The Global Silicon Photonics and Photonic Integrated Circuits Market 2025-2035

0

  • Published: March 2025
  • Pages: 344
  • Tables: 146
  • Figures: 42

 

The rapid growth of AI technology has put unprecedented demands on networks and data centers. Silicon photonics and photonic integrated circuits offer the most advanced networking solution to this problem. AI "factories" are a new class of data centers with extreme scale, and networking infrastructure must be reinvented to keep pace. The US-based artificial intelligence (AI) computing multinational NVIDIA recently announced its plan to leverage silicon photonics and co-packaged optics (CPO) to connect millions of GPUs in these AI factories. 

Silicon photonics and photonic integrated circuits (PICs) represent a transformative technology at the intersection of semiconductors and optics, enabling the manipulation of light on silicon chips. As data centers face unprecedented bandwidth demands driven by AI workloads, cloud computing, and video streaming, traditional copper interconnects reach fundamental physical limitations in terms of bandwidth, power consumption, and density. Silicon photonics offers a solution by leveraging light's inherent advantages: higher bandwidth, lower latency, reduced power consumption, and immunity to electromagnetic interference.

The technology is particularly crucial now due to the exponential growth in AI/ML applications, which require massive data movement between processors, memory, and storage. Silicon photonics enables the high-bandwidth, energy-efficient interconnects essential for scaling these systems. Additionally, the convergence of silicon photonics with mature CMOS manufacturing processes allows for cost-effective production at scale, making widespread adoption increasingly viable.

Looking toward the future, silicon photonics will play a pivotal role in multiple frontier technologies. In quantum computing, PICs provide the precise control of photonic qubits necessary for quantum information processing. For next-generation sensing, PIC-based LiDAR systems will enable autonomous vehicles with improved performance and reduced cost. In telecommunications, silicon photonics will support the backbone of 5G/6G networks and beyond, meeting ever-increasing bandwidth demands.

As the technology matures, we're witnessing a transition from discrete optical components to highly integrated photonic circuits that combine multiple functions on a single chip, similar to the evolution seen in the electronic semiconductor industry. This integration, coupled with advanced packaging technologies like co-packaged optics, will continue to drive improvements in performance, energy efficiency, and cost, cementing silicon photonics as a foundational technology for our increasingly connected, data-intensive world.

The Global Silicon Photonics and Photonic Integrated Circuits Market  2023-2035 provides an in-depth analysis of the rapidly evolving silicon photonics and photonic integrated circuits (PICs) landscape, offering strategic insights into market dynamics, technology trends, and growth opportunities across multiple application segments from 2023 to 2035.

Key Report Features:

  • Material Platform Analysis: Comparative assessment of silicon, silicon nitride, lithium niobate, indium phosphide, and emerging material technologies
  • Application Segmentation: In-depth market forecasts for datacom, telecom, sensing, AI acceleration, and quantum computing applications
  • Manufacturing and Packaging: Evaluation of wafer processing challenges, yield management, and advanced packaging technologies including co-packaged optics
  • Competitive Landscape: Profiles of 186 companies across the entire value chain from materials suppliers to system integrators
  • Technology Roadmaps: Forecasts for product development timelines, performance improvements, and market adoption rates
  • Introduction to Silicon Photonics: Fundamental principles, comparative advantages over traditional technologies, and basic optical data transmission mechanisms
  • Materials and Components Analysis: Comprehensive review of platform technologies including silicon-on-insulator (SOI), germanium photodetectors, silicon nitride waveguides, thin-film lithium niobate, and hybrid integration approaches
  • Advanced Packaging Technologies: Detailed analysis of 2.5D and 3D integration technologies, through-silicon vias (TSVs), hybrid bonding, and co-packaged optics solutions
  • Market Applications in Depth:
    • Datacom: Data center architectures, transceiver evolution, co-packaged optics, and high-performance computing interconnects
    • Telecommunications: 5G/6G infrastructure, optical networking, and long-haul/metro applications
    • Sensing: LiDAR systems, chemical/biological sensing, and medical diagnostics
    • AI/ML: Photonic processors, neural network accelerators, and programmable photonic systems
    • Quantum: PIC-based quantum computing architectures, quantum communications, and single-photon sources
  • Market Forecasts 2023-2035:
    • Global market size and regional analysis
    • Segmentation by application, material platform, and component type
    • Pricing trends and volume projections for key product categories
    • Detailed forecasts for emerging segments including AI transceivers and quantum PICs
  • Supply Chain Analysis: Foundry landscape, fabless designers, integrated device manufacturers, and end-users
  • Technology Trends: Laser integration techniques, modulator innovations, photodetector developments, and waveguide advancements
  • Challenges and Future Directions: CMOS-foundry compatibility, power consumption issues, packaging optimization, and scalability solutions.

