The Global Nuclear Fusion Energy Market 2025-2045

0

cover

cover

  • Published: April 2025
  • Pages: 370
  • Tables: 86
  • Figures: 27

 

Nuclear fusion energy stands at the precipice of commercial viability after decades of scientific pursuit. Unlike conventional nuclear fission, fusion promises abundant clean energy with minimal radioactive waste and no risk of meltdown, potentially revolutionizing global energy markets. The fusion industry has experienced unprecedented growth since 2021, with private investment exceeding $7 billion by early 2025. This surge represents a dramatic shift from the historically government-dominated research landscape. Several approaches are competing for market dominance. Magnetic confinement fusion (tokamaks and stellarators) remains the most mature technology, with companies like Commonwealth Fusion Systems, TAE Technologies, and Tokamak Energy making significant advances. Inertial confinement fusion has gained momentum following NIF's breakthrough, while alternative approaches like magnetized target fusion (pursued by General Fusion) and Z-pinch technology (Zap Energy) have attracted substantial investment.

The fusion market currently consists primarily of pre-revenue technology developers, specialized component suppliers, and strategic investors. Major energy corporations including Chevron, Eni, and Shell have made strategic investments, signaling growing confidence in fusion's commercial potential. Government funding also remains crucial,. Near-term projections suggest the first commercial fusion power plants could begin operation between 2030-2035. Commonwealth Fusion Systems and UK-based First Light Fusion have both announced timelines targeting commercial plants by 2031-2032, though challenges remain in materials science, plasma stability, and engineering integration. The fusion energy sector could reach $40-80 billion by 2035 and potentially exceed $350 billion by 2050 if technological milestones are achieved. Initial deployment will likely focus on grid-scale baseload power generation, with hydrogen production and industrial heat applications following as the technology matures.

The acceleration of fusion development is driven by climate imperatives, energy security concerns, and technological breakthroughs in adjacent fields like advanced materials and computational modelling. Regulatory frameworks are evolving, with the US Nuclear Regulatory Commission beginning to develop specific guidelines for fusion facilities distinct from fission regulations. Significant challenges remain, including technical hurdles in plasma confinement, tritium fuel cycle management, and first-wall materials capable of withstanding neutron bombardment. Economic viability also remains uncertain, with cost-competitiveness dependent on reducing capital expenses and achieving high capacity factors.

The nuclear fusion energy market represents one of the most promising frontier technology sectors, with potential to fundamentally reshape global energy systems. While technical and economic challenges persist, unprecedented private capital, technological breakthroughs, and climate urgency are accelerating development timelines. The industry is transitioning from pure research to commercialization phases, suggesting fusion may finally fulfill its long-promised potential within the coming decade.

The Global Nuclear Fusion Energy Market 2025-2045 provides the definitive analysis of the emerging nuclear fusion energy market, covering the pivotal 20-year period when fusion transitions from laboratory experiments to commercial reality. Report contents include: 

  • Commercial Fusion Technology Assessment: Detailed comparison of tokamak, stellarator, spherical tokamak, field-reversed configuration (FRC), inertial confinement fusion (ICF), magnetized target fusion (MTF), Z-pinch, and pulsed power approaches with SWOT analysis and technological maturity evaluation
  • Fusion Fuel Cycle Economic Analysis: Quantitative assessment of tritium supply constraints, breeding requirements, and economic implications of D-T, D-D, and aneutronic fuel cycles with strategic recommendations for mitigating supply bottlenecks
  • Critical Materials Supply Chain Vulnerability: Strategic analysis of high-temperature superconductor manufacturing capacity, lithium-6 isotope enrichment capabilities, plasma-facing material production, and specialized component bottlenecks with geopolitical risk assessment
  • AI and Digital Twin Implementation: Evaluation of machine learning applications in plasma control, predictive maintenance, reactor optimization, and fusion simulation with case studies of successful AI implementations accelerating fusion development
  • Comparative LCOE Projections: Evidence-based levelized cost of electricity projections for fusion compared to advanced fission, renewables with storage, and hydrogen technologies across multiple timeframes and deployment scenarios
  • Investment and Funding Analysis: Detailed breakdown of $9.8B+ in fusion investments by technology approach, geographic region, company stage, and investor type with proprietary data on valuation trends and funding efficiency metrics
  • Fusion Plant Integration Models: Technical assessment of grid integration approaches, operational flexibility capabilities, cogeneration potential for process heat/hydrogen, and comparative analysis of modular versus utility-scale deployment strategies
  • Regulatory Framework Evolution: Analysis of emerging fusion-specific regulations across major jurisdictions with timeline projections for licensing pathways and recommendations for regulatory engagement strategies
  • Market Adoption Projections: Quantitative market penetration modeling by geography, sector, and application with comprehensive analysis of rate-limiting factors including supply chain constraints, regulatory hurdles, and competing technology evolution
  • Profiles of 45 companies in the nuclear fusion energy market. Companies profiled include Acceleron Fusion, Anubal Fusion, Astral Systems, Avalanche Energy, Blue Laster Fusion, Commonwealth Fusion Systems (CFS), Electric Fusion Systems, Energy Singularity, First Light Fusion, Focused Energy, Fuse Energy, General Fusion, Green Fusion, HB11 Energy, Helical Fusion, Helion Energy, Hylenr, Kyoto Fusioneering, Marvel Fusion, Metatron, NearStar Fusion, Neo Fusion, Novatron Fusion Group and more....

