The Global Self-Healing Materials Market 2025-2035

0

Capture

  • Published: March 2025
  • Pages: 349
  • Tables: 80
  • Figures: 62

 

Self-healing materials represent a revolutionary class of smart materials engineered to detect damage and autonomously repair themselves, mimicking biological systems' remarkable ability to heal wounds. These materials incorporate specialized mechanisms that activate upon damage, initiating repair processes without external intervention to restore structural integrity and functional properties. This autonomous repair capability addresses a fundamental limitation of conventional materials – their inevitable degradation through mechanical damage, environmental exposure, and aging.

By extending product lifespans and reducing maintenance requirements, these materials offer substantial economic benefits through decreased replacement frequency, minimized downtime, and reduced repair costs. In critical applications like aerospace components, infrastructure elements, and medical implants, self-healing capabilities enhance safety by preventing catastrophic failures that could result from undetected damage progression. Self-healing technologies operate through several distinct mechanisms. Extrinsic systems utilize embedded healing agents in microcapsules or vascular networks that release upon damage to fill cracks and restore properties. Intrinsic systems leverage dynamic chemical bonds that can reform after breakage, enabling multiple healing cycles without depleting resources. Advanced approaches include shape memory assisted healing and stimulus-responsive systems activated by heat, light, or electrical signals.

The environmental impact of self-healing materials is particularly significant, as they contribute to sustainability by reducing material consumption, extending product lifespans, and decreasing waste generation. By enabling longer service life for everything from concrete infrastructure to electronic components, these materials align with circular economy principles and resource conservation objectives.

As manufacturing processes mature and costs decrease, self-healing capabilities are transitioning from specialized high-value applications toward mainstream adoption across consumer products, building materials, transportation systems, and electronic devices. This evolution is accelerating through interdisciplinary collaboration between materials scientists, chemists, engineers, and biologists, who continue to develop increasingly sophisticated self-healing mechanisms inspired by natural processes and enhanced through advanced manufacturing techniques.

The automotive and aerospace sectors currently lead adoption. Self-healing clearcoats and protective finishes in automotive applications have transitioned from luxury vehicles to mainstream production models, while aerospace implementations focus on structural components and corrosion-resistant coatings that enhance safety while reducing maintenance intervals. Construction materials represent the fastest-growing application segment, with self-healing concrete solutions gaining regulatory approval across major markets and demonstrating promising performance in infrastructure applications.

Looking forward, several significant trends will shape market evolution through 2035. Regulatory frameworks increasingly recognize self-healing materials as enabling sustainability by extending product lifecycles and reducing replacement frequencies. Environmental considerations are driving development of bio-based self-healing systems, with early commercial products demonstrating promising performance while reducing carbon footprints. Integration with sensor technologies and digital monitoring systems represents a transformative trend, creating "smart" self-healing materials that communicate damage status and healing progress.

Technical challenges remain in scaling production while maintaining performance consistency, but continuous improvements in manufacturing processes are steadily addressing these limitations. Cost premiums over conventional materials remain a barrier in price-sensitive applications, though lifecycle cost analyses increasingly demonstrate favorable economics when maintenance and replacement expenses are considered. As the technology matures, self-healing capabilities will increasingly be viewed as standard requirements rather than premium features across multiple industries, driving broader adoption beyond current high-value applications into consumer products, electronic devices, and general industrial use. This transition from specialty to mainstream material solution will define the market's evolution over the coming decade.

The Global Self-Healing Materials Market 2025-2035 provides insights into the rapidly evolving self-healing materials landscape, tracking growth trajectories, technological developments, and commercialization strategies through 2035. 

Key Report Contents include:

