packaging 45
  • Table 14. Market drivers for recent growth in the Sustainable Packaging market.            46
  • Table 15. Challenges for Biodegradable and Compostable Packaging.  47
  • Table 16. Types of bio-based plastics and fossil-fuel-based plastics       77
  • Table 17. Comparison of synthetic fossil-based and bio-based polymers.           82
  • Table 18. Processes for bioplastics in packaging. 83
  • Table 19. LDPE film versus PLA, 2019–24 (USD/tonne).    84
  • Table 20. PLA properties for packaging applications.         85
  • Table 21. Applications, advantages and disadvantages of PHAs in packaging. 103
  • Table 22. Major polymers found in the extracellular covering of different algae.               109
  • Table 23. Market overview for cellulose microfibers (microfibrillated cellulose) in paperboard and packaging-market age, key benefits, applications and producers.            110
  • Table 24. Applications of nanocrystalline cellulose (CNC).            112
  • Table 25. Market overview for cellulose nanofibers in packaging.              114
  • Table 26. Applications of Bacterial Nanocellulose in Packaging. 121
  • Table 27. Types of protein based-bioplastics, applications and companies.      123
  • Table 28. Overview of alginate-description, properties, application and market size.   126
  • Table 29. Companies developing algal-based bioplastics.             127
  • Table 30. Overview of mycelium fibers-description, properties, drawbacks and applications.               127
  • Table 31. Overview of chitosan-description, properties, drawbacks and applications.                130
  • Table 32. Commercial Examples of Chitosan-based Films and Coatings and Companies.      130
  • Table 33. Bio-based naphtha markets and applications. 132
  • Table 34. Bio-naphtha market value chain.               133
  • Table 35. Commercial Examples of Bio-Naphtha Packaging and Companies.  134
  • Table 36. Overview of the recycling technologies. 136
  • Table 37. Polymer types, use, and recovery.              137
  • Table 38. Composition of plastic waste streams.  138
  • Table 39. Comparison of mechanical and advanced chemical recycling.             139
  • Table 40. Advanced plastics recycling capacities, by technology.              139
  • Table 41. Example chemically recycled plastic products.                144
  • Table 42. Life Cycle Assessments (LCA) of Advanced Chemical Recycling Processes. 147
  • Table 43. Summary of non-catalytic pyrolysis technologies.         149
  • Table 44. Summary of catalytic pyrolysis technologies.    150
  • Table 45. Summary of pyrolysis technique under different operating conditions.            153
  • Table 46. Biomass materials and their bio-oil yield.             154
  • Table 47. Biofuel production cost from the biomass pyrolysis process. 154
  • Table 48. Pyrolysis companies and plant capacities, current and planned.         158
  • Table 49. Summary of gasification technologies.  159
  • Table 50. Advanced recycling (Gasification) companies. 165
  • Table 51. Summary of dissolution technologies.   166
  • Table 52. Advanced recycling (Dissolution) companies    168
  • Table 53. Depolymerisation processes for PET, PU, PC and PA, products and yields.    170
  • Table 54. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.           171
  • Table 55. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 172
  • Table 56. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 174
  • Table 57. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.           176
  • Table 58. Summary of aminolysis technologies.    178
  • Table 59. Advanced recycling (Depolymerisation) companies and capacities (current and planned).                179
  • Table 60. Overview of hydrothermal cracking for advanced chemical recycling.              180
  • Table 61. Overview of Pyrolysis with in-line reforming for advanced chemical recycling.            181
  • Table 62. Overview of microwave-assisted pyrolysis for advanced chemical recycling.              181
  • Table 63. Overview of plasma pyrolysis for advanced chemical recycling.           182
