The Global Metamaterials Market 2025-2035

0

cover

cover

Metasurfaces, Optical Metamaterials, Radio Frequency (RF) Metamaterials, Terahertz Metamaterials, Acoustic Metamaterials, Thermal Metamaterials, Tunable Metamaterials.

  • Published: December 2024
  • Pages: 233
  • Tables: 66
  • Figures: 73

 

Metamaterials represent a revolutionary class of engineered materials that exhibit properties not found in naturally occurring materials. These artificially structured materials can manipulate electromagnetic waves, sound waves, and heat in unprecedented ways, enabling breakthrough applications across multiple industries. The current metamaterials market is primarily driven by applications in telecommunications, aerospace & defense, and automotive sectors. Key developments include:

  • Deployment of metamaterial-based antennas for 5G communications
  • Integration of metamaterial radar and LiDAR systems in autonomous vehicles
  • Development of stealth technologies and electromagnetic shielding
  • Advanced thermal management solutions for electronics

 

The market is seeing increased commercialization of metamaterial technologies, moving beyond research laboratories into practical applications. Major investments are flowing into metamaterial start-ups, particularly those focused on communications, automotive sensing, and consumer electronics applications.

Why Metamaterials Matter:

  • Enable next-generation wireless communications systems
  • Improve efficiency and performance of electronic devices
  • Provide superior solutions for thermal management
  • Enable novel optical and sensing capabilities
  • Offer unique advantages in noise reduction and vibration control

 

Key Market Drivers include:

  • Growing demand for high-performance electronic devices
  • Expansion of 5G/6G networks
  • Rise of autonomous vehicles and advanced sensing
  • Need for improved thermal management solutions
  • Increasing focus on energy efficiency

 

The metamaterials market is expected to see significant growth through 2035, driven by:

  • Expansion of wireless communication networks
  • Advanced automotive radar and sensing systems
  • New applications in consumer electronics
  • Emerging medical imaging technologies
  • Innovation in energy harvesting and thermal management

 

The most promising near-term opportunities lie in:

  1. Communications infrastructure for 5G/6G networks
  2. Automotive sensing and radar systems
  3. Thermal management for electronics
  4. Advanced optical systems and displays
  5. Aerospace and defense applications

 

Challenges include scaling up manufacturing processes, reducing production costs, and improving material performance and durability. However, ongoing technological advances and increasing investment in R&D are expected to address these challenges over time. The market outlook remains highly positive, with metamaterials poised to enable transformative applications across multiple industries. As manufacturing capabilities improve and costs decrease, adoption is expected to accelerate, particularly in high-value applications where metamaterials offer unique advantages over conventional solutions.

The Global Metamaterials Market 2025-2035 provides a detailed analysis of the rapidly evolving global metamaterials sector, covering optical, radio frequency (RF), terahertz, acoustic, and thermal metamaterials across key application sectors including communications, automotive, aerospace & defense, medical imaging, consumer electronics, and more. The report offers granular market forecasts from 2025-2035, analyzing revenue opportunities by:

  • Metamaterial type (optical, RF, acoustic, thermal, etc.)
  • End-use applications and markets
  • Geographic regions (North America, Europe, Asia Pacific, Rest of World)
  • Technology segments (passive vs. active, fixed vs. tunable)
  • Manufacturing methods and material choices

 

Key Report Features:

  • Comprehensive analysis of metamaterial technologies, manufacturing processes, and applications
  • Detailed market sizing and growth projections through 2035
  • Assessment of key players and competitive landscape
  • In-depth coverage of emerging applications like 5G/6G communications, autonomous vehicles, medical devices
  • Evaluation of technology readiness levels across different metamaterial types
  • Analysis of market drivers, challenges and opportunities
  • Profiles of 70+ companies developing metamaterial technologies. Companies profiled include 2Pi Optics, Acoustic Metamaterials Group Ltd., Alphacore Inc., Armory Technologies, Anywaves, BlueHalo LLC, Breylon, DoCoMo, Droneshield Limited, Echodyne Inc., Edgehog Advanced Technologies, Emrod, Evolv Technologies Inc., EM Infinity, Face Companies, Filled Void Materials (FVMat) Ltd., Fractal Antenna Systems Inc., Greenerwave, H-Chip Technology Group, HyMet Thermal Interfaces SIA, Imagia, Imuzak Co. Ltd., Kuang-Chi Technologies, Kymeta Corporation, LATYS, Leadoptik Inc., Lumotive, Magic Shields Inc., Magment AG, Metaboards Limited, Metafold 3D, Metahelios, Metalenz Inc., Metamagnetics Inc., META, MetaSeismic, MetaShield LLC, Metasonixx, Metavoxel Technologies, Metawave Corporation, Morphotonics, Moxtek, Multiwave Imaging, Nanohmics Inc., Nature Architects, Neurophos LLC, NIL Technology, Nissan Motor Co., and more. 