  • Market Analysis and Growth Projections
    • Market Size and Forecast: Detailed revenue projections from 2025-2035, with historical context from 2015
    • Segmentation by Material Type: Comprehensive breakdown across self-healing polymers, coatings, concrete, metals, ceramics, and composite materials
    • Segmentation by Healing Mechanism: Comparative analysis of microencapsulation, vascular systems, intrinsic self-healing, and shape memory technologies
    • Regional Market Distribution: Granular geographic assessment with regional adoption rates, growth drivers, and market development patterns
    • Technology/Application Matrix: Visual mapping of optimal technology solutions for specific industry challenges
  • Technology Analysis
    • Extrinsic Self-Healing Mechanisms: Comprehensive analysis of microencapsulated healing agents, vascular networks, reversible bonds, and external stimulation approaches
    • Intrinsic Self-Healing Systems: Detailed examination of reversible covalent bonds, ionomers, polymer networks, microscopic mobility, and supramolecular chemistry
    • Material-Specific Technologies: Specialized analysis of self-healing polymers, elastomers, hydrogels, concrete, ceramics, metals, and nanomaterial systems
    • Biomimetic Approaches: Assessment of nature-inspired self-healing mechanisms with commercialization potential
    • SWOT Analysis: Strategic evaluation of strengths, weaknesses, opportunities, and threats for major self-healing technology categories
  • Application Analysis by End-Use Market
    • Aerospace: Self-healing composites, thermal interface materials, and protective coatings
    • Automotive: Scratch-resistant finishes, self-healing glass, composites, and tire technologies
    • Electronics: Display technologies, flexible electronics, wearables, soft robotics, and sensor applications
    • Energy Storage: Battery components, solid electrolytes, fuel cell membranes, and solar technologies
    • Construction: Self-healing concrete, asphalt, protective coatings, and structural materials
    • Healthcare: Tissue engineering scaffolds, drug delivery systems, artificial skin, dental composites, and orthopaedic applications
    • Additional Sectors: Detailed coverage of paints/coatings, adhesives/elastomers, filtration membranes, textiles, military/defense, oil/gas, and marine applications
  • Commercialization Status and Strategic Insights
    • Technology Readiness Assessment: TRL evaluation framework applied to major self-healing technologies
    • Commercial Product Analysis: Comprehensive profiles of marketed products with performance metrics and market positioning
    • Intellectual Property Landscape: Patent analysis revealing innovation trends, strategic positioning, and IP concentration
    • Market Entry Barriers: Identification of technical, economic, and regulatory challenges with mitigation strategies
    • Technology Roadmap: Visual strategic pathway for self-healing material development through 2035
  • Competitive Landscape
  • Company Profiles: Detailed assessments of 35+ key players including technology portfolios, commercialization status, and strategic direction. Companies profiled include 3M, A2O Advanced Materials Inc., ABB, Acciona S.A., Advanced Soft Materials, Inc., Aizawa Concrete Corporation, Akzo Nobel N.V., Applied Thin Film, Inc., Arkema S.A., Basilisk, Battelle, CompPair Technologies Ltd., Covestro AG, Croda, DMAT, DS Smith, Dupont Teijin Films, Epion, Evonik Industries AG, Feynlab, Helicoid Industries, Henkel, Hyundai Motor Group, JP Concrete, Kansai Paint Company, Mimicrete, NATOCO Co., Ltd., and more, covering established multinational corporations, specialized material developers, and innovative startups across the value chain.
  • Future Outlook and Strategic Opportunities
    • Market Acceleration Factors: Identification of technical breakthroughs, policy developments, and market drivers that could accelerate adoption
    • Cross-Industry Convergence: Emerging opportunities at the intersection of self-healing materials with IoT, smart manufacturing, and circular economy initiatives
    • Sustainability Implications: Analysis of environmental benefits, lifecycle advantages, and alignment with ESG objectives

 

 

1             EXECUTIVE SUMMARY            17

  • 1.1        Market opportunity for self-healing materials          17
  • 1.1        Benefits of self-healing           18
  • 1.2        Types of healing by material formulation and format           19
  • 1.3        Technology roadmap by application               21
  • 1.4        Trends in self-healing materials         25
  • 1.5        Commercialising self-healing products       27
    • 1.5.1    Construction materials           29
    • 1.5.2    Protective paints and coatings           30
    • 1.5.3    PVC cutting mats        31
  • 1.6        Biomimetics   32
    • 1.6.1    Key biological repair strategies           32
  • 1.7        Global market revenues, historical and forecast to 2035 33
    • 1.7.1    Total     33
    • 1.7.2    By type                34
    • 1.7.3    By end use market      36
    • 1.7.4    By region           37
  • 1.8        SWOT analysis              39
  • 1.9        Comparison of Self-Healing Materials with Incumbent Materials by Market Sector        40

 

