- Published: January 2025
- Pages: 399
- Tables: 161
- Figures: 102
The thermal management materials and systems market is experiencing significant growth driven by multiple sectors. Key market segments include consumer electronics, electric vehicles, data centers, ADAS sensors, EMI shielding, 5G/6G telecommunications, aerospace, and energy systems. The market features diverse materials including thermal interface materials (TIMs) such as greases, gels, pastes, phase change materials (PCMs), thermal pads, gap fillers, adhesives, carbon-based materials, and metallic solutions.
Electric vehicles represent a particularly dynamic segment, with increasing demand for sophisticated thermal management solutions for batteries, power electronics, and motors. The transition to 800V architectures and higher-power charging systems is driving innovation in cooling technologies. Data centers are another crucial market, with growing power densities necessitating more effective cooling solutions. The trend toward immersion cooling and hybrid systems reflects the industry's need for more efficient thermal management approaches. The emergence of 5G/6G infrastructure has created new thermal challenges, particularly in antenna systems and base stations. Similarly, the ADAS sensor market requires increasingly sophisticated thermal solutions as sensor capabilities expand. Looking toward 2035, the market shows strong growth potential across all segments, with particular emphasis on:
- Advanced materials with higher thermal conductivity
- Integrated cooling systems
- Sustainable and environmentally friendly solutions
- Smart thermal management systems with AI/ML capabilities
- Novel approaches like immersion cooling and phase change materials
The Global Thermal Management Materials and Systems 2025-2035 provides detailed insights into the rapidly evolving thermal management materials and systems industry, covering crucial applications across electric vehicles, data centers, consumer electronics, and emerging technologies. The comprehensive analysis includes market forecasts, technological developments, and competitive landscapes through 2035. Report contents in:
- In-depth analysis of thermal interface materials (TIMs), including greases, phase change materials, thermal pads, and advanced carbon-based solutions
- Detailed examination of cooling technologies: liquid cooling, air cooling, immersion cooling, and hybrid systems
- Comprehensive coverage of electric vehicle thermal management, including battery, power electronics, and motor cooling solutions
- Analysis of data center cooling trends, from traditional air cooling to advanced immersion systems
- Evaluation of emerging technologies in 5G/6G infrastructure cooling
- Assessment of aerospace and defense thermal management applications
- Market opportunities in ADAS sensors and EMI shielding
- Market size and growth projections
- Technology trends and innovation analysis
- Competitive landscape and company profiles. Companies profiled include 3M, Accelsius, ADA Technologies, Adept Materials, Airthium, Aismalibar, AI Technology, Amphenol Advanced Sensors, Andores New Energy, AOK Technologies, AOS Thermal Compounds, Apheros, Arkema, Arieca, Arteco, Asahi Kasei, Aspen Aerogels, Asperitas, ATP Adhesive Systems, Axalta Coating Systems, Axiotherm, Azelio, Bando Chemical Industries, Beam Global, BNNano, BNNT LLC, Boyd Corporation, BYK, Cadenza Innovation, Calyos, Carrar, Carbice Corp, Carbon Waters, Carbodeon, Chilldyne, Climator Sweden, CondAlign, Croda Europe, Cryopak, Dana, Datum Phase Change, Detakta, Devan Chemicals, Dexerials, Dober, Dow Corning, Dupont (Laird Performance Materials), Dymax, ELANTAS Europe, Deyang Carbonene Technology, Elkem Silicones, e-Mersiv, Elkem, Enerdyne Thermal Solutions, Engineered Fluids, Epoxies Etc, Ewald Dörken AG, Exergyn, First Graphene, FUCHS, Fujipoly, Fujitsu Laboratories, GLPOLY, Global Graphene Group, Graphmatech, Green Revolution Cooling (GRC), GuangDong KingBali, HALA Contec, Hamamatsu Carbonics, Goodfellow, Hangzhou Ruhr New Material Technology, H.B. Fuller, HeatVentors, Henkel, Honeywell, Huber Martinswerk, HyMet Thermal Interfaces, Iceotope, Immersion4, Indium Corporation, Inkron, Inuteq, JetCool Technologies, JIOS Aerogel, Kerafol, Kitagawa, KULR Technology Group, Leader Tech, LiquidCool Solutions, LiquidStack, Liquid Wire, LiSAT, MAHLE, Materium Technologies and more.
