The Global Market for Thermal Management Materials and Systems 2025-2035

0

cover

cover

  • Published: October 2024
  • Pages: 400
  • Tables: 52
  • Figures: 92
  • Companies profiled: 172

 

Thermal management materials and systems play a crucial role in maintaining optimal operating temperatures for a wide range of technologies and industries. These solutions are essential for enhancing performance, reliability, and longevity of various devices and systems, particularly in high-heat environments. The thermal management landscape encompasses a diverse array of materials and systems, including thermal interface materials (TIMs), heat spreaders, heat sinks, liquid cooling systems, air cooling solutions, cooling plates, spray cooling technologies, immersion cooling, thermoelectric coolers, coolant fluids, and phase change materials (PCMs).

In the electric vehicle (EV) market, thermal management is paramount for ensuring battery efficiency, safety, and longevity. EV batteries generate significant heat during charging and discharging cycles, necessitating advanced cooling solutions to maintain optimal performance and prevent thermal runaway. Similarly, power electronics and electric motors in EVs require effective thermal management to operate efficiently and reliably under various driving conditions.

Data centers, the backbone of our digital infrastructure, face immense thermal challenges due to the high density of heat-generating equipment. Effective thermal management in data centers is critical for maintaining server performance, reducing energy consumption, and minimizing downtime. As data centers grow in size and complexity, innovative cooling solutions such as liquid and immersion cooling are gaining traction, offering improved efficiency and reduced operating costs.

Beyond EVs and data centers, thermal management materials and systems find applications in consumer electronics, 5G telecommunications infrastructure, aerospace, ADAS (Advanced Driver-Assistance Systems) sensors, and energy systems. In consumer electronics, thermal management solutions enable the development of more powerful and compact devices while preventing overheating. In 5G infrastructure, advanced cooling technologies are essential for managing the increased heat generation from high-frequency components.

The global market for thermal management materials and systems is experiencing robust growth, driven by technological advancements, increasing power densities in electronic devices, and the growing demand for energy-efficient cooling solutions. As industries continue to push the boundaries of performance and miniaturization, the importance of effective thermal management will only increase, making it a critical factor in the development of next-generation technologies across various sectors.

This comprehensive market report provides an in-depth analysis of the rapidly evolving thermal management industry, offering strategic insights into key trends, technologies, and market opportunities from 2025 to 2035. As industries like electric vehicles, consumer electronics, data centers, and 5G telecommunications face increasing thermal challenges, this report serves as an essential guide for stakeholders navigating the complex landscape of thermal management solutions. The report covers a wide range of thermal management technologies, including:

  • Thermal Interface Materials (TIMs)
  • Heat Spreaders and Heat Sinks
  • Liquid Cooling Systems
  • Air Cooling Systems
  • Cooling Plates
  • Spray Cooling
  • Immersion Cooling
  • Thermoelectric Coolers
  • Coolant Fluids
  • Phase Change Materials (PCMs)

 

For each technology, the report provides detailed analysis of:

  • Material properties and performance characteristics
  • Latest innovations and emerging trends
  • Key market players and competitive landscape. Companies profiled include 3M, ADA Technologies, AI Technology Inc., Aismalibar S.A., AllCell Technologies (Beam Global), Amphenol Advanced Sensors, Andores New Energy Co., Ltd., AOK Technologies, AOS Thermal Compounds LLC, Apheros, Arkema, Arieca, Inc., Arteco, Asahi Kasei, Aspen Aerogels, Asperitas Immersed Computing, ATP Adhesive Systems AG, Axalta, Axiotherm GmbH, Azelio, Bando Chemical Industries, Ltd., Beam Global/AllCell, BNNano, BNNT LLC, Bostik, Boyd Corporation, BYK, Cadenza Innovation, Calyos, Carbice Corp., Carbon Waters, Carbodeon Ltd. Oy, Carrar, Chilldyne, Climator Sweden AB, CondAlign AS, Croda Europe Ltd., Cryopak, CSM, Dana, Datum Phase Change Ltd, Detakta Isolier- und Messtechnik GmbH & Co. KG, Devan Chemicals NV, Dexerials Corporation, Deyang Carbonene Technology, Dober, Dow Corning, Dupont (Laird Performance Materials), Dymax Corporation, ELANTAS Europe GmbH, e-Mersiv, Elkem, Elkem Silcones, Enerdyne Thermal Solutions, Inc, Engineered Fluids, Epoxies Etc., Ewald Dörken AG, Exergyn, First Graphene Ltd, FUCHS, Fujipoly, Fujitsu Laboratories, GLPOLY, Global Graphene Group, Goodfellow Corporation, Graphmatech AB, Green Revolution Cooling (GRC), GuangDong KingBali New Material Co., Ltd., HALA Contec GmbH & Co. KG, Hamamatsu Carbonics Corporation, Hangzhou Ruhr New Material Technology Co., Ltd., H.B. Fuller Company, HeatVentors, Henkel AG & Co. KGAA and many more.....
  • Applications across various industries
  • Market size and growth projections