2             INTRODUCTION          43

  • 2.1        Self-healing mechanism and categorization             43
    • 2.1.1    Introduction    43
    • 2.1.2    Viscous creep                44
    • 2.1.3    Intrinsic and Extrinsic Mechanisms                44
    • 2.1.4    Atomic Toolkit                48
    • 2.1.5    Metrics for self-healing           48
  • 2.2        Extrinsic self-healing 50
    • 2.2.1    Microencapsulated healing agents 50
      • 2.2.1.1 Implementation of microcapsule-based self-healing systems     51
      • 2.2.1.2 Manufacturing of microcapsules      52
      • 2.2.1.3 Convergence of self-healing materials and pharmaceutical delivery       53
    • 2.2.2    Vascular self-healing 53
    • 2.2.3    External Stimulation 55
    • 2.2.4    SWOT analysis              56
  • 2.3        Intrinsic self-healing 57
    • 2.3.1    Supramolecular Bonding       57
    • 2.3.2    Reversible Covalent Bonds  58
    • 2.3.3    Ionomer Healing          59
    • 2.3.4    Microscopic Mobility 59
    • 2.3.5    Microcapsule Monomer Diffusion   60
    • 2.3.6    Sustainable intrinsic self-healing materials              60
    • 2.3.7    SWOT analysis              63
    • 2.3.8    Comparison of self-healing systems.            64
  • 2.4        Healing volume            66
  • 2.5        Shape memory assisted self-healing             66
    • 2.5.1    Overview           66
    • 2.5.2    Principle of Shape Memory Assisted Self-Healing (SMASH)           67
    • 2.5.3    Shape Memory with Polymers            68
    • 2.5.4    Materials           68
    • 2.5.5    Self-healing coatings                69
    • 2.5.6    Anti-corrosion               70
      • 2.5.6.1 Types   70
    • 2.5.7    Scratch repair                71
      • 2.5.7.1 Mechanisms underlying scratch repair         71
  • 2.6        Self-healing polymers              72
    • 2.6.1    Self-Healing Polymer Toolkit                73
    • 2.6.2    Intrinsic Self-Healing                84
      • 2.6.2.1 Covalent-Based Intrinsic Self-Healing          84
    • 2.6.3    Self-Healing Polypeptides     85
    • 2.6.4    Reversible Crosslinkers          86
    • 2.6.5    Rapid Polymerization                86
    • 2.6.6    Polyvinyl chloride (PVC) based self-healing               87
    • 2.6.7    Self-Healing Elastomers        88
    • 2.6.8    Self-Healing Fiber-Reinforced Polymers (FRPs)      92
      • 2.6.8.1 Self-healing strategies for FRPs         92
      • 2.6.8.2 Applications   92
      • 2.6.8.3 Challenges      93
      • 2.6.8.4 Hollow fiber embedment       93
    • 2.6.9    Self-healing metals    94
    • 2.6.10 Metal matrix composites       99
    • 2.6.11 Self-Healing and Morphing Composites      99
    • 2.6.12 Self-healing ceramics and ceramic composites    104
    • 2.6.13 Self-healing nanomaterials  104
    • 2.6.14 Self-healing biomaterials       108
    • 2.6.15 3d printing of self-healing materials               112
    • 2.6.16 Self-healing under water         113
      • 2.6.16.1            Approaches    113
    • 2.6.17 Membranes    114
      • 2.6.17.1            Applications   115
        • 2.6.17.1.1        Architectural  115
        • 2.6.17.1.2        Acoustic            115
        • 2.6.17.1.3        Superhydrophobic Surfaces 115
        • 2.6.17.1.4        Energy storage and conversion devices        116
        • 2.6.17.1.5        Desalination   116
        • 2.6.17.1.6        Filtration membranes               117
        • 2.6.17.1.7        Kidney Dialysis             118
        • 2.6.17.1.8        Active ingredients       118
        • 2.6.17.1.9        Gas Separation             119
        • 2.6.17.1.10     Vehicle Paint Protection          120
    • 2.6.18 Factors affecting self-healing             120

 

