The Global Market for Thermal Interface Materials 2024-2035

0

  • Published: June 2024
  • Pages: 291
  • Tables: 58
  • Figures: 82

 

The effective transfer/removal of heat from a semiconductor device is crucial to ensure reliable operation and to enhance the lifetime of these components. The development of high-power and high-frequency electronic devices has greatly increased issues with excessive heat accumulation. There is therefore a significant requirement for effective thermal management materials to remove excess heat from electronic devices to ambient environment.

Thermal interface materials (TIMs) play a critical role in managing heat and ensuring optimal performance in a wide range of applications. As electronic devices become more compact and powerful, effective thermal management solutions are essential. Thermal interface materials (TIMs) offer efficient heat dissipation to maintain proper functions and lifetime for these devices. TIMs are materials that are applied between the interfaces of two components (typically a heat generating device such as microprocessors, photonic integrated circuits, etc. and a heat dissipating device e.g. heat sink) to enhance the thermal coupling between these devices. The TIM market is poised for significant growth, driven by the increasing demand for effective thermal management solutions in various end-use industries. As electronic devices continue to evolve, the development of advanced, high-performance TIMs will be critical for ensuring reliability, safety, and user satisfaction. 

This market report explores the latest trends, innovations, and growth opportunities in the TIM industry, focusing on key sectors such as consumer electronics, electric vehicles (EVs), data centers, and 5G technology. Report contents include:

  • Analysis of the various materials and technologies used in TIMs, including:
    • Advanced and multi-functional TIMs
    • TIM fillers (alumina, boron nitride, etc.)
    • Thermal greases, pastes, and gap fillers
    • Phase change materials (organic, inorganic, eutectic mixtures)
    • Metal-based TIMs (solders, liquid metals, sintered materials)
    • Carbon-based TIMs (CNTs, graphene, nanodiamond)
    • Metamaterials and self-healing TIMs
  • Market trends and drivers.
  • Market map. 
  • Analysis of thermal interface materials (TIMs) including:
    • Thermal Pads/Insulators.
    • Thermally Conductive Adhesives.
    • Thermal Compounds or Greases.
    • Thermally Conductive Epoxy/Adhesives.
    • Phase Change Materials.
    • Metal-based TIMs.
    • Carbon-based TIMs.
  • Market analysis. Markets covered include:
    • Consumer Electronics: Smartphones, tablets, wearables
    • Electric Vehicles: Batteries, power electronics, charging stations
    • Data Centers: Servers, routers, switches, power supplies
    • ADAS Sensors: Cameras, radar, LiDAR, ECUs
    • 5G: EMI shielding, antennas, base band units, power supplies
  • Global market revenues for thermal interface materials (TIMs), segmented by type and market, historical and forecast to 2035. 
  • Profiles of 104 producers in the TIM industry. Companies profiled include 3M, Arieca, BNNT, Carbice Corporation, CondAlign, Fujipoly, Henkel, Indium Corporation, KULR Technology Group, Inc., Parker-Hannifin Corporation, Shin-Etsu Chemical Co., Ltd, and SHT Smart High-Tech AB. 

 

1             INTRODUCTION          17

  • 1.1        Thermal management-active and passive 17
  • 1.2        What are thermal interface materials (TIMs)?          17
    • 1.2.1    Types   19
    • 1.2.2    Thermal conductivity                20
  • 1.3        Comparative properties of TIMs        22
  • 1.4        Differences between thermal pads and grease       22
  • 1.5        Advantages and disadvantages of TIMs, by type     24
  • 1.6        Performance  27
  • 1.7        Prices  27

 