- Regional market analysis
- Application-specific requirements and solutions
- Material developments and emerging technologies
- Regulatory framework and environmental considerations
Detailed segments covered include:
- Thermal Interface Materials
- Heat Spreaders and Heat Sinks
- Liquid Cooling Systems
- Air Cooling Solutions
- Cooling Plates
- Spray Cooling Technology
- Immersion Cooling Systems
- Phase Change Materials
- Coolant Fluids
Applications analyzed include:
- Electric Vehicle Battery Systems
- Data Center Infrastructure
- Consumer Electronics
- 5G/6G Communications
- Aerospace Systems
- ADAS Sensors
- Power Electronics
- EMI Shielding
This report provides essential insights for:
- Material Manufacturers
- Thermal Solution Providers
- Electronics Manufacturers
- Automotive Companies
- Data Center Operators
- Telecommunications Companies
- Aerospace manufacturers
- Investment Firms
- R&D Organizations
1 INTRODUCTION 24
- 1.1 Thermal management 24
- 1.1.1 Active 24
- 1.1.2 Passive 24
- 1.2 Thermal Management Systems 25
- 1.2.1 Immersion Cooling Systems for Data Centers 25
- 1.2.2 Battery Thermal Management for Electric Vehicles 25
- 1.2.3 Heat Exchangers for Aerospace Cooling 26
- 1.2.4 Air Cooling Systems 26
- 1.2.5 Liquid Cooling Systems 27
- 1.2.6 Vapor Compression Systems 28
- 1.2.7 Spray Cooling Systems 28
- 1.2.8 Hybrid Cooling Systems 29
- 1.2.8.1 Hybrid Liquid-to-Air Cooling 30
- 1.2.8.2 Hybrid Liquid-to-Liquid Cooling 30
- 1.2.8.3 Hybrid Liquid-to-Refrigerant Cooling 30
- 1.2.8.4 Hybrid Refrigerant-to-Refrigerant Cooling 30
- 1.3 Main types of thermal management materials and technologies 30
2 THERMAL INTERFACE MATERIALS 32
- 2.1 What are thermal interface materials (TIMs)? 32
- 2.1.1 Types 33
- 2.1.2 Thermal conductivity 34
- 2.2 Comparative properties of TIMs 35
- 2.3 Advantages and disadvantages of TIMs, by type 36
- 2.4 Prices 38
- 2.5 Thermal greases and pastes 40
- 2.6 Thermal gap pads 42
- 2.7 Thermal gap fillers 42
- 2.8 Thermal adhesives and potting compounds 43
- 2.9 Metal-based TIMs 44
- 2.9.1 Solders and low melting temperature alloy TIMs 45
- 2.9.2 Liquid metals 46
- 2.9.3 Solid liquid hybrid (SLH) metals 46
- 2.9.3.1 Hybrid liquid metal pastes 46
- 2.9.3.2 SLH created during chip assembly (m2TIMs) 47
- 2.10 Carbon-based TIMs 48
- 2.10.1 Multi-walled nanotubes (MWCNT) 48
- 2.10.1.1 Properties 49
- 2.10.1.2 Application as thermal interface materials 50
- 2.10.2 Single-walled carbon nanotubes (SWCNTs) 50
- 2.10.2.1 Properties 51
- 2.10.2.2 Application as thermal interface materials 53
- 2.10.3 Vertically aligned CNTs (VACNTs) 53
- 2.10.3.1 Properties 53
- 2.10.3.2 Applications 53
- 2.10.3.3 Application as thermal interface materials 54
- 2.10.4 BN nanotubes (BNNT) and nanosheets (BNNS) 55
- 2.10.4.1 Properties 55
- 2.10.4.2 Application as thermal interface materials 55
- 2.10.5 Graphene 56
- 2.10.5.1 Properties 57
- 2.10.5.2 Application as thermal interface materials 58
- 2.10.5.2.1 Graphene fillers 58
- 2.10.5.2.2 Graphene foam 58
- 2.10.5.2.3 Graphene aerogel 58
- 2.10.6 Nanodiamonds 59
- 2.10.6.1 Properties 59
- 2.10.6.2 Application as thermal interface materials 61
- 2.10.7 Graphite 61
- 2.10.7.1 Properties 61
- 2.10.7.2 Natural graphite 61
- 2.10.7.2.1 Classification 62
- 2.10.7.2.2 Processing 63
- 2.10.7.2.3 Flake 63
- 2.10.7.2.3.1 Grades 63
- 2.10.7.2.3.2 Applications 64
- 2.10.7.3 Synthetic graphite 66
- 2.10.7.3.1 Classification 66
- 2.10.7.3.1.1 Primary synthetic graphite 66
- 2.10.7.3.1.2 Secondary synthetic graphite 67
- 2.10.7.3.1.3 Processing 67
- 2.10.7.3.1 Classification 66
- 2.10.7.4 Applications as thermal interface materials 67
- 2.10.8 Hexagonal Boron Nitride 68
- 2.10.8.1 Properties 69
- 2.10.8.2 Application as thermal interface materials 70
- 2.10.1 Multi-walled nanotubes (MWCNT) 48
- 2.11 Metamaterials 70
- 2.11.1 Types and properties 71
- 2.11.1.1 Thermal metamaterials 72
- 2.11.1.2 Electromagnetic metamaterials 72
- 2.11.1.2.1 Double negative (DNG) metamaterials 73
- 2.11.1.2.2 Single negative metamaterials 73
- 2.11.1.2.3 Electromagnetic bandgap metamaterials (EBG) 73
- 2.11.1.2.4 Bi-isotropic and bianisotropic metamaterials 74
- 2.11.1.2.5 Chiral metamaterials 74
- 2.11.1.2.6 Electromagnetic “Invisibility” cloak 74
- 2.11.1.3 Terahertz metamaterials 75
- 2.11.1.4 Photonic metamaterials 75
- 2.11.1.5 Tunable metamaterials 75
- 2.11.1.6 Frequency selective surface (FSS) based metamaterials 75
- 2.11.1.7 Nonlinear metamaterials 75
- 2.11.1.8 Acoustic metamaterials 76
- 2.11.2 Application as thermal interface materials 76