 

Market contents include:

  • Executive summary and market overview
  • Detailed analysis of metamaterial types and properties
  • Manufacturing methods and scalability assessment
  • Applications analysis across major end-use sectors
  • Market forecasts and opportunity assessment
  • Competitive landscape and company profiles
  • Technology roadmaps and future outlook

 

The report provides essential insights for:

  • Technology companies and startups
  • Materials and component manufacturers
  • Electronics and telecommunications companies
  • Automotive and aerospace manufacturers
  • Investment firms and VCs
  • R&D organizations and universities

 

Detailed Coverage Includes:

  • Optical Metamaterials: LiDAR, metalenses, holograms, filters
  • RF Metamaterials: Antennas, radar, EMI shielding, wireless communications
  • Acoustic Metamaterials: Sound insulation, vibration damping
  • Thermal Metamaterials: Cooling, heat management, energy harvesting
  • Emerging Applications: Quantum metamaterials, self-transforming structures
  • Manufacturing: From lab-scale to commercial production methods
  • Market Analysis: Drivers, trends, opportunities and challenges

 

 

Download table of contents (PDF)

1             EXECUTIVE SUMMARY            18

  • 1.1        Historical metamaterials market      18
  • 1.2        Recent growth               20
  • 1.3        Current commercial landscape        20
  • 1.4        Global market revenues, current and forecast        21
    • 1.4.1    By type                21
    • 1.4.2    By end-use market     23
  • 1.5        Regional analysis        25
  • 1.6        Market opportunity assessment       26
  • 1.7        Investment funding in metamaterials            29
  • 1.8        Market and technology challenges  30
  • 1.9        Industry developments 2020-2024 31

 

2             METAMATERIALS OVERVIEW               33

  • 2.1        What are metamaterials?      33
  • 2.2        Types   35
  • 2.3        Metasurfaces 36
    • 2.3.1    Meta-Lens        36
    • 2.3.2    Metasurface holograms         37
    • 2.3.3    Flexible metasurfaces             38
    • 2.3.4    Reconfigurable intelligent surfaces (RIS)    38
  • 2.4        Manufacturing methods         40
    • 2.4.1    Wet etching     40
    • 2.4.2    Dry phase patterning 41
    • 2.4.3    Roll-to-roll (R2R) printing       41
    • 2.4.4    Wafer-scale nanoimprint lithography            42
    • 2.4.5    E-beam lithography and atomic layer deposition (ALD      43
    • 2.4.6    Laser ablation               43
    • 2.4.7    Deep ultraviolet (DUV) photolithography    43
    • 2.4.8    RF metamaterials manufacturing    44
    • 2.4.9    Optical metamaterials manufacturing         46
  • 2.5        Passive vs active metamaterials       48

 