2             MATERIALS      29

  • 2.1        Advanced and Multi-Functional TIMs            30
  • 2.2        TIM fillers          31
    • 2.2.1    Trends 32
    • 2.2.2    Pros and Cons              32
    • 2.2.3    Thermal Conductivity               33
    • 2.2.4    Spherical Alumina      34
    • 2.2.5    Alumina Fillers              35
    • 2.2.6    Boron nitride (BN)       35
    • 2.2.7    Filler and polymer TIMs           38
  • 2.2.8    Filler Sizes        39
  • 2.3        Thermal greases and pastes                41
    • 2.3.1    Overview and properties        41
    • 2.3.2    SWOT analysis              43
  • 2.4        Thermal gap pads       44
    • 2.4.1    Overview and properties        44
    • 2.4.2    SWOT analysis              45
  • 2.5        Thermal gap fillers      46
    • 2.5.1    Overview and properties        46
    • 2.5.2    SWOT analysis              47
  • 2.6        Potting compounds/encapsulants  48
    • 2.6.1    Overview and properties        48
    • 2.6.2    SWOT analysis              51
  • 2.7        Adhesive Tapes             52
    • 2.7.1    Overview and properties        52
    • 2.7.2    SWOT analysis              53
  • 2.8        Phase Change Materials         55
    • 2.8.1    Overview and properties        55
    • 2.8.2    Types   57
      • 2.8.2.1 Organic/biobased phase change materials               58
        • 2.8.2.1.1           Advantages and disadvantages        58
        • 2.8.2.1.2           Paraffin wax    59
        • 2.8.2.1.3           Non-Paraffins/Bio-based      60
      • 2.8.2.2 Inorganic phase change materials   60
        • 2.8.2.2.1           Salt hydrates  60
          • 2.8.2.2.1.1      Advantages and disadvantages        61
        • 2.8.2.2.2           Metal and metal alloy PCMs (High-temperature)   62
      • 2.8.2.3 Eutectic mixtures        62
    • 2.8.2.4 Encapsulation of PCMs           62
      • 2.8.2.4.1           Macroencapsulation 63
      • 2.8.2.4.2           Micro/nanoencapsulation    63
    • 2.8.2.5 Nanomaterial phase change materials         64
    • 2.8.3    Thermal energy storage (TES)              64
      • 2.8.3.1 Sensible heat storage              64
      • 2.8.3.2 Latent heat storage    65
    • 2.8.4    Application in TIMs    66
      • 2.8.4.1 Thermal pads 67
      • 2.8.4.2 Low Melting Alloys (LMAs)    67
    • 2.8.5    SWOT analysis              68
  • 2.9        Metal-based TIMs       69
    • 2.9.1    Overview           69
    • 2.9.2    Solders and low melting temperature alloy TIMs   70
      • 2.9.2.1 Solder TIM1     72
      • 2.9.2.2 Sintering            73
    • 2.9.3    Liquid metals 76
    • 2.9.4    Solid liquid hybrid (SLH) metals        76
      • 2.9.4.1 Hybrid liquid metal pastes    77
      • 2.9.4.2 SLH created during chip assembly (m2TIMs)           78
      • 2.9.4.3 Die-attach materials 79
        • 2.9.4.3.1           Solder Alloys and Conductive Adhesives    81
        • 2.9.4.3.2           Silver-Sintered Paste 83
        • 2.9.4.3.3           Copper (Cu) sintered TIMs    84
        • 2.9.4.3.4           Sintered Copper Die-Bonding Paste               88
    • 2.9.5    SWOT analysis              89
  • 2.10     Carbon-based TIMs   90
    • 2.10.1 Carbon nanotube (CNT) TIM Fabrication     91
    • 2.10.2 Multi-walled nanotubes (MWCNT)  91
      • 2.10.2.1            Properties         92
      • 2.10.2.2            Application as thermal interface materials                93
    • 2.10.3 Single-walled carbon nanotubes (SWCNTs)             93
      • 2.10.3.1            Properties         94
      • 2.10.3.2            Application as thermal interface materials                96
    • 2.10.4 Vertically aligned CNTs (VACNTs)     96
      • 2.10.4.1            Properties         96
      • 2.10.4.2            Applications   97