3             SELF-HEALING MATERIALS ANALYSIS           122

  • 3.1        Polyurethane clear coats       122
    • 3.1.1    Properties         122
    • 3.1.2    Products           122
    • 3.1.3    Markets              123
  • 3.2        Micro-/nanocapsules               124
    • 3.2.1    Properties         124
    • 3.2.2    Manufacturing              125
    • 3.2.3    Products           125
    • 3.2.4    Markets              127
  • 3.3        Microvascular networks         128
    • 3.3.1    Properties         128
    • 3.3.2    Markets              128
  • 3.4        Ionomers          129
    • 3.4.1    Properties         129
    • 3.4.2    Markets              129
  • 3.5        Click polymerization 130
    • 3.5.1    Properties         130
    • 3.5.2    Markets              130
  • 3.6        Supramolecular bonding and MSA  131
    • 3.6.1    Properties         131
  • 3.7        Vitrimers           132
    • 3.7.1    Properties         132
  • 3.8        Self-healing hydrogels             133
    • 3.8.1    Self-healing mechanisms     133
      • 3.8.1.1 Hydrogen Bonding      134
      • 3.8.1.2 Ionic Bonds     134
      • 3.8.1.3 Host-Guest Interactions         134
      • 3.8.1.4 Hydrophobic Bonds  134
      • 3.8.1.5 Imine Bonds   134
      • 3.8.1.6 Arylhydrazone bonds                134
      • 3.8.1.7 Diels-Alder Reaction 135
    • 3.8.2    Types and materials  135
      • 3.8.2.1 Natural Polymers        136
      • 3.8.2.2 Synthetic polymers    136
      • 3.8.2.3 Polyampholyte self-healing hydrogels          137
        • 3.8.2.3.1           Reversible polymer self-healing hydrogels 137
      • 3.8.2.4 Peptides            138
      • 3.8.2.5 Mussel-inspired proteins       138
      • 3.8.2.6 Bacterial cellulose      138
      • 3.8.2.7 Conductive polymers               139
      • 3.8.2.8 Zwitterionic polymers               140
      • 3.8.2.9 Nanomaterial self-healing hydrogels             140
        • 3.8.2.9.1           Graphene         140
        • 3.8.2.9.2           Carbon nanotubes     142
        • 3.8.2.9.3           Nanoclays        142
        • 3.8.2.9.4           Silicate nanoparticles              142
        • 3.8.2.9.5           Magnetic nanoparticles          142
    • 3.8.3    Markets and applications      142
  • 3.9        Carbon nanotubes     143
    • 3.9.1    Properties         143
  • 3.10     Graphene and other 2D materials    145
    • 3.10.1 Properties         145
  • 3.11     Self-healing proteins 146
    • 3.11.1 Properties         146
  • 3.12     Piezoelectric crystals               147
  • 3.13     Morphing host structures and shapeshifting materials     148
    • 3.13.1 Overview           148
    • 3.13.2 Applications   149
    • 3.13.3 Modes of Active Morphing     151
    • 3.13.4 Piezoelectric Actuators           152
    • 3.13.5 Ultraviolet Stimulation             153
    • 3.13.6 Bend-Twist Coupling 153
    • 3.13.7 Electroactive polymer (EAP) composites    154
    • 3.13.8 Morphing Skins             155
    • 3.13.9 Passive Morphing Systems   155
    • 3.13.10              Shape Memory Alloys as Host Materials      156
    • 3.13.11              Active morphing airfoils          157
    • 3.13.12              Active Winglets             157

 

4             PATENT ANALYSIS       159

 