3             OPTICAL METAMATERIALS    49

  • 3.1        Overview           49
  • 3.2        Commercial examples            50
  • 3.3        LiDAR Beam Steering                50
    • 3.3.1    Overview           50
    • 3.3.2    Types   50
    • 3.3.3    Advantages of Metamaterial LiDAR 51
    • 3.3.4    Liquid crystals              51
    • 3.3.5    Commerical examples            52
  • 3.4        Photonic metamaterials         54
  • 3.5        Optical filters and antireflective coatings    55
      • 3.5.1    Overview           55
      • 3.5.2    Electromagnetic (EM) filters 56
      • 3.5.3    Types   56
      • 3.5.4    ARCs   57
      • 3.5.5    Applications of Metamaterial anti-reflection coatings        58
    • 3.6        Tunable metamaterials           61
  • 3.7        Frequency selective surface (FSS) based metamaterials 61
  • 3.8        Plasmonic metamaterials     62
  • 3.9        Invisibility cloaks         62
  • 3.10     Perfect absorbers       63
  • 3.11     Optical nanocircuits 63
  • 3.12     Metamaterial lenses (Metalenses)  64
    • 3.12.1 Overview           64
    • 3.12.2 Light manipulation     65
    • 3.12.3 Applications   65
  • 3.13     Holograms      67
  • 3.14     Materials selection     67
  • 3.15     Applications   69

 

4             RADIO FREQUENCY (RF) METAMATERIALS 71

  • 4.1        Overview           71
  • 4.2        Key characteristics    71
  • 4.3        Reconfigurable Intelligent Surfaces (RIS)    72
    • 4.3.1    Overview           72
    • 4.3.2    Key features    72
    • 4.3.3    Frequencies    73
    • 4.3.4    Transparent Antennas             75
    • 4.3.5    Comparison with Other Smart Electromagnetic (EM) Devices      75
  • 4.4        Radar  75
    • 4.4.1    Overview           75
    • 4.4.2    Advantages     76
    • 4.4.3    Antennas          78
    • 4.4.4    Metamaterial beamforming 79
  • 4.5        EMI shielding 80
    • 4.5.1    Overview           80
    • 4.5.2    Double negative (DNG) metamaterials         81
    • 4.5.3    Single negative metamaterials           81
    • 4.5.4    Electromagnetic bandgap metamaterials (EBG)    81
    • 4.5.5    Bi-isotropic and bianisotropic metamaterials          82
    • 4.5.6    Chiral metamaterials                82
    • 4.5.7    Applications   83
  • 4.6        MRI Enhancement      84
    • 4.6.1    Overview           84
    • 4.6.2    Applications   84
  • 4.7        Non-Invasive Glucose Monitoring    84
    • 4.7.1    Overview           84
    • 4.7.2    Advantages     85
    • 4.7.3    Commercial examples            85
  • 4.8        Frequency selective surfaces             85
  • 4.9        Tunable RF metamaterials    86
  • 4.10     Absorbers         86
  • 4.11     Luneburg lens                86
  • 4.12     RF filters            87
  • 4.13     Applications   87

 

5             TERAHERTZ METAMATERIALS             89

  • 5.1        THz metasurfaces      89
  • 5.2        Quantum metamaterials       90
  • 5.3        Graphene metamaterials       90
  • 5.4        Flexible/wearable THz metamaterials           91
  • 5.5        THz modulators            92
  • 5.6        THz switches  92
  • 5.7        THz absorbers               92
  • 5.8        THz antennas 92
  • 5.9        THz imaging components      92

 

6             ACOUSTIC METAMATERIALS  94

  • 6.1        Sonic crystals                94
  • 6.2        Acoustic metasurfaces           94
  • 6.3        Locally resonant materials   94
  • 6.4        Acoustic cloaks           95
  • 6.5        Hyperlenses    95
  • 6.6        Sonic one-way sheets              95
  • 6.7        Acoustic diodes           95
  • 6.8        Acoustic absorbers   96
  • 6.9        Applications   96

 

7             THERMAL METAMATERIALS 97

  • 7.1        Overview           97
    • 7.1.1    Advanced 3D printing               98
    • 7.1.2    Functionally Graded Materials           99
    • 7.1.3    Thermoelectric Enhancement            99
  • 7.2        Applications   100
    • 7.2.1    Static radiative cooling materials     101
    • 7.2.2    Photonic Cooling        102
    • 7.2.3    Ultra-conductive Thermal Metamaterials   102
    • 7.2.4    Thermal Convective Metamaterials 102
    • 7.2.5    Thermal Cloaking Metamaterials     103
    • 7.2.6    Thermal Concentrators           103
    • 7.2.7    Thermal Diodes            104
    • 7.2.8    Thermal Expanders    104
    • 7.2.9    Thermal Rotators        105
    • 7.2.10 Greenhouses and Windows 105
    • 7.2.11 Industrial heat harvesting     105
    • 7.2.12 Thermal metalenses 105
    • 7.2.13 Microchip Cooling      105
    • 7.2.14 Photovoltaics Cooling              105
    • 7.2.15 Space applications    106
    • 7.2.16 Electronic packaging 106
    • 7.2.17 Advanced cooling textiles      106
    • 7.2.18 Automotive thermal management  106
    • 7.2.19 Passive daytime radiative cooling (PDRC)  107