      • 2.10.4.3            Application as thermal interface materials                97
    • 2.10.5 BN nanotubes (BNNT) and nanosheets (BNNS)      98
      • 2.10.5.1            Properties         98
      • 2.10.5.2            Application as thermal interface materials                99
    • 2.10.6 Graphene         100
      • 2.10.6.1            Properties         101
      • 2.10.6.2            Application as thermal interface materials                103
        • 2.10.6.2.1        Graphene fillers            103
        • 2.10.6.2.2        Graphene foam            103
        • 2.10.6.2.3        Graphene aerogel       103
        • 2.10.6.2.4        Graphene Heat Spreaders     103
        • 2.10.6.2.5        Graphene in Thermal Interface Pads              104
    • 2.10.7 Nanodiamonds            104
      • 2.10.7.1            Properties         104
      • 2.10.7.2            Application as thermal interface materials                106
    • 2.10.8 Graphite            106
      • 2.10.8.1            Properties         106
      • 2.10.8.2            Natural graphite           107
        • 2.10.8.2.1        Classification 107
        • 2.10.8.2.2        Processing       109
        • 2.10.8.2.3        Flake    109
          • 2.10.8.2.3.1   Grades               110
          • 2.10.8.2.3.2   Applications   110
      • 2.10.8.3            Synthetic graphite      112
        • 2.10.8.3.1        Classification 112
          • 2.10.8.3.1.1   Primary synthetic graphite    113
          • 2.10.8.3.1.2   Secondary synthetic graphite             113
          • 2.10.8.3.1.3   Processing       113
      • 2.10.8.4            Applications as thermal interface materials             114
        • 2.10.8.4.1        Graphite Sheets           115
        • 2.10.8.4.2        Vertical graphite          115
        • 2.10.8.4.3        Graphite pastes           115
    • 2.10.9 Hexagonal Boron Nitride        116
      • 2.10.9.1            Properties         116
      • 2.10.9.2            Application as thermal interface materials                118
    • 2.10.10              SWOT analysis              118
  • 2.11     Metamaterials               119
    • 2.11.1 Types and properties 120
      • 2.11.1.1            Electromagnetic metamaterials       121
        • 2.11.1.1.1        Double negative (DNG) metamaterials         121
        • 2.11.1.1.2        Single negative metamaterials           121
        • 2.11.1.1.3        Electromagnetic bandgap metamaterials (EBG)    121
        • 2.11.1.1.4        Bi-isotropic and bianisotropic metamaterials          122
        • 2.11.1.1.5        Chiral metamaterials                122
        • 2.11.1.1.6        Electromagnetic “Invisibility” cloak 123
      • 2.11.1.2            Terahertz metamaterials        123
      • 2.11.1.3            Photonic metamaterials         123
      • 2.11.1.4            Tunable metamaterials           124
      • 2.11.1.5            Frequency selective surface (FSS) based metamaterials 124
      • 2.11.1.6            Nonlinear metamaterials       124
      • 2.11.1.7            Acoustic metamaterials         125
    • 2.11.2 Application as thermal interface materials                125
  • 2.12     Self-healing thermal interface materials     126
    • 2.12.1 Extrinsic self-healing 127
    • 2.12.2 Capsule-based             127
    • 2.12.3 Vascular self-healing 127
    • 2.12.4 Intrinsic self-healing 128
    • 2.12.5 Healing volume            129
    • 2.12.6 Types of self-healing materials, polymers and coatings    130
    • 2.12.7 Applications in thermal interface materials              131
  • 2.13     TIM Dispensing             131
    • 2.13.1 Low-volume Dispensing Methods    132
    • 2.13.2 High-volume Dispensing Methods  132
    • 2.13.3 Meter, Mix, Dispense (MMD) Systems           133
    • 2.13.4 TIM Dispensing Equipment Suppliers            134