 

The report segments the thermal management market by end-use industries, including:

  • Consumer Electronics
  • Electric Vehicles (EVs)
  • Data Centers
  • ADAS Sensors
  • 5G Telecommunications
  • Aerospace
  • Energy Systems

 

For each segment, the report offers:

  • Market drivers and challenges
  • Technology requirements and adoption trends
  • In-depth application analysis (e.g., EV battery thermal management, data center cooling)
  • Market size and forecast (2025-2035)

 

Key features of the report include:

  • Analysis of advanced materials like carbon nanotubes, graphene, and boron nitride in thermal management
  • Evaluation of novel cooling technologies such as two-phase immersion cooling
  • Discussion of sustainability trends and the shift towards eco-friendly thermal management solutions
  • Impact of Industry 4.0 and IoT on thermal management strategies
  • Regional market analysis and growth opportunities
  • Profiles of over 170 companies in the thermal management space

 

With 400 pages of expert analysis, including 78 tables and 92 figures, this report provides unparalleled insight into the future of thermal management technologies and markets. It is an invaluable resource for:

  • Thermal management material and system manufacturers
  • Electronics and automotive OEMs
  • Data center operators and telecommunications companies
  • Investors and financial analysts
  • R&D professionals and technology scouts
  • Strategy and sustainability executives

 

As thermal management becomes increasingly critical for product performance and reliability across multiple industries, this report offers the comprehensive market intelligence needed to stay ahead in this dynamic and rapidly growing field.

 

 

1             INTRODUCTION          19

  • 1.1        Thermal management             20
    • 1.1.1    Active  20
    • 1.1.2    Passive              21
  • 1.2        Thermal Management Systems         21
    • 1.2.1    Immersion Cooling Systems for Data Centers         21
    • 1.2.2    Battery Thermal Management for Electric Vehicles              22
    • 1.2.3    Heat Exchangers for Aerospace Cooling     22
    • 1.2.4    Air Cooling Systems  23
    • 1.2.5    Liquid Cooling Systems          23
    • 1.2.6    Vapor Compression Systems              24
    • 1.2.7    Spray Cooling Systems            25
    • 1.2.8    Hybrid Cooling Systems:        26
  • 1.3        Main types of thermal management materials and technologies               27

 