 

8             TUNABLE METAMATERIALS  108

  • 8.1        Tunable electromagnetic metamaterials    109
  • 8.2        Tunable THz metamaterials 109
  • 8.3        Tunable acoustic metamaterials      109
  • 8.4        Tunable optical metamaterials          110
  • 8.5        Applications   111
  • 8.6        Nonlinear metamaterials       111
  • 8.7        Self-Transforming Metamaterials     112
  • 8.8        Topological Metamaterials   113
  • 8.9        Materials used with metamaterials 113

 

9             MARKETS AND APPLICATIONS FOR METAMATERIALS        115

  • 9.1        Competitive landscape          115
  • 9.2        Readiness levels of metamaterial technologies     115
  • 9.3        SWOT analysis              116
  • 9.4        Future market outlook             117
  • 9.5        ACOUSTICS    119
    • 9.5.1    Market drivers and trends      119
    • 9.5.2    Applications   120
      • 9.5.2.1 Sound insulation         120
      • 9.5.2.2 Vibration dampers      122
    • 9.5.3    Global revenues           123
  • 9.6        COMMUNICATIONS  124
    • 9.6.1    Market drivers and trends      124
    • 9.6.2    Applications   124
      • 9.6.2.1 Wireless Networks     124
        • 9.6.2.1.1           Reconfigurable antennas      125
        • 9.6.2.1.2           Wireless sensing         125
        • 9.6.2.1.3           Wi-Fi/Bluetooth            126
        • 9.6.2.1.4           Transparent conductive films             128
        • 9.6.2.1.5           5G and 6G Metasurfaces for Wireless Communications  129
      • 9.6.2.2 Radomes          130
      • 9.6.2.3 Fiber Optic Communications             132
      • 9.6.2.4 Satellite Communications    132
      • 9.6.2.5 Thermal management             132
    • 9.6.3    Global revenues           133
  • 9.7        AUTOMOTIVE 134
    • 9.7.1    Market drivers and trends      134
    • 9.7.2    Applications   135
      • 9.7.2.1 Radar and sensors     135
        • 9.7.2.1.1           LiDAR  136
        • 9.7.2.1.2           Beamforming 137
      • 9.7.2.2 Anti-reflective plastics            139
    • 9.7.3    Global revenues 2020-2035 140
  • 9.8        AEROSPACE, DEFENCE & SECURITY             141
    • 9.8.1    Market drivers and trends      141
    • 9.8.2    Applications   142
      • 9.8.2.1 Stealth technology     142
      • 9.8.2.2 Radar  143
      • 9.8.2.3 Optical sensors            144
      • 9.8.2.4 Security screening      145
      • 9.8.2.5 Composites    146
      • 9.8.2.6 Windscreen films        147
      • 9.8.2.7 Protective eyewear for pilots               147
      • 9.8.2.8 EMI and RFI shielding               147
      • 9.8.2.9 Thermal management             148
    • 9.8.3    Global revenues 2020-2035 148
  • 9.9        COATINGS AND FILMS            149
    • 9.9.1    Market drivers and trends      149
    • 9.9.2    Applications   150
      • 9.9.2.1 Cooling films  150
      • 9.9.2.2 Anti-reflection surfaces          151
      • 9.9.2.3 Optical solar reflection coatings       151
    • 9.9.3    Global revenues 2020-2035 152
  • 9.10     PHOTOVOLTAICS         153
    • 9.10.1 Market drivers and trends      153
    • 9.10.2 Applications   153
      • 9.10.2.1            Solar-thermal absorber           153
      • 9.10.2.2            Coatings            154
    • 9.10.3 Global revenues 2020-2035 155
  • 9.11     MEDICAL IMAGING    156
    • 9.11.1 Market drivers and trends      156
    • 9.11.2 Applications   156
      • 9.11.2.1            MRI imaging   156
      • 9.11.2.2            Non-invasive glucose monitoring     157
    • 9.11.3 Global revenues           158
  • 9.12     CONSUMER ELECTRONICS & DISPLAYS     159
    • 9.12.1 Market drivers and trends      159
    • 9.12.2 Applications   159
      • 9.12.2.1            Holographic displays                159
      • 9.12.2.2            Metalenses in smartphones 159
      • 9.12.2.3            AR/VR  160
      • 9.12.2.4            Multiview displays      160
      • 9.12.2.5            Stretchable displays 161
      • 9.12.2.6            Soft materials                162
      • 9.12.2.7            Anti-reflection (AR) coatings                164
    • 9.12.3 Global revenues           164
  • 9.13     COMPOSITES 165
    • 9.13.1 Market drivers and trends      165
    • 9.13.2 Applications   166