 

3             MARKETS FOR THERMAL INTERFACE MATERIALS (TIMs)  136

  • 3.1        Consumer electronics             136
    • 3.1.1    Market overview           136
    • 3.1.1.1 Market drivers                136
    • 3.1.1.2 Applications   137
      • 3.1.1.2.1           Smartphones and tablets      138
      • 3.1.1.2.2           Wearable electronics                141
    • 3.1.2    Global market 2022-2035, by TIM type          143
  • 3.2        Electric Vehicles (EV)               144
    • 3.2.1    Market overview           144
      • 3.2.1.1 Market drivers                144
      • 3.2.1.2 Applications   145
      • 3.2.1.2.1           Lithium-ion batteries 145
        • 3.2.1.2.1.1      Cell-to-pack designs 146
        • 3.2.1.2.1.2      Cell-to-chassis/body                147
      • 3.2.1.2.2           Power electronics       148
        • 3.2.1.2.2.1      Types   148
        • 3.2.1.2.2.2      Properties for EV power electronics                149
        • 3.2.1.2.2.3      TIM2 in SiC MOSFET  152
      • 3.2.1.2.3           Charging stations        153
    • 3.2.2    Global market 2022-2035, by TIM type          154
  • 3.3        Data Centers  156
    • 3.3.1    Market overview           156
      • 3.3.1.1 Market drivers                156
      • 3.3.1.2 Applications   157
        • 3.3.1.2.1           Router, switches and line cards         157
          • 3.3.1.2.1.1      Transceivers   159
          • 3.3.1.2.1.2      Server Boards                159
          • 3.3.1.2.1.3      Switches and Routers              159
        • 3.3.1.2.2           Servers               160
        • 3.3.1.2.3           Power supply converters        161
    • 3.3.2    Global market 2022-2035, by TIM type          164
  • 3.4        ADAS Sensors               166
    • 3.4.1    Market overview           166
      • 3.4.1.1 Market drivers                166
      • 3.4.1.2 Applications   166
        • 3.4.1.2.1           ADAS Cameras             167
          • 3.4.1.2.1.1      Commercial examples            167
        • 3.4.1.2.2           ADAS Radar    168
          • 3.4.1.2.2.1      Radar technology        168
          • 3.4.1.2.2.2      Radar boards 170
          • 3.4.1.2.2.3      Commercial examples            170
        • 3.4.1.2.3           ADAS LiDAR    171
          • 3.4.1.2.3.1      Role of TIMs    171
          • 3.4.1.2.3.2      Commercial examples            172
        • 3.4.1.2.4           Electronic control units (ECUs) and computers      173
          • 3.4.1.2.4.1      Commercial examples            174
      • 3.4.1.2.5           Die attach materials  175
      • 3.4.1.2.6           Commercial examples            176
    • 3.4.2    Global market 2022-2035, by TIM type          178
  • 3.5        EMI shielding 180
    • 3.5.1    Market overview           180
      • 3.5.1.1 Market drivers                180
      • 3.5.1.2 Applications   180
        • 3.5.1.2.1           Dielectric Constant   181
        • 3.5.1.2.2           ADAS   182
          • 3.5.1.2.2.1      Radar  182
          • 3.5.1.2.2.2      5G         183
      • 3.5.1.2.3           Commercial examples            183
  • 3.6        5G         185
    • 3.6.1    Market overview           185
      • 3.6.1.1 Market drivers                185
      • 3.6.1.2 Applications   185
        • 3.6.1.2.1           EMI shielding and EMI gaskets           186
        • 3.6.1.2.2           Antenna            187
        • 3.6.1.2.3           Base Band Unit (BBU)              190
        • 3.6.1.2.4           Liquid TIMs      193
        • 3.6.1.2.5           Power supplies             193
          • 3.6.1.2.5.1      Increased power consumption in 5G             194
    • 3.6.2    Market players               195
    • 3.6.3    Global market 2022-2035, by TIM type          196

 

4             COMPANY PROFILES                198 (104 company profiles)

 

5             RESEARCH METHODOLOGY              283

 

6             REFERENCES 284

 