- 2.11.1 Types and properties 71
- 2.12 Self-healing thermal interface materials 77
- 2.12.1 Extrinsic self-healing 78
- 2.12.2 Capsule-based 78
- 2.12.3 Vascular self-healing 78
- 2.12.4 Intrinsic self-healing 78
- 2.12.5 Healing volume 79
- 2.12.6 Types of self-healing materials, polymers and coatings 80
- 2.12.7 Applications in thermal interface materials 81
- 2.13 Phase change thermal interface materials (PCTIMs) 81
- 2.13.1 Thermal pads 82
- 2.13.2 Low Melting Alloys (LMAs) 83
- 2.14 Global Market forecast 2020-2035 83
3 HEAT SPREADERS AND HEAT SINKS 85
- 3.1 Design 85
- 3.2 Materials 86
- 3.2.1 Aluminum alloys 86
- 3.2.2 Copper 87
- 3.2.3 Metal foams 87
- 3.2.4 Metal matrix composites 87
- 3.2.5 Graphene 88
- 3.2.6 Carbon foams and nanotubes 88
- 3.2.7 Graphite 88
- 3.2.8 Diamond 89
- 3.2.9 Liquid immersion cooling 89
- 3.2.10 Applications 89
- 3.3 Challenges 90
- 3.4 Market forecast 90
4 LIQUID COOLING SYSTEMS 92
- 4.1 Design 92
- 4.2 Types 93
- 4.3 Components of Liquid Cooling Systems 93
- 4.4 Cooling in Data Centers 94
- 4.4.1 Rack Level 95
- 4.4.2 Chip Level 96
- 4.5 Benefits 98
- 4.6 Challenges 98
- 4.7 Market forecast 99
5 AIR COOLING 101
- 5.1 Introduction 101
- 5.2 Air Cooling Methods 101
- 5.3 Commercial examples 102
- 5.4 Optimization of water and power consumption 103
- 5.5 Applications 103
- 5.6 Market forecast 104
6 COOLING PLATES 106
- 6.1 Overview 106
- 6.1.1 Advanced cooling plates 106
- 6.1.2 Roll Bond Aluminium Cold Plates 107
- 6.1.3 Cold Plate Design 107
- 6.1.4 Commercial examples 108
- 6.1.5 Graphite heat spreaders 109
- 6.1.5.1 Commercial examples 109
- 6.1.6 Cold Plate/Direct to Chip Cooling 109
- 6.1.7 Liquid Cooling Cold Plates 110
- 6.1.8 Single-Phase Cold Plate 111
- 6.1.8.1 Commercial examples 111
- 6.1.9 Two-Phase Cold Plate 112
- 6.1.9.1 Commercial examples 112
- 6.2 Design 114
- 6.3 Enhancement Techniques 115
- 6.3.1 Cost 115
- 6.4 Applications 117
- 6.5 Market forecast 117
7 SPRAY COOLING 119
- 7.1 Overview 119
- 7.2 Heat Transfer Mechanisms 119
- 7.3 Spray Cooling Fluids 120
- 7.4 Applications 120
- 7.5 Market forecast 121
8 IMMERSION COOLING 123
- 8.1 Overview 123
- 8.2 Common immersion fluids 124
- 8.3 Benefits 124
- 8.4 Single-Phase Immersion Cooling 125
- 8.5 Two-Phase Immersion Cooling 126
- 8.6 Commercial examples 127
- 8.7 Costs 130
- 8.8 Challenges 130
- 8.9 Market forecast 132
9 THERMOELECTRIC COOLERS 134
- 9.1 Thermoelectric Modules 134
- 9.2 Performance Factors 134
- 9.3 Electronics Cooling 134
10 COOLANT FLUIDS 136
- 10.1 Overview 136
- 10.1.1 Properties 137
- 10.1.1.1 Electrical 137
- 10.1.1.2 Corrosion 137
- 10.1.1.3 Viscosity reduction 138
- 10.1.1 Properties 137
- 10.2 EVs 138
- 10.2.1 Coolant Fluid Requirements 138
- 10.2.2 Common EV Coolant Fluids 139
- 10.2.3 Commercial examples 139
- 10.2.4 Refrigerants for EVs 140
- 10.2.5 EV coolant fluid trends 140
- 10.2.6 Design Considerations 141
- 10.3 Growing adoption of immersion cooling 142
- 10.4 Market forecast 143
11 PHASE CHANGE MATERIALS 145
- 11.1 Properties of Phase Change Materials (PCMs) 146
- 11.2 Types 147
- 11.2.1 Organic/biobased phase change materials 149
- 11.2.1.1 Advantages and disadvantages 149
- 11.2.1.2 Paraffin wax 149
- 11.2.1.3 Non-Paraffins/Bio-based 150
- 11.2.2 Inorganic phase change materials 150
- 11.2.2.1 Salt hydrates 151
- 11.2.2.1.1 Advantages and disadvantages 151
- 11.2.2.2 Metal and metal alloy PCMs (High-temperature) 152
- 11.2.2.1 Salt hydrates 151
- 11.2.3 Eutectic mixtures 152
- 11.2.4 Encapsulation of PCMs 152
- 11.2.4.1 Macroencapsulation 153
- 11.2.4.2 Micro/nanoencapsulation 153
- 11.2.5 Nanomaterial phase change materials 153
- 11.2.1 Organic/biobased phase change materials 149
- 11.3 Thermal energy storage (TES) 154
- 11.3.1 Sensible heat storage 154
- 11.3.2 Latent heat storage 154
- 11.4 Battery Thermal Management 155
- 11.5 Market forecast 155
12 MARKETS FOR THERMAL MANAGEMENT MATERIALS AND SYSTEMS 157
- 12.1 Consumer electronics 157
- 12.1.1 Market overview 157
- 12.1.2 Market drivers 157
- 12.1.3 Applications 158
- 12.1.3.1 Smartphones and tablets 159
- 12.1.3.2 Wearable electronics 160
- 12.1.4 Global market revenues 2020-2035 161
- 12.2 Electric Vehicles (EV) 162
- 12.2.1 Overview 162
- 12.2.2 Electric vehicle thermal system architecture and components 164
- 12.2.3 Commercial vehicle thermal management systems 165
- 12.2.3.1 Transition to 800V architecture 167
- 12.2.4 Market drivers 168
- 12.2.5 EV Cooling 169
- 12.2.5.1 Coolant Fluids 169
- 12.2.5.1.1 Properties 170
- 12.2.5.1.2 Integration of battery and eAxle cooling 171
- 12.2.5.2 Refrigerants 172
