The Global Market for Thermal Energy Storage 2024-2035

0

  • Published: April 2024
  • Pages: 270
  • Tables: 33
  • Figures: 33
  • Companies profiled: 80

 

Thermal energy storage (TES) is a rapidly growing sector within the broader energy storage industry, offering unique solutions for managing and optimizing energy supply and demand. TES technologies enable the capture, storage, and release of thermal energy, allowing for more efficient and sustainable energy utilization across various applications. As the world transitions towards cleaner energy sources and seeks to reduce greenhouse gas emissions, TES is poised to play a crucial role in decarbonizing power generation, industrial processes, and building energy systems.

TES technologies leverage the principles of thermodynamics to store energy in the form of heat or cold, using a variety of materials and systems. The three main categories of TES technologies are sensible heat storage, latent heat storage, and thermochemical energy storage. Sensible heat storage, the most mature and widely adopted TES technology, utilizes materials such as molten salts, concrete, and solid materials to store thermal energy through temperature changes. Latent heat storage employs phase change materials (PCMs) that absorb or release heat during phase transitions, offering higher energy densities and more stable storage temperatures. Thermochemical energy storage, an emerging technology, harnesses reversible chemical reactions to store and release thermal energy, providing the highest energy densities and long-term storage capabilities.

The TES market encompasses a diverse range of applications, including concentrated solar power (CSP), industrial process heat, district heating and cooling, residential and commercial buildings, and long-duration energy storage. In the power sector, TES enables the integration of renewable energy sources, such as solar thermal and geothermal, by providing a means to store and dispatch energy when needed. Industrial manufacturing processes can benefit from TES by recovering and reusing waste heat, improving energy efficiency, and reducing fuel consumption. District heating and cooling networks leverage TES to optimize supply and demand, while residential and commercial buildings can utilize TES for space heating, cooling, and domestic hot water production. Additionally, TES is emerging as a promising solution for long-duration energy storage, complementing batteries and other storage technologies in grid-scale applications.

The global TES market is driven by several factors, including the increasing adoption of renewable energy, the need for energy efficiency and cost savings, and supportive government policies and regulations. The decarbonization of the power and industrial sectors, coupled with the integration of intermittent renewable energy sources, is creating a growing demand for TES solutions. Energy efficiency measures, such as peak shaving, load shifting, and waste heat recovery, are further driving the adoption of TES across various end-use sectors. Moreover, government initiatives, renewable energy mandates, and emissions trading schemes are providing incentives and support for TES projects worldwide.

As the TES market continues to evolve, several key trends and opportunities are emerging. Advancements in materials science are leading to the development of novel TES materials with improved performance, durability, and cost-effectiveness. Innovations in system design, such as modular and scalable TES solutions, are enabling easier integration and deployment across diverse applications. Furthermore, the increasing focus on long-duration energy storage is opening up new market segments for TES technologies, particularly in grid-scale applications and the integration of renewable energy sources.

This report provides a comprehensive analysis of the global TES market, covering the period from 2024 to 2045. It offers insights into the current market landscape, technology trends, key applications, and regional developments. The report includes market size and growth projections, segmented by technology, application, and region, along with a detailed value chain analysis and competitive landscape assessment. Additionally, it features in-depth profiles of leading TES companies, highlighting their product offerings, strategic initiatives, and market positioning. With its extensive coverage and strategic insights, this report serves as an invaluable resource for stakeholders across the TES value chain, including technology providers, project developers, utilities, industrial end-users, investors, and policymakers.

Contents include: 