2             THERMAL INTERFACE MATERIALS   29

  • 2.1        What are thermal interface materials (TIMs)?          29
    • 2.1.1    Types   31
    • 2.1.2    Thermal conductivity                33
  • 2.2        Comparative properties of TIMs        34
  • 2.3        Advantages and disadvantages of TIMs, by type     35
  • 2.4        Prices  37
  • 2.5        Thermal greases and pastes                38
  • 2.6        Thermal gap pads       40
  • 2.7        Thermal gap fillers      41
  • 2.8        Thermal adhesives and potting compounds             42
  • 2.9        Metal-based TIMs       44
    • 2.9.1    Solders and low melting temperature alloy TIMs   44
    • 2.9.2    Liquid metals 45
    • 2.9.3    Solid liquid hybrid (SLH) metals        46
      • 2.9.3.1 Hybrid liquid metal pastes    46
      • 2.9.3.2 SLH created during chip assembly (m2TIMs)           48
  • 2.10     Carbon-based TIMs   48
    • 2.10.1 Multi-walled nanotubes (MWCNT)  49
      • 2.10.1.1            Properties         49
      • 2.10.1.2            Application as thermal interface materials                50
    • 2.10.2 Single-walled carbon nanotubes (SWCNTs)             51
      • 2.10.2.1            Properties         51
      • 2.10.2.2            Application as thermal interface materials                54
    • 2.10.3 Vertically aligned CNTs (VACNTs)     54
      • 2.10.3.1            Properties         54
      • 2.10.3.2            Applications   54
      • 2.10.3.3            Application as thermal interface materials                55
    • 2.10.4 BN nanotubes (BNNT) and nanosheets (BNNS)      56
      • 2.10.4.1            Properties         56
      • 2.10.4.2            Application as thermal interface materials                56
    • 2.10.5 Graphene         57
      • 2.10.5.1            Properties         58
      • 2.10.5.2            Application as thermal interface materials                60
        • 2.10.5.2.1        Graphene fillers            60
        • 2.10.5.2.2        Graphene foam            60
        • 2.10.5.2.3        Graphene aerogel       60
    • 2.10.6 Nanodiamonds            61
      • 2.10.6.1            Properties         61
      • 2.10.6.2            Application as thermal interface materials                63
    • 2.10.7 Graphite            63
      • 2.10.7.1            Properties         63
      • 2.10.7.2            Natural graphite           64
        • 2.10.7.2.1        Classification 64
        • 2.10.7.2.2        Processing       65
        • 2.10.7.2.3        Flake    66
          • 2.10.7.2.3.1   Grades               66
          • 2.10.7.2.3.2   Applications   67
      • 2.10.7.3            Synthetic graphite      69
        • 2.10.7.3.1        Classification 69
          • 2.10.7.3.1.1   Primary synthetic graphite    69
          • 2.10.7.3.1.2   Secondary synthetic graphite             70
          • 2.10.7.3.1.3   Processing       70
      • 2.10.7.4            Applications as thermal interface materials             70
    • 2.10.8 Hexagonal Boron Nitride        71
      • 2.10.8.1            Properties         72
      • 2.10.8.2            Application as thermal interface materials                73
  • 2.11     Metamaterials               73
    • 2.11.1 Types and properties 74
      • 2.11.1.1            Electromagnetic metamaterials       75
        • 2.11.1.1.1        Double negative (DNG) metamaterials         75
        • 2.11.1.1.2        Single negative metamaterials           75
        • 2.11.1.1.3        Electromagnetic bandgap metamaterials (EBG)    76
        • 2.11.1.1.4        Bi-isotropic and bianisotropic metamaterials          76
        • 2.11.1.1.5        Chiral metamaterials                76
        • 2.11.1.1.6        Electromagnetic “Invisibility” cloak 77
      • 2.11.1.2            Terahertz metamaterials        77
      • 2.11.1.3            Photonic metamaterials         77
      • 2.11.1.4            Tunable metamaterials           77
      • 2.11.1.5            Frequency selective surface (FSS) based metamaterials 78
      • 2.11.1.6            Nonlinear metamaterials       78
      • 2.11.1.7            Acoustic metamaterials         79
    • 2.11.2 Application as thermal interface materials                79
  • 2.12     Self-healing thermal interface materials     79
    • 2.12.1 Extrinsic self-healing 80
    • 2.12.2 Capsule-based             80
    • 2.12.3 Vascular self-healing 80
    • 2.12.4 Intrinsic self-healing 81
    • 2.12.5 Healing volume            82
    • 2.12.6 Types of self-healing materials, polymers and coatings    82
    • 2.12.7 Applications in thermal interface materials              84
  • 2.13     Phase change thermal interface materials (PCTIMs)          84
    • 2.13.1 Thermal pads 85
    • 2.13.2 Low Melting Alloys (LMAs)    86
  • 2.14     Market forecast            87

 

3             HEAT SPREADERS AND HEAT SINKS              88

  • 3.1        Design 89
  • 3.2        Materials           90
    • 3.2.1    Aluminum alloys         90
    • 3.2.2    Copper               90
    • 3.2.3    Metal foams   91
    • 3.2.4    Metal matrix composites       92
    • 3.2.5    Graphene         92
    • 3.2.6    Carbon foams and nanotubes           92
    • 3.2.7    Graphite            93
    • 3.2.8    Diamond          93
    • 3.2.9    Liquid immersion cooling      93
    • 3.2.10 Applications   94
    • 3.2.11 Market players               95
  • 3.3        Challenges      95
  • 3.4        Market forecast            96