 

 

 

1             EXECUTIVE SUMMARY            17

  • 1.1        What is Nuclear Fusion?        17
  • 1.2        Future Outlook             19
  • 1.3        Competition with Other Power Sources       20
  • 1.4        Investment Funding   22
  • 1.5        Materials and Components 25
  • 1.6        Commercial Landscape         28
  • 1.7        Fuels    32

 

2             INTRODUCTION          36

  • 2.1        The Fusion Energy Market      37
    • 2.1.1    Historical evolution   37
    • 2.1.2    Market drivers                37
    • 2.1.3    National strategies     38
  • 2.2        Technical Foundations            40
    • 2.2.1    Nuclear Fusion Principles     40
      • 2.2.1.1 Nuclear binding energy fundamentals          40
      • 2.2.1.2 Fusion reaction types and characteristics 40
      • 2.2.1.3 Energy density advantages of fusion reactions       41
    • 2.2.2    Power Production Fundamentals     42
      • 2.2.2.1 Q factor             42
      • 2.2.2.2 Electricity production pathways        43
      • 2.2.2.3 Engineering efficiency              44
      • 2.2.2.4 Heat transfer and power conversion systems          45
    • 2.2.3    Fusion and Fission     47
      • 2.2.3.1 Safety profile  48
      • 2.2.3.2 Waste management considerations and radioactivity       49
      • 2.2.3.3 Fuel cycle differences and proliferation aspects    50
      • 2.2.3.4 Engineering crossover and shared expertise             51
      • 2.2.3.5 Nuclear industry contributions to fusion development      52
  • 2.3        Regulatory Framework             52
    • 2.3.1    International regulatory developments and harmonization            53
    • 2.3.2    Europe                55
    • 2.3.3    Regional approaches and policy implications         55

 

