The Global Market for Thermal Management Materials and Systems 2025-2035

0

cover

cover

  • Published: January 2025
  • Pages: 399
  • Tables: 161
  • Figures: 102

 

The thermal management materials and systems market is experiencing significant growth driven by multiple sectors. Key market segments include consumer electronics, electric vehicles, data centers, ADAS sensors, EMI shielding, 5G/6G telecommunications, aerospace, and energy systems. The market features diverse materials including thermal interface materials (TIMs) such as greases, gels, pastes, phase change materials (PCMs), thermal pads, gap fillers, adhesives, carbon-based materials, and metallic solutions. 

Electric vehicles represent a particularly dynamic segment, with increasing demand for sophisticated thermal management solutions for batteries, power electronics, and motors. The transition to 800V architectures and higher-power charging systems is driving innovation in cooling technologies. Data centers are another crucial market, with growing power densities necessitating more effective cooling solutions. The trend toward immersion cooling and hybrid systems reflects the industry's need for more efficient thermal management approaches. The emergence of 5G/6G infrastructure has created new thermal challenges, particularly in antenna systems and base stations. Similarly, the ADAS sensor market requires increasingly sophisticated thermal solutions as sensor capabilities expand. Looking toward 2035, the market shows strong growth potential across all segments, with particular emphasis on:

  • Advanced materials with higher thermal conductivity
  • Integrated cooling systems
  • Sustainable and environmentally friendly solutions
  • Smart thermal management systems with AI/ML capabilities
  • Novel approaches like immersion cooling and phase change materials

 

The Global Thermal Management Materials and Systems 2025-2035 provides detailed insights into the rapidly evolving thermal management materials and systems industry, covering crucial applications across electric vehicles, data centers, consumer electronics, and emerging technologies. The comprehensive analysis includes market forecasts, technological developments, and competitive landscapes through 2035. Report contents in:

  • In-depth analysis of thermal interface materials (TIMs), including greases, phase change materials, thermal pads, and advanced carbon-based solutions
  • Detailed examination of cooling technologies: liquid cooling, air cooling, immersion cooling, and hybrid systems
  • Comprehensive coverage of electric vehicle thermal management, including battery, power electronics, and motor cooling solutions
  • Analysis of data center cooling trends, from traditional air cooling to advanced immersion systems
  • Evaluation of emerging technologies in 5G/6G infrastructure cooling
  • Assessment of aerospace and defense thermal management applications
  • Market opportunities in ADAS sensors and EMI shielding
  • Market size and growth projections 
  • Technology trends and innovation analysis
  • Competitive landscape and company profiles. Companies profiled include 3M, Accelsius, ADA Technologies, Adept Materials, Airthium, Aismalibar, AI Technology, Amphenol Advanced Sensors, Andores New Energy, AOK Technologies, AOS Thermal Compounds, Apheros, Arkema, Arieca, Arteco, Asahi Kasei, Aspen Aerogels, Asperitas, ATP Adhesive Systems, Axalta Coating Systems, Axiotherm, Azelio, Bando Chemical Industries, Beam Global, BNNano, BNNT LLC, Boyd Corporation, BYK, Cadenza Innovation, Calyos, Carrar, Carbice Corp, Carbon Waters, Carbodeon, Chilldyne, Climator Sweden, CondAlign, Croda Europe, Cryopak, Dana, Datum Phase Change, Detakta, Devan Chemicals, Dexerials, Dober, Dow Corning, Dupont (Laird Performance Materials), Dymax, ELANTAS Europe, Deyang Carbonene Technology, Elkem Silicones, e-Mersiv, Elkem, Enerdyne Thermal Solutions, Engineered Fluids, Epoxies Etc, Ewald Dörken AG, Exergyn, First Graphene, FUCHS, Fujipoly, Fujitsu Laboratories, GLPOLY, Global Graphene Group, Graphmatech, Green Revolution Cooling (GRC), GuangDong KingBali, HALA Contec, Hamamatsu Carbonics, Goodfellow, Hangzhou Ruhr New Material Technology, H.B. Fuller, HeatVentors, Henkel, Honeywell, Huber Martinswerk, HyMet Thermal Interfaces, Iceotope, Immersion4, Indium Corporation, Inkron, Inuteq, JetCool Technologies, JIOS Aerogel, Kerafol, Kitagawa, KULR Technology Group, Leader Tech, LiquidCool Solutions, LiquidStack, Liquid Wire, LiSAT, MAHLE, Materium Technologies and more.
  • Regional market analysis
  • Application-specific requirements and solutions
  • Material developments and emerging technologies
  • Regulatory framework and environmental considerations

 

Detailed segments covered include:

  • Thermal Interface Materials
  • Heat Spreaders and Heat Sinks
  • Liquid Cooling Systems
  • Air Cooling Solutions
  • Cooling Plates
  • Spray Cooling Technology
  • Immersion Cooling Systems
  • Phase Change Materials
  • Coolant Fluids

 

Applications analyzed include:

  • Electric Vehicle Battery Systems
  • Data Center Infrastructure
  • Consumer Electronics
  • 5G/6G Communications
  • Aerospace Systems
  • ADAS Sensors
  • Power Electronics
  • EMI Shielding

 

This report provides essential insights for:

  • Material Manufacturers
  • Thermal Solution Providers
  • Electronics Manufacturers
  • Automotive Companies
  • Data Center Operators
  • Telecommunications Companies
  • Aerospace manufacturers
  • Investment Firms
  • R&D Organizations

 