 

10          COMPANY PROFILES                167 (74 company profiles)

 

11          RESEARCH METHODOLOGY              226

  • 11.1     Report scope 226
  • 11.2     Research methodology           226

 

12          REFERENCES 227

 

List of Tables

  • Table 1. Global revenues for metamaterials, by type, 2020-2035 (Millions USD).            21
  • Table 2. Global revenues for metamaterials, by market, 2020-2035 (Millions USD).      23
  • Table 3. Global revenues for metamaterials, by region, 2020-2035 (Millions USD).        25
  • Table 4. Market opportunity assessment matrix for metamaterials and metasurfaces applications. 28
  • Table 5. Investment funding in metamaterials and metasurfaces companies.  30
  • Table 6. Market and technology challenges in metamaterials and metasurfaces.          30
  • Table 7. Metamaterials industry developments 2020-2023.          31
  • Table 8. Examples of metamaterials.             33
  • Table 9. Metamaterial landscape by wavelength.   35
  • Table 10. Comparison of types of metamaterials-frequency ranges, key characteristics, and applications.  36
  • Table 11. Benchmarking of Reconfigurable Intelligent Surfaces (RIS) types.       39
  • Table 12. Comparison of metamaterials manufacturing methods.           40
  • Table 13. Passive vs active metamaterials. 48
  • Table 14. Optical metamaterials: Applications and companies. 50
  • Table 15. Comparison of metasurface beam-steering LiDAR with other types. 53
  • Table 16. Applications of metalenses.          65
  • Table 17. Transparency ranges of various materials commonly used in or considered for optical metamaterials.             67
  • Table 18. Materials for optical metamaterial applications.             68
  • Table 19. Optical Metamaterial Applications.          69
  • Table 20. Current and potential market impact for optical metamaterials.          70
  • Table 21. RIS Commerical Examples.            72
  • Table 22. RIS operation phases.        73
  • Table 23. RIS Hardware.          73
  • Table 24. RIS functionalities.               73
  • Table 25. Challenges for fully functionalized RIS environments.  74
  • Table 26. RIS vs Other Smart Electromagnetic (EM) Devices.        75
  • Table 27. Metamaterials in radar: Advantages and limitations.    76
  • Table 28. Suitable materials for RF metamaterials by application.            77
  • Table 29. Benchmark of substrate material properties for antenna substrate.   78
  • Table 30. Operational frequency ranges by application.    78
  • Table 31. Comparing metamaterial beamforming radars against other types.   80
  • Table 32. Functionalities of metamaterials in EMI shielding.         80
  • Table 33. Opportunities for metamaterials in EMI shielding.          83
  • Table 34. Applications of metamaterials in MRI.    84
  • Table 35. Applications and players in radio frequency metamaterials.   87
  • Table 36. Applications of acoustic metamaterials.               96
  • Table 37. Types of thermal management metamaterials by function-Function Type, Description, Key Mechanisms, Example Structures.  98
  • Table 38. Applications of thermal management metamaterials. 101
  • Table 39. Passive daytime radiative cooling (PDRC) .Radiative Cooling Technologies Comparison     107
  • Table 40. Types of tunable terahertz (THz) metamaterials and their tuning mechanisms.          109
  • Table 41. Tunable acoustic metamaterials and their tuning mechanisms.          109
  • Table 42.  Types of tunable optical metamaterials and their tuning mechanisms.          110
  • Table 43. Markets and applications for tunable metamaterials.  111
  • Table 44. Types of self-transforming metamaterials and their transformation mechanisms.   112
  • Table 45.  Key materials used with different types of metamaterials.       114
  • Table 46. Technology Readiness Level (TRL) of various metamaterial technologies.      115
  • Table 47. Metamaterials in sound insulation-market drivers and trends.               119
  • Table 48. Global revenues for metamaterials in acoustics, 2020-2035 (Millions USD). 123
  • Table 49: Metamaterials in electronics and communications-market drivers and trends.         124
  • Table 50. Unmet need, metamaterial solution and markets.         127
  • Table 51. Global revenues for metamaterials in communications, 2020-2035 (Millions USD).               134
  • Table 52. Metamaterials in the automotive sector-market drivers and trends.   134
  • Table 53. Global revenues for metamaterials in automotive, 2020-2035 (Millions USD).            140
  • Table 54. Metamaterials in aerospace, defence and security-market drivers and trends.          141
  • Table 55. Global revenues for metamaterials in aerospace, defence & security, 2020-2035 (Millions USD).  149
  • Table 56. Metamaterials in coatings and films-market drivers and trends.           149
  • Table 57. Applications of metamaterials in coatings and thin films.         150
  • Table 58. Global revenues for metamaterials in coatings and films, 2020-2035 (Millions USD).            152
  • Table 59: Metamaterials in photovoltaics-market drivers and trends.      153
  • Table 60. Global revenues for metamaterials in photovoltaics, 2020-2035 (Millions USD).      155
  • Table 61: Metamaterials in medical imaging-drivers and trends. 156
  • Table 62. Global revenues for metamaterials in medical imaging, 2020-2035 (Millions USD). 158
  • Table 63: Metamaterials in consumer electronics and displays-drivers and trends.      159
  • Table 64. Global revenues for metamaterials in consumer electronics, 2020-2035 (Millions USD).   165
  • Table 65: Metamaterials in composites-drivers and trends.           165
  • Table 66.Metamaterials in Composites - Applications       166