  • Table 64. Overview of plasma gasification for advanced chemical recycling.     183
  • Table 65. The global market for sustainable paper & board packaging by material type, 2019–2035 (‘000 tonnes).             199
  • Table 66. The global market for sustainable paper & board packaging by material type, 2019–2035 (Millions USD).              200
  • Table 67. Pros and cons of different type of food packaging materials.   202
  • Table 68. Active Biodegradable Films films and their food applications.               219
  • Table 69. Intelligent Biodegradable Films.  220
  • Table 70. Edible films and coatings market summary.       226
  • Table 71. Types of polyols.    229
  • Table 72. Polyol producers.  230
  • Table 73. Bio-based polyurethane coating products.          231
  • Table 74. Bio-based acrylate resin products.           232
  • Table 75. Polylactic acid (PLA) market analysis.    233
  • Table 76. Commercially available PHAs.     235
  • Table 77. Market overview for cellulose nanofibers in paints and coatings.         237
  • Table 78. Companies developing cellulose nanofibers products in paints and coatings.           238
  • Table 79. Types of protein based-biomaterials, applications and companies.   241
  • Table 80. The global market for sustainable food packaging by material type, 2019–2035 (‘000 tonnes).                242
  • Table 81. The global market for sustainable food packaging by material type, 2019–2035 (Millions USD).                243
  • Table 82. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.   250
  • Table 83. Typical applications for bioplastics in flexible packaging.         250
  • Table 84. The global market for sustainable flexible packaging by material type, 2019–2035 (‘000 tonnes).             265
  • Table 85. The global market for sustainable flexible packaging by material type, 2019–2035 (Millions USD).  266
  • Table 86. Typical applications for bioplastics in rigid packaging. 273
  • Table 87. The global market for sustainable rigid packaging by material type, 2019–2035 (‘000 tonnes).                284
  • Table 88. The global market for sustainable rigid packaging by material type, 2019–2035 (Millions USD).                285
  • Table 89. CO2 utilization and removal pathways.  288
  • Table 90. CO2 utilization products developed by chemical and plastic producers.        291
  • Table 91. Lactips plastic pellets.       419
  • Table 92. Oji Holdings CNF products.            452

 

List of Figures

  • Figure 1. Global packaging market by material type.           27
  • Figure 2. Unilever’s Magnum ice cream tub using 100% chemically recycled PP .           27
  • Figure 3. Global sustainable packaging market by packaging materials, 2023-2035 (1,000 tonnes). 30
  • Figure 4. Global sustainable packaging market by packaging materials, 2023-2035 (Millions USD).  31
  • Figure 5. Global sustainable packaging market by packaging product type, 2023-2035 (1,000 tonnes).                32
  • Figure 6. Global sustainable packaging market by packaging product type, 2023-2035 (Millions USD).                33
  • Figure 7. Global sustainable packaging market by end-use market, 2023-2035 (1,000 tonnes).           34
  • Figure 8. Global sustainable packaging market by end-use market, 2023-2035 (Millions USD).            35
  • Figure 9. Global sustainable packaging market by region, 2023-2035 (1,000 tonnes). 36
  • Figure 10. Global sustainable packaging market by region, 2023-2035 (Millions USD).               37
  • Figure 11. Packaging lifecycle .          71
  • Figure 12. Routes for synthesizing polymers from fossil-based and bio-based resources.        81
  • Figure 13. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms.      107
  • Figure 14. Biosynthesis of (a) wood cellulose (b) tunicate cellulose and (c) BC.               108
  • Figure 15. Cellulose microfibrils and nanofibrils.  110
  • Figure 16. TEM image of cellulose nanocrystals.   111
  • Figure 17. CNC slurry.              111
  • Figure 18. CNF gel.     113
  • Figure 19. Bacterial nanocellulose shapes 120