1             INTRODUCTION          24

  • 1.1        Thermal management             24
    • 1.1.1    Active  24
    • 1.1.2    Passive              24
  • 1.2        Thermal Management Systems         25
    • 1.2.1    Immersion Cooling Systems for Data Centers         25
    • 1.2.2    Battery Thermal Management for Electric Vehicles              25
    • 1.2.3    Heat Exchangers for Aerospace Cooling     26
    • 1.2.4    Air Cooling Systems  26
    • 1.2.5    Liquid Cooling Systems          27
    • 1.2.6    Vapor Compression Systems              28
    • 1.2.7    Spray Cooling Systems            28
    • 1.2.8    Hybrid Cooling Systems         29
      • 1.2.8.1 Hybrid Liquid-to-Air Cooling 30
      • 1.2.8.2 Hybrid Liquid-to-Liquid Cooling        30
      • 1.2.8.3 Hybrid Liquid-to-Refrigerant Cooling             30
      • 1.2.8.4 Hybrid Refrigerant-to-Refrigerant Cooling  30
  • 1.3        Main types of thermal management materials and technologies               30

 

2             THERMAL INTERFACE MATERIALS   32

  • 2.1        What are thermal interface materials (TIMs)?          32
    • 2.1.1    Types   33
    • 2.1.2    Thermal conductivity                34
  • 2.2        Comparative properties of TIMs        35
  • 2.3        Advantages and disadvantages of TIMs, by type     36
  • 2.4        Prices  38
  • 2.5        Thermal greases and pastes                40
  • 2.6        Thermal gap pads       42
  • 2.7        Thermal gap fillers      42
  • 2.8        Thermal adhesives and potting compounds             43
  • 2.9        Metal-based TIMs       44
    • 2.9.1    Solders and low melting temperature alloy TIMs   45
    • 2.9.2    Liquid metals 46
    • 2.9.3    Solid liquid hybrid (SLH) metals        46
      • 2.9.3.1 Hybrid liquid metal pastes    46
      • 2.9.3.2 SLH created during chip assembly (m2TIMs)           47
  • 2.10     Carbon-based TIMs   48
    • 2.10.1 Multi-walled nanotubes (MWCNT)  48
      • 2.10.1.1            Properties         49
      • 2.10.1.2            Application as thermal interface materials                50
    • 2.10.2 Single-walled carbon nanotubes (SWCNTs)             50
      • 2.10.2.1            Properties         51
      • 2.10.2.2            Application as thermal interface materials                53
    • 2.10.3 Vertically aligned CNTs (VACNTs)     53
      • 2.10.3.1            Properties         53
      • 2.10.3.2            Applications   53
      • 2.10.3.3            Application as thermal interface materials                54
    • 2.10.4 BN nanotubes (BNNT) and nanosheets (BNNS)      55
      • 2.10.4.1            Properties         55
      • 2.10.4.2            Application as thermal interface materials                55
    • 2.10.5 Graphene         56
      • 2.10.5.1            Properties         57
      • 2.10.5.2            Application as thermal interface materials                58
        • 2.10.5.2.1        Graphene fillers            58
        • 2.10.5.2.2        Graphene foam            58
        • 2.10.5.2.3        Graphene aerogel       58
    • 2.10.6 Nanodiamonds            59
      • 2.10.6.1            Properties         59
      • 2.10.6.2            Application as thermal interface materials                61
    • 2.10.7 Graphite            61
      • 2.10.7.1            Properties         61
      • 2.10.7.2            Natural graphite           61
        • 2.10.7.2.1        Classification 62
        • 2.10.7.2.2        Processing       63
        • 2.10.7.2.3        Flake    63
          • 2.10.7.2.3.1   Grades               63
          • 2.10.7.2.3.2   Applications   64
        • 2.10.7.3            Synthetic graphite      66
          • 2.10.7.3.1        Classification 66
            • 2.10.7.3.1.1   Primary synthetic graphite    66
            • 2.10.7.3.1.2   Secondary synthetic graphite             67
            • 2.10.7.3.1.3   Processing       67
        • 2.10.7.4            Applications as thermal interface materials             67
    • 2.10.8 Hexagonal Boron Nitride        68
      • 2.10.8.1            Properties         69
      • 2.10.8.2            Application as thermal interface materials                70
  • 2.11     Metamaterials               70
    • 2.11.1 Types and properties 71
      • 2.11.1.1            Thermal metamaterials          72
      • 2.11.1.2            Electromagnetic metamaterials       72
        • 2.11.1.2.1        Double negative (DNG) metamaterials         73
        • 2.11.1.2.2        Single negative metamaterials           73
        • 2.11.1.2.3        Electromagnetic bandgap metamaterials (EBG)    73
        • 2.11.1.2.4        Bi-isotropic and bianisotropic metamaterials          74
        • 2.11.1.2.5        Chiral metamaterials                74
        • 2.11.1.2.6        Electromagnetic “Invisibility” cloak 74
      • 2.11.1.3            Terahertz metamaterials        75
      • 2.11.1.4            Photonic metamaterials         75
      • 2.11.1.5            Tunable metamaterials           75
      • 2.11.1.6            Frequency selective surface (FSS) based metamaterials 75
      • 2.11.1.7            Nonlinear metamaterials       75
      • 2.11.1.8            Acoustic metamaterials         76
    • 2.11.2 Application as thermal interface materials                76
  • 2.12     Self-healing thermal interface materials     77
    • 2.12.1 Extrinsic self-healing 78
    • 2.12.2 Capsule-based             78
    • 2.12.3 Vascular self-healing 78
    • 2.12.4 Intrinsic self-healing 78
    • 2.12.5 Healing volume            79
    • 2.12.6 Types of self-healing materials, polymers and coatings    80
    • 2.12.7 Applications in thermal interface materials              81
  • 2.13     Phase change thermal interface materials (PCTIMs)          81
    • 2.13.1 Thermal pads 82
    • 2.13.2 Low Melting Alloys (LMAs)    83
  • 2.14     Global Market forecast 2020-2035 83