3             NUCLEAR FUSION ENERGY MARKET             59

  • 3.1        Market Outlook            59
    • 3.1.1    Fusion deployment    60
    • 3.1.2    Alternative clean energy sources      62
    • 3.1.3    Application in data centers   63
    • 3.1.4    Deployment rate limitations and scaling challenges           64
  • 3.2        Technology Categorization by Confinement Mechanism 66
    • 3.2.1    Magnetic Confinement Technologies            66
      • 3.2.1.1 Tokamak and spherical tokamak designs   66
      • 3.2.1.2 Stellarator approach and advantages           67
      • 3.2.1.3 Field-reversed configurations (FRCs)            68
      • 3.2.1.4 Comparison of magnetic confinement approaches            69
      • 3.2.1.5 Plasma stability and confinement innovations       71
    • 3.2.2    Inertial Confinement Technologies  74
      • 3.2.2.1 Laser-driven inertial confinement    76
      • 3.2.2.2 National Ignition Facility achievements and challenges   77
      • 3.2.2.3 Manufacturing and scaling barriers 78
      • 3.2.2.4 Commercial viability 80
      • 3.2.2.5 High repetition rate approaches       82
    • 3.2.3    Hybrid and Alternative Approaches 85
      • 3.2.3.1 Magnetized target fusion       89
      • 3.2.3.2 Pulsed Magnetic Fusion         89
      • 3.2.3.3 Z-Pinch Devices           90
      • 3.2.3.4 Pulsed magnetic fusion          92
    • 3.2.4    Emerging Alternative Concepts          93
    • 3.2.5    Compact Fusion Approaches             96
  • 3.3        Fuel Cycle Analysis   98
    • 3.3.1    Commercial Fusion Reactions          98
      • 3.3.1.1 Deuterium-Tritium (D-T) fusion          99
      • 3.3.1.2 Alternative reaction pathways (D-D, p-B11, He3)  99
      • 3.3.1.3 Comparative advantages and technical challenges            100
      • 3.3.1.4 Aneutronic fusion approaches           102
    • 3.3.2    Fuel Supply Considerations 104
      • 3.3.2.1 Tritium supply limitations and breeding requirements       104
      • 3.3.2.2 Deuterium abundance and extraction methods     107
      • 3.3.2.3 Exotic fuel availability              108
      • 3.3.2.4 Supply chain security and strategic reserves            109
  • 3.4        Ecosystem Beyond Power Plant OEMs         112
    • 3.4.1    Component manufacturers and specialized suppliers      112
    • 3.4.2    Engineering services and testing infrastructure      114
    • 3.4.3    Digital twin technology and advanced simulation tools    115
    • 3.4.4    AI applications in plasma physics and reactor operation 117
    • 3.4.5    Building trust in surrogate models for fusion            120
  • 3.5        Development Timelines          121
    • 3.5.1    Comparative Analysis of Commercial Approaches              122
    • 3.5.2    Strategic Roadmaps and Timelines 124
    • 3.5.2.1 Major Player Developments 124
    • 3.5.3    Public funding for fusion energy research   130
    • 3.5.4    Integrated Timeline Analysis               131
      • 3.5.4.1 Technology approach commercialization sequence            131
      • 3.5.4.2 Fuel cycle development dependencies        132
      • 3.5.4.3 Cost trajectory projections   134

 

4             KEY TECHNOLOGIES                135

  • 4.1        Magnetic Confinement Fusion           135
    • 4.1.1    Tokamak and Spherical Tokamak     135
    • 4.1.1.1 Operating principles and technical foundation       136
    • 4.1.1.2 Commercial development    139
    • 4.1.1.3 SWOT analysis              139
    • 4.1.1.4 Roadmap for commercial tokamak fusion 140
  • 4.1.2    Stellarators      141
    • 4.1.2.1 Design principles and advantages over tokamaks 141
    • 4.1.2.2 Wendelstein 7-X          143
    • 4.1.2.3 Commercial development    144
    • 4.1.2.4 SWOT analysis              147
  • 4.1.3    Field-Reversed Configurations          148
    • 4.1.3.1 Technical principles and design advantages            148
    • 4.1.3.2 Commercial development    149
    • 4.1.3.3 SWOT analysis              151
  • 4.2        Inertial Confinement Fusion 152
    • 4.2.1    Fundamental operating principles   152
    • 4.2.2    National Ignition Facility         154
    • 4.2.3    Commercial development    155
    • 4.2.4    SWOT analysis              161
  • 4.3        Alternative Approaches          162
    • 4.3.1    Magnetized Target Fusion      164
      • 4.3.1.1 Technical overview and operating principles            164
      • 4.3.1.2 Commercial development    165
      • 4.3.1.3 SWOT analysis              167
      • 4.3.1.4 Roadmap         168
    • 4.3.2    Z-Pinch Fusion              169
      • 4.3.2.1 Technical principles and operational characteristics          169
      • 4.3.2.2 Commercial development    170
      • 4.3.2.3 SWOT analysis              174
    • 4.3.3    Pulsed Magnetic Fusion         174
      • 4.3.3.1 Technical overview of pulsed magnetic fusion        174
      • 4.3.3.2 Commercial development    175
      • 4.3.3.3 SWOT analysis              177

 