List of Tables

  • Table 1. Thermal conductivities (κ) of common metallic, carbon, and ceramic fillers employed in TIMs.                21
  • Table 2. Commercial TIMs and their properties.     22
  • Table 3. Advantages and disadvantages of TIMs, by type. 24
  • Table 4. Key Factors in System Level Performance for TIMs.          27
  • Table 5. Thermal interface materials prices.             27
  • Table 6. Comparisons of Price and Thermal Conductivity for TIMs.           27
  • Table 7. Price Comparison of TIM Fillers.     28
  • Table 8. Characteristics of some typical TIMs.        29
  • Table 9. Trends on TIM Fillers.             32
  • Table 10. Pros and Cons of TIM Fillers.          32
  • Table 11. Types of Potting Compounds/Encapsulants.     49
  • Table 12. TIM adhesives tapes.          52
  • Table 13. Properties of PCMs.             56
  • Table 14.  PCM Types and properties.            57
  • Table 15. Advantages and disadvantages of organic PCMs.           58
  • Table 16. Advantages and disadvantages of organic PCM Fatty Acids.    60
  • Table 17. Advantages and disadvantages of salt hydrates               61
  • Table 18. Advantages and disadvantages of low melting point metals.   62
  • Table 19. Advantages and disadvantages of eutectics.      62
  • Table 20. Benefits and drawbacks of PCMs in TIMs.            66
  • Table 21. Comparison of Carbon-based TIMs.        90
  • Table 22. Properties of CNTs and comparable materials. 92
  • Table 23. Typical properties of SWCNT and MWCNT.          94
  • Table 24. Comparison of carbon-based additives in terms of the main parameters influencing their value proposition as a conductive additive.              95
  • Table 25. Thermal conductivity of CNT-based polymer composites.        98
  • Table 26. Comparative properties of BNNTs and CNTs.     99
  • Table 27. Properties of graphene, properties of competing materials, applications thereof.     101
  • Table 28. Properties of nanodiamonds.       105
  • Table 29. Comparison between Natural and Synthetic Graphite.               106
  • Table 30. Classification of natural graphite with its characteristics.         107
  • Table 31. Characteristics of synthetic graphite.      112
  • Table 32. Thermal Conductivity Comparison of Graphite TIMs.   115
  • Table 33. Properties of hexagonal boron nitride (h-BN).    117
  • Table 34. Comparison of self-healing systems.      129
  • Table 35. Types of self-healing coatings and materials.     130
  • Table 36. Comparative properties of self-healing materials.          131
  • Table 37. Challenges for Dispensing TIM.   131
  • Table 38. Thermal Management Application Areas in Consumer Electronics.    136
  • Table 39. Trends in Smartphone Thermal Materials.            138
  • Table 40. Thermal Management approaches in commercial Smartphones.        140
  • Table 41. Global market in consumer electronics 2022-2035, by TIM type (millions USD).        143
  • Table 42. Global market in electric vehicles 2022-2035, by TIM type (millions USD).     154
  • Table 43. TIM Trends in Data Centers.            162
  • Table 44. TIM Area Forecast in Server Boards: 2022-2035 (m2).  163
  • Table 45. Global market in data centers 2022-2035, by TIM type (millions USD).             164
  • Table 46. TIM Players in ADAS.            167
  • Table 47. Die Attach for ADAS Sensors.        177
  • Table 48. Die Attach Area Forecast for Key Components Within ADAS Sensors: 2022-2035 (m2).       177
  • Table 49. Global market in ADAS sensors 2022-2035, by TIM type (millions USD).          178
  • Table 50. TIM Area Forecast for 5G Antennas by Station Size: 2022-2035 (m2). 189
  • Table 51. TIM Area Forecast for 5G Antennas by Station Frequency: 2022-2035 (m2). 189
  • Table 52. TIMS in BBU.             190
  • Table 53. 5G BBY models.      192
  • Table 54. TIM Area Forecast for 5G BBU: 2022-2035 (m2).              192
  • Table 55. Power Consumption Forecast for 5G: 2022-2035 (GW).             194
  • Table 56. TIM Area Forecast for Power Supplies: 2022-2035 (m2).            195
  • Table 57. TIM market players in 5G. 195
  • Table 58. Global market in 5G 2022-2035, by TIM type (millions USD).   196

 