 

List of Figures

  • Figure 1. Classification of metamaterials based on functionalities.         19
  • Figure 2. Global revenues for metamaterials, by type, 2020-2035 (Millions USD).          23
  • Figure 3. Global revenues for metamaterials, by market, 2020-2035 (Millions USD).    25
  • Figure 4. Global revenues for metamaterials, by region, 2020-2035 (Millions USD).      26
  • Figure 5. Metamaterials example structures.           33
  • Figure 6. Metamaterial schematic versus conventional materials.            34
  • Figure 7. Scanning electron microscope (SEM) images of several metalens antenna forms.   37
  • Figure 8. Transparent and flexible metamaterial film developed by Sekishi Chemical. 38
  • Figure 9. The most common designs for photonic MMs: (a) SRRs, (b) wood pile structures, (c) colloidal crystals, and (d) inverse opals.          55
  • Figure 10. Invisibility cloak.  63
  • Figure 11. Metamaterial antenna.    78
  • Figure 12. Electromagnetic metamaterial. 81
  • Figure 13. Schematic of Electromagnetic Band Gap (EBG) structure.      82
  • Figure 14. Schematic of chiral metamaterials.        83
  • Figure 15. Terahertz metamaterials.               89
  • Figure 16.  Schematic of the quantum plasmonic metamaterial.               90
  • Figure 17. Properties and applications of graphene metamaterials.         91
  • Figure 18. Thermal Metamaterial and Cooling Roadmap 2025-2035.      102
  • Figure 19. Nonlinear metamaterials- 400-nm thick nonlinear mirror that reflects frequency-doubled output using input light intensity as small as that of a laser pointer.         112
  • Figure 20. SWOT analysis: metamaterials market.                116
  • Figure 21. Prototype metamaterial device used in acoustic sound insulation.  120
  • Figure 22. Metamaterials installed in HVAC sound insulation the Hotel Madera Hong Kong.   121
  • Figure 23. Robotic metamaterial device for seismic-induced vibration mitigation.        122
  • Figure 24. Global revenues for metamaterials in acoustics, 2020-2035 (Millions USD).             123
  • Figure 25. Wireless charging technology prototype.             127
  • Figure 26. Flat-panel satellite antenna (top) and antenna mounted on a vehicle (bottom).       128
  • Figure 27. META Transparent Window Film.               130
  • Figure 28. Radi-cool metamaterial film.      133
  • Figure 29. Global revenues for metamaterials in communications, 2020-2035 (Millions USD).             133
  • Figure 30. Metamaterials in automotive applications.       135
  • Figure 31. Lumotive advanced beam steering concept.    138
  • Figure 32. Echodyne metamaterial radar mounted on automobile.          139
  • Figure 33. Anti-reflective metamaterials plastic.   140
  • Figure 34. Global revenues for metamaterials in automotive, 2020-2035 (Millions USD).          140
  • Figure 35. Metamaterials invisibility cloak for microwave frequencies.   142
  • Figure 36. Metamaterials radar antenna.    144
  • Figure 37. Metamaterials radar array.            144
  • Figure 38. Evolv Edge visitor screening solution.    146