 

4             LIQUID COOLING SYSTEMS 98

  • 4.1        Design 99
  • 4.2        Types   99
  • 4.3        Liquid Coolants           100
  • 4.4        Components of Liquid Cooling Systems     101
  • 4.5        Comparative analysis              101
  • 4.6        Benefits             103
  • 4.7        Challenges      103
  • 4.8        Recent innovation      103
  • 4.9        Market forecast            104

 

5             AIR COOLING 107

  • 5.1        Introduction    107
  • 5.2        Air Cooling Methods  107
  • 5.3        Design 108
  • 5.4        Recent innovations    109
  • 5.5        Applications   110
  • 5.6        Market forecast            111

 

6             COOLING PLATES       114

  • 6.1        Overview           114
    • 6.1.1    Cold Plate/Direct to Chip Cooling    115
    • 6.1.2    Liquid Cooling Cold Plates    115
    • 6.1.3    Single-Phase Cold Plate          116
    • 6.1.4    Two-Phase Cold Plate              116
  • 6.2        Design 118
  • 6.3        Enhancement Techniques     119
  • 6.4        Cost     120
  • 6.5        Applications   120
  • 6.6        Recent innovation      122
  • 6.7        Market forecast            122

 

7             SPRAY COOLING         125

  • 7.1        Overview           125
  • 7.2        Heat Transfer Mechanisms  126
  • 7.3        Spray Cooling Fluids 127
  • 7.4        Applications   128
  • 7.5        Recent innovations    128
  • 7.6        Market forecast            129

 

8             IMMERSION COOLING            130

  • 8.1        Overview           130
  • 8.2        Common immersion fluids   131
  • 8.3        Benefits             132
  • 8.4        Single-Phase Immersion Cooling     132
  • 8.5        Two-Phase Immersion Cooling          134
  • 8.6        Challenges      135
  • 8.7        Recent innovation      136
  • 8.8        Market forecast            136

 

9             THERMOELECTRIC COOLERS           139

  • 9.1        Thermoelectric Modules        139
  • 9.2        Performance Factors                139
  • 9.3        Electronics Cooling   139

 

10          COOLANT FLUIDS      140

  • 10.1     Coolant Fluid Requirements                141
  • 10.2     Common EV Coolant Fluids 141
  • 10.3     Recent innovations    142
  • 10.4     Market forecast            143

 

11          PHASE CHANGE MATERIALS              145

  • 11.1     Properties of Phase Change Materials (PCMs)        146
    • 11.2     Types   148
      • 11.2.1 Organic/biobased phase change materials               149
        • 11.2.1.1            Advantages and disadvantages        150
        • 11.2.1.2            Paraffin wax    150
        • 11.2.1.3            Non-Paraffins/Bio-based      151
      • 11.2.2 Inorganic phase change materials   151
        • 11.2.2.1            Salt hydrates  151
          • 11.2.2.1.1        Advantages and disadvantages        152
        • 11.2.2.2            Metal and metal alloy PCMs (High-temperature)   152
      • 11.2.3 Eutectic mixtures        153
      • 11.2.4 Encapsulation of PCMs           153
        • 11.2.4.1            Macroencapsulation 154
        • 11.2.4.2            Micro/nanoencapsulation    154
      • 11.2.5 Nanomaterial phase change materials         154
  • 11.3     Thermal energy storage (TES)              154
    • 11.3.1 Sensible heat storage              155
    • 11.3.2 Latent heat storage    155
  • 11.4     Battery Thermal Management            156
  • 11.5     Market forecast            157

 