5             MARKETS FOR SELF-HEALING MATERIALS 161

  • 5.1        Aerospace        162
    • 5.1.1    Market drivers                162
    • 5.1.2    Applications   163
      • 5.1.2.1 Self-healing composites        163
      • 5.1.2.2 Self-healing thermal interface materials     163
    • 5.1.3    Commercial activity  164
    • 5.1.4    SWOT analysis              164
    • 5.1.5    Revenues          165
  • 5.2        Automotive      167
    • 5.2.1    Market drivers                167
    • 5.2.2    Applications   167
      • 5.2.2.1 Self-healing glass       167
      • 5.2.2.2 Self-healing coatings for scratch repair        167
      • 5.2.2.3 Self-healing composites        168
      • 5.2.2.4 Self-healing tires          169
        • 5.2.2.4.1           Products           171
    • 5.2.3    Commercial activity  174
    • 5.2.4    SWOT analysis              176
    • 5.2.5    Revenues          177
  • 5.3        Electronics      178
    • 5.3.1    Market drivers                178
    • 5.3.2    Applications   181
      • 5.3.2.1 Colourless polyimides (CPIs)              187
      • 5.3.2.2 Self-healing displays 187
      • 5.3.2.3 Self-healing consumer electronic device coatings               188
      • 5.3.2.4 Flexile insulators         190
      • 5.3.2.5 Self-healing flexible and stretchable wearables     190
      • 5.3.2.6 Self-healing soft robotics       191
      • 5.3.2.7 6G Reconfigurable Intelligent Surfaces        192
      • 5.3.2.8 Sensors             193
        • 5.3.2.8.1           Skin Electronics           194
        • 5.3.2.8.2           Optomechanical Sensors      195
        • 5.3.2.8.3           Multifunctional Sensors         196
    • 5.3.3    Commercial activity  197
    • 5.3.4    SWOT analysis              198
    • 5.3.5    Revenues          199
  • 5.4        Energy Storage              201
    • 5.4.1    Overview           201
    • 5.4.2    Applications   201
      • 5.4.2.1 Self-healing materials for Lithium batteries               201
      • 5.4.2.2 Performance limitations and healing capacity        202
      • 5.4.2.3 Silicon anodes              202
      • 5.4.2.4 Electrolytes     203
        • 5.4.2.4.1           Solid-State Batteries 205
        • 5.4.2.4.2           9. Self-Healing Polymers        205
      • 5.4.2.5 Capacitors      206
        • 5.4.2.5.1           Tantalum Capacitors 207
      • 5.4.2.6 Self-healing flexible batteries              208
      • 5.4.2.7 Fuel cell membranes                208
        • 5.4.2.7.1           Types   209
      • 5.4.2.8 Gas turbine coatings 210
      • 5.4.2.9 Wind energy    210
      • 5.4.2.10            Self-healing photovoltaics    210
    • 5.4.3    Commercial activity  211
    • 5.4.4    SWOT analysis              213
    • 5.4.5    Revenues          214
  • 5.5        Elastomers      215
    • 5.5.1    Market drivers                216
    • 5.5.2    Applications   218
      • 5.5.2.1 Self-healing elastomers          218
      • 5.5.2.2 VPTA vitrimer adhesive            221
      • 5.5.2.3 Elastomers in robotics             222
    • 5.5.3    Commercial activity  222
    • 5.5.4    SWOT analysis              224
    • 5.5.5    Revenues          225
  • 5.6        Buildings and construction   226
    • 5.6.1    Overview           226
      • 5.6.1.1 Cement              226
      • 5.6.1.2 Green Cement               228
      • 5.6.1.3 Cement Decarbonization      228
      • 5.6.1.4 Ultra High Performance Concrete    230
      • 5.6.1.5 Bacterial Bio-Concrete            231
      • 5.6.1.6 Fungal-based self-healing concrete                231
      • 5.6.1.7 Asphalt              232
      • 5.6.1.8 Fiber-Reinforced Polymer Construction Materials 233
        • 5.6.1.8.1           Future Development 234
        • 5.6.1.8.2           Fiber selection              235
        • 5.6.1.8.3           Manufacturing methods         235
        • 5.6.1.8.4           Advanced fiber-reinforced polymers (FRPs)              236
        • 5.6.1.8.5           Challenges      236
    • 5.6.2    Market drivers                238
    • 5.6.3    Applications   240
      • 5.6.3.1 Intrinsic with additives            240
      • 5.6.3.2 Bacteria with post treatment               241
      • 5.6.3.3 Enzymes           242
      • 5.6.3.4 Funghi 243
      • 5.6.3.5 Natural polymers        244
        • 5.6.3.5.1           Materials           244
      • 5.6.3.6 Self-healing structural ceramics       245
      • 5.6.3.7 3D Networks   246