 

3             HEAT SPREADERS AND HEAT SINKS              85

  • 3.1        Design 85
  • 3.2        Materials           86
    • 3.2.1    Aluminum alloys         86
    • 3.2.2    Copper               87
    • 3.2.3    Metal foams   87
    • 3.2.4    Metal matrix composites       87
    • 3.2.5    Graphene         88
    • 3.2.6    Carbon foams and nanotubes           88
    • 3.2.7    Graphite            88
    • 3.2.8    Diamond          89
    • 3.2.9    Liquid immersion cooling      89
    • 3.2.10 Applications   89
  • 3.3        Challenges      90
  • 3.4        Market forecast            90

 

4             LIQUID COOLING SYSTEMS 92

  • 4.1        Design 92
  • 4.2        Types   93
  • 4.3        Components of Liquid Cooling Systems     93
  • 4.4        Cooling in Data Centers          94
    • 4.4.1    Rack Level        95
    • 4.4.2    Chip Level        96
  • 4.5        Benefits             98
  • 4.6        Challenges      98
  • 4.7        Market forecast            99

 

5             AIR COOLING 101

  • 5.1        Introduction    101
  • 5.2        Air Cooling Methods  101
  • 5.3        Commercial examples            102
  • 5.4        Optimization of water and power consumption     103
  • 5.5        Applications   103
  • 5.6        Market forecast            104

 

6             COOLING PLATES       106

  • 6.1        Overview           106
    • 6.1.1    Advanced cooling plates        106
    • 6.1.2    Roll Bond Aluminium Cold Plates     107
    • 6.1.3    Cold Plate Design       107
    • 6.1.4    Commercial examples            108
    • 6.1.5    Graphite heat spreaders         109
    • 6.1.5.1 Commercial examples            109
    • 6.1.6    Cold Plate/Direct to Chip Cooling    109
    • 6.1.7    Liquid Cooling Cold Plates    110
    • 6.1.8    Single-Phase Cold Plate          111
    • 6.1.8.1 Commercial examples            111
    • 6.1.9    Two-Phase Cold Plate              112
    • 6.1.9.1 Commercial examples            112
  • 6.2        Design 114
  • 6.3        Enhancement Techniques     115
    • 6.3.1    Cost     115
  • 6.4        Applications   117
  • 6.5        Market forecast            117

 

7             SPRAY COOLING         119

  • 7.1        Overview           119
  • 7.2        Heat Transfer Mechanisms  119
  • 7.3        Spray Cooling Fluids 120
  • 7.4        Applications   120
  • 7.5        Market forecast            121

 

8             IMMERSION COOLING            123

  • 8.1        Overview           123
  • 8.2        Common immersion fluids   124
  • 8.3        Benefits             124
  • 8.4        Single-Phase Immersion Cooling     125
  • 8.5        Two-Phase Immersion Cooling          126
  • 8.6        Commercial examples            127
  • 8.7        Costs  130
  • 8.8        Challenges      130
  • 8.9        Market forecast            132

 

9             THERMOELECTRIC COOLERS           134

  • 9.1        Thermoelectric Modules        134
  • 9.2        Performance Factors                134
  • 9.3        Electronics Cooling   134

 

10          COOLANT FLUIDS      136

  • 10.1     Overview           136
    • 10.1.1 Properties         137
      • 10.1.1.1            Electrical           137
      • 10.1.1.2            Corrosion         137
      • 10.1.1.3            Viscosity reduction    138
  • 10.2     EVs       138
    • 10.2.1 Coolant Fluid Requirements                138
    • 10.2.2 Common EV Coolant Fluids 139
    • 10.2.3 Commercial examples            139
    • 10.2.4 Refrigerants for EVs   140
    • 10.2.5 EV coolant fluid trends            140
    • 10.2.6 Design Considerations            141
  • 10.3     Growing adoption of immersion cooling      142
  • 10.4     Market forecast            143

 

11          PHASE CHANGE MATERIALS              145

  • 11.1     Properties of Phase Change Materials (PCMs)        146
  • 11.2     Types   147
    • 11.2.1 Organic/biobased phase change materials               149
      • 11.2.1.1            Advantages and disadvantages        149
      • 11.2.1.2            Paraffin wax    149
      • 11.2.1.3            Non-Paraffins/Bio-based      150
    • 11.2.2 Inorganic phase change materials   150
      • 11.2.2.1            Salt hydrates  151
        • 11.2.2.1.1        Advantages and disadvantages        151
        • 11.2.2.2            Metal and metal alloy PCMs (High-temperature)   152
    • 11.2.3 Eutectic mixtures        152
    • 11.2.4 Encapsulation of PCMs           152
      • 11.2.4.1            Macroencapsulation 153
      • 11.2.4.2            Micro/nanoencapsulation    153
    • 11.2.5 Nanomaterial phase change materials         153
  • 11.3     Thermal energy storage (TES)              154
    • 11.3.1 Sensible heat storage              154
    • 11.3.2 Latent heat storage    154
  • 11.4     Battery Thermal Management            155
  • 11.5     Market forecast            155

 