12          MARKETS FOR THERMAL MANAGEMENT MATERIALS AND SYSTEMS      158

  • 12.1     Consumer electronics             159
    • 12.1.1 Market overview           159
    • 12.1.2 Market drivers                159
    • 12.1.3 Applications   159
      • 12.1.3.1            Smartphones and tablets      160
      • 12.1.3.2            Wearable electronics                161
    • 12.1.4 Global market revenues 2024-2035               162
  • 12.2     Electric Vehicles (EV)               163
    • 12.2.1 Market overview           164
    • 12.2.2 Market drivers                165
    • 12.2.3 EV Cooling       166
      • 12.2.3.1            Coolant Fluids              166
      • 12.2.3.2            Refrigerants    167
    • 12.2.4 Applications   168
      • 12.2.4.1            Lithium-ion batteries 169
        • 12.2.4.1.1        Active vs Passive Cooling      170
        • 12.2.4.1.2        Air Cooling       171
        • 12.2.4.1.3        Liquid Cooling               172
        • 12.2.4.1.4        Refrigerant Cooling    174
        • 12.2.4.1.5        Thermal Management in 800V Systems       175
        • 12.2.4.1.6        Cell-to-pack designs 176
        • 12.2.4.1.7        Cell-to-chassis/body                177
        • 12.2.4.1.8        Immersion Cooling    178
        • 12.2.4.1.9        Heat Spreaders and Cooling Plates 179
        • 12.2.4.1.10     Coolant Hoses              181
        • 12.2.4.1.11     Thermal Interface Materials 182
        • 12.2.4.1.12     Fire Protection Materials        184
        • 12.2.4.1.13     Other   186
        • 12.2.4.1.14     Commercial use cases           189
      • 12.2.4.2            Electric motors             191
        • 12.2.4.2.1        Air Cooling       191
        • 12.2.4.2.2        Water-glycol Cooling 192
        • 12.2.4.2.3        Oil Cooling      193
        • 12.2.4.2.4        Refrigerant Cooling    196
        • 12.2.4.2.5        Immersion Cooling    197
        • 12.2.4.2.6        Phase Change Materials         198
        • 12.2.4.2.7        Motor Insulation and Encapsulation              199
        • 12.2.4.2.8        Other Technologies    200
        • 12.2.4.2.9        Commercial use cases           202
      • 12.2.4.3            Power electronics       203
        • 12.2.4.3.1        Single- vs Double-Sided Cooling      204
        • 12.2.4.3.2        TIM1 and TIM2               205
        • 12.2.4.3.3        Wire Bonding 207
        • 12.2.4.3.4        Substrate Materials   208
        • 12.2.4.3.5        Cooling Power Electronics    209
        • 12.2.4.3.6        Liquid Cooling               210
      • 12.2.4.4            Charging stations        212
        • 12.2.4.4.1        Charging Levels            213
        • 12.2.4.4.2        Liquid Cooling               214
        • 12.2.4.4.3        Immersion Cooling    216
        • 12.2.4.4.4        Commercial use cases           217
        • 12.2.4.5            Cabin heating 219
  • 12.3     Data Centers  220
    • 12.3.1 Market overview           221
    • 12.3.2 Market drivers                221
    • 12.3.3 Data Center thermal management requirements  222
    • 12.3.4 Data Center Cooling 223
      • 12.3.4.1            Cooling Technology    223
      • 12.3.4.2            Air Cooling       224
      • 12.3.4.3            Hybrid Liquid-to-Air Cooling 224
      • 12.3.4.4            Hybrid Liquid-to-Liquid Cooling        225
      • 12.3.4.5            Hybrid Liquid-to-Refrigerant Cooling             226
      • 12.3.4.6            Hybrid Refrigerant-to-Refrigerant Cooling  227
      • 12.3.4.7            Thermal Interface Materials 228
      • 12.3.4.8            Cold plates      229
      • 12.3.4.9            Spray Cooling 230
      • 12.3.4.10         Immersion Cooling    231
    • 12.3.5 Applications   232
      • 12.3.5.1            Router, switches and line cards         232
      • 12.3.5.2            Servers               233
      • 12.3.5.3            Power supply converters        234
  • 12.4     ADAS Sensors               235
    • 12.4.1 Market overview           235
    • 12.4.2 Market drivers                235
    • 12.4.3 Applications   235
      • 12.4.3.1            ADAS Cameras             235
      • 12.4.3.2            ADAS Radar    236
      • 12.4.3.3            ADAS LiDAR    236
  • 12.5     EMI shielding 237
    • 12.5.1 Market overview           237
    • 12.5.2 Market drivers                237
    • 12.5.3 Applications   237
  • 12.6     5G         238
    • 12.6.1 Market overview           238
    • 12.6.2 Market drivers                238
    • 12.6.3 Applications   238
    • 12.6.3.1            Antenna            239
    • 12.6.3.2            Base Band Unit (BBU)              240
  • 12.7     Aerospace        240
    • 12.7.1 Market overview           241
    • 12.7.2 Market drivers                241
    • 12.7.3 Applications   242
  • 12.8     Energy systems            242
    • 12.8.1 Market overview           242
      • 12.8.1.1            Market drivers                243
      • 12.8.1.2            Applications   244
  • 12.9     Other markets               244

