The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Alternatives and PFAS Treatment 2025-2035

0

cover

cover

  • Published: January 2025
  • Pages: 345
  • Tables: 122
  • Figures: 20

 

Currently, PFAS materials remain crucial in various industries including semiconductors, textiles, food packaging, electronics, and automotive sectors, with applications ranging from water-repellent coatings to high-performance materials for critical technologies. Market dynamics are heavily influenced by regional regulatory frameworks, particularly in Europe and North America, where stringent regulations are accelerating the transition away from traditional PFAS. The semiconductor industry represents a critical use case, where PFAS remains essential for advanced manufacturing processes, though efforts are underway to develop alternatives. Similarly, the automotive and electronics sectors continue to rely on PFAS for specific applications while actively pursuing substitutes.

The PFAS alternatives market is experiencing rapid growth, with innovative solutions emerging across multiple sectors. These include silicon-based materials, hydrocarbon technologies, bio-based alternatives, and novel polymer systems. The textiles and food packaging industries are leading the transition to PFAS-free alternatives, driven by consumer awareness and regulatory requirements. However, technical performance gaps and cost considerations remain significant challenges in many applications. PFAS treatment and remediation technologies represent a growing market segment, driven by the need to address environmental contamination. Current technologies include advanced oxidation processes, membrane filtration, adsorption systems, and emerging destruction technologies. The water treatment sector, in particular, is seeing significant investment in PFAS removal technologies.

Looking toward 2035, the market is expected to undergo substantial changes. Traditional PFAS usage is projected to decline significantly in non-essential applications, while the alternatives market is forecast to experience robust growth. Critical industries like semiconductors and medical devices may retain specific PFAS applications where alternatives are not yet viable, but with enhanced controls and containment measures.

The treatment technologies market is expected to expand considerably, driven by stricter environmental regulations and growing remediation requirements. Innovation in treatment methods, particularly in destruction technologies and bio-friendly approaches, is likely to accelerate, leading to more cost-effective and efficient solutions. Key challenges for the industry include developing alternatives that match PFAS performance in critical applications, managing transition costs, and ensuring effective treatment solutions. The market outlook varies significantly by region and application, with developed markets leading the transition to alternatives while emerging markets may continue PFAS use in certain applications. Success in this evolving market will depend on technological innovation, regulatory compliance capabilities, and the ability to balance performance requirements with environmental considerations. Companies that can effectively navigate these challenges while developing sustainable solutions are likely to capture significant market opportunities in both alternatives and treatment technologies.

The industry's future will be shaped by continued regulatory evolution, technological advancement, and growing emphasis on sustainable solutions, leading to a transformed market landscape by 2035 characterized by reduced PFAS usage, widespread adoption of alternatives, and advanced treatment capabilities.

The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Alternatives  and PFAS Treatment 2025-2035 provides an in-depth analysis of the global PFAS sector, including detailed examination of emerging PFAS alternatives and treatment technologies. The study offers strategic insights into market trends, regulatory impacts, and technological developments shaping the industry through 2035. The report covers critical market segments including:

  • Traditional PFAS materials and applications
  • PFAS alternatives across multiple industries
  • PFAS treatment and remediation technologies
  • Industry-specific usage and transition strategies
  • Regulatory compliance and future outlook

 

Key industry verticals analyzed include:

  • Semiconductors and electronics
  • Textiles and clothing
  • Food packaging
  • Paints and coatings
  • Ion exchange membranes
  • Energy storage and conversion
  • Low-loss materials for 5G
  • Automotive and transportation
  • Medical devices
  • Firefighting foams
  • Cosmetics and personal care

 

The study provides detailed analysis of PFAS alternatives and substitutes, including:

  • Non-fluorinated surfactants
  • Bio-based materials
  • Silicon-based alternatives
  • Hydrocarbon technologies
  • Novel polymer systems
  • Green chemistry solutions
  • Emerging sustainable materials

 

Comprehensive coverage of PFAS treatment technologies encompasses:

  • Water treatment methods
  • Soil remediation
  • Destruction technologies
  • Bio-friendly approaches
  • Advanced oxidation processes
  • Membrane filtration
  • Adsorption technologies

 

The report examines key market drivers including:

  • Increasing regulatory pressure
  • Growing environmental concerns
  • Consumer awareness
  • Industry sustainability initiatives
  • Technological advancement
  • Cost considerations
  • Performance requirements

 

Market challenges addressed include:

  • Technical performance gaps
  • Implementation costs
  • Regulatory compliance
  • Supply chain transitions
  • Industry-specific requirements
  • Environmental impacts
  • Treatment effectiveness

 

The study provides detailed market data and forecasts:

  • Market size and growth projections
  • Regional market analysis
  • Industry segment breakdown
  • Technology adoption rates
  • Investment trends
  • Cost comparisons
  • Market opportunities

 

Regulatory analysis covers:

  • Global regulatory landscape
  • Regional compliance requirements
  • Industry-specific regulations
  • Future regulatory trends
  • Implementation timelines
  • Enforcement mechanisms
  • Policy impacts

 

The report includes over 500 company profiles and competitive analysis covering:

  • PFAS manufacturers
  • Alternative material developers
  • Treatment technology providers
  • Industry end-users
  • Research organizations
  • Technology start-ups

 

Companies profiled in-depth include include Allonia, Aquagga, Cambiotics, CoreWater Technologies, Greenitio, Impermea Materials, InEnTec, Ionomr Innovations, Kemira, Lummus Technology, NovoMOF, Oxyle, Perma-Fix Environmental Services, Inc., Puraffinity, Revive Environmental, Veolia, Xyle and many more...