5             MATERIALS AND COMPONENTS       179

  • 5.1        Critical Materials for Fusion 179
    • 5.1.1    High-Temperature Superconductors (HTS) 182
      • 5.1.1.1 Second-generation (2G) REBCO tape manufacturing process      182
      • 5.1.1.2 Global value chain     182
      • 5.1.1.3 Demand projections and manufacturing bottlenecks        184
      • 5.1.1.4 SWOT analysis              185
    • 5.1.2    Plasma-Facing Materials       187
      • 5.1.2.1 First wall challenges and material requirements    187
      • 5.1.2.2 Tungsten and lithium solutions for plasma-facing components  188
      • 5.1.2.3 Radiation damage and lifetime considerations       189
      • 5.1.2.4 Supply chain  190
    • 5.1.3    Breeder Blanket Materials     191
      • 5.1.3.1 Choice between solid-state and fluid (liquid metal or molten salt) blanket concepts   195
      • 5.1.3.2 Technology readiness level   196
      • 5.1.3.3 Value chain     198
    • 5.1.4    Lithium Resources and Processing 199
      • 5.1.4.1 Lithium demand in fusion     200
      • 5.1.4.2 Lithium-6 isotope separation requirements              200
      • 5.1.4.3 Comparison of lithium separation methods             203
      • 5.1.4.4 Global lithium supply-demand balance      205
  • 5.2        Component Manufacturing Ecosystem       206
    • 5.2.1.1 Specialized capacitors and power electronics        206
    • 5.2.1.2 Vacuum systems and cryogenic equipment             206
    • 5.2.1.3 Laser systems for inertial fusion       207
    • 5.2.1.4 Target manufacturing for ICF               208
  • 5.3        Strategic Supply Chain Considerations        211
    • 5.3.1    Critical minerals          211
    • 5.3.2    China's dominance   212
    • 5.3.3    Public-private partnerships  213
    • 5.3.4    Component supply    214

 

6             BUSINESS MODELS FOR NUCLEAR FUSION ENERGY       216

  • 6.1        Commercial Fusion Business Models           217
    • 6.1.1    Value creation               219
    • 6.1.2    Fusion commercialization    220
    • 6.1.3    Industrial process heat applications              221
  • 6.2        Investment Landscape            223
    • 6.2.1    Funding Trends and Sources               223
      • 6.2.1.1 Public funding mechanisms and programs               223
      • 6.2.1.2 Venture capital             225
      • 6.2.1.3 Corporate investments           228
      • 6.2.1.4 Funding by approach                232
    • 6.2.2    Value Creation              233
      • 6.2.2.1 Pre-commercial technology licensing           233
      • 6.2.2.2 Component and material supply opportunities      234
      • 6.2.2.3 Specialized service provision              236
      • 6.2.2.4 Knowledge and intellectual property monetization              237

 

7             FUTURE OUTLOOK AND STRATEGIC OPPORTUNITES        238

  • 7.1        Technology Convergence and Breakthrough Potential       238
    • 7.1.1    AI and machine learning impact on development  239
    • 7.1.2    Advanced computing for design optimization          239
    • 7.1.3    Materials science advancement       240
    • 7.1.4    Control system and diagnostics innovations           241
    • 7.1.5    High-temperature superconductor advancements              244
  • 7.2        Market Evolution         247
    • 7.2.1    Commercial deployment       247
    • 7.2.2    Market adoption and penetration     248
    • 7.2.3    Grid integration and energy markets               251
    • 7.2.4    Specialized application development paths             254
      • 7.2.4.1 Marine propulsion      254
      • 7.2.4.2 Space applications    254
      • 7.2.4.3 Industrial process heat applications              254
      • 7.2.4.4 Remote power applications 254
  • 7.3        Strategic Positioning for Market Participants            257
    • 7.3.1    Component supplier opportunities 257
    • 7.3.2    Energy producer partnership strategies       258
    • 7.3.3    Technology licensing and commercialization paths             260
    • 7.3.4    Investment timing considerations   263
    • 7.3.5    Risk diversification approaches        263
  • 7.4        Pathways to Commercial Fusion Energy      267
    • 7.4.1    Critical Success Factors        267
      • 7.4.1.1 Technical milestone achievement requirements   267
      • 7.4.1.2 Supply chain development imperatives       270
      • 7.4.1.3 Regulatory framework evolution       274
      • 7.4.1.4 Capital formation mechanisms        275
      • 7.4.1.5 Public engagement and acceptance building          278
    • 7.4.2    Key Inflection Points 279
      • 7.4.2.1 Scientific and engineering breakeven demonstrations      279
      • 7.4.2.2 First commercial plant commissioning       280
      • 7.4.2.3 Manufacturing scale-up         281
      • 7.4.2.4 Cost reduction              282
      • 7.4.2.5 Policy support               282
    • 7.4.3    Long-Term Market Impact      283
      • 7.4.3.1 Global energy system transformation           283
      • 7.4.3.2 Decarbonization          284
      • 7.4.3.3 Geopolitical energy    285
      • 7.4.3.4 Societal benefits and economic development        286
      • 7.4.3.5 Quality of life  287