12          MARKETS FOR THERMAL MANAGEMENT MATERIALS AND SYSTEMS      157

  • 12.1     Consumer electronics             157
    • 12.1.1 Market overview           157
    • 12.1.2 Market drivers                157
    • 12.1.3 Applications   158
      • 12.1.3.1            Smartphones and tablets      159
      • 12.1.3.2            Wearable electronics                160
    • 12.1.4 Global market revenues 2020-2035               161
  • 12.2     Electric Vehicles (EV)               162
    • 12.2.1 Overview           162
    • 12.2.2 Electric vehicle thermal system architecture and components   164
    • 12.2.3 Commercial vehicle thermal management systems           165
      • 12.2.3.1            Transition to 800V architecture          167
    • 12.2.4 Market drivers                168
    • 12.2.5 EV Cooling       169
      • 12.2.5.1            Coolant Fluids              169
        • 12.2.5.1.1        Properties         170
        • 12.2.5.1.2        Integration of battery and eAxle cooling       171
      • 12.2.5.2            Refrigerants    172
        • 12.2.5.2.1        PFAS Free Refrigerants            172
        • 12.2.5.2.2        The integration of heat pump systems in EVs           173
      • 12.2.5.3            Active vs Passive Cooling      174
      • 12.2.5.4            Air Cooling       175
      • 12.2.5.5            Liquid Cooling               176
      • 12.2.5.6            Refrigerant Cooling    177
      • 12.2.5.7            Cell-to-pack designs 178
      • 12.2.5.8            Cell-to-chassis/body                179
      • 12.2.5.9            Immersion Cooling    179
        • 12.2.5.9.1        Phase Change Materials         180
        • 12.2.5.9.2        Commercial examples            181
        • 12.2.5.9.3        Operating Temperature            181
      • 12.2.5.10         Heat Spreaders and Cooling Plates 182
        • 12.2.5.10.1     Heat spreader technology     183
          • 12.2.5.10.1.1 Commercial examples            183
          • 12.2.5.10.1.2 Graphite Heat Spreaders       184
        • 12.2.5.10.2     Advanced cold plates               184
          • 12.2.5.10.2.1 Commercial examples            185
          • 12.2.5.10.2.2 Integration of cold plates into battery enclosures  186
        • 12.2.5.10.3     Polymer Heat Exchangers     187
      • 12.2.5.11         Coolant Hoses              187
      • 12.2.5.12         Thermal Interface Materials 189
      • 12.2.5.13         Fire Protection Materials        191
        • 12.2.5.13.1     Overview           191
        • 12.2.5.13.2     Thermal runaway in electric vehicles             192
        • 12.2.5.13.3     Vehicle fires    193
        • 12.2.5.13.4     Regulations     194
      • 12.2.5.14         Printed Sensors            195
      • 12.2.5.15         Other cooling 196
    • 12.2.6 Electric motors             196
      • 12.2.6.1            Air Cooling       198
      • 12.2.6.2            Water-glycol Cooling 198
      • 12.2.6.3            Oil Cooling      198
      • 12.2.6.4            Advanced cooling structures               199
        • 12.2.6.4.1        Refrigerant Cooling    200
        • 12.2.6.4.2        Immersion Cooling    200
      • 12.2.6.5            Motor Insulation and Encapsulation              200
        • 12.2.6.5.1        Commercial activity  201
        • 12.2.6.5.2        Axial Flux Motors         202
        • 12.2.6.5.3        In-wheel Motors           203
    • 12.2.7 Power electronics       204
      • 12.2.7.1            Overview           204
      • 12.2.7.2            Technology and materials evolution               205
      • 12.2.7.3            Power module packaging technology            207
      • 12.2.7.4            Single- vs Double-Sided Cooling      207
      • 12.2.7.5            TIMs in Power Electronics      209
        • 12.2.7.5.1        Thermal Interface Material 1 (TIM1) 209
        • 12.2.7.5.2        Thermal Interface Material 2 (TIM2) 210
      • 12.2.7.6            Wire Bonding 210
      • 12.2.7.7            Substrate Materials   211
      • 12.2.7.8            Cooling Power Electronics    212
        • 12.2.7.8.1        Inverter package cooling        212
        • 12.2.7.8.2        Direct cooling 213
    • 12.2.8 Charging stations        214
      • 12.2.8.1.1        Charging Levels            215
      • 12.2.8.1.2        Liquid Cooling               216
      • 12.2.8.1.3        Commercial examples            216
      • 12.2.8.1.4        Immersion Cooling    218
    • 12.2.8.2            Cabin heating 218
    • 12.2.8.3            Heat Pumps   219
    • 12.2.9 Global Market Revenues 2020-2035              220
  • 12.3     Data Centers  221
    • 12.3.1 Market overview           221
    • 12.3.2 Market drivers                222
    • 12.3.3 Data Center thermal management requirements  225
      • 12.3.3.1            Increase in Thermal Design Power (TDP)     225
      • 12.3.3.2            Energy Efficiency         227
    • 12.3.4 Data Center Cooling 228
      • 12.3.4.1            Cooling Technology    228
      • 12.3.4.2            Air Cooling       229
      • 12.3.4.3            Hybrid Liquid-to-Air Cooling (L2A)   229
      • 12.3.4.4            Hybrid Liquid-to-Liquid Cooling (L2L)           230
      • 12.3.4.5            Hybrid Liquid-to-Refrigerant Cooling             230
      • 12.3.4.6            Hybrid Refrigerant-to-Refrigerant Cooling  230
      • 12.3.4.7            Thermal Interface Materials 231
        • 12.3.4.7.1        Data center power supplies 232
      • 12.3.4.8            Cold plates      233
      • 12.3.4.9            Spray Cooling 234
      • 12.3.4.10         Immersion Cooling    234
    • 12.3.5 Applications   234
      • 12.3.5.1            Router, switches and line cards         234
      • 12.3.5.2            Servers               235
      • 12.3.5.3            Power supply converters        236
    • 12.3.6 Global Market Revenues 2020-2035              236
  • 12.4     ADAS Sensors               238
    • 12.4.1 Market overview           238
    • 12.4.2 Market drivers                238
    • 12.4.3 Applications   238
      • 12.4.3.1            ADAS Cameras             239
      • 12.4.3.2            ADAS Radar    239
      • 12.4.3.3            ADAS LiDAR    240
    • 12.4.4 Global Market Revenues 2020-2035              240
  • 12.5     EMI shielding 242
    • 12.5.1 Market overview           242
    • 12.5.2 Market drivers                242
    • 12.5.3 Applications   242
    • 12.5.4 Global Market Revenues 2020-2035              243
  • 12.6     5G/6G 245
    • 12.6.1 Market overview           245
    • 12.6.2 Market drivers                245
    • 12.6.3 Applications   245
      • 12.6.3.1            Antenna            246
      • 12.6.3.2            Base Band Unit (BBU)              247
    • 12.6.4 Global Market Revenues 2020-2035              248
  • 12.7     Aerospace        250
    • 12.7.1 Market overview           250
    • 12.7.2 Market drivers                250
    • 12.7.3 Applications   250
    • 12.7.4 Global Market Revenues 2020-2035              251
  • 12.8     Energy systems            253
    • 12.8.1 Market overview           253
    • 12.8.2 Market drivers                253
    • 12.8.3 Applications   254
    • 12.8.4 Global Market Revenues 2020-2035              254
  • 12.9     Other markets               255
    • 12.9.1 Advanced Robotics   256
      • 12.9.1.1            Design Considerations            256
      • 12.9.1.2            Implementation Strategies   257
      • 12.9.1.3            Advanced Cooling Technologies       257
      • 12.9.1.4            Environmental Considerations          257
      • 12.9.1.5            Future Trends 257