- 12.2.5.2.1 PFAS Free Refrigerants 172
- 12.2.5.2.2 The integration of heat pump systems in EVs 173
- 12.2.5.3 Active vs Passive Cooling 174
- 12.2.5.4 Air Cooling 175
- 12.2.5.5 Liquid Cooling 176
- 12.2.5.6 Refrigerant Cooling 177
- 12.2.5.7 Cell-to-pack designs 178
- 12.2.5.8 Cell-to-chassis/body 179
- 12.2.5.9 Immersion Cooling 179
- 12.2.5.9.1 Phase Change Materials 180
- 12.2.5.9.2 Commercial examples 181
- 12.2.5.9.3 Operating Temperature 181
- 12.2.5.10 Heat Spreaders and Cooling Plates 182
- 12.2.5.10.1 Heat spreader technology 183
- 12.2.5.10.1.1 Commercial examples 183
- 12.2.5.10.1.2 Graphite Heat Spreaders 184
- 12.2.5.10.2 Advanced cold plates 184
- 12.2.5.10.2.1 Commercial examples 185
- 12.2.5.10.2.2 Integration of cold plates into battery enclosures 186
- 12.2.5.10.3 Polymer Heat Exchangers 187
- 12.2.5.10.1 Heat spreader technology 183
- 12.2.5.11 Coolant Hoses 187
- 12.2.5.12 Thermal Interface Materials 189
- 12.2.5.13 Fire Protection Materials 191
- 12.2.5.13.1 Overview 191
- 12.2.5.13.2 Thermal runaway in electric vehicles 192
- 12.2.5.13.3 Vehicle fires 193
- 12.2.5.13.4 Regulations 194
- 12.2.5.14 Printed Sensors 195
- 12.2.5.15 Other cooling 196
- 12.2.5.1 Coolant Fluids 169
- 12.2.6 Electric motors 196
- 12.2.6.1 Air Cooling 198
- 12.2.6.2 Water-glycol Cooling 198
- 12.2.6.3 Oil Cooling 198
- 12.2.6.4 Advanced cooling structures 199
- 12.2.6.4.1 Refrigerant Cooling 200
- 12.2.6.4.2 Immersion Cooling 200
- 12.2.6.5 Motor Insulation and Encapsulation 200
- 12.2.6.5.1 Commercial activity 201
- 12.2.6.5.2 Axial Flux Motors 202
- 12.2.6.5.3 In-wheel Motors 203
- 12.2.7 Power electronics 204
- 12.2.7.1 Overview 204
- 12.2.7.2 Technology and materials evolution 205
- 12.2.7.3 Power module packaging technology 207
- 12.2.7.4 Single- vs Double-Sided Cooling 207
- 12.2.7.5 TIMs in Power Electronics 209
- 12.2.7.5.1 Thermal Interface Material 1 (TIM1) 209
- 12.2.7.5.2 Thermal Interface Material 2 (TIM2) 210
- 12.2.7.6 Wire Bonding 210
- 12.2.7.7 Substrate Materials 211
- 12.2.7.8 Cooling Power Electronics 212
- 12.2.7.8.1 Inverter package cooling 212
- 12.2.7.8.2 Direct cooling 213
- 12.2.8 Charging stations 214
- 12.2.8.1.1 Charging Levels 215
- 12.2.8.1.2 Liquid Cooling 216
- 12.2.8.1.3 Commercial examples 216
- 12.2.8.1.4 Immersion Cooling 218
- 12.2.8.2 Cabin heating 218
- 12.2.8.3 Heat Pumps 219
- 12.2.9 Global Market Revenues 2020-2035 220
- 12.3 Data Centers 221
- 12.3.1 Market overview 221
- 12.3.2 Market drivers 222
- 12.3.3 Data Center thermal management requirements 225
- 12.3.3.1 Increase in Thermal Design Power (TDP) 225
- 12.3.3.2 Energy Efficiency 227
- 12.3.4 Data Center Cooling 228
- 12.3.4.1 Cooling Technology 228
- 12.3.4.2 Air Cooling 229
- 12.3.4.3 Hybrid Liquid-to-Air Cooling (L2A) 229
- 12.3.4.4 Hybrid Liquid-to-Liquid Cooling (L2L) 230
- 12.3.4.5 Hybrid Liquid-to-Refrigerant Cooling 230
- 12.3.4.6 Hybrid Refrigerant-to-Refrigerant Cooling 230
- 12.3.4.7 Thermal Interface Materials 231
- 12.3.4.7.1 Data center power supplies 232
- 12.3.4.8 Cold plates 233
- 12.3.4.9 Spray Cooling 234
- 12.3.4.10 Immersion Cooling 234
- 12.3.5 Applications 234
- 12.3.5.1 Router, switches and line cards 234
- 12.3.5.2 Servers 235
- 12.3.5.3 Power supply converters 236
- 12.3.6 Global Market Revenues 2020-2035 236
- 12.4 ADAS Sensors 238
- 12.4.1 Market overview 238
- 12.4.2 Market drivers 238
- 12.4.3 Applications 238
- 12.4.3.1 ADAS Cameras 239
- 12.4.3.2 ADAS Radar 239
- 12.4.3.3 ADAS LiDAR 240
- 12.4.4 Global Market Revenues 2020-2035 240
- 12.5 EMI shielding 242
- 12.5.1 Market overview 242
- 12.5.2 Market drivers 242
- 12.5.3 Applications 242
- 12.5.4 Global Market Revenues 2020-2035 243
- 12.6 5G/6G 245
- 12.6.1 Market overview 245
- 12.6.2 Market drivers 245
- 12.6.3 Applications 245
- 12.6.3.1 Antenna 246
- 12.6.3.2 Base Band Unit (BBU) 247
- 12.6.4 Global Market Revenues 2020-2035 248
- 12.7 Aerospace 250
- 12.7.1 Market overview 250
- 12.7.2 Market drivers 250
- 12.7.3 Applications 250
- 12.7.4 Global Market Revenues 2020-2035 251
- 12.8 Energy systems 253
- 12.8.1 Market overview 253
- 12.8.2 Market drivers 253
- 12.8.3 Applications 254
- 12.8.4 Global Market Revenues 2020-2035 254
- 12.9 Other markets 255
- 12.9.1 Advanced Robotics 256
- 12.9.1.1 Design Considerations 256
- 12.9.1.2 Implementation Strategies 257
- 12.9.1.3 Advanced Cooling Technologies 257
- 12.9.1.4 Environmental Considerations 257
- 12.9.1.5 Future Trends 257
- 12.9.1 Advanced Robotics 256
13 GLOBAL REVENUES 258
- 13.1 Global revenues 2023, by type 258