      • 5.6.3.8 Self-healing concrete                247
        • 5.6.3.8.1           Self-Healing Geopolymer Concrete                248
        • 5.6.3.8.2           Biological approaches             249
        • 5.6.3.8.3           Bacteria Coated-Fibers           252
      • 5.6.3.9 Fiber concrete               255
      • 5.6.3.10            Self-healing road surfaces and asphalt       255
    • 5.6.4    Commercial activity  256
    • 5.6.5    SWOT analysis              258
    • 5.6.6    Revenues          259
  • 5.7        Paint and coatings      260
    • 5.7.1    Market drivers                260
    • 5.7.2    Applications   262
      • 5.7.2.1 Self-healing anti-corrosion coatings               262
        • 5.7.2.1.1           Healing mechanisms               263
        • 5.7.2.1.2           Implementation and challenges       263
        • 5.7.2.1.3           Silica gel technology 265
        • 5.7.2.1.4           Approaches    266
      • 5.7.2.2 Epoxy Coatings             266
      • 5.7.2.3 Hydrophobic recovery mechanisms              267
      • 5.7.2.4 Anti-fouling coatings 268
        • 5.7.2.4.1           Approaches    268
        • 5.7.2.4.2           Implementation           269
        • 5.7.2.4.3           Sea slug-inspired smart marine antifouling coatings          269
      • 5.7.2.5 Self-healing polymer film and paint 270
      • 5.7.2.6 Self-healing scratch-resistant coatings        271
      • 5.7.2.7 Icephobic coatings     272
    • 5.7.3    Commercial activity  273
    • 5.7.4    SWOT analysis              275
    • 5.7.5    Revenues          276
  • 5.8        Biomedical and Healthcare  277
    • 5.8.1    Market drivers                277
    • 5.8.2    Applications   278
      • 5.8.2.1 Hydrogels         279
        • 5.8.2.1.1           Biocompatible polymeric self-healing hydrogels represent            280
        • 5.8.2.1.2           Super strong self-healing hydrogels               280
        • 5.8.2.1.3           Wound-Healing Hydrogels    281
        • 5.8.2.1.4           Polyampholytes Hydrogel      281
      • 5.8.2.2 Drug or cell delivery carriers 282
      • 5.8.2.3 Tissue Engineering     283
        • 5.8.2.3.1           Overview           283
        • 5.8.2.3.2           Self-Healing Adhesives           285
      • 5.8.2.4 Electronic Skin              288
      • 5.8.2.5 Artificial muscle and cartilage            289
      • 5.8.2.6 Self-healing dental composites        289
      • 5.8.2.7 Self-healing orthopaedic implants  290
        • 5.8.2.7.1           Titanium Implants      291
        • 5.8.2.7.2           Bone Healing and Replacement        292
        • 5.8.2.7.3           Bone Regeneration     292
        • 5.8.2.7.4           3D Printed Bone Replacement           293
      • 5.8.2.8 Artificial human skin 293
      • 5.8.2.9 Strain biosensors        294
      • 5.8.2.10            Prosthetics and soft robotics              295
      • 5.8.2.11            Bone repair      296
    • 5.8.3    Commercial activity  297
    • 5.8.4    SWOT analysis              299
    • 5.8.5    Revenues          299
  • 5.9        Other markets               300
    • 5.9.1    Filtration            301
      • 5.9.1.1 Applications   301
        • 5.9.1.1.1           Self-healing materials for membrane separation   301
        • 5.9.1.1.2           Desalination membrane         301
        • 5.9.1.1.3           Kidney dialysis membrane    302
    • 5.9.2    Textiles               303
      • 5.9.2.1 Applications   303
        • 5.9.2.1.1           Self-healing fabrics    303
        • 5.9.2.1.2           Programmable Textiles            304
    • 5.9.3    Military               305
      • 5.9.3.1 Applications   305
        • 5.9.3.1.1           Self-healing aircraft   305
        • 5.9.3.1.2           Self-healing vehicles 306
    • 5.9.4    Oil and gas      307
      • 5.9.4.1 Applications   308
        • 5.9.4.1.1           Corrosion and other protection         308
        • 5.9.4.1.2           Self-healing metals    309
    • 5.9.5    Marine 309
      • 5.9.5.1 Applications   309
      • 5.9.5.2 Commercial activity  310
    • 5.9.6    Conductive inks           312
    • 5.9.7    Optical and photonic materials         313
    • 5.9.8    Metamaterials               313
    • 5.9.9    Robotics           315
      • 5.9.9.1 Overview           315
      • 5.9.9.2 Integration       316
      • 5.9.9.3 Self-healing energy harvesting systems       317