 

13          GLOBAL REVENUES  258

  • 13.1     Global revenues 2023, by type           258
  • 13.2     Global revenues 2024-2035, by materials type        259
    • 13.2.1 Telecommunications market               259
    • 13.2.2 Electronics and data centers market             260
    • 13.2.3 ADAS market  260
    • 13.2.4 Electric vehicles (EVs) market             261
  • 13.3     By end-use market     262
  • 13.4     By region           264

 

14          FUTURE MARKET OUTLOOK 265

 

15          COMPANY PROFILES                266 (169 company profiles)

 

16          RESEARCH METHODOLOGY              389

 

17          REFERENCES 390

 

List of Tables

  • Table 1. Comparison of active and passive thermal management.           24
  • Table 2. Air Cooling Systems Characteristics.          27
  • Table 3. Liquid Cooling System Characteristics.    27
  • Table 4. Vapor Compression System Characteristics.        28
  • Table 5. Spray Cooling System Characteristics.     28
  • Table 6. Hybrid Cooling System Characteristics.   29
  • Table 7. Types of thermal management materials and solutions.               31
  • Table 8. Thermal conductivities (κ) of common metallic, carbon, and ceramic fillers employed in TIMs.                34
  • Table 9. Commercial TIMs and their properties.     35
  • Table 10. Advantages and disadvantages of TIMs, by type.              36
  • Table 11. Thermal interface materials prices.           38
  • Table 12. Characteristics of some typical TIMs.     39
  • Table 13. Properties of CNTs and comparable materials. 49
  • Table 14. Typical properties of SWCNT and MWCNT.          51
  • Table 15. Comparison of carbon-based additives in terms of the main parameters influencing their value proposition as a conductive additive.              52
  • Table 16. Thermal conductivity of CNT-based polymer composites.        54
  • Table 17. Comparative properties of BNNTs and CNTs.     55
  • Table 18. Properties of graphene, properties of competing materials, applications thereof.     57
  • Table 19. Properties of nanodiamonds.       60
  • Table 20. Comparison between Natural and Synthetic Graphite.               61
  • Table 21. Classification of natural graphite with its characteristics.         62
  • Table 22. Characteristics of synthetic graphite.      66
  • Table 23. Properties of hexagonal boron nitride (h-BN).    69
  • Table 24. Comparison of self-healing systems.      79
  • Table 25. Types of self-healing coatings and materials.     80
  • Table 26. Comparative properties of self-healing materials.          81
  • Table 27. Benefits and drawbacks of PCMs in TIMs.            81
  • Table 28. Global Revenue Forecast for Thermal Interface Materials 2020-2035 (Millions USD).            83
  • Table 29. Challenges with heat spreaders and heat sinks.              90
  • Table 30. Global Revenue Forecast for Heat Spreaders and Heat Sinks 2020- 2035 (Millions USD), by End Use.           91
  • Table 31. Comparison of Liquid Cooling Methods.               92
  • Table 32. Comparison of Liquid Cooling Technologies.      93
  • Table 33. Cooling System Components.      93
  • Table 34. Data Centers By Power.     95
  • Table 35. Rack Power and Cooling. 96
  • Table 36.Data Center Cooling Methods Comparison.        97
  • Table 37. Benefits of Liquid Cooling Systems.         98
  • Table 38. Challenges in Liquid Cooling Systems.   98
  • Table 39. Global Revenue Forecast for Liquid Cooling 2020- 2035 (Millions USD), by End Use.              99
  • Table 40. Air Cooling Methods.          101
  • Table 41. Applications of Air Cooling in Thermal Management     104
  • Table 42. Global Revenue Forecast for Air Cooling 2020-2035 (Millions USD), by End Use .      104
  • Table 43. Benefits and Challenges of Cold Plate Cooling.                106
  • Table 44. Examples of Cold Plate Design.   107
  • Table 45. Cold Plate Requirements.                110
  • Table 46. Benefits and Drawbacks of Cold Plate Cooling. 111
  • Table 47. Thermal Cost Analysis of Cold Plate Systems.   115
  • Table 48. Global Revenue Forecast for Cooling Plates 2020- 2035 (Millions USD).         117
  • Table 49. Applications of Spray Cooling in Thermal Management.             121
  • Table 50. Global Revenue Forecast for Spray Cooling 2020- 2035 (Millions USD).          121
  • Table 51. Applications of Immersion Cooling in Thermal Management. 123
  • Table 52. Cost Comparison - Immersion and Air Cooling.               125
  • Table 53. Applications of Immersion Cooling.         128
  • Table 54. Pricing of Direct-to-Chip, Immersion and Air Cooling (US$/Watt).        130
  • Table 55. Challenges in Immersion Cooling.             130
  • Table 56. Global Revenue Forecast for Immersion Cooling 2020- 2035 (Millions USD).               132
  • Table 57. Thermoelectric Cooling in Electronics.   134
  • Table 58. Application of Coolant Fluids.      136
  • Table 59. Electrical Properties of Coolants.              137
  • Table 60. Coolant Fluid Comparison - Operating Temperature.    141
  • Table 61. Immersion Coolant Liquid Suppliers.      142
  • Table 62. Global Revenue Forecast for Coolant Fluids 2020- 2035 (Millions USD), by End Use.             143
  • Table 63. Common PCMs used in electronics cooling and their melting temperatures.               146
  • Table 64. Properties of PCMs.             146
  • Table 65.  PCM Types and properties.            148
  • Table 66. Advantages and disadvantages of organic PCMs.           149
  • Table 67. Advantages and disadvantages of organic PCM Fatty Acids.    150
  • Table 68. Advantages and disadvantages of salt hydrates               151
  • Table 69. Advantages and disadvantages of low melting point metals.   152
  • Table 70. Advantages and disadvantages of eutectics.      152
  • Table 71. Global Revenue Forecast for PCM Thermal Management Materials 2020- 2035 (Millions USD).                155
  • Table 72. Market Drivers in consumer electronics.               158
  • Table 73. Applications and Thermal Management Materials Types in Consumer Electronics. 158
  • Table 74. Global Market Revenues for Thermal Management Materials in Consumer Electronics 2020-2035, by materials type.         161
  • Table 75. Thermal Management of EV Motors by OEM.      163
  • Table 76. EV Thermal System Companies. 166