 

13          GLOBAL REVENUES  245

  • 13.1     Global revenues 2023, by type           245
  • 13.2     Global revenues 2024-2035, by materials type        247
    • 13.2.1 Telecommunications market               247
    • 13.2.2 Electronics and data centers market             248
    • 13.2.3 ADAS market  249
    • 13.2.4 Electric vehicles (EVs) market             250
  • 13.3     By end-use market     251
  • 13.4     By region           255

 

14          FUTURE MARKET OUTLOOK 256

 

15          COMPANY PROFILES                257 (172 company profiles)

 

16          RESEARCH METHODOLOGY              388

 

17          REFERENCES 390

 

List of Tables

  • Table 1. Comparison active and passive thermal management. 21
  • Table 2. Types of thermal management materials and solutions.               28
  • Table 3. Thermal conductivities (κ) of common metallic, carbon, and ceramic fillers employed in TIMs.                33
  • Table 4. Commercial TIMs and their properties.     34
  • Table 5. Advantages and disadvantages of TIMs, by type. 35
  • Table 6. Thermal interface materials prices.             37
  • Table 7. Characteristics of some typical TIMs.        38
  • Table 8. Properties of CNTs and comparable materials.   49
  • Table 9. Typical properties of SWCNT and MWCNT.             51
  • Table 10. Comparison of carbon-based additives in terms of the main parameters influencing their value proposition as a conductive additive.              53
  • Table 11. Thermal conductivity of CNT-based polymer composites.        55
  • Table 12. Comparative properties of BNNTs and CNTs.     56
  • Table 13. Properties of graphene, properties of competing materials, applications thereof.     58
  • Table 14. Properties of nanodiamonds.       63
  • Table 15. Comparison between Natural and Synthetic Graphite.               63
  • Table 16. Classification of natural graphite with its characteristics.         64
  • Table 17. Characteristics of synthetic graphite.      69
  • Table 18. Properties of hexagonal boron nitride (h-BN).    73
  • Table 19. Types of self-healing coatings and materials.     83
  • Table 20. Comparative properties of self-healing materials.          83
  • Table 21. Benefits and drawbacks of PCMs in TIMs.            84
  • Table 22. Global Revenue Forecast for Thermal Interface Materials 2020- 2035 (Millions USD).           87
  • Table 23. Challenges with heat spreaders and heat sinks.              95
  • Table 24. Global Revenue Forecast for Heat Spreaders and Heat Sinks 2020- 2035 (Millions USD).   96
  • Table 25. Comparison of Liquid Cooling Technologies.      101
  • Table 26. Different Cooling on Chip Level.  102
  • Table 27. Global Revenue Forecast for Liquid Cooling 2020- 2035 (Millions USD).         104
  • Table 28. Global Revenue Forecast for Air Cooling 2020- 2035 (Millions USD). 112
  • Table 29. Global Revenue Forecast for Cooling Plates 2020- 2035 (Millions USD).         123
  • Table 30. Global Revenue Forecast for Spray Cooling 2020- 2035 (Millions USD).          129
  • Table 31. Global Revenue Forecast for Immersion Cooling 2020- 2035 (Millions USD).               137
  • Table 32. Global Revenue Forecast for Coolant Fluids 2020- 2035 (Millions USD).         143
  • Table 33. Common PCMs used in electronics cooling and their melting temperatures.               146
  • Table 34. Properties of PCMs.             147
  • Table 35.  PCM Types and properties.            149
  • Table 36. Advantages and disadvantages of organic PCMs.           150
  • Table 37. Advantages and disadvantages of organic PCM Fatty Acids.    151
  • Table 38. Advantages and disadvantages of salt hydrates               152
  • Table 39. Advantages and disadvantages of low melting point metals.   153
  • Table 40. Advantages and disadvantages of eutectics.      153
  • Table 41. Global Revenue Forecast for PCM Thermal Management Materials 2020- 2035 (Millions USD).                157
  • Table 42. Motor Cooling Strategy by Power,               194
  • Table 43. Cooling Strategy by Motor Type    195
  • Table 44. Charging Levels.     213
  • Table 45. Comparison of Data Center Cooling Technology.             223
  • Table 46. Global revenues for thermal management materials and systems, 2023, by type.    245
  • Table 47. Global revenues for thermal management materials & systems, 2024-2035, by end use market (millions USD)              252
  • Table 48. Global revenues for thermal management materials and systems 2024-2035, by region (millions USD).             255
  • Table 49. Carbodeon Ltd. Oy nanodiamond product list. 287
  • Table 50. CrodaTherm Range.             290
  • Table 51. Ray-Techniques Ltd. nanodiamonds product list.           355
  • Table 52. Comparison of ND produced by detonation and laser synthesis.         355