- 13.2 Global revenues 2024-2035, by materials type 259
- 13.2.1 Telecommunications market 259
- 13.2.2 Electronics and data centers market 260
- 13.2.3 ADAS market 260
- 13.2.4 Electric vehicles (EVs) market 261
- 13.3 By end-use market 262
- 13.4 By region 264
14 FUTURE MARKET OUTLOOK 265
15 COMPANY PROFILES 266 (169 company profiles)
16 RESEARCH METHODOLOGY 389
17 REFERENCES 390
List of Tables
- Table 1. Comparison of active and passive thermal management. 24
- Table 2. Air Cooling Systems Characteristics. 27
- Table 3. Liquid Cooling System Characteristics. 27
- Table 4. Vapor Compression System Characteristics. 28
- Table 5. Spray Cooling System Characteristics. 28
- Table 6. Hybrid Cooling System Characteristics. 29
- Table 7. Types of thermal management materials and solutions. 31
- Table 8. Thermal conductivities (κ) of common metallic, carbon, and ceramic fillers employed in TIMs. 34
- Table 9. Commercial TIMs and their properties. 35
- Table 10. Advantages and disadvantages of TIMs, by type. 36
- Table 11. Thermal interface materials prices. 38
- Table 12. Characteristics of some typical TIMs. 39
- Table 13. Properties of CNTs and comparable materials. 49
- Table 14. Typical properties of SWCNT and MWCNT. 51
- Table 15. Comparison of carbon-based additives in terms of the main parameters influencing their value proposition as a conductive additive. 52
- Table 16. Thermal conductivity of CNT-based polymer composites. 54
- Table 17. Comparative properties of BNNTs and CNTs. 55
- Table 18. Properties of graphene, properties of competing materials, applications thereof. 57
- Table 19. Properties of nanodiamonds. 60
- Table 20. Comparison between Natural and Synthetic Graphite. 61
- Table 21. Classification of natural graphite with its characteristics. 62
- Table 22. Characteristics of synthetic graphite. 66
- Table 23. Properties of hexagonal boron nitride (h-BN). 69
- Table 24. Comparison of self-healing systems. 79
- Table 25. Types of self-healing coatings and materials. 80
- Table 26. Comparative properties of self-healing materials. 81
- Table 27. Benefits and drawbacks of PCMs in TIMs. 81
- Table 28. Global Revenue Forecast for Thermal Interface Materials 2020-2035 (Millions USD). 83
- Table 29. Challenges with heat spreaders and heat sinks. 90
- Table 30. Global Revenue Forecast for Heat Spreaders and Heat Sinks 2020- 2035 (Millions USD), by End Use. 91
- Table 31. Comparison of Liquid Cooling Methods. 92
- Table 32. Comparison of Liquid Cooling Technologies. 93
- Table 33. Cooling System Components. 93
- Table 34. Data Centers By Power. 95
- Table 35. Rack Power and Cooling. 96
- Table 36.Data Center Cooling Methods Comparison. 97
- Table 37. Benefits of Liquid Cooling Systems. 98
- Table 38. Challenges in Liquid Cooling Systems. 98
- Table 39. Global Revenue Forecast for Liquid Cooling 2020- 2035 (Millions USD), by End Use. 99
- Table 40. Air Cooling Methods. 101
- Table 41. Applications of Air Cooling in Thermal Management 104
- Table 42. Global Revenue Forecast for Air Cooling 2020-2035 (Millions USD), by End Use . 104
- Table 43. Benefits and Challenges of Cold Plate Cooling. 106
- Table 44. Examples of Cold Plate Design. 107
- Table 45. Cold Plate Requirements. 110
- Table 46. Benefits and Drawbacks of Cold Plate Cooling. 111
- Table 47. Thermal Cost Analysis of Cold Plate Systems. 115
- Table 48. Global Revenue Forecast for Cooling Plates 2020- 2035 (Millions USD). 117
- Table 49. Applications of Spray Cooling in Thermal Management. 121
- Table 50. Global Revenue Forecast for Spray Cooling 2020- 2035 (Millions USD). 121
- Table 51. Applications of Immersion Cooling in Thermal Management. 123
- Table 52. Cost Comparison - Immersion and Air Cooling. 125
- Table 53. Applications of Immersion Cooling. 128
- Table 54. Pricing of Direct-to-Chip, Immersion and Air Cooling (US$/Watt). 130
- Table 55. Challenges in Immersion Cooling. 130
- Table 56. Global Revenue Forecast for Immersion Cooling 2020- 2035 (Millions USD). 132
- Table 57. Thermoelectric Cooling in Electronics. 134
- Table 58. Application of Coolant Fluids. 136
- Table 59. Electrical Properties of Coolants. 137
- Table 60. Coolant Fluid Comparison - Operating Temperature. 141
- Table 61. Immersion Coolant Liquid Suppliers. 142
- Table 62. Global Revenue Forecast for Coolant Fluids 2020- 2035 (Millions USD), by End Use. 143
- Table 63. Common PCMs used in electronics cooling and their melting temperatures. 146
- Table 64. Properties of PCMs. 146
- Table 65. PCM Types and properties. 148
- Table 66. Advantages and disadvantages of organic PCMs. 149