  • Table 77. Applications and Types in EVs.     166
  • Table 78. Battery Thermal Management Strategy by OEM.              167
  • Table 79. Market Drivers for EV Thermal Management.     168
  • Table 80. Fluids per Vehicle Market Average 2023 vs 2035.             169
  • Table 81. EV Models with EV Specific Fluids.            170
  • Table 82. Coolants Properties Comparison.             171
  • Table 83. Refrigerant Content in EV Models.             173
  • Table 84. EV Refrigerant Forecast 2015-2035 (kg) 173
  • Table 85. Battery Cooling Methods  174
  • Table 86. Active Battery Cooling Methods. 174
  • Table 87. Passive Battery Cooling Methods.              175
  • Table 88. Commercial Liquid Cooling Comparison.            176
  • Table 89. Fluids in EVs             179
  • Table 90. PCM Categories and Pros and Cons.       180
  • Table 91. PCM vs Battery.       180
  • Table 92. Operating Temperature Range of Commercial PCMs.   182
  • Table 93. Thermal Conductivity and Density Comparison of EV Battery PCMs. 182
  • Table 94. Cold Plate Design. 185
  • Table 95. Cold Plate Suppliers.          186
  • Table 96. Alternate Hose Materials  188
  • Table 97. Types of Fire Protection Materials.             192
  • Table 98. Fire Protection Material Comparison.     192
  • Table 99. Density vs Thermal Conductivity for Fire Protection Materials.               193
  • Table 100. Fire Protection Materials Forecast (kg).               194
  • Table 101. Cooling Electric Motors Strategies          197
  • Table 102. Traction Motor Types        197
  • Table 103. Motor Cooling Strategy by Power.             199
  • Table 104. Advanced Cooling Structures Comparison.     200
  • Table 105. Potting and Encapsulation Companies.              201
  • Table 106. Wide Bandgap (WBG) Semiconductor Advantages & Disadvantages.            205
  • Table 107. SiC Drives 800V Platforms.          206
  • Table 108. Market Share of Single and Double-Sided Cooling: 2024-2034.         208
  • Table 109. General Trend of TIMs in Power Electronics.     209
  • Table 110. Substrate materials properties. 211
  • Table 111. Comparison of Al2O3, ZTA, and Si3N4 Substrate.        212
  • Table 112. Inverter Liquid Cooling Forecast 2015-2035 (units).   213
  • Table 113. Drivers for Direct Oil Cooling of Inverters            213
  • Table 114. Commercial Direct Oil Cooling Activity.               213
  • Table 115. EV Charging Levels            215
  • Table 116. Market Trends in EV Charging.   215
  • Table 117. Thermal Management Strategies in HPC.           216
  • Table 118.EVs with Heat Pumps        219
  • Table 119. Global Market Revenues for Thermal Management Materials in Electric Vehicles 2020-2035.                220
  • Table 120. Overview of Thermal Management Methods for Data Centers.            221
  • Table 121. Market Drivers for thermal management in data centers.        222
  • Table 122. Data Center Equipment Overview.          225
  • Table 123. Historic Data of TDP – GPU.         226
  • Table 124. TDP Trend: Historic Data and Forecast Data – CPU.    227
  • Table 125. Data Center Server Rack and Server Structure                228
  • Table 126. Comparison of Data Center Cooling Technology.          229
  • Table 127.Total TIM Area in Server Boards Forecast (m2): 2022-2035      232
  • Table 128. TIM Consumption in Data Center Power Supplies.       232
  • Table 129.TIM Area for Power Supply Forecast (m2): 2025-2035 233
  • Table 130. TIMs for Immersion Cooling.       233
  • Table 131. Applications and Types of thermal management materials and systems in data centers. 234
  • Table 132. Global Market Revenues for Thermal Management Materials in Data Centers 2020-2035.                236
  • Table 133. Market Drivers for thermal management in ADAS sensors.    238
  • Table 134. Applications and Types for thermal management in ADAS sensors. 238
  • Table 135. Global Market Revenues for Thermal Management Materials in ADAS Sensors 2020-2035.                241
  • Table 136. Market Drivers for thermal management in EMI shielding.      242
  • Table 137. Applications and Types for thermal management in EMI shielding.  243
  • Table 138. Global Market Revenues for Thermal Management Materials in EMI Shielding 2020-2035.                244
  • Table 139. Market Drivers for 5G//6G thermal management.        245
  • Table 140. 5G//6G thermal management Applications and Types.             245
  • Table 141. Global Market Revenues for Thermal Management Materials in 5G/6G 2020-2035.             248
  • Table 142. Market Drivers for thermal management in Aerospace.            250
  • Table 143. Thermal management in Aerospace Applications and Types.               250
  • Table 144. Global Market Revenues for Thermal Management Materials in Aerospace 2020-2035     251
  • Table 145. Market Drivers for thermal management in energy systems. 253
  • Table 146. Thermal management in energy systems Applications and Types.    254
  • Table 147. Global Market Revenues for Thermal Management Materials in Energy Systems 2020-2035.                254
  • Table 148. Other Markets for Thermal Management Materials and Systems       255
  • Table 149. Thermal Management by Robot Type.   256
  • Table 150. Global revenues for thermal management materials and systems, 2023, by type. 258
  • Table 151. Global Revenues for Thermal Management in Telecommunications, 2024-2035 ($M).       259
  • Table 152. Global Revenues for Thermal Management in Electronics & Data Centers, 2024-2035 ($M).                260
  • Table 153. Global Revenues for Thermal Management in ADAS, 2024-2035 ($M).          261
  • Table 154. Global Revenues for Thermal Management in EVs, 2024-2035 ($M) 261
  • Table 155. Global revenues for thermal management materials & systems, 2024-2035, by end use market (millions USD).            262
  • Table 156. Global revenues for thermal management materials and systems 2024-2035, by region (millions USD).             264
  • Table 157. Future Outlook for Thermal Management Materials and Systems.    265
  • Table 158. Carbodeon Ltd. Oy nanodiamond product list.              291
  • Table 159. CrodaTherm Range.          293
  • Table 160. Ray-Techniques Ltd. nanodiamonds product list.         358
  • Table 161. Comparison of ND produced by detonation and laser synthesis.      358