 

6             COMPANY PROFILES                319 (39 company profiles)

 

7             RESEARCH METHODOLOGY              340

 

8             REFERENCES 340

 

List of Tables

  • Table 1. Applications and Market Opportunity for Self-Healing Materials and Coatings.             17
  • Table 2. Types of Healing by Material Formulation and Format     19
  • Table 3. Spectrum of Self-Healing Capabilities       20
  • Table 4. Technology Roadmap for Self-Healing Material Commercialization by Application.   21
  • Table 5. Trends in self-healing materials.    25
  • Table 6. Commerical stages of Self-Healing Materials by Application     27
  • Table 7.  Commercial Self-Healing Products.           28
  • Table 8. The Global Market for Self-Healing Materials 2015-2035 (Millions USD)             33
  • Table 9. The Global Market for Self-Healing Materials by Type 2015-2035 (Millions USD).         34
  • Table 10. The global market for self-healing materials 2015-2035 (Millions USD), by end use market.                36
  • Table 11. The global market for self-healing materials 2015-2035 (Millions USD), by region.   37
  • Table 12. Comparison of Self-Healing Materials with Incumbent Materials by Market Sector. 40
  • Table 13. Self-Healing Options: Operational, Physical, Chemical, Formulation, Format.           45
  • Table 14. Chemical Families in Self-Healing Materials.     47
  • Table 15. Sustainable Intrinsic Self-Healing Materials and Bio-Derived Building Blocks.           61
  • Table 16.Comparison of self-healing systems.        64
  • Table 17. Properties of self-healing polymers.         72
  • Table 18. Types of Polymer Damage to be Healed.                74
  • Table 19. Healing Options for Polymers.      77
  • Table 20. Overview of Self-Healing Mechanisms for Polymers.    81
  • Table 21. Applications of Self-Healing Elastomers.              89
  • Table 22. Self-Healing Metal Systems and Mechanisms. 97
  • Table 23. Applications of Self-Healing and Morphing Composites.           101
  • Table 24. Types of self-healing nanomaterials.       105
  • Table 25. Types and Applications of Self-Healing Biomaterials.  109
  • Table 26. Influencing factors and their effects on healing efficiency.        121
  • Table 27: Companies producing polyurethane clear coat products for self-healing.     122
  • Table 28. Self-healing polyurethane clear coats markets.                123
  • Table 29. Self-Healing Microcapsule Manufacturing Options.      125
  • Table 30. Companies Producing Self-Healing Microcapsules Products. 125
  • Table 31. Markets for self-healing micro/nanocapsules . 127
  • Table 32. Markets for Microvascular Networks.       129
  • Table 33. Click polymerization  markets and applications.             130
  • Table 34. Supramolecular self-healing materials properties.         131
  • Table 35. Vitrimers  properties.          132
  • Table 36. Self-healing natural polymers.      136
  • Table 37. Synthetic polymers.             136
  • Table 38. Components, preparation and properties of representative conductive polymer hydrogels.                139
  • Table 39. Properties of graphene.     141
  • Table 40. Applications of self-healing hydrogels.   142
  • Table 41. Properties of graphene.     145
  • Table 42. Applications of self-healing piezoelectric crystals.        148
  • Table 43. Applications of Morphing host structures and shapeshifting materials.           150
  • Table 44. Modes of Active Morphing.             151
  • Table 45. Self-Healing Materials Patents Analysis (2010-2024).  159
  • Table 46. Self-healing materials and coatings markets and applications.             162
  • Table 47. Market drivers for self-healing materials in aerospace.                162
  • Table 48. Commercial activity in self-healing aerospace applications.  164
  • Table 49. The market for self-healing materials 2015-2035, Millions USD, in the aerospace sector.    165
  • Table 50. Market drivers for self-healing materials in the automotive sector.      167
  • Table 51. Automotive self-healing tire products.    170
  • Table 52. Commercial Activity in Self-Healing Automotive Applications 174
  • Table 53. The market for self-healing materials 2015-2035, Millions USD, in the automotive sector.  177
  • Table 54. Market drivers for self-healing materials in electronics.               178
  • Table 55. Self-Healing Approaches in Electronics.                182
  • Table 56. Self-healing Polymer Coatings in Electronics.    189
  • Table 57. Self-Healing Soft Robotics Applications.              191
  • Table 58. Commercial activity in self-healing electronics applications. 197
  • Table 59. The market for self-healing materials, polymers and coatings 2015-2035, Millions USD, in the electronics sector, conservative and high estimates.         199
  • Table 60. Commercial activity in self-healing energy applications.           211
  • Table 61. The market for self-healing materials 2015-2035, Millions USD, in the energy sector.             214
  • Table 62. Market drivers for self-healing materials in elastomers.              216
  • Table 63. Types of self-healing elastomers.               220
  • Table 64. Commercial activity in self-healing elastomers.              222
  • Table 65. The market for self-healing materials, polymers and coatings 2015-2035, Millions USD, in the elastomers sector, conservative and high estimates.         225
  • Table 66. Market drivers for self-healing materials in buildings and construction.           238
  • Table 67. Bio-based self-healing concrete technologies and companies.            249
  • Table 68. Types of self-healing concrete.     254
  • Table 69. Commercial activity in self-healing construction applications.             256
  • Table 70. The market for self-healing materials 2015-2035, Millions USD, in the construction sector.                259
  • Table 71. Market drivers for self-healing materials in paint and coatings.              260
  • Table 72. Commercial activity in self-healing paints and coatings applications.              273
  • Table 73. The market for self-healing materials and polymers in paints and coatings 2015-2035, Millions USD, in the paints and coatings sector.        276
  • Table 74. Market drivers for self-healing materials in healthcare.               277
  • Table 75. Applications of Self-Healing Materials in Biomedical and Healthcare.              278
  • Table 76. Examples of Adhesive Research for Tissue Engineering.             286
  • Table 77. Commercial activity in self-healing healthcare applications.  297
  • Table 78. The market for self-healing materials 2015-2035, Millions USD, in the biomedical and healthcare sector.       300
  • Table 79. Market drivers for self-healing materials in the oil and gas.      307
  • Table 80. Commercial activity in self-healing marine applications.          310

 