  • Figure 20. BLOOM masterbatch from Algix.               126
  • Figure 21. Typical structure of mycelium-based foam.      129
  • Figure 22. Current management systems for waste plastics.        135
  • Figure 23. Global polymer demand 2022-2040, segmented by technology, million metric tons.           142
  • Figure 24. Global demand by recycling process, 2020-2040, million metric tons.           143
  • Figure 25. Market map for advanced recycling.       145
  • Figure 26. Value chain for advanced plastics recycling market.   146
  • Figure 27. Schematic layout of a pyrolysis plant.   148
  • Figure 28. Waste plastic production pathways to (A) diesel and (B) gasoline      152
  • Figure 29. Schematic for Pyrolysis of Scrap Tires. 156
  • Figure 30. Used tires conversion process.  157
  • Figure 31. SWOT analysis-pyrolysis for advanced recycling.          157
  • Figure 32. Total syngas market by product in MM Nm³/h of Syngas, 2021.           161
  • Figure 33. Overview of biogas utilization.    162
  • Figure 34. Biogas and biomethane pathways.          163
  • Figure 35. SWOT analysis-gasification for advanced recycling.    165
  • Figure 36. SWOT analysis-dissoluton for advanced recycling.      168
  • Figure 37. Products obtained through the different solvolysis pathways of PET, PU, and PA.    169
  • Figure 38. SWOT analysis-Hydrolysis for advanced chemical recycling. 172
  • Figure 39. SWOT analysis-Enzymolysis for advanced chemical recycling.            173
  • Figure 40. SWOT analysis-Methanolysis for advanced chemical recycling.          175
  • Figure 41. SWOT analysis-Glycolysis for advanced chemical recycling. 177
  • Figure 42. Mondelez confectionery packaging using chemically recycled PCR .               178
  • Figure 43. SWOT analysis-Aminolysis for advanced chemical recycling.               179
  • Figure 44. Kit Kat packaged in paper flow wrap .     190
  • Figure 45. Quality Street paper-based chocolate packaging .       193
  • Figure 46. Smarties paper-based chocolate packaging .  193
  • Figure 47. The global market for sustainable paper & board packaging by material type, 2019–2035 (‘000 tonnes).             200
  • Figure 48. The global market for sustainable paper & board packaging by material type, 2019–2035 (Millions USD).              202
  • Figure 49. Chemically recycled PCR (up to 30%) for Hetbahn plastic tubs .         207
  • Figure 50. Types of bio-based materials used for antimicrobial food packaging application.  224
  • Figure 51. Water soluble packaging by Notpla.        228
  • Figure 52. Examples of edible films in food packaging.     229
  • Figure 53. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test.               240
  • Figure 54. The global market for sustainable food packaging by material type, 2019–2035 (‘000 tonnes).                243
  • Figure 55. The global market for sustainable food packaging by material type, 2019–2035 (Millions USD).                245
  • Figure 56. Twinings mono-material standup pouches        251
  • Figure 57. Rezorce mono-material PP carton lifecycle.      252
  • Figure 58. Haleon mono-material blister packaging development.           252
  • Figure 59. DRS system for Hetbahn bowls .               255
  • Figure 60. The global market for sustainable flexible packaging by material type, 2019–2035 (‘000 tonnes).             266
  • Figure 61. The global market for sustainable flexible packaging by material type, 2019–2035 (Millions USD).  268
  • Figure 62. The global market for sustainable rigid packaging by material type, 2019–2035 (‘000 tonnes).                285
  • Figure 63. The global market for sustainable rigid packaging by material type, 2019–2035 (Millions USD).                286
  • Figure 64. Applications for CO2.       288
  • Figure 65. Life cycle of CO2-derived products and services.          290
  • Figure 66.  Conversion pathways for CO2-derived polymeric materials  291
  • Figure 67. Pluumo.     296
  • Figure 68. Anpoly cellulose nanofiber hydrogel.     306
  • Figure 69. MEDICELLU™.         307
  • Figure 70. Asahi Kasei CNF fabric sheet.     313