 

8             COMPANY PROFILES                288 (37 company profiles)

 

9             APPENDICES  362

  • 9.1        Research Methodology           362
  • 9.2        Glossary of Terms       363

 

10          REFERENCES 364

 

List of Tables

  • Table 1. Comparison of Nuclear Fusion Energy with Other Power Sources.         20
  • Table 2. Nuclear Fusion Energy Investment Funding, by company .          21
  • Table 3. Key Materials and Components for Fusion              24
  • Table 4.Commercial Landscape by Reactor Class               27
  • Table 5. Market by Reactor Type.       29
  • Table 6. Fuels in Commercial Fusion.           32
  • Table 7. Commercial Fusion Market by Fuel.            33
  • Table 8. Market drivers for commercialization of nuclear fusion energy. 36
  • Table 9. National strategies in Nuclear Fusion Energy.       38
  • Table 10. Fusion Reaction Types and Characteristics.       40
  • Table 11. Energy Density Advantages of Fusion Reactions.            40
  • Table 12. Q values.     42
  • Table 13. Electricity production pathways from fusion energy.     43
  • Table 14. Engineering efficiency factors.     44
  • Table 15. Heat transfer and power conversion .      45
  • Table 16. Fundamental differences between nuclear fusion and nuclear fission.           46
  • Table 17. Pros and cons of fusion and fission.         47
  • Table 18. Safety aspects.       48
  • Table 19. Waste management considerations and radioactivity. 49
  • Table 20.  International regulatory developments .               53
  • Table 21. Regional approaches to fusion regulation and policy support.               55
  • Table 22. Reactions in Commercial Fusion                59
  • Table 23. Alternative clean energy sources.               62
  • Table 24. Deployment rate limitations and scaling challenges.    64
  • Table 25. Comparison of magnetic confinement approaches.     69
  • Table 26. Plasma stability and confinement innovations. 71
  • Table 27. Inertial Confinement Technologies            73
  • Table 28. Inertial confinement fusion Manufacturing and scaling barriers.          78
  • Table 29. Commercial viability of inertial confinement fusion energy.     80
  • Table 30. High repetition rate approaches. 82
  • Table 31. Hybrid and Alternative Approaches.         84
  • Table 32. Emerging Alternative Concepts.  93
  • Table 33. Compact fusion approaches.       96
  • Table 34. Comparative advantages and technical challenges.     100
  • Table 35. Aneutronic fusion approaches.   102
  • Table 36. Tritium self-sufficiency challenges for D-T reactors.      105
  • Table 37. Supply chain considerations.        108
  • Table 38. Component manufacturers and specialized suppliers.               111
  • Table 39. Engineering services and testing infrastructure.               113
  • Table 40. Digital twin technology and advanced simulation tools.             115
  • Table 41. AI applications in plasma physics and reactor operation.          117
  • Table 42. Comparative Analysis of Commercial Nuclear Fusion Approaches.   121
  • Table 43. Inertial, magneto-inertial and Z-pinch deployment .      126
  • Table 44. Commercial plant deployment projections, by company.         127
  • Table 45. Technology approach commercialization sequence.    131
  • Table 46. Fuel cycle development dependencies. 132
  • Table 47. Cost trajectory projections.            133
  • Table 48. Conventional Tokamak versus Spherical Tokamak.       136
  • Table 49. ITER Specifications.             137
  • Table 50. Design principles and advantages over tokamaks.        141
  • Table 51. Stellarator Commercial development.    144
  • Table 52. Stellarator vs. Tokamak Comparative Analysis  145
  • Table 53. Technical principles and design advantages.     148
  • Table 54. Inertial Confinement Fusion (ICF) operating principles.              152
  • Table 55. Timeline of laser-driven inertial confinement fusion.    158
  • Table 56. Alternative Approaches.   161
  • Table 57. Magnetized Target Fusion (MTF) commercial development.     165
  • Table 58. Z-pinch fusion Technical principles and operational characteristics. 169
  • Table 59. Z-pinch fusion commercial development.            170
  • Table 60. Pulsed magnetic fusion commercial development.       175
  • Table 61. Critical Materials for Fusion.          179
  • Table 62. Global Value Chain.            182
  • Table 63. Demand Projections and Manufacturing Bottlenecks for HTC.               183
  • Table 64. Ceramic, Liquid Metal and Molten Salt Options               192
  • Table 65. Comparison of solid-state and fluid (liquid metal or molten salt) blanket concepts.               194
  • Table 66. Technology Readiness Level Assessment for Breeder Blanket Materials.        195
  • Table 67. Alternatives to COLEX Process for Enrichment. 201
  • Table 68. Comparison of Lithium Separation Methods.     202
  • Table 69. Competition with Battery Markets for Lithium.  203
  • Table 70. Key Components Summary by Fusion Approach.           208
  • Table 71. Fusion Energy for industrial process heat applications.              221
  • Table 72. Public funding mechanisms and programs.        223
  • Table 73. Corporate investments.    228
  • Table 74. Component and material supply opportunities.               234
  • Table 75. Control system and diagnostic innovations.       241
  • Table 76. High-temperature superconductor (HTS) technology advancements.              244
  • Table 77. Market adoption patterns and penetration rates.             248
  • Table 78. Grid integration and energy market impacts.      251
  • Table 79. Specialized application development paths.      254
  • Table 80. Energy producer partnership strategies. 258
  • Table 81. Technology licensing and commercialization paths.     260
  • Table 82. Risk diversification approaches. 264
  • Table 83. Technical milestone achievement requirements.            268
  • Table 84. Supply chain development imperatives. 271
  • Table 85. Capital Formation Mechanisms. 275
  • Table 86. Glossary of Terms  362