  • Comprehensive overview of TES technologies, including sensible heat storage, latent heat storage, and thermochemical energy storage
  • In-depth analysis of TES applications, such as concentrated solar power, industrial process heat, district heating and cooling, residential and commercial buildings, and long-duration energy storage
  • Market size and growth projections for the global TES market, segmented by technology, application, and region, from 2024 to 2045
  • Detailed value chain analysis, identifying key players and their roles in the TES market
  • Competitive landscape assessment, featuring profiles of leading TES companies and their product offerings, strategic initiatives, and market positioning. Companies profiled include 1414 Degrees, Alumina Energy, Antora, Bedrock Energy, Build to Zero, Cartesian, Echogen, Electrified Thermal Solutions, EnergyNest, Fourth Power, Harvest Thermal, Heliogen, Highview Power, Hyme Energy, Kraftblock, Kyoto Group, Lumenion, MGA Thermal, Polar Night Energy, Rondo Energy, and Sunamp.
  • Discussion of key market drivers, opportunities, and challenges, including the decarbonization of the power and industrial sectors, integration of renewable energy sources, and supportive government policies and regulations
  • Analysis of regional TES markets, including North America, Europe, Asia-Pacific, and the Rest of the World, highlighting key projects, installations, and market trends
  • Identification of emerging trends and opportunities in the TES market, such as advancements in materials science, modular and scalable system designs, and the growing focus on long-duration energy storage
  • Strategic insights and recommendations for stakeholders across the TES value chain, including technology providers, project developers, utilities, industrial end-users, investors, and policymakers

 

The Global Market for Thermal Energy Storage (TES) 2024-2045 is an essential resource for anyone seeking to understand the current state and future potential of the TES market. With its comprehensive coverage, in-depth analysis, and strategic insights, this report provides a solid foundation for making informed decisions and developing effective strategies in the dynamic and rapidly evolving TES industry.

 

1             RESEARCH METHODOLOGY   12

 

2             REPORT SCOPE              14

 

3             EXECUTIVE SUMMARY 15

  • 3.1         Current market size and growth potential          15
  • 3.2         Major market drivers and barriers          16
  • 3.3         Emerging trends and opportunities       17
  • 3.4         Key technology conclusions     18
    • 3.4.1     TES technologies and their applications             18
    • 3.4.2     Technology readiness levels and commercialization status    19
    • 3.4.3     Future technology development and innovation roadmap        20
  • 3.5         Thermal energy storage value chain and key players    21
  • 3.6         Thermal energy storage market size and growth projections    24
    • 3.6.1     Global market size and forecast             24
    • 3.6.2     Market segmentation by technology, application, and region  25
    • 3.6.3     Regional initiatives       31

 

4             INTRODUCTION             33

  • 4.1         Overview of thermal energy storage technologies         33
    • 4.1.1     Historical development and milestones            34
    • 4.1.2     Comparison with other energy storage technologies   35
    • 4.1.3     Benefits and challenges of TES deployment     36
  • 4.2         Working principles of thermal energy storage systems               37
    • 4.2.1     Charging and discharging processes    39
    • 4.2.2     Heat transfer and storage mechanisms             40
    • 4.2.3     System components and configurations           41
  • 4.3         Thermal energy storage classification and applications            42
    • 4.3.1     Sensible             42
    • 4.3.2     Latent  43
    • 4.3.3     Thermochemical storage           44
    • 4.3.4     Mechanical-thermal    45
    • 4.3.5     Low, medium, and high-temperature applications       46
    • 4.3.6     Centralized and distributed storage systems   47

 

5             MARKET DRIVERS AND OPPORTUNITIES           48

  • 5.1         Decarbonization of power and industrial sectors           48
    • 5.1.1     Renewable energy integration and intermittency management             48
    • 5.1.2     Emissions reduction targets and carbon pricing            49
    • 5.1.3     Energy efficiency and process optimization     50
  • 5.2         Integration of renewable energy sources            51
    • 5.2.1     Solar thermal and concentrated solar power   51
    • 5.2.2     Wind energy and power-to-heat solutions         52
    • 5.2.3     Geothermal energy and waste heat recovery   53
  • 5.3         Energy efficiency and cost savings        54
    • 5.3.1     Peak shaving and load shifting 54
    • 5.3.2     Demand response and energy arbitrage             55
    • 5.3.3     Reduced fuel consumption and operating costs            56
  • 5.4         Grid stability and resilience      57
    • 5.4.1     Frequency regulation and ancillary services    57
    • 5.4.2     Transmission and distribution infrastructure deferral 58
    • 5.4.3     Microgrid and off-grid applications       59
  • 5.5         Policy support and emissions trading schemes              60
    • 5.5.1     Renewable energy mandates and incentives   60
    • 5.5.2     Carbon markets and emissions trading schemes          60
    • 5.5.3     Building codes and energy efficiency standards            61
  • 5.6         Regional initiatives and funding programs         62

 