Technical assessment includes:

  • Material properties and performance
  • Application requirements
  • Processing technologies
  • Testing and validation
  • Environmental impact
  • Cost-effectiveness
  • Implementation challenges

 

Special focus areas include:

  • Green chemistry innovations
  • Circular economy approaches
  • Digital technologies
  • Sustainable alternatives
  • Treatment effectiveness
  • Cost optimization
  • Performance validation

 

Strategic insights provided:

  • Market entry strategies
  • Technology selection
  • Risk assessment
  • Investment planning
  • Regulatory compliance
  • Supply chain optimization
  • Future scenarios

 

This essential intelligence resource provides decision-makers with comprehensive data and analysis to navigate the complex PFAS landscape and capitalize on emerging opportunities in alternatives and treatment technologies. The report helps stakeholders understand market dynamics, assess competitive threats, and develop effective strategies for PFAS transition and compliance. The analysis is based on extensive primary research including:

  • Industry interviews
  • Technology assessment
  • Patent analysis
  • Regulatory review
  • Market surveys
  • Performance testing
  • Cost analysis

 

1             EXECUTIVE SUMMARY            20

  • 1.1        Introduction to PFAS 20
  • 1.2        Definition and Overview of PFAS       21
    • 1.2.1    Chemical Structure and Properties 22
    • 1.2.2    Historical Development and Use      23
  • 1.3        Types of PFAS 24
    • 1.3.1    Non-polymeric PFAS 24
      • 1.3.1.1 Long-Chain PFAS        24
      • 1.3.1.2 Short-Chain PFAS       25
      • 1.3.1.3 Other non-polymeric PFAS   27
    • 1.3.2    Polymeric PFAS            28
      • 1.3.2.1 Fluoropolymers (FPs)               28
      • 1.3.2.2 Side-chain fluorinated polymers:     29
      • 1.3.2.3 Perfluoropolyethers   29
  • 1.4        Properties and Applications of PFAS              30
    • 1.4.1    Water and Oil Repellency       30
    • 1.4.2    Thermal and Chemical Stability        31
    • 1.4.3    Surfactant Properties               31
    • 1.4.4    Low Friction    32
    • 1.4.5    Electrical Insulation  32
    • 1.4.6    Film-Forming Abilities              32
    • 1.4.7    Atmospheric Stability               33
  • 1.5        Environmental and Health Concerns             33
    • 1.5.1    Persistence in the Environment         34
    • 1.5.2    Bioaccumulation        35
    • 1.5.3    Toxicity and Health Effects    36
    • 1.5.4    Environmental Contamination           36
  • 1.6        PFAS Alternatives        37
  • 1.7        Analytical techniques              39
  • 1.8        Manufacturing/handling/import/export       41
  • 1.9        Storage/disposal/treatment/purification     42
  • 1.10     Water quality management  44
  • 1.11     Alternative technologies and supply chains              46

 

2             GLOBAL REGULATORY LANDSCAPE               48

  • 2.1        Impact of growing PFAS regulation  48
  • 2.2        International Agreements      51
  • 2.3        European Union Regulations               51
  • 2.4        United States Regulations     52
    • 2.4.1    Federal regulations    52
    • 2.4.2    State-Level Regulations          54
  • 2.5        Asian Regulations       55
    • 2.5.1    Japan  55
      • 2.5.1.1 Chemical Substances Control Law (CSCL)               56
      • 2.5.1.2 Water Quality Standards        56
    • 2.5.2    China  57
      • 2.5.2.1 List of New Contaminants Under Priority Control  57
      • 2.5.2.2 Catalog of Toxic Chemicals Under Severe Restrictions     57
      • 2.5.2.3 New Pollutants Control Action Plan                57
    • 2.5.3    Taiwan 58
      • 2.5.3.1 Toxic and Chemical Substances of Concern Act    58
    • 2.5.4    Australia and New Zealand   58
    • 2.5.5    Canada             58
    • 2.5.6    South Korea    59
  • 2.6        Global Regulatory Trends and Outlook         60

 

3             INDUSTRY-SPECIFIC PFAS USAGE  61

  • 3.1        Semiconductors          61
    • 3.1.1    Importance of PFAS   61
    • 3.1.2    Front-end processes 63
      • 3.1.2.1 Lithography     63
      • 3.1.2.2 Wet etching solutions              64
      • 3.1.2.3 Chiller coolants for dry etchers          65
      • 3.1.2.4 Piping and valves         65
    • 3.1.3    Back-end processes 65
      • 3.1.3.1 Interconnects and Packaging Materials       65
      • 3.1.3.2 Molding materials       66
      • 3.1.3.3 Die attach materials  66
      • 3.1.3.4 Interlayer film for package substrates           66
      • 3.1.3.5 Thermal management             67
    • 3.1.4    Product life cycle and impact of PFAS           67
      • 3.1.4.1 Manufacturing Stage (Raw Materials)            67
      • 3.1.4.2 Usage Stage (Semiconductor Factory)         68
      • 3.1.4.3 Disposal Stage              68
    • 3.1.5    Environmental and Human Health Impacts              68
    • 3.1.6    Regulatory Trends Related to Semiconductors       69
    • 3.1.7    Exemptions     69
    • 3.1.8    Future Regulatory Trends       69
    • 3.1.9    Alternatives to PFAS  70
      • 3.1.9.1 Alkyl Polyglucoside and Polyoxyethylene Surfactants        71
      • 3.1.9.2 Non-PFAS Etching Solutions               71
      • 3.1.9.3 PTFE-Free Sliding Materials  71
      • 3.1.9.4 Metal oxide-based materials               71
      • 3.1.9.5 Fluoropolymer Alternatives   71
      • 3.1.9.6 Silicone-based Materials       71
      • 3.1.9.7 Hydrocarbon-based Surfactants      72
      • 3.1.9.8 Carbon Nanotubes and Graphene   72
      • 3.1.9.9 Engineered Polymers                73
      • 3.1.9.10            Supercritical CO2 Technology            73
      • 3.1.9.11            Plasma Technologies                74
      • 3.1.9.12            Sol-Gel Materials        74
      • 3.1.9.13            Biodegradable Polymers        75
  • 3.2        Textiles and Clothing 76
    • 3.2.1    Overview           76
    • 3.2.2    PFAS in Water-Repellent Materials  76
    • 3.2.3    Stain-Resistant Treatments  77
    • 3.2.4    Regulatory Impact on Water-Repellent Clothing    78
    • 3.2.5    Industry Initiatives and Commitments         79
    • 3.2.6    Alternatives to PFAS  80
      • 3.2.6.1 Enhanced surface treatments            80
      • 3.2.6.2 Non-fluorinated treatments 81
      • 3.2.6.3 Biomimetic approaches         81
      • 3.2.6.4 Nano-structured surfaces    82
      • 3.2.6.5 Wax-based additives 83
      • 3.2.6.6 Plasma treatments     83
      • 3.2.6.7 Sol-gel coatings            84
      • 3.2.6.8 Superhydrophobic coatings 84
      • 3.2.6.9 Biodegradable Polymer Coatings     85
      • 3.2.6.10            Graphene-based Coatings    86
      • 3.2.6.11            Enzyme-based Treatments   86
      • 3.2.6.12            Companies     87
  • 3.3        Food Packaging           88
    • 3.3.1    Sustainable packaging            88
      • 3.3.1.1 PFAS in Grease-Resistant Packaging             89
      • 3.3.1.2 Other applications     89
      • 3.3.1.3 Regulatory Trends in Food Contact Materials           90
    • 3.3.2    Alternatives to PFAS  91
      • 3.3.2.1 Biobased materials    91
        • 3.3.2.1.1           Polylactic Acid (PLA) 91
        • 3.3.2.1.2           Polyhydroxyalkanoates (PHAs)          92
        • 3.3.2.1.3           Cellulose-based materials   93
          • 3.3.2.1.3.1      Nano-fibrillated cellulose (NFC)       94
          • 3.3.2.1.3.2      Bacterial Nanocellulose (BNC)          95
        • 3.3.2.1.4           Silicon-based Alternatives     96
        • 3.3.2.1.5           Natural Waxes and Resins    97
        • 3.3.2.1.6           Engineered Paper and Board               97
        • 3.3.2.1.7           Nanocomposites        98
        • 3.3.2.1.8           Plasma Treatments    99
        • 3.3.2.1.9           Biodegradable Polymer Blends          100
        • 3.3.2.1.10        Chemically Modified Natural Polymers        101
        • 3.3.2.1.11        Molded Fiber  102
      • 3.3.2.2 PFAS-free coatings for food packaging         103
        • 3.3.2.2.1           Silicone-based Coatings:       103
        • 3.3.2.2.2           Bio-based Barrier Coatings   103
        • 3.3.2.2.3           Nanocellulose Coatings         105
        • 3.3.2.2.4           Superhydrophobic and Omniphobic Coatings         105
        • 3.3.2.2.5           Clay-based Nanocomposite Coatings          106
        • 3.3.2.2.6           Coated Papers              107
      • 3.3.2.3 Companies     107
  • 3.4        Paints and Coatings  110
    • 3.4.1    Overview           110
    • 3.4.2    Applications   110
    • 3.4.3    Alternatives to PFAS  111
      • 3.4.3.1 Silicon-Based Alternatives:   111
      • 3.4.3.2 Hydrocarbon-Based Alternatives:    112
      • 3.4.3.3 Nanomaterials              113
      • 3.4.3.4 Plasma-Based Surface Treatments 113
      • 3.4.3.5 Inorganic Alternatives               114
      • 3.4.3.6 Bio-based Polymers: 114
      • 3.4.3.7 Dendritic Polymers    115
      • 3.4.3.8 Zwitterionic Polymers               115
      • 3.4.3.9 Graphene-based Coatings    116
      • 3.4.3.10            Hybrid Organic-Inorganic Coatings 116
      • 3.4.3.11            Companies     116
  • 3.5        Ion Exchange membranes     120
    • 3.5.1    Overview           120
      • 3.5.1.1 PFAS in Ion Exchange Membranes   121
    • 3.5.2    Proton Exchange Membranes             121
      • 3.5.2.1 Overview           121
      • 3.5.2.2 Proton Exchange Membrane Electrolyzers (PEMELs)          124
      • 3.5.2.3 Membrane Degradation          125
      • 3.5.2.4 Nafion 126
      • 3.5.2.5 Membrane electrode assembly (MEA)          128
    • 3.5.3    Manufacturing PFSA Membranes     130
    • 3.5.4    Enhancing PFSA Membranes              131
    • 3.5.5    Commercial PFSA membranes         132
    • 3.5.6    Catalyst Coated Membranes              133
      • 3.5.6.1 Alternatives to PFAS  134
    • 3.5.7    Membranes in Redox Flow Batteries               136
      • 3.5.7.1 Alternative Materials for RFB Membranes   137
    • 3.5.8    Alternatives to PFAS  139
      • 3.5.8.1 Alternative Polymer Materials             139
      • 3.5.8.2 Anion Exchange Membrane Technology (AEM) fuel cells   140
      • 3.5.8.3 Nanocellulose               141
      • 3.5.8.4 Boron-containing membranes           142
      • 3.5.8.5 Hydrocarbon-based membranes     142
      • 3.5.8.6 Metal-Organic Frameworks (MOFs) 143
        • 3.5.8.6.1           MOF Composite Membranes              144
      • 3.5.8.7 Graphene         144
      • 3.5.8.8 Companies     145
  • 3.6        Energy (excluding fuel cells) 146
    • 3.6.1    Overview           146
    • 3.6.2    Solar Panels   147
    • 3.6.3    Wind Turbines               147
      • 3.6.3.1 Blade Coatings             147
      • 3.6.3.2 Lubricants and Greases         148
      • 3.6.3.3 Electrical and Electronic Components         148
      • 3.6.3.4 Seals and Gaskets      148
    • 3.6.4    Lithium-Ion Batteries                149
      • 3.6.4.1 Electrode Binders       149
      • 3.6.4.2 Electrolyte Additives 150
      • 3.6.4.3 Separator Coatings    150
      • 3.6.4.4 Current Collector Coatings   150
      • 3.6.4.5 Gaskets and Seals      150
      • 3.6.4.6 Fluorinated Solvents in Electrode Manufacturing 150
      • 3.6.4.7 Surface Treatments   151
    • 3.6.5    Alternatives to PFAS  151
      • 3.6.5.1 Solar    152
        • 3.6.5.1.1           Ethylene Vinyl Acetate (EVA) Encapsulants               152
        • 3.6.5.1.2           Polyolefin Encapsulants        153
        • 3.6.5.1.3           Glass-Glass Module Design 153
        • 3.6.5.1.4           Bio-based Backsheets            154
      • 3.6.5.2 Wind Turbines               154
        • 3.6.5.2.1           Silicone-Based Coatings        154
        • 3.6.5.2.2           Nanocoatings 154
        • 3.6.5.2.3           Thermal De-icing Systems    155
        • 3.6.5.2.4           Polyurethane-Based Coatings            156
      • 3.6.5.3 Lithium-Ion Batteries                157
        • 3.6.5.3.1           Water-Soluble Binders             157
        • 3.6.5.3.2           Polyacrylic Acid (PAA) Based Binders            157
        • 3.6.5.3.3           Alginate-Based Binders          158
        • 3.6.5.3.4           Ionic Liquid Electrolytes          159
      • 3.6.5.4 Companies     160
  • 3.7        Low-loss materials for 5G      161
    • 3.7.1    Overview           161
      • 3.7.1.1 Organic PCB materials for 5G             162
    • 3.7.2    PTFE in 5G        163
      • 3.7.2.1 Properties         163
      • 3.7.2.2 PTFE-Based Laminates           164
      • 3.7.2.3 Regulations     165
      • 3.7.2.4 Commercial low-loss               166
    • 3.7.3    Alternatives to PFAS  167
      • 3.7.3.1 Liquid crystal polymers (LCP)             167
      • 3.7.3.2 Poly(p-phenylene ether) (PPE)            168
      • 3.7.3.3 Poly(p-phenylene oxide) (PPO)           168
      • 3.7.3.4 Hydrocarbon-based laminates          169
      • 3.7.3.5 Low Temperature Co-fired Ceramics (LTCC)             170
      • 3.7.3.6 Glass Substrates         172
  • 3.8        Cosmetics       174
    • 3.8.1    Overview           174
    • 3.8.2    Use in cosmetics         175
    • 3.8.3    Alternatives to PFAS  175
      • 3.8.3.1 Silicone-based Polymers       176
      • 3.8.3.2 Plant-based Waxes and Oils 176
      • 3.8.3.3 Naturally Derived Polymers  176
      • 3.8.3.4 Silica-based Materials             177
      • 3.8.3.5 Companies Developing PFAS Alternatives in Cosmetics  177
  • 3.9        Firefighting Foam        179
    • 3.9.1    Overview           179
    • 3.9.2    Aqueous Film-Forming Foam (AFFF)              179
    • 3.9.3    Environmental Contamination from AFFF Use        179
    • 3.9.4    Regulatory Pressures and Phase-Out Initiatives     180
    • 3.9.5    Alternatives to PFAS  181
      • 3.9.5.1 Fluorine-Free Foams (F3)      181
      • 3.9.5.2 Siloxane-Based Foams           181
      • 3.9.5.3 Protein-Based Foams              182
      • 3.9.5.4 Synthetic Detergent Foams (Syndet)              182
      • 3.9.5.5 Compressed Air Foam Systems (CAFS)        182
  • 3.10     Automotive      183
    • 3.10.1 Overview           183
    • 3.10.2 PFAS in Lubricants and Hydraulic Fluids     184
    • 3.10.3 Use in Fuel Systems and Engine Components        185
    • 3.10.4 Electric Vehicle             185
      • 3.10.4.1            PFAS in Electric Vehicles        185
      • 3.10.4.2            High-Voltage Cables 187
      • 3.10.4.3            Refrigerants    188
        • 3.10.4.3.1        Coolant Fluids in EVs               188
        • 3.10.4.3.2        Refrigerants for EVs   189
        • 3.10.4.3.3        Regulations     189
        • 3.10.4.3.4        PFAS-free Refrigerants            190
      • 3.10.4.4            Immersion Cooling for Li-ion Batteries          191
        • 3.10.4.4.1        Overview           191
        • 3.10.4.4.2        Single-phase Cooling               193
        • 3.10.4.4.3        Two-phase Cooling    194
        • 3.10.4.4.4        Companies     195
        • 3.10.4.4.5        PFAS-based Coolants in Immersion Cooling for EVs           196
    • 3.10.5 Alternatives to PFAS  197
      • 3.10.5.1            Lubricants and Greases         198
      • 3.10.5.2            Fuel System Components     199
      • 3.10.5.3            Surface Treatments and Coatings    200
      • 3.10.5.4            Gaskets and Seals      201
      • 3.10.5.5            Hydraulic Fluids           201
      • 3.10.5.6            Electrical and Electronic Components         202
      • 3.10.5.7            Paint and Coatings     203
      • 3.10.5.8            Windshield and Glass Treatments   204
  • 3.11     Electronics      205
    • 3.11.1 Overview           205
    • 3.11.2 PFAS in Printed Circuit Boards           205
    • 3.11.3 Cable and Wire Insulation     206
    • 3.11.4 Regulatory Challenges for Electronics Manufacturers       206
    • 3.11.5 Alternatives to PFAS  207
      • 3.11.5.1            Wires and Cables        207
      • 3.11.5.2            Coating              208
      • 3.11.5.3            Electronic Components         208
      • 3.11.5.4            Sealing and Lubricants           209
      • 3.11.5.5            Cleaning           209
      • 3.11.5.6            Companies     210
  • 3.12     Medical Devices           214
    • 3.12.1 Overview           214
    • 3.12.2 PFAS in Implantable Devices               215
    • 3.12.3 Diagnostic Equipment Applications               215
    • 3.12.4 Balancing Safety and Performance in Regulations               216
    • 3.12.5 Alternatives to PFAS  218
  • 3.13     Green hydrogen            218
    • 3.13.1 Electrolyzers   219
    • 3.13.2 Alternatives to PFAS  219
    • 3.13.3 Economic implications           220

 

4             PFAS ALTERNATIVES 221

  • 4.1        PFAS-Free Release Agents    221
    • 4.1.1    Silicone-Based Alternatives  221
    • 4.1.2    Hydrocarbon-Based Solutions           222
    • 4.1.3    Performance Comparisons  223
  • 4.2        Non-Fluorinated Surfactants and Dispersants       224
    • 4.2.1    Bio-Based Surfactants            225
    • 4.2.2    Silicon-Based Surfactants    226
    • 4.2.3    Hydrocarbon-Based Surfactants      226
  • 4.3        PFAS-Free Water and Oil-Repellent Materials          227
    • 4.3.1    Dendrimers and Hyperbranched Polymers                227
    • 4.3.2    PFA-Free Durable Water Repellent (DWR) Coatings             228
    • 4.3.3    Silicone-Based Repellents    229
    • 4.3.4    Nano-Structured Surfaces    230
  • 4.4        Fluorine-Free Liquid-Repellent Surfaces     231
    • 4.4.1    Superhydrophobic Coatings 231
    • 4.4.2    Omniphobic Surfaces              232
    • 4.4.3    Slippery Liquid-Infused Porous Surfaces (SLIPS)   233
  • 4.5        PFAS-Free Colorless Transparent Polyimide             234
    • 4.5.1    Novel Polymer Structures      235
    • 4.5.2    Applications in Flexible Electronics 236

 

5             PFAS DEGRADATION AND ELIMINATION     237

  • 5.1        Current methods for PFAS degradation and elimination   237
  • 5.2        Bio-friendly methods                238
    • 5.2.1    Phytoremediation       238
    • 5.2.2    Microbial Degradation             239
    • 5.2.3    Enzyme-Based Degradation 239
    • 5.2.4    Mycoremediation        240
    • 5.2.5    Biochar Adsorption    240
    • 5.2.6    Green Oxidation Methods     241
    • 5.2.7    Bio-based Adsorbents             243
    • 5.2.8    Algae-Based Systems              243
  • 5.3        Companies     244

 

6             PFAS TREATMENT       247

  • 6.1        Introduction    247
  • 6.2        Pathways for PFAS environmental contamination 248
  • 6.3        Regulations     249
    • 6.3.1    USA      250
    • 6.3.2    EU         251
    • 6.3.3    Rest of the World         252
  • 6.4        PFAS water treatment               253
    • 6.4.1    Introduction    253
    • 6.4.2    Applications   254
      • 6.4.2.1 Drinking water                254
      • 6.4.2.2 Aqueous film forming foam (AFFF)   254
      • 6.4.2.3 Landfill leachate          254
      • 6.4.2.4 Municipal wastewater treatment      255
      • 6.4.2.5 Industrial process and wastewater  255
      • 6.4.2.6 Sites with heavy PFAS contamination           255
      • 6.4.2.7 Point-of-use (POU) and point-of-entry (POE) filters and systems                255
    • 6.4.3    PFAS treatment approaches                256
    • 6.4.4    Traditional removal technologies     258
      • 6.4.4.1 Adsorption: granular activated carbon (GAC)           259
        • 6.4.4.1.1           Sources             259
        • 6.4.4.1.2           Short-chain PFAS compounds           259
        • 6.4.4.1.3           Reactivation   259
        • 6.4.4.1.4           PAC systems  260
      • 6.4.4.2 Adsorption: ion exchange resins (IER)           261
        • 6.4.4.2.1           Pre-treatment                 261
        • 6.4.4.2.2           Resins 261
      • 6.4.4.3 Membrane filtration-reverse osmosis and nanofiltration 264
    • 6.4.5    Emerging removal technologies        265
      • 6.4.5.1 Foam fractionation and ozofractionation    266
        • 6.4.5.1.1           Polymeric sorbents    266
        • 6.4.5.1.2           Mineral-based sorbents          267
        • 6.4.5.1.3           Flocculation/coagulation       267
        • 6.4.5.1.4           Electrostatic coagulation/concentration     268
      • 6.4.5.2 Companies     268
    • 6.4.6    Destruction technologies      269
      • 6.4.6.1 PFAS waste management     270
      • 6.4.6.2 Landfilling of PFAS-containing waste             271
      • 6.4.6.3 Thermal treatment      271
      • 6.4.6.4 Liquid-phase PFAS destruction         272
      • 6.4.6.5 Electrochemical oxidation    273
      • 6.4.6.6 Supercritical water oxidation (SCWO)           274
      • 6.4.6.7 Hydrothermal alkaline treatment (HALT)     274
      • 6.4.6.8 Plasma treatment       275
      • 6.4.6.9 Photocatalysis              275
      • 6.4.6.10            Sonochemical oxidation        276
      • 6.4.6.11            Challenges      276
      • 6.4.6.12            Companies     277
  • 6.5        PFAS Solids Treatment             278
    • 6.5.1    PFAS migration             278
    • 6.5.2    Soil washing (or soil scrubbing)         279
    • 6.5.3    Soil flushing    279
    • 6.5.4    Thermal desorption   280
    • 6.5.5    Phytoremediation       280
    • 6.5.6    In-situ immobilization              280
    • 6.5.7    Pyrolysis and gasification      281
    • 6.5.8    Plasma              281
    • 6.5.9    Supercritical water oxidation (SCWO)           281
  • 6.6        Companies     282

 

7             MARKET ANALYSIS AND FUTURE OUTLOOK             285

  • 7.1        Current Market Size and Segmentation        285
    • 7.1.1    Global PFAS Market Overview            285
    • 7.1.2    Regional Market Analysis      286
      • 7.1.2.1 North America              286
      • 7.1.2.2 Europe                286
      • 7.1.2.3 Asia-Pacific    286
      • 7.1.2.4 Latin America 286
      • 7.1.2.5 Middle East and Africa             287
    • 7.1.3    Market Segmentation by Industry    287
      • 7.1.3.1 Textiles and Apparel  287
      • 7.1.3.2 Food Packaging           288
      • 7.1.3.3 Firefighting Foams      288
      • 7.1.3.4 Electronics & semiconductors           288
      • 7.1.3.5 Automotive      288
      • 7.1.3.6 Aerospace        289
      • 7.1.3.7 Construction  289
      • 7.1.3.8 Others 289
  • 7.2        Impact of Regulations on Market Dynamics             290
    • 7.2.1    Shift from Long-Chain to Short-Chain PFAS              290
    • 7.2.2    Growth in PFAS-Free Alternatives Market    291
    • 7.2.3    Regional Market Shifts Due to Regulatory Differences       293
  • 7.3        Emerging Trends and Opportunities               294
    • 7.3.1    Green Chemistry Innovations             294
    • 7.3.2    Circular Economy Approaches          295
    • 7.3.3    Digital Technologies for PFAS Management              296
  • 7.4        Challenges and Barriers to PFAS Substitution         298
    • 7.4.1    Technical Performance Gaps              298
    • 7.4.2    Cost Considerations 299
    • 7.4.3    Regulatory Uncertainty            301
  • 7.5        Future Market Projections     302
    • 7.5.1    Short-Term Outlook (1-3 Years)          302
    • 7.5.2    Medium-Term Projections (3-5 Years)            303
    • 7.5.3    Long-Term Scenarios (5-10 Years)    305

 

8             COMPANY PROFILES                309 (49 company profiles)

 

9             RESEARCH METHODOLOGY              339

 

10          REFERENCES 340

 

List of Tables

  • Table 1. Established applications of PFAS. 20
  • Table 2. PFAS chemicals segmented by non-polymers vs polymers.        20
  • Table 3. Non-polymeric PFAS.            21
  • Table 4. Chemical structure and physiochemical properties of various perfluorinated surfactants.  22
  • Table 5. Examples of long-chain PFAS-Applications, Regulatory Status and Environmental and Health Effects.              24
  • Table 6. Examples of short-chain PFAS.       25
  • Table 7. Other non-polymeric PFAS.               27
  • Table 8. Examples of fluoropolymers.           28
  • Table 9. Examples of side-chain fluorinated polymers.     29
  • Table 10. Applications of PFAs.          30
  • Table 11. PFAS surfactant properties.            32
  • Table 12. List of PFAS alternatives.  37
  • Table 13. Common PFAS and their regulation.         48
  • Table 14. International PFAS regulations.    51
  • Table 15. European Union Regulations.       51
  • Table 16. United States Regulations.             54
  • Table 17. PFAS Regulations in Asia-Pacific Countries.       59
  • Table 18. Identified uses of PFAS in semiconductors.        61
  • Table 19. Alternatives to PFAS in Semiconductors.               70
  • Table 20. Key properties of PFAS in water-repellent materials.     77
  • Table 21. Initiatives by outdoor clothing companies to phase out PFCs.                79
  • Table 22. Comparative analysis of Alternatives to PFAS for textiles.          80
  • Table 23. Companies developing PFAS alternatives for textiles.  87
  • Table 24. Applications of PFAS in Food Packaging.              89
  • Table 25. Regulation related to PFAS in food contact materials.  90
  • Table 26. Applications of cellulose nanofibers (CNF).        94
  • Table 27. Companies developing PFAS alternatives for food packaging.               108
  • Table 28. Applications and purpose of PFAS in paints and coatings.        110
  • Table 29. Companies developing PFAS alternatives for paints and coatings.      116
  • Table 30. Applications of Ion Exchange Membranes.          120
  • Table 31. Key aspects of PEMELs.    124
  • Table 32. Membrane Degradation Processes Overview.    125
  • Table 33. PFSA Membranes & Key Players. 125
  • Table 34. Competing Membrane Materials.               126
  • Table 35. Comparative analysis of membrane properties.               127
  • Table 36. Processes for manufacturing of  perfluorosulfonic acid (PFSA) membranes.               130
  • Table 37. PFSA Resin Suppliers.        133
  • Table 38. CCM Production Technologies.    134
  • Table 39. Comparison of Coating Processes.           134
  • Table 40. Alternatives to PFAS in catalyst coated membranes.    134
  • Table 41. Key Properties and Considerations for RFB Membranes.           136
  • Table 42. PFSA Membrane Manufacturers for RFBs.            137
  • Table 43. Alternative Materials for RFB Membranes             138
  • Table 44. Alternative Polymer Materials for Ion Exchange Membranes.  139
  • Table 45. Hydrocarbon Membranes for PEM Fuel Cells.    143
  • Table 46. Companies developing PFA alternatives for fuel cell membranes.      145
  • Table 47. Identified uses of PFASs in the energy sector.    146
  • Table 48. Alternatives to PFAS in Energy by Market (Excluding Fuel Cells).           151
  • Table 49: Anti-icing and de-icing nanocoatings product and application developers.   155
  • Table 50. Companies developing alternatives to PFAS in energy (excluding fuel cells).                160
  • Table 51. Commercial low-loss organic laminates-key properties at 10 GHz.    162
  • Table 52. Key Properties of PTFE to Consider for 5G Applications.             163
  • Table 53. Applications of PTFE in 5G in a table         163
  • Table 54. Challenges in PTFE-based laminates in 5G.        164
  • Table 55. Key regulations affecting PFAS use in low-loss materials.          165
  • Table 56. Commercial low-loss materials suitable for 5G applications. 166
  • Table 57. Key low-loss materials suppliers.               166
  • Table 58. Alternatives to PFAS for low-loss applications in 5G      167
  • Table 59. Benchmarking LTCC materials suitable for 5G applications.   171
  • Table 60. Benchmarking of various glass substrates suitable for 5G applications.         172
  • Table 61. Applications of PFAS in cosmetics.           175
  • Table 62. Alternatives to PFAS for various functions in cosmetics.            175
  • Table 63. Companies developing PFAS alternatives in cosmetics.             177
  • Table 64. Applications of PFAS in Automotive Industry.     183
  • Table 65. Application of PFAS in Electric Vehicles.                186
  • Table 66.Suppliers of PFAS-free Coolants and Refrigerants for EVs.         191
  • Table 67.Immersion Fluids for EVs   192
  • Table 68. Immersion Cooling Fluids Requirements.             192
  • Table 69. Single-phase vs two-phase cooling.         194
  • Table 70. Companies producing Immersion Fluids for EVs.            195
  • Table 71. Alternatives to PFAS in the automotive sector.   197
  • Table 72. Use of PFAS in the electronics sector.     205
  • Table 73. Companies developing alternatives to PFAS in electronics & semiconductors.          210
  • Table 74. Applications of PFAS in Medical Devices.              214
  • Table 75. Alternatives to PFAS in medical devices.               218
  • Table 76. Readiness level of PFAS alternatives.       221
  • Table 77. Comparing PFAS-free alternatives to traditional PFAS-containing release agents.   223
  • Table 78. Novel PFAS-free CTPI structures.                235
  • Table 79. Applications of PFAS-free CTPIs in flexible electronics.               236
  • Table 80. Current methods for PFAS elimination . 237
  • Table 81. Companies developing processes for PFA degradation and elimination.         244
  • Table 82. PFAS drinking water treatment market forecast 2025-2035     247
  • Table 83. Pathways for PFAS environmental contamination.         248
  • Table 84.  Global PFAS Drinking Water Limits           249
  • Table 85. USA PFAS Regulations.      250
  • Table 86. EU PFAS Regulations          251
  • Table 87. Global PFAS Regulations. 252
  • Table 88. Applications requiring PFAS water treatment.    254
  • Table 89. Point-of-Use (POU) and Point-of-Entry (POE) Systems.               255
  • Table 90. PFAS treatment approaches.        256
  • Table 91. Typical Flow Rates for Different Facilities.            256
  • Table 92. In-Situ vs Ex-Situ Treatment Comparison              257
  • Table 93. Technology Readiness Level (TRL) for PFAS Removal.  258
  • Table 94. Removal technologies for PFAS in water.               258
  • Table 95. Suppliers of GAC media for PFAS removal applications.             261
  • Table 96. Commercially Available PFAS-Selective Resins.              262
  • Table 97. Estimated Treatment Costs by Method. 264
  • Table 98. Comparison of technologies for PFAS removal. 264
  • Table 99. Emerging removal technologies for PFAS in water.          265
  • Table 100. Companies in emerging PFAS removal technologies. 268
  • Table 101. PFAS Destruction Technologies.               269
  • Table 102. Technology Readiness Level (TRL) for PFAS Destruction Technologies.          270
  • Table 103. Thermal Treatment Types.             271
  • Table 104. Liquid-Phase Technology Segmentation.            272
  • Table 105. PFAS Destruction Technologies Challenges.    276
  • Table 106. Companies developing PFAS Destruction Technologies.         277
  • Table 107. Treatment Methods for PFAS-Contaminated Solids.   279
  • Table 108. Companies developing processes for PFAS water and solid treatment.         282
  • Table 109. Global PFAS Market Projection (2023-2035), Billions USD.    285
  • Table 110. Regional PFAS Market Projection (2023-2035), Billions USD. 287
  • Table 111. PFAS Market Segmentation by Industry (2023-2035), Billions USD. 289
  • Table 112. Long-Chain PFAS andShort-Chain PFAS Market Share              291
  • Table 113.PFAS-Free Alternatives Market Size from 2020 to 2035, (Billions USD).          292
  • Table 114. Regional Market Data (2023) for PFAS and trends.       293
  • Table 115. Market Opportunities for PFAS alternatives.     295
  • Table 116. Circular Economy Initiatives and Potential Impact.     296
  • Table 117. Digital Technology Applications and Market Potential.              297
  • Table 118. Performance Comparison Table.              298
  • Table 119. Cost Comparison Table-PFAS and PFAS alternatives.                300
  • Table 120. Market Size 2023-2026 (USD Billions). 303
  • Table 121. Market size 2026-2030 (USD Billions). 304
  • Table 122. Long-Term Market Projections (2035).  306

 

List of Figures

  • Figure 1. Types of PFAS.          24
  • Figure 2. Structure of PFAS-based polymer finishes.          27
  • Figure 3. Water and Oil Repellent Textile Coating. 31
  • Figure 4. Main PFAS exposure route.              33
  • Figure 5. Main sources of perfluorinated compounds (PFC) and general pathways that these compounds may take toward human exposure.    35
  • Figure 6.  Photolithography process in semiconductor manufacturing. 62
  • Figure 7. PFAS containing Chemicals by Technology Node.            63
  • Figure 8. The photoresist application process in photolithography.          64
  • Figure 9: Contact angle on superhydrophobic coated surface.    85
  • Figure 10. PEMFC Working Principle.             122
  • Figure 11. Schematic representation of a Membrane Electrode Assembly (MEA).          129
  • Figure 12. Slippery Liquid-Infused Porous Surfaces (SLIPS).          234
  • Figure 13. Aclarity’s Octa system.    242
  • Figure 15. Process for treatment of PFAS in water. 253
  • Figure 18. Octa™ system.       310
  • Figure 19. Gradiant Forever Gone.   324
  • Figure 20. PFAS Annihilator® unit.    335

 

The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Alternatives and PFAS Treatment 2025-2035
The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Alternatives and PFAS Treatment 2025-2035
PDF download.

The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Alternatives and PFAS Treatment 2025-2035
The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Alternatives and PFAS Treatment 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com