 

This report provides essential strategic intelligence for technology vendors, component manufacturers, system integrators, end-users, and investors to navigate the complex and rapidly evolving silicon photonics ecosystem. With detailed technical benchmarking, market forecasts, and competitive analysis, the report enables stakeholders to identify growth opportunities, anticipate technological disruptions, and develop informed strategies for this transformative market.

The report provides comprehensive profiles of 183 companies across the silicon photonics and photonic integrated circuits ecosystem, including Accelink Technologies, Aeva Technologies, Aeponyx, Advanced Fiber Resources, AIM Photonics, AIO Core, Alibaba Cloud, Amazon (AWS), ANSYS, Advanced Micro Foundry (AMF), Amkor Technology, AMO GmbH, Analog Photonics, Anello Photonics, Aryballe, A*STAR, ASE Holdings, Aurora Innovation, Axalume, AXT, Ayar Labs, Baidu, Bay Photonics, BE Epitaxy Semiconductor, Broadcom, Black Semiconductor, Broadex, ByteDance, Cadence, Camgraphic, CEA LETI, Celestial AI, Centera Photonics, Cambridge Industries Group (CIG), Ciena Corporation, CISCO Systems, CNIT, Coherent Corp., CompoundTek, Cornerstone, Crealights Technology, DustPhotonics, EFFECT Photonics, Eoptolink (Alpine Optoelectronics), Ephos, Epiphany, Fabrinet, Fast Photonics, Fiberhome, Fibertop China Shen Zhen Fibertop Technology, ficonTEC, FormFactor, Fujitsu, Genalyte, Gigalight, GlobalFoundries, HGGenuine, Hisense Broadband, HyperLight, HyperPhotonix, Icon Photonics, InnoLight Technology, Innosemi, IntelliEpi, Inphotec, Intel, Imec, IMECAS, iPronics, JABIL, JCET Group, JFS Laboratory, JSR Corporation, Juniper Networks, Ki3 Photonics, LandMark, Leoni AG, Ligentec, Lightelligence, Lightium, Lightmatter, Lightsynq Technologies, Lightwave Logic, Light Trace Photonics, Liobate Technologies, LioniX International, LPKF, Lumentum, Luceda, Luminous Computing, LuminWave Technology, Lumiphase AG, Luxshare Precision Industry, Luxtelligence SA, MACOM, Marvell, Molex, NanoLN, NanoWired, NEC Corporation, NewPhotonics, NGK Insulators, NLM Photonics, Nokia Corporation, Novel Si Integration Technology, NTT Corporation, Nvidia, O-Net, OpenLight Photonics, OriChip Optoelectronics Technology, Partow Technologies, PETRA, Phix, PHOTON IP,  and many more. Each profile includes company background, technology focus, product offerings, manufacturing capabilities, partnerships, and market positioning to provide a complete view of the competitive landscape and ecosystem relationships.

1             EXECUTIVE SUMMARY            21

  • 1.1        Market Overview          21
  • 1.2        Electronic and Photonic Integration Compared      22
  • 1.3        Silicon Photonic Transceiver Evolution         22
  • 1.4        Market Map     23
  • 1.5        Global Market Trends in Silicon Photonics 26
  • 1.6        Competing and Complementary Photonics Technologies               27
    • 1.6.1    Metaphotonics             32
    • 1.6.2    III-V Photonics               32
    • 1.6.3    Lithium Niobate Photonics   32
    • 1.6.4    Polymer Photonics     32
    • 1.6.5    Plasmonic Photonics               32
  • 1.7        Potential of photonic AI acceleration             32
  • 1.8        Commercial deployment of silicon photonics         33
  • 1.9        Manufacturing challenges    34

 

2             INTRODUCTION  37

  • 2.1        What is Silicon Photonics?   38
    • 2.1.1    Definition and Principles of Silicon Photonics         38
    • 2.1.2    Comparison with traditional technologies 39
    • 2.1.3    Silicon and Photonic Integrated Circuits      41
    • 2.1.4    Optical IO, Coupling and Couplers  44
    • 2.1.5    Emission and Photon Sources/Lasers           44
    • 2.1.6    Detection and Photodetectors           45
    • 2.1.7    Compound Semiconductor Lasers and Photodetectors (III-V)     45
    • 2.1.8    Modulation, Modulators, and Mach-Zehnder Interferometers      46
    • 2.1.8.1 New modulator technologies              47
    • 2.1.9    Light Propagation and Waveguides 48
    • 2.1.10 Optical Component Density                49
  • 2.2        Advantages of Silicon Photonics      49
  • 2.3        Applications of Silicon Photonics    50
  • 2.4        Comparison with Other Photonic Integration Technologies            51
  • 2.5        Evolution from Electronic to Photonic Integration 52
  • 2.6        Silicon Photonics vs Traditional Electronics              52
  • 2.7        Modern high-performance AI data centers 53
  • 2.8        Core Technology Components          55
    • 2.8.1    Optical IO, Coupling and Couplers  56
    • 2.8.2    Emission and Photon Sources/Lasers           56
      • 2.