 

List of Figures

  • Figure 1. (L-R) Surface of a commercial heatsink surface at progressively higher magnifications, showing tool marks that create a rough surface and a need for a thermal interface material. 32
  • Figure 2. Schematic of thermal interface materials used in a flip chip package.              33
  • Figure 3. Thermal grease.      34
  • Figure 4. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module.             34
  • Figure 5. Application of thermal silicone grease.   41
  • Figure 6. A range of thermal grease products.          41
  • Figure 7. Thermal Pad.             42
  • Figure 8. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module.             43
  • Figure 9. Thermal tapes.         43
  • Figure 10. Thermal adhesive products.         44
  • Figure 11. Typical IC package construction identifying TIM1 and TIM2    45
  • Figure 12. Liquid metal TIM product.              46
  • Figure 13. Pre-mixed SLH.     47
  • Figure 14. HLM paste and Liquid Metal Before and After Thermal Cycling.           47
  • Figure 15.  SLH with Solid Solder Preform. 48
  • Figure 16. Automated process for SLH with solid solder preforms and liquid metal.     48
  • Figure 17. Schematic diagram of a multi-walled carbon nanotube (MWCNT).   49
  • Figure 18. Schematic of single-walled carbon nanotube. 50
  • Figure 19. Types of single-walled carbon nanotubes.         52
  • Figure 20. Schematic of a vertically aligned carbon nanotube (VACNT) membrane used for water treatment.        54
  • Figure 21. Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red.             55
  • Figure 22. Graphene layer structure schematic.     56
  • Figure 23. Illustrative procedure of the Scotch-tape based micromechanical cleavage of HOPG.       56
  • Figure 24. Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene. 58
  • Figure 25. Detonation Nanodiamond.          59
  • Figure 26. DND primary particles and properties.  60
  • Figure 27. Flake graphite.       63
  • Figure 28. Applications of flake graphite.    65
  • Figure 29. Graphite-based TIM products.    68
  • Figure 30. Structure of hexagonal boron nitride.     69
  • Figure 31. Classification of metamaterials based on functionalities.      71
  • Figure 32. Electromagnetic metamaterial. 73
  • Figure 33. Schematic of Electromagnetic Band Gap (EBG) structure.      74
  • Figure 34. Schematic of chiral metamaterials.        74
  • Figure 35. Nonlinear metamaterials- 400-nm thick nonlinear mirror that reflects frequency-doubled output using input light intensity as small as that of a laser pointer.         76
  • Figure 36. Schematic of self-healing polymers. Capsule based (a), vascular (b), and intrinsic (c) schemes for self-healing materials.  Red and blue colours indicate chemical species which react (purple) to heal damage.       77
  • Figure 37. Stages of self-healing mechanism.         78
  • Figure 38. Self-healing mechanism in vascular self-healing systems.     78
  • Figure 39. PCM TIMs. 82
  • Figure 40. Phase Change Material - die cut pads ready for assembly.      82
  • Figure 41. Global Revenue Forecast for Thermal Interface Materials 2020- 2035 (Millions USD).         84
  • Figure 42. Global Revenue Forecast for Heat Spreaders and Heat Sinks 2020- 2035 (Millions USD). 91
  • Figure 43. Global Revenue Forecast for Liquid Cooling 2020- 2035 (Millions USD).       100
  • Figure 44. Global Revenue Forecast for Air Cooling 2020- 2035 (Millions USD), by End Use.    105
  • Figure 45. Direct Water-Cooled Server .       114
  • Figure 46. Global Revenue Forecast for Cooling Plates 2020- 2035 (Millions USD).       118
  • Figure 47. Global Revenue Forecast for Spray Cooling 2020- 2035 (Millions USD).         122
  • Figure 48. Roadmap of Single-Phase Immersion Cooling.               126
  • Figure 49. Roadmap of Two-Phase Immersion Cooling.    127
  • Figure 50. Global Revenue Forecast for Immersion Cooling 2020- 2035 (Millions USD).             133
  • Figure 51. Global Revenue Forecast for Coolant Fluids 2020- 2035 (Millions USD).       144
  • Figure 52. Phase-change TIM products.       145
  • Figure 53. PCM mode of operation. 147
  • Figure 54. Classification of PCMs.   148
  • Figure 55. Phase-change materials in their original states.             148