 

List of Figures

  • Figure 1. A fusion power plant .          18
  • Figure 2. Experimentally inferred Lawson parameters.      19
  • Figure 3. ITER nuclear fusion reactor.             20
  • Figure 4. Wendelstein 7-X plasma and layer of magnets. 68
  • Figure 5. Z-pinch device.         90
  • Figure 6. Sandia National Laboratory's Z Machine.               91
  • Figure 7. ZAP Energy sheared-flow stabilized Z-pinch.       91
  • Figure 8. Kink instability.         92
  • Figure 9. Tokamak schematic.            136
  • Figure 10. SWOT Analysis of Conventional and Spherical Tokamak Approaches.            140
  • Figure 11. Roadmap for Commercial Tokamak Fusion.     141
  • Figure 12. SWOT Analysis of Stellarator Approach.              148
  • Figure 13. SWOT Analysis of FRC Technology.          152
  • Figure 14. SWOT Analysis of ICF for Commercial Power.  162
  • Figure 15. SWOT Analysis of Magnetized Target Fusion.    167
  • Figure 16. Magnetized Target Fusion (MTF) Roadmap.        168
  • Figure 17. SWOT Analysis of Z-Pinch Reactors.       174
  • Figure 18. SWOT Analysis and Timeline Projections for Pulsed Magnetic Fusion.            177
  • Figure 19. SWOT Analysis of HTS for Fusion.             186
  • Figure 20. Value Chain for Breeder Blanket Materials.        199
  • Figure 21. Lithium-6 isotope separation requirements.     201
  • Figure 22. Commercial Deployment Timeline Projections.             248
  • Figure 23. Commonwealth Fusion Systems (CFS) Central Solenoid Model Coil (CSMC).          295
  • Figure 24. General Fusion reactor vessel (left) and plasma injector (right).          306
  • Figure 25. Novatron’s nuclear fusion reactor design.          330
  • Figure 26. Proxima Fusion Stellaris fusion plant.   350
  • Figure 27. ZAP Energy Fusion Core. 362

 

 

 

The Global Nuclear Fusion Energy Market 2025-2045
The Global Nuclear Fusion Energy Market 2025-2045
PDF download/by email.

The Global Nuclear Fusion Energy Market 2025-2045
The Global Nuclear Fusion Energy Market 2025-2045
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com