- Table 67. Advantages and disadvantages of organic PCM Fatty Acids. 150
- Table 68. Advantages and disadvantages of salt hydrates 151
- Table 69. Advantages and disadvantages of low melting point metals. 152
- Table 70. Advantages and disadvantages of eutectics. 152
- Table 71. Global Revenue Forecast for PCM Thermal Management Materials 2020- 2035 (Millions USD). 155
- Table 72. Market Drivers in consumer electronics. 158
- Table 73. Applications and Thermal Management Materials Types in Consumer Electronics. 158
- Table 74. Global Market Revenues for Thermal Management Materials in Consumer Electronics 2020-2035, by materials type. 161
- Table 75. Thermal Management of EV Motors by OEM. 163
- Table 76. EV Thermal System Companies. 166
- Table 77. Applications and Types in EVs. 166
- Table 78. Battery Thermal Management Strategy by OEM. 167
- Table 79. Market Drivers for EV Thermal Management. 168
- Table 80. Fluids per Vehicle Market Average 2023 vs 2035. 169
- Table 81. EV Models with EV Specific Fluids. 170
- Table 82. Coolants Properties Comparison. 171
- Table 83. Refrigerant Content in EV Models. 173
- Table 84. EV Refrigerant Forecast 2015-2035 (kg) 173
- Table 85. Battery Cooling Methods 174
- Table 86. Active Battery Cooling Methods. 174
- Table 87. Passive Battery Cooling Methods. 175
- Table 88. Commercial Liquid Cooling Comparison. 176
- Table 89. Fluids in EVs 179
- Table 90. PCM Categories and Pros and Cons. 180
- Table 91. PCM vs Battery. 180
- Table 92. Operating Temperature Range of Commercial PCMs. 182
- Table 93. Thermal Conductivity and Density Comparison of EV Battery PCMs. 182
- Table 94. Cold Plate Design. 185
- Table 95. Cold Plate Suppliers. 186
- Table 96. Alternate Hose Materials 188
- Table 97. Types of Fire Protection Materials. 192
- Table 98. Fire Protection Material Comparison. 192
- Table 99. Density vs Thermal Conductivity for Fire Protection Materials. 193
- Table 100. Fire Protection Materials Forecast (kg). 194
- Table 101. Cooling Electric Motors Strategies 197
- Table 102. Traction Motor Types 197
- Table 103. Motor Cooling Strategy by Power. 199
- Table 104. Advanced Cooling Structures Comparison. 200
- Table 105. Potting and Encapsulation Companies. 201
- Table 106. Wide Bandgap (WBG) Semiconductor Advantages & Disadvantages. 205
- Table 107. SiC Drives 800V Platforms. 206
- Table 108. Market Share of Single and Double-Sided Cooling: 2024-2034. 208
- Table 109. General Trend of TIMs in Power Electronics. 209
- Table 110. Substrate materials properties. 211
- Table 111. Comparison of Al2O3, ZTA, and Si3N4 Substrate. 212
- Table 112. Inverter Liquid Cooling Forecast 2015-2035 (units). 213
- Table 113. Drivers for Direct Oil Cooling of Inverters 213
- Table 114. Commercial Direct Oil Cooling Activity. 213
- Table 115. EV Charging Levels 215
- Table 116. Market Trends in EV Charging. 215
- Table 117. Thermal Management Strategies in HPC. 216
- Table 118.EVs with Heat Pumps 219
- Table 119. Global Market Revenues for Thermal Management Materials in Electric Vehicles 2020-2035. 220
- Table 120. Overview of Thermal Management Methods for Data Centers. 221
- Table 121. Market Drivers for thermal management in data centers. 222
- Table 122. Data Center Equipment Overview. 225
- Table 123. Historic Data of TDP – GPU. 226
- Table 124. TDP Trend: Historic Data and Forecast Data – CPU. 227
- Table 125. Data Center Server Rack and Server Structure 228
- Table 126. Comparison of Data Center Cooling Technology. 229
- Table 127.Total TIM Area in Server Boards Forecast (m2): 2022-2035 232
- Table 128. TIM Consumption in Data Center Power Supplies. 232
- Table 129.TIM Area for Power Supply Forecast (m2): 2025-2035 233
- Table 130. TIMs for Immersion Cooling. 233
- Table 131. Applications and Types of thermal management materials and systems in data centers. 234
- Table 132. Global Market Revenues for Thermal Management Materials in Data Centers 2020-2035. 236
- Table 133. Market Drivers for thermal management in ADAS sensors. 238
- Table 134. Applications and Types for thermal management in ADAS sensors. 238
- Table 135. Global Market Revenues for Thermal Management Materials in ADAS Sensors 2020-2035. 241
- Table 136. Market Drivers for thermal management in EMI shielding. 242
- Table 137. Applications and Types for thermal management in EMI shielding. 243
- Table 138. Global Market Revenues for Thermal Management Materials in EMI Shielding 2020-2035. 244
- Table 139. Market Drivers for 5G//6G thermal management. 245