  • Figure 56. Thermal energy storage materials.           154
  • Figure 57. Phase Change Material transient behaviour.     154
  • Figure 58. Global Revenue Forecast for PCM Thermal Management Materials 2020- 2035 (Millions USD).                156
  • Figure 59. Schematic of TIM operation in electronic devices.        159
  • Figure 60. Schematic of Thermal Management Materials in smartphone.            160
  • Figure 61. Wearable technology inventions.             161
  • Figure 62. Global Market Revenues for Thermal Management Materials in Consumer Electronics 2020-2035, by materials type.         162
  • Figure 63. Application of thermal interface materials in automobiles.    169
  • Figure 64. Battery pack with a cell-to-pack design and prismatic cells.  178
  • Figure 65. Cell-to-chassis battery pack.      179
  • Figure 66. Application of thermal interface materials in automobiles.    190
  • Figure 67. EV battery components including TIMs.               191
  • Figure 68. Axial Flux Motor.   203
  • Figure 69. Exploded view of In-Wheel Motor.            204
  • Figure 70. TIMS in EV charging station.         214
  • Figure 71. Global Market Revenues for Thermal Management Materials in Electric Vehicles 2020-2035.                220
  • Figure 72. Image of data center layout.         223
  • Figure 73. Application of TIMs in line card. 235
  • Figure 74. Global Market Revenues for Thermal Management Materials in Data Centers 2020-2035.                237
  • Figure 75. ADAS radar unit incorporating TIMs.       240
  • Figure 76. Global Market Revenues for Thermal Management Materials in ADAS Sensors 2020-2035.                241
  • Figure 77. Coolzorb 5G.          243
  • Figure 78. Global Market Revenues for Thermal Management Materials in EMI Shielding 2020-2035.                244
  • Figure 79. TIMs in Base Band Unit (BBU).    248
  • Figure 80. Global Market Revenues for Thermal Management Materials in 5G/6G 2020-2035.              249
  • Figure 81. Global Market Revenues for Thermal Management Materials in Aerospace 2020-2035.     252
  • Figure 82. Global Market Revenues for Thermal Management Materials in Energy Systems 2020-2035.                255
  • Figure 83. Global revenues for thermal management materials and systems in telecommuncations, 2024-2035, by type.   259
  • Figure 84. Global revenues for thermal management materials and systems in electronics & data centers, 2024-2035, by type.               260
  • Figure 85. Global revenues for thermal management materials and systems in ADAS, 2024-2035, by type.     261
  • Figure 86. Global revenues for thermal management materials and systems in Electric Vehicles (EVs), 2024-2035, by type.   262
  • Figure 87. Global revenues for thermal management materials and systems 2024-2035, by market.                263
  • Figure 88. Global revenues for thermal management materials and systems 2024-2035, by region (millions USD).             264
  • Figure 89. Boron Nitride Nanotubes products.        283
  • Figure 90. Transtherm® PCMs.            284
  • Figure 91. Carbice carbon nanotubes.         288
  • Figure 92.  Internal structure of carbon nanotube adhesive sheet.            311
  • Figure 93. Carbon nanotube adhesive sheet.           311
  • Figure 94. HI-FLOW Phase Change Materials.         320
  • Figure 95. Thermoelectric foil, consists of a sequence of semiconductor elements connected with conductive metal. At the top (in red) is the thermal interface.       338
  • Figure 96. Parker Chomerics THERM-A-GAP GEL. 349
  • Figure 97. Crēdo™ ProMed transport bags. 350
  • Figure 98. Metamaterial structure used to control thermal emission.     353
  • Figure 99. Shinko Carbon Nanotube TIM product. 371
  • Figure 100. The Sixth Element graphene products.               375
  • Figure 101. Thermal conductive graphene film.      376
  • Figure 102. VB Series of TIMS from Zeon.    387

 

The Global Market for Thermal Management Materials and Systems 2025-2035
The Global Market for Thermal Management Materials and Systems 2025-2035
PDF download.

The Global Market for Thermal Management Materials and Systems 2025-2035
The Global Market for Thermal Management Materials and Systems 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com