6             THERMAL ENERGY STORAGE APPLICATIONS 63

  • 6.1         Concentrated solar power (CSP)            64
    • 6.1.1     Parabolic trough and power tower systems      65
    • 6.1.2     Molten salt and other storage media    65
    • 6.1.3     Hybridization with fossil fuel and biomass        67
    • 6.1.4     SWOT analysis 68
  • 6.2         Industrial process heat               69
    • 6.2.1     Overview of industrial heat demand by temperature and operation     71
      • 6.2.1.1 Low-temperature processes (<100°C) 71
      • 6.2.1.2 Medium-temperature processes (100-400°C) 72
      • 6.2.1.3 High-temperature processes (>400°C)               73
    • 6.2.2     TES applications for specific industrial processes        74
      • 6.2.2.1 Food and beverage processing                74
      • 6.2.2.2 Pulp and paper manufacturing 75
      • 6.2.2.3 Chemical and petrochemical industries            76
      • 6.2.2.4 Metallurgy and mining 77
      • 6.2.2.5 Cement and ceramic production           78
    • 6.2.3     SWOT analysis 80
  • 6.3         District heating and cooling      81
    • 6.3.1     Combined heat and power (CHP) systems        81
    • 6.3.2     Waste heat recovery and utilization     82
    • 6.3.3     Seasonal storage and load balancing  83
    • 6.3.4     SWOT analysis 83
  • 6.4         Residential and commercial buildings 85
    • 6.4.1     Space heating and cooling        86
    • 6.4.2     Water heating and thermal comfort      87
    • 6.4.3     Integration with solar thermal and heat pump systems              87
    • 6.4.4     SWOT analysis 88
  • 6.5         Long-duration energy storage  90
    • 6.5.1     Electro-thermal energy storage systems            90
    • 6.5.2     Pumped thermal electricity storage (PTES)       91
    • 6.5.3     Compressed air energy storage (CAES) with TES            92
    • 6.5.4     SWOT analysis 93
  • 6.6         Chemical looping and hydrogen production     95
    • 6.6.1     Chemical looping combustion (CLC) and reforming (CLR)        95
    • 6.6.2     Hydrogen production and storage         96
    • 6.6.3     Integration with carbon capture and utilization (CCU) 96
  • 6.7         Cold chain and refrigeration     97
    • 6.7.1     Food and pharmaceutical storage and transport           97
    • 6.7.2     Industrial refrigeration and process cooling     98
    • 6.7.3     Air conditioning and space cooling       99
    • 6.7.4     SWOT analysis 100

 

7             TECHNOLOGIES AND MATERIALS        102

  • 7.1         Sensible heat storage  104
    • 7.1.1     Molten salts      105
      • 7.1.1.1 Nitrate salts and eutectics        106
      • 7.1.1.2 Chloride and carbonate salts   107
      • 7.1.1.3 Salt selection criteria and properties   108
    • 7.1.2     Concrete and solid materials  109
      • 7.1.2.1 High-temperature concrete and ceramics        110
      • 7.1.2.2 Natural and recycled materials (rock, sand, bricks)      111
      • 7.1.2.3 Compatibility with heat transfer fluids 112
  • 7.2         Latent heat storage (phase change materials) 113
    • 7.2.1     Organic PCMs (paraffins, fatty acids)   115
      • 7.2.1.1 Paraffin wax     115
      • 7.2.1.2 Non-Paraffins (fatty acids, esters, alcohols)    118
      • 7.2.1.3 Bio-based phase change materials      121
    • 7.2.2     Inorganic PCMs (salt hydrates, metallics)         124
      • 7.2.2.1 Salt hydrates    124
      • 7.2.2.2 Metal and metal alloy PCMs (High-temperature)           127
    • 7.2.3     Encapsulation and heat exchanger design        129
      • 7.2.3.1 Benefits              130
      • 7.2.3.2 Macroencapsulation    130
      • 7.2.3.3 Micro/nanoencapsulation         130
      • 7.2.3.4 Shape Stabilized PCMs               132
      • 7.2.3.5 Commercial Encapsulation Technologies         134
      • 7.2.3.6 Self-Assembly Encapsulation 134
    • 7.2.4     Eutectic PCMs 135
      • 7.2.4.1 Eutectic Mixtures           135
      • 7.2.4.2 Examples of Eutectic Inorganic PCMs 135
      • 7.2.4.3 Benefits              136
      • 7.2.4.4 Applications     137
      • 7.2.4.5 Advantages and disadvantages of eutectics    137
      • 7.2.4.6 Recent developments 138
  • 7.3         Thermochemical energy storage            139
    • 7.3.1     Adsorption and absorption        141
      • 7.3.1.1 Zeolites and silica gels 141
      • 7.3.1.2 Metal-organic frameworks (MOFs)        142
      • 7.3.1.3 Salt hydrates and ammoniates               143
    • 7.3.2     Chemical reaction energy storage         144
      • 7.3.2.1 Metal oxide redox reactions      144
      • 7.3.2.2 Carbonation and calcination cycles     145
      • 7.3.2.3 Catalytic reactions and reforming         146
  • 7.4         Electro-thermal energy storage              147
    • 7.4.1     Joule heating and resistive heating       147
    • 7.4.2     Induction heating and electromagnetic systems           148
    • 7.4.3     Heat pumps and refrigeration cycles   149
  • 7.5         Comparison of TES technologies: advantages and disadvantages        150
    • 7.5.1     Energy density and storage capacity    151
    • 7.5.2     Efficiency and round-trip            152
    • 7.5.3     Cost and economic viability     152
    • 7.5.4     Operational flexibility and response time          153
    • 7.5.5     Environmental impact and safety considerations         154
  • 7.6         Technology readiness levels and commercial maturity              154
    • 7.6.1     Research and development (TRL 1-3)   155
    • 7.6.2     Prototype and pilot-scale demonstration (TRL 4-6)       155
    • 7.6.3     Commercial-scale deployment (TRL 7-9)          156