List of Figures

  • Figure 1. Sensicrete mechanism of operation.        29
  • Figure 2. Scratch Shield.         30
  • Figure 3. Commercial readiness of Self-Healing Materials by Application            31
  • Figure 4. The global market for self-healing materials 2015-2035 (Millions USD).           34
  • Figure 5. The global market for self-healing materials 2015-2035, by coating type (Millions USD).      35
  • Figure 6. The global market for self-healing materials 2015-2035 (Millions USD), by end use market.                37
  • Figure 7. The global market for self-healing materials 2015-2035 (Millions USD), by region.    38
  • Figure 8. SWOT analysis for self-healing materials.              39
  • Figure 9. Self-healing using embedded microcapsules.   43
  • Figure 10. Schematic of self-healing polymers. Capsule based (a), vascular (b), and intrinsic (c) schemes for self-healing materials.  Red and blue colours indicate chemical species which react (purple) to heal damage.       45
  • Figure 11. Microcapsule based Self-healing concept.        51
  • Figure 12. (a) Different types of vascular networks. (b) Representation of the self-healing concept using microvascular embedment. 54
  • Figure 13. Self-healing mechanism in vascular self-healing systems.     55
  • Figure 14. Extrinsic self-healing SWOT analysis.    56
  • Figure 15. Diels-Alder route for Thermo-reversible crosslinked natural rubber. 58
  • Figure 16. Intrinsic self-healing SWOT analysis.     64
  • Figure 17. Microcapsule self-healing.            70
  • Figure 18. Stages of self-healing mechanism.         80
  • Figure 19. Self-healing concept using hollow-fiber embedment..               94
  • Figure 20. Illustration of BN precipitation on the creep cavity surface in stainless steel.             95
  • Figure 21. 3D printed self-healing hydrogels.           112
  • Figure 22. Schematic of the self-healing concept using microcapsules with a healing agent inside.  124
  • Figure 23. Healing process in a hydrogel.    133
  • Figure 24. Chemical and noncovalent interactions behind self-healable hydrogels.     135
  • Figure 25. (A) Wound self-healing process (B) Different forms of wound dressings.       139
  • Figure 26. Schematic of single-walled carbon nanotube. 144
  • Figure 27. Microspheres incorporating self-healing materials.     161
  • Figure 28. Flow of self-healing materials into the crack site.          161
  • Figure 29. SWOT analysis for self-healing materials in aerospace.            165
  • Figure 30. The market for self-healing materials 2015-2035, Millions USD, in the aerospace sector.  166
  • Figure 31. Nissan Scratch Shield.     168
  • Figure 32. Lamborghini self-healing sports-car.     168
  • Figure 33. Self-healing tires. 169
  • Figure 34. Michelin's Selfseal technology.  172
  • Figure 35. Continental's ContiSeal .               172
  • Figure 36. SWOT analysis for self-healing materials in automotive.          177
  • Figure 37. The market for self-healing materials 2015-2035, Millions USD, in the automotive sector. 178
  • Figure 38. Self-healing patent schematic.  188
  • Figure 39. Self-healing coating on glass.     188
  • Figure 40. Self-healing dielectric material for wearable electronics.         194
  • Figure 41. SWOT analysis for self-healing materials in electronics.           199
  • Figure 42. The market for self-healing materials 2015-2035, Millions USD, in the electronics sector. 200
  • Figure 43. Schematic of self-healing solar cell.       211
  • Figure 44. SWOT analysis for self-healing materials in energy.      214
  • Figure 45. The market for self-healing materials 2015-2035, Millions USD, in the energy sector.           215
  • Figure 46. Self-healing rubber.            220
  • Figure 47. SeRM elastomers.              221
  • Figure 48. SWOT analysis for self-healing materials in adhesives and elastomers.        224
  • Figure 49. The market for self-healing materials 2015-2035, Millions USD, in the elastomers sector. 225
  • Figure 50. Self-healing bacteria crack filler for concrete.  253
  • Figure 51. Self-healing concrete.      254
  • Figure 52. SWOT analysis for self-healing materials in construction.       259
  • Figure 53. The market for self-healing materials 2015-2035, Millions USD, in the construction sector.                260
  • Figure 54. SWOT analysis for self-healing materials in paints and coatings.        276
  • Figure 55. The market for self-healing materials and polymers in paints and coatings 2015-2035, Millions USD, in the paints and coatings sector.     277
  • Figure 56. Dental repair with self-healing microcapsules.               290
  • Figure 57. SWOT analysis for self-healing materials in healthcare.            299
  • Figure 58. The market for self-healing materials 2015-2035, Millions USD, in the biomedical and healthcare sector.       300
  • Figure 59. Self-healing fabrics.          304
  • Figure 60. Schematic of the nanocapsule-based self-healing coatings. 309
  • Figure 61. Sensicrete compound.    324
  • Figure 62. CompPair self-healing prepregs.               325

    

The Global Self-Healing Materials Market 2025-2035
The Global Self-Healing Materials Market 2025-2035
PDF download/by email.

The Global Self-Healing Materials Market 2025-2035
The Global Self-Healing Materials Market 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com