  • Figure 39.  Lightweight metamaterial microlattice.               146
  • Figure 40. metaAIR eyewear.                147
  • Figure 41. Global revenues for metamaterials in aerospace, defence & security, 2020-2035 (Millions USD).  148
  • Figure 42. Schematic of dry-cooling technology.   151
  • Figure 43. Global revenues for metamaterials in coatings and films, 2020-2035 (Millions USD).          152
  • Figure 44. Metamaterial solar coating.          154
  • Figure 45. Global revenues for metamaterials in photovoltaics, 2020-2035 (Millions USD).    155
  • Figure 46. A patient in MRI scan modified by metasurface.             157
  • Figure 47. Global revenues for metamaterials in medical imaging, 2020-2035 (Millions USD).              158
  • Figure 48. Stretchable hologram.     161
  • Figure 49. Design concepts of soft mechanical metamaterials with large negative swelling ratios and tunable stress-strain curves.              163
  • Figure 50. Global revenues for metamaterials in consumer electronics, 2020-2035 (Millions USD).  164
  • Figure 51. Anywaves antenna products. CubeSat S-band antenna, CubeSat X-band antenna and UAV cellular antenna.         170
  • Figure 52. Brelyon monitor.  172
  • Figure 53. DoCoMo transmissive metasurface.      173
  • Figure 54. RadarZero.               174
  • Figure 55. Schematic of MESA System.        175
  • Figure 56. EchoGuard Radar System.            176
  • Figure 57. Edgehog Advanced Technologies Omnidirectional anti-reflective coating.   177
  • Figure 58. Emrod architecture. 1. A transmitting antenna. 2. A relay that is essentially lossless, doesn’t require any power, and acts as a lens refocusing the beam extending the travel range. 3. A rectenna that receives and rectifies the beam back to electricity. Metamaterials allow converting wireless energy back into electricity efficiently.          178
  • Figure 59. Commercial application of Emrod technology.               179
  • Figure 60. Evolv Edge screening system.     180
  • Figure 61. FM/R technology. 183
  • Figure 62. Metablade antenna.          184
  • Figure 63. MTenna flat panel antenna.          188
  • Figure 64. Kymeta u8 antenna installed on a vehicle.          189
  • Figure 65. LIDAR system for autonomous vehicles.              192
  • Figure 66. Light-control metasurface beam-steering chips.           193
  • Figure 67. Metamaterials film.            194
  • Figure 68. Metaboard wireless charger.        195
  • Figure 69. Orion dot pattern projector.          197
  • Figure 70. A 12-inch wafer made using standard semiconductor processes contains thousands of metasurface optics.  198
  • Figure 71. metaAIR.   200
  • Figure 72. Nissan acoustic metamaterial.  210
  • Figure 73. Metamaterial structure used to control thermal emission.     217

   

The Global Metamaterials Market 2025-2035
The Global Metamaterials Market 2025-2035
PDF download/by email.

The Global Metamaterials Market 2025-2035
The Global Metamaterials Market 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com