- Table 140. 5G//6G thermal management Applications and Types. 245
- Table 141. Global Market Revenues for Thermal Management Materials in 5G/6G 2020-2035. 248
- Table 142. Market Drivers for thermal management in Aerospace. 250
- Table 143. Thermal management in Aerospace Applications and Types. 250
- Table 144. Global Market Revenues for Thermal Management Materials in Aerospace 2020-2035 251
- Table 145. Market Drivers for thermal management in energy systems. 253
- Table 146. Thermal management in energy systems Applications and Types. 254
- Table 147. Global Market Revenues for Thermal Management Materials in Energy Systems 2020-2035. 254
- Table 148. Other Markets for Thermal Management Materials and Systems 255
- Table 149. Thermal Management by Robot Type. 256
- Table 150. Global revenues for thermal management materials and systems, 2023, by type. 258
- Table 151. Global Revenues for Thermal Management in Telecommunications, 2024-2035 ($M). 259
- Table 152. Global Revenues for Thermal Management in Electronics & Data Centers, 2024-2035 ($M). 260
- Table 153. Global Revenues for Thermal Management in ADAS, 2024-2035 ($M). 261
- Table 154. Global Revenues for Thermal Management in EVs, 2024-2035 ($M) 261
- Table 155. Global revenues for thermal management materials & systems, 2024-2035, by end use market (millions USD). 262
- Table 156. Global revenues for thermal management materials and systems 2024-2035, by region (millions USD). 264
- Table 157. Future Outlook for Thermal Management Materials and Systems. 265
- Table 158. Carbodeon Ltd. Oy nanodiamond product list. 291
- Table 159. CrodaTherm Range. 293
- Table 160. Ray-Techniques Ltd. nanodiamonds product list. 358
- Table 161. Comparison of ND produced by detonation and laser synthesis. 358
List of Figures
- Figure 1. (L-R) Surface of a commercial heatsink surface at progressively higher magnifications, showing tool marks that create a rough surface and a need for a thermal interface material. 32
- Figure 2. Schematic of thermal interface materials used in a flip chip package. 33
- Figure 3. Thermal grease. 34
- Figure 4. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module. 34
- Figure 5. Application of thermal silicone grease. 41
- Figure 6. A range of thermal grease products. 41
- Figure 7. Thermal Pad. 42
- Figure 8. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module. 43
- Figure 9. Thermal tapes. 43
- Figure 10. Thermal adhesive products. 44
- Figure 11. Typical IC package construction identifying TIM1 and TIM2 45
- Figure 12. Liquid metal TIM product. 46
- Figure 13. Pre-mixed SLH. 47
- Figure 14. HLM paste and Liquid Metal Before and After Thermal Cycling. 47
- Figure 15. SLH with Solid Solder Preform. 48
- Figure 16. Automated process for SLH with solid solder preforms and liquid metal. 48
- Figure 17. Schematic diagram of a multi-walled carbon nanotube (MWCNT). 49
- Figure 18. Schematic of single-walled carbon nanotube. 50
- Figure 19. Types of single-walled carbon nanotubes. 52
- Figure 20. Schematic of a vertically aligned carbon nanotube (VACNT) membrane used for water treatment. 54
- Figure 21. Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red. 55
- Figure 22. Graphene layer structure schematic. 56
- Figure 23. Illustrative procedure of the Scotch-tape based micromechanical cleavage of HOPG. 56
- Figure 24. Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene. 58
- Figure 25. Detonation Nanodiamond. 59
- Figure 26. DND primary particles and properties. 60
- Figure 27. Flake graphite. 63
- Figure 28. Applications of flake graphite. 65
- Figure 29. Graphite-based TIM products. 68
- Figure 30. Structure of hexagonal boron nitride. 69
- Figure 31. Classification of metamaterials based on functionalities. 71
- Figure 32. Electromagnetic metamaterial. 73
- Figure 33. Schematic of Electromagnetic Band Gap (EBG) structure. 74
- Figure 34. Schematic of chiral metamaterials. 74
- Figure 35. Nonlinear metamaterials- 400-nm thick nonlinear mirror that reflects frequency-doubled output using input light intensity as small as that of a laser pointer. 76
- Figure 36. Schematic of self-healing polymers. Capsule based (a), vascular (b), and intrinsic (c) schemes for self-healing materials. Red and blue colours indicate chemical species which react (purple) to heal damage. 77
- Figure 37. Stages of self-healing mechanism. 78
- Figure 38. Self-healing mechanism in vascular self-healing systems. 78
- Figure 39. PCM TIMs. 82
- Figure 40. Phase Change Material - die cut pads ready for assembly. 82