 

8             MARKET ANALYSIS       157

  • 8.1         Market Size       157
    • 8.1.1     By technology type        157
    • 8.1.2     By application and end-use sector        159
    • 8.1.3     By region            161
  • 8.2         Price and Cost Analysis              162
  • 8.3         Value Chain      164
  • 8.4         Project case studies and deployment examples            166
    • 8.4.1     Utility-scale TES projects           166
    • 8.4.2     Industrial TES applications       166
    • 8.4.3     District heating and cooling networks  167
    • 8.4.4     Residential and commercial building projects 168
  • 8.5         Competitive Landscape             169
  • 8.6         Customer Segmentation            172
  • 8.7         Risks and Opportunities             174

 

9             THERMAL ENERGY STORAGE PROJECTS AND INSTALLATIONS             176

  • 9.1         Global overview of TES projects and installations         176
    • 9.1.1     Number and capacity of operational projects 176
    • 9.1.2     Planned and under-construction projects         177
  • 9.2         Regional breakdown of TES projects    179
    • 9.2.1     North America 179
    • 9.2.2     Europe 180
    • 9.2.3     Asia-Pacific      181
    • 9.2.4     Rest of the World            182
  • 9.3         TES projects by application and industry            183
    • 9.3.1     Power generation and utilities 183
    • 9.3.2     Industrial manufacturing and process heat      184
    • 9.3.3     District heating and cooling      185
    • 9.3.4     Buildings and construction       187
    • 9.3.5     Transportation and mobility     188

 

10           COMPANY PROFILES  190 (80 company profiles)

 

11           REFERENCES   261

 

List of Tables

  • Table 1. Market drivers and barriers in thermal energy storage.              16
  • Table 2. TES technologies and applications.    18
  • Table 3. Thermal energy storage revenues, by technology (Billions USD) 2020-2035.  25
  • Table 4. Thermal energy storage revenues, by applications and end-use sector (Billions USD) 2020-2035.     27
  • Table 5. Thermal energy storage revenues, by region (Billions USD) 2020-2035.            29
  • Table 6, Regional initiatives in Thermal energy storage.              31
  • Table 7. Historical development and milestones of TES technologies.               34
  • Table 8. Comparison of TES with other energy storage technologies.  35
  • Table 9. Benefits and challenges of TES deployment.  36
  • Table 10. Concentrated solar power and thermal energy storage plants.           63
  • Table 11. TES applications for decarbonizing industrial process heating.          69
  • Table 12. TES for industrial and non-CSP applications.               69
  • Table 13. Operating temperatures and time ranges for TES technologies.         104
  • Table 14. Concrete and solid materials in TES.                109
  • Table 15. Advantages and disadvantages of parafiin wax PCMs.            116
  • Table 16. Advantages and disadvantages of non-paraffins.      120
  • Table 17. Advantages and disadvantages of Bio-based phase change materials.         123
  • Table 18. Advantages and disadvantages of salt hydrates         125
  • Table 19. Advantages and disadvantages of low melting point metals.               128
  • Table 20. Advantages and disadvantages of eutectics.               137
  • Table 21. Comparative properties of TES technologies.              151
  • Table 22. Thermal energy storage revenues, by technology (Billions USD) 2020-2035.               157
  • Table 23. Thermal energy storage revenues, by applications and end-use sector (Billions USD) 2020-2035.   159
  • Table 24. Thermal energy storage revenues, by region (Billions USD) 2020-2035.         161
  • Table 25. TES price and cost analysis. 163
  • Table 26. Thermal energy storage value chain. 164
  • Table 27. Market players in Sensible and Latent Heat TES.       169
  • Table 28. Market players in Electro-thermal Energy Storage.   171
  • Table 29. Market players in Thermochemical Energy Storage  172
  • Table 30. Operational TES projects.      176
  • Table 31. Planned and under-construction TES projects.           177
  • Table 32. Caldera battery system.         206
  • Table 33. CrodaTherm Range.  211

 

List of Figures

  • Figure 1. Components of the energy transition strategy.            15
  • Figure 2. Technology readiness levels and commercialization status for thermal energy storage.        20
  • Figure 3. Thermal energy storage (RES) roadmap.          21
  • Figure 4. Thermal energy storage value chain and key players.               22
  • Figure 5. Thermal energy storage revenues, by technology (Billions USD) 2020-2035. 26
  • Figure 6. Thermal energy storage revenues, by applications and end-use sector (Billions USD) 2020-2035.    28
  • Figure 7. Thermal energy storage revenues, by region (Billions USD) 2020-2035.           30
  • Figure 8. Thermal energy storage technology working principle.             38
  • Figure 9. SWOT analysis: TES concentrated solar power.           68
  • Figure 10. SWOT analysis: TES for industrial process heat.       80
  • Figure 11. SWOT analysis: district heating and coooling.           84
  • Figure 12. SWOT analysis: TES for residential and commercial buildings.         89
  • Figure 13. SWOT analysis: LDES.            94
  • Figure 14. CaL process scheme.            95
  • Figure 15. SWOT analysis: TES for cold chain and refrigeration.             101
  • Figure 16. Thermal energy storage materials.  103
  • Figure 17. Direct molten-salt storage system. 105
  • Figure 18. Indirect molten-salt storage system.              106
  • Figure 19. Molten-salt TES capacity installed globally (gigawatt hour).                106
  • Figure 20. Schematic of PCM in storage tank linked to solar collector.               114
  • Figure 21. UniQ line of thermal batteries.          115
  • Figure 22. Thermochemical storage methods and materials.  139
  • Figure 23. TES technologies by commercial readiness levels (CRL).    154
  • Figure 24. Thermal energy storage revenues, by technology (Billions USD) 2020-2035.              158
  • Figure 25. Thermal energy storage revenues, by applications and end-use sector (Billions USD) 2020-2035. 160
  • Figure 26. Thermal energy storage revenues, by region (Billions USD) 2020-2035.        161
  • Figure 27. Thermal energy storage installations, by technology (GWh) 2020-2035.       162
  • Figure 28. Thermal energy storage installations, by markets (GWh) 2020-2035.             162
  • Figure 29. Thermal energy storage installations, by region (GWh) 2020-2035. 178
  • Figure 30. Thermal energy storage installations, by technology (GWh) 2020-2035.       178
  • Figure 31. Thermal energy storage installations, by markets (GWh) 2020-2035.             178
  • Figure 32. Ultraguard -70°C Phase Change Material (PCM) being loaded into a Stirling Ultracold ULT25NEU portable freezer.             202
  • Figure 33. HI-FLOW Phase Change Materials. 228

 

     

The Global Market for Thermal Energy Storage 2024-2035
The Global Market for Thermal Energy Storage 2024-2035
PDF download/by email.

The Global Market for Thermal Energy Storage 2024-2035
The Global Market for Thermal Energy Storage 2024-2035
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.