List of Figures

  • Figure 1. (L-R) Surface of a commercial heatsink surface at progressively higher magnifications, showing tool marks that create a rough surface and a need for a thermal interface material. 18
  • Figure 2. Schematic of thermal interface materials used in a flip chip package.              18
  • Figure 3. Thermal grease.      19
  • Figure 4. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module.             20
  • Figure 5. Application of thermal silicone grease.   42
  • Figure 6. A range of thermal grease products.          42
  • Figure 7. SWOT analysis for thermal greases and pastes. 43
  • Figure 8. Thermal Pad.             44
  • Figure 9. SWOT analysis for thermal gap pads.       45
  • Figure 10. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module.             46
  • Figure 11. SWOT analysis for thermal gap fillers.   47
  • Figure 12. SWOT analysis for Potting compounds/encapsulants.              51
  • Figure 13. Thermal adhesive products.         52
  • Figure 14. SWOT analysis for TIM adhesives tapes.              54
  • Figure 15. Phase-change TIM products.       55
  • Figure 16. PCM mode of operation. 56
  • Figure 17. Classification of PCMs.   57
  • Figure 18. Phase-change materials in their original states.             57
  • Figure 19. Thermal energy storage materials.           64
  • Figure 20. Phase Change Material transient behaviour.     65
  • Figure 21. PCM TIMs. 67
  • Figure 22. Phase Change Material - die cut pads ready for assembly.      67
  • Figure 23. SWOT analysis for phase change materials.      69
  • Figure 24. Typical IC package construction identifying TIM1 and TIM2    71
  • Figure 25. Liquid metal TIM product.              76
  • Figure 26. Pre-mixed SLH.     77
  • Figure 27. HLM paste and Liquid Metal Before and After Thermal Cycling.           78
  • Figure 28.  SLH with Solid Solder Preform. 78
  • Figure 29. Automated process for SLH with solid solder preforms and liquid metal.     79
  • Figure 30. SWOT analysis for metal-based TIMs.   90
  • Figure 31. Schematic diagram of a multi-walled carbon nanotube (MWCNT).   91
  • Figure 32. Schematic of single-walled carbon nanotube. 94
  • Figure 33. Types of single-walled carbon nanotubes.         95
  • Figure 34. Schematic of a vertically aligned carbon nanotube (VACNT) membrane used for water treatment.        97
  • Figure 35. Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red.             99
  • Figure 36. Graphene layer structure schematic.     100
  • Figure 37. Illustrative procedure of the Scotch-tape based micromechanical cleavage of HOPG.       100
  • Figure 38. Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene. 102
  • Figure 39. Flake graphite.       110
  • Figure 40. Applications of flake graphite.    111
  • Figure 41. Graphite-based TIM products.    114
  • Figure 42. Structure of hexagonal boron nitride.     116
  • Figure 43. SWOT analysis for carbon-based TIMs. 119
  • Figure 44. Classification of metamaterials based on functionalities.      120
  • Figure 45. Electromagnetic metamaterial. 121
  • Figure 46. Schematic of Electromagnetic Band Gap (EBG) structure.      122
  • Figure 47. Schematic of chiral metamaterials.        123
  • Figure 48. Nonlinear metamaterials- 400-nm thick nonlinear mirror that reflects frequency-doubled output using input light intensity as small as that of a laser pointer.         125
  • Figure 49. Schematic of self-healing polymers. Capsule based (a), vascular (b), and intrinsic (c) schemes for self-healing materials.  Red and blue colours indicate chemical species which react (purple) to heal damage.       126
  • Figure 50. Stages of self-healing mechanism.         127
  • Figure 51. Self-healing mechanism in vascular self-healing systems.     128
  • Figure 52. Schematic of TIM operation in electronic devices.        138
  • Figure 53. Schematic of Thermal Management Materials in smartphone.            140
  • Figure 54. Wearable technology inventions.             142
  • Figure 55. Global market in consumer electronics 2022-2035, by TIM type (millions USD).      143
  • Figure 56. Application of thermal interface materials in automobiles.    144
  • Figure 57. EV battery components including TIMs.               146
  • Figure 58. Battery pack with a cell-to-pack design and prismatic cells.  147
  • Figure 59. Cell-to-chassis battery pack.      147
  • Figure 60. TIMS in EV charging station.         153
  • Figure 61. Global market in electric vehicles 2022-2035, by TIM type (millions USD).   155
  • Figure 62. Image of data center layout.         157
  • Figure 63. Application of TIMs in line card. 158
  • Figure 64. Global market in data centers 2022-2035, by TIM type (millions USD).           165
  • Figure 65. ADAS radar unit incorporating TIMs.       169
  • Figure 66. Global market in ADAS sensors 2022-2035, by TIM type (millions USD).        179
  • Figure 67. Coolzorb 5G.          180
  • Figure 68. TIMs in Base Band Unit (BBU).    191
  • Figure 69. Global market in 5G 2022-2035, by TIM type (millions USD). 197
  • Figure 70. Boron Nitride Nanotubes products.        208
  • Figure 71. Transtherm® PCMs.            209
  • Figure 72. Carbice carbon nanotubes.         212
  • Figure 73.  Internal structure of carbon nanotube adhesive sheet.            228
  • Figure 74. Carbon nanotube adhesive sheet.           229
  • Figure 75. HI-FLOW Phase Change Materials.         237
  • Figure 76. Thermoelectric foil, consists of a sequence of semiconductor elements connected with conductive metal. At the top (in red) is the thermal interface.       251
  • Figure 77. Parker Chomerics THERM-A-GAP GEL. 262
  • Figure 78. Metamaterial structure used to control thermal emission.     263
  • Figure 79. Shinko Carbon Nanotube TIM product. 271
  • Figure 80. The Sixth Element graphene products.  275
  • Figure 81. Thermal conductive graphene film.         276
  • Figure 82. VB Series of TIMS from Zeon.       282

 

 

 

The Global Market for Thermal Interface Materials 2024-2035
The Global Market for Thermal Interface Materials 2024-2035
PDF download/by email.

The Global Market for Thermal Interface Materials 2024-2035
The Global Market for Thermal Interface Materials 2024-2035
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.