  • Figure 71. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.          314
  • Figure 72. CNF nonwoven fabric.      315
  • Figure 73. Passionfruit wrapped in Xgo Circular packaging.           320
  • Figure 74. Be Green Packaging molded fiber products.     321
  • Figure 75. Beyond Meat Molded Fiber Sausage Tray.            322
  • Figure 76. BIOLO e-commerce mailer bag made from PHA.           327
  • Figure 77. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc.          328
  • Figure 78. Fiber-based screw cap.   336
  • Figure 79. Molded fiber trays for contact lenses.   339
  • Figure 80. SEELCAP ONEGO.              342
  • Figure 81. CJ CheilJedang's biodegradable PHA-based wrapper for shipping products.              351
  • Figure 82. CuanSave film.     355
  • Figure 83. Cullen Eco-Friendly Packaging beerGUARD molded fiber trays.          356
  • Figure 84. ELLEX products.   358
  • Figure 85. CNF-reinforced PP compounds.               359
  • Figure 86. Kirekira! toilet wipes.         359
  • Figure 87. Edible packaging from Dissolves.             363
  • Figure 88. Rheocrysta spray.                364
  • Figure 89. DKS CNF products.            364
  • Figure 90. Molded fiber plastic rings.             368
  • Figure 91. Mushroom leather.              374
  • Figure 92. Evoware edible seaweed-based packaging       380
  • Figure 93. Photograph (a) and micrograph (b) of mineral/ MFC composite showing the high viscosity and fibrillar structure.        382
  • Figure 94. Forest and Whale container.        390
  • Figure 95. PHA production process.               392
  • Figure 96. Soy Silvestre’s wheatgrass shots.             393
  • Figure 97. Genera molded fiber meat trays.               396
  • Figure 98. AVAPTM process. 399
  • Figure 99. GreenPower+™ process.  400
  • Figure 100. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.               402
  • Figure 101. CNF gel.  404
  • Figure 102. Block nanocellulose material. 405
  • Figure 103. CNF products developed by Hokuetsu.             405
  • Figure 104. Unilever Carte D’Or ice cream packaging.       408
  • Figure 105. Kami Shoji CNF products.           413
  • Figure 106. Matrix Pack molded-fiber beverage cup lid.    426
  • Figure 107. Molded fiber Labeling applied to products.     427
  • Figure 108. IPA synthesis method.   434
  • Figure 109. Compostable water pod.             447
  • Figure 110. Coca-cola paper bottle prototype.        457
  • Figure 111. Papierfabrik Meldorf’s grass-based packaging materials .    458
  • Figure 112. PulPac dry molded fiber packaging for cosmetics.     467
  • Figure 113. XCNF.       470
  • Figure 114: Innventia AB movable nanocellulose demo plant.     471
  • Figure 115. Molded fiber tray.              473
  • Figure 116. Shellworks packaging containers.         478
  • Figure 117. Thales packaging incorporating Fibrease.        484
  • Figure 118. Molded pulp bottles.      485
  • Figure 119. Sulapac cosmetics containers.              486
  • Figure 120.  Sulzer equipment for PLA polymerization processing.            487
  • Figure 121. Molded fiber laundry detergent bottle.               492
  • Figure 122. Tanbark’s clamshell product.   493
  • Figure 123. Silver / CNF composite dispersions.   500
  • Figure 124. CNF/nanosilver powder.               500
  • Figure 125. Corbion FDCA production process.     502
  • Figure 126. UFP Technologies, Inc. product examples.      504
  • Figure 127. UPM biorefinery process.            506
  • Figure 128. Varden coffee pod.          509
  • Figure 129. Vegea production process.        510
  • Figure 130. Worn Again products.    513
  • Figure 131. npulp packaging.              514
  • Figure 132. Western Pulp Products corner protectors.       515
  • Figure 133. S-CNF in powder form. 518

 

The Global Market for Sustainable Packaging 2025-2035
The Global Market for Sustainable Packaging 2025-2035
PDF download.

The Global Market for Sustainable Packaging 2025-2035
The Global Market for Sustainable Packaging 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com