 

List of Figures

  • Figure 1. (L-R) Surface of a commercial heatsink surface at progressively higher magnifications, showing tool marks that create a rough surface and a need for a thermal interface material. 30
  • Figure 2. Schematic of thermal interface materials used in a flip chip package.              31
  • Figure 3. Thermal grease.      32
  • Figure 4. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module.             33
  • Figure 5. Application of thermal silicone grease.   39
  • Figure 6. A range of thermal grease products.          40
  • Figure 7. Thermal Pad.             41
  • Figure 8. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module.             42
  • Figure 9. Thermal tapes.         43
  • Figure 10. Thermal adhesive products.         43
  • Figure 11. Typical IC package construction identifying TIM1 and TIM2    45
  • Figure 12. Liquid metal TIM product.              46
  • Figure 13. Pre-mixed SLH.     47
  • Figure 14. HLM paste and Liquid Metal Before and After Thermal Cycling.           47
  • Figure 15.  SLH with Solid Solder Preform. 48
  • Figure 16. Automated process for SLH with solid solder preforms and liquid metal.     48
  • Figure 17. Schematic diagram of a multi-walled carbon nanotube (MWCNT).   49
  • Figure 18. Schematic of single-walled carbon nanotube. 51
  • Figure 19. Types of single-walled carbon nanotubes.         53
  • Figure 20. Schematic of a vertically aligned carbon nanotube (VACNT) membrane used for water treatment.        55
  • Figure 21. Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red.             56
  • Figure 22. Graphene layer structure schematic.     57
  • Figure 23. Illustrative procedure of the Scotch-tape based micromechanical cleavage of HOPG.       58
  • Figure 24. Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene. 60
  • Figure 25. Detonation Nanodiamond.          62
  • Figure 26. DND primary particles and properties.  62
  • Figure 27. Flake graphite.       66
  • Figure 28. Applications of flake graphite.    68
  • Figure 29. Graphite-based TIM products.    71
  • Figure 30. Structure of hexagonal boron nitride.     72
  • Figure 31. Classification of metamaterials based on functionalities.      74
  • Figure 32. Electromagnetic metamaterial. 75
  • Figure 33. Schematic of Electromagnetic Band Gap (EBG) structure.      76
  • Figure 34. Schematic of chiral metamaterials.        77
  • Figure 35. Nonlinear metamaterials- 400-nm thick nonlinear mirror that reflects frequency-doubled output using input light intensity as small as that of a laser pointer.         78
  • Figure 36. Schematic of self-healing polymers. Capsule based (a), vascular (b), and intrinsic (c) schemes for self-healing materials.  Red and blue colours indicate chemical species which react (purple) to heal damage.       80
  • Figure 37. Stages of self-healing mechanism.         80
  • Figure 38. Self-healing mechanism in vascular self-healing systems.     81
  • Figure 39. Comparison of self-healing systems.    82
  • Figure 40. PCM TIMs. 85
  • Figure 41. Phase Change Material - die cut pads ready for assembly.      86
  • Figure 42. Global Revenue Forecast for Thermal Interface Materials 2020- 2035 (Millions USD).         87
  • Figure 43. Global Revenue Forecast for Heat Spreaders and Heat Sinks 2020- 2035 (Millions USD). 97
  • Figure 44. Global Revenue Forecast for Liquid Cooling 2020- 2035 (Millions USD).       105
  • Figure 45. Global Revenue Forecast for Air Cooling 2020- 2035 (Millions USD).               112
  • Figure 46. Direct Water-Cooled Server .       117
  • Figure 47. Global Revenue Forecast for Cooling Plates 2020- 2035 (Millions USD).       124
  • Figure 48. Global Revenue Forecast for Spray Cooling 2020- 2035 (Millions USD).         130