- Figure 41. Global Revenue Forecast for Thermal Interface Materials 2020- 2035 (Millions USD). 84
- Figure 42. Global Revenue Forecast for Heat Spreaders and Heat Sinks 2020- 2035 (Millions USD). 91
- Figure 43. Global Revenue Forecast for Liquid Cooling 2020- 2035 (Millions USD). 100
- Figure 44. Global Revenue Forecast for Air Cooling 2020- 2035 (Millions USD), by End Use. 105
- Figure 45. Direct Water-Cooled Server . 114
- Figure 46. Global Revenue Forecast for Cooling Plates 2020- 2035 (Millions USD). 118
- Figure 47. Global Revenue Forecast for Spray Cooling 2020- 2035 (Millions USD). 122
- Figure 48. Roadmap of Single-Phase Immersion Cooling. 126
- Figure 49. Roadmap of Two-Phase Immersion Cooling. 127
- Figure 50. Global Revenue Forecast for Immersion Cooling 2020- 2035 (Millions USD). 133
- Figure 51. Global Revenue Forecast for Coolant Fluids 2020- 2035 (Millions USD). 144
- Figure 52. Phase-change TIM products. 145
- Figure 53. PCM mode of operation. 147
- Figure 54. Classification of PCMs. 148
- Figure 55. Phase-change materials in their original states. 148
- Figure 56. Thermal energy storage materials. 154
- Figure 57. Phase Change Material transient behaviour. 154
- Figure 58. Global Revenue Forecast for PCM Thermal Management Materials 2020- 2035 (Millions USD). 156
- Figure 59. Schematic of TIM operation in electronic devices. 159
- Figure 60. Schematic of Thermal Management Materials in smartphone. 160
- Figure 61. Wearable technology inventions. 161
- Figure 62. Global Market Revenues for Thermal Management Materials in Consumer Electronics 2020-2035, by materials type. 162
- Figure 63. Application of thermal interface materials in automobiles. 169
- Figure 64. Battery pack with a cell-to-pack design and prismatic cells. 178
- Figure 65. Cell-to-chassis battery pack. 179
- Figure 66. Application of thermal interface materials in automobiles. 190
- Figure 67. EV battery components including TIMs. 191
- Figure 68. Axial Flux Motor. 203
- Figure 69. Exploded view of In-Wheel Motor. 204
- Figure 70. TIMS in EV charging station. 214
- Figure 71. Global Market Revenues for Thermal Management Materials in Electric Vehicles 2020-2035. 220
- Figure 72. Image of data center layout. 223
- Figure 73. Application of TIMs in line card. 235
- Figure 74. Global Market Revenues for Thermal Management Materials in Data Centers 2020-2035. 237
- Figure 75. ADAS radar unit incorporating TIMs. 240
- Figure 76. Global Market Revenues for Thermal Management Materials in ADAS Sensors 2020-2035. 241
- Figure 77. Coolzorb 5G. 243
- Figure 78. Global Market Revenues for Thermal Management Materials in EMI Shielding 2020-2035. 244
- Figure 79. TIMs in Base Band Unit (BBU). 248
- Figure 80. Global Market Revenues for Thermal Management Materials in 5G/6G 2020-2035. 249
- Figure 81. Global Market Revenues for Thermal Management Materials in Aerospace 2020-2035. 252
- Figure 82. Global Market Revenues for Thermal Management Materials in Energy Systems 2020-2035. 255
- Figure 83. Global revenues for thermal management materials and systems in telecommuncations, 2024-2035, by type. 259
- Figure 84. Global revenues for thermal management materials and systems in electronics & data centers, 2024-2035, by type. 260
- Figure 85. Global revenues for thermal management materials and systems in ADAS, 2024-2035, by type. 261
- Figure 86. Global revenues for thermal management materials and systems in Electric Vehicles (EVs), 2024-2035, by type. 262
- Figure 87. Global revenues for thermal management materials and systems 2024-2035, by market. 263
- Figure 88. Global revenues for thermal management materials and systems 2024-2035, by region (millions USD). 264
- Figure 89. Boron Nitride Nanotubes products. 283
- Figure 90. Transtherm® PCMs. 284
- Figure 91. Carbice carbon nanotubes. 288
- Figure 92. Internal structure of carbon nanotube adhesive sheet. 311
- Figure 93. Carbon nanotube adhesive sheet. 311
- Figure 94. HI-FLOW Phase Change Materials. 320
- Figure 95. Thermoelectric foil, consists of a sequence of semiconductor elements connected with conductive metal. At the top (in red) is the thermal interface. 338
- Figure 96. Parker Chomerics THERM-A-GAP GEL. 349
- Figure 97. Crēdo™ ProMed transport bags. 350
- Figure 98. Metamaterial structure used to control thermal emission. 353
- Figure 99. Shinko Carbon Nanotube TIM product. 371
- Figure 100. The Sixth Element graphene products. 375
- Figure 101. Thermal conductive graphene film. 376
- Figure 102. VB Series of TIMS from Zeon. 387
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com