  • Figure 49. Global Revenue Forecast for Immersion Cooling 2020- 2035 (Millions USD).             138
  • Figure 50. Global Revenue Forecast for Coolant Fluids 2020- 2035 (Millions USD).       144
  • Figure 51. Phase-change TIM products.       146
  • Figure 52. PCM mode of operation. 147
  • Figure 53. Classification of PCMs.   148
  • Figure 54. Phase-change materials in their original states.             149
  • Figure 55. Thermal energy storage materials.           155
  • Figure 56. Phase Change Material transient behaviour.     155
  • Figure 57. Global Revenue Forecast for PCM Thermal Management Materials 2020- 2035 (Millions USD).                158
  • Figure 58. Schematic of TIM operation in electronic devices.        160
  • Figure 59. Schematic of Thermal Management Materials in smartphone.            161
  • Figure 60. Wearable technology inventions.             162
  • Figure 61. Global market revenues in electronics 2018-2024, by type, million USD.      163
  • Figure 62. Application of thermal interface materials in automobiles.    165
  • Figure 63. EV battery components including TIMs.               170
  • Figure 64. Battery pack with a cell-to-pack design and prismatic cells.  176
  • Figure 65. Cell-to-chassis battery pack.      177
  • Figure 66. TIMS in EV charging station.         213
  • Figure 67. Image of data center layout.         221
  • Figure 68. Application of TIMs in line card. 233
  • Figure 69. ADAS radar unit incorporating TIMs.       236
  • Figure 70. Coolzorb 5G.          238
  • Figure 71. TIMs in Base Band Unit (BBU).    240
  • Figure 72. Global revenues for thermal management materials and systems, 2024-2035, by type.     246
  • Figure 73. Global revenues for thermal management materials and systems in telecommuncations, 2024-2035, by type.   248
  • Figure 74. Global revenues for thermal management materials and systems in electronics & data centers, 2024-2035, by type.               249
  • Figure 75. Global revenues for thermal management materials and systems in ADAS, 2024-2035, by type.Source: Future Markets, Inc.    250
  • Figure 76. Global revenues for thermal management materials and systems in Electric Vehicles (EVs), 2024-2035, by type.   251
  • Figure 77. Global revenues for thermal management materials and systems 2024-2035, by market.                254
  • Figure 78. Global revenues for thermal management materials and systems 2024-2035, by region (millions USD).             255
  • Figure 79. Boron Nitride Nanotubes products.        279
  • Figure 80. Transtherm® PCMs.            280
  • Figure 81. Carbice carbon nanotubes.         284
  • Figure 82.  Internal structure of carbon nanotube adhesive sheet.            307
  • Figure 83. Carbon nanotube adhesive sheet.           308
  • Figure 84. HI-FLOW Phase Change Materials.         318
  • Figure 85. Thermoelectric foil, consists of a sequence of semiconductor elements connected with conductive metal. At the top (in red) is the thermal interface.       333
  • Figure 86. Parker Chomerics THERM-A-GAP GEL. 345
  • Figure 87. Crēdo™ ProMed transport bags. 347
  • Figure 88. Metamaterial structure used to control thermal emission.     350
  • Figure 89. Shinko Carbon Nanotube TIM product. 369
  • Figure 90. The Sixth Element graphene products.  373
  • Figure 91. Thermal conductive graphene film.         374
  • Figure 92. VB Series of TIMS from Zeon.       387

 

 

The Global Market for Thermal Management Materials and Systems 2025-2035
The Global Market for Thermal Management Materials and Systems 2025-2035
PDF download/by email.

The Global Market for Thermal Management Materials and Systems 2025-2035
The Global Market for Thermal Management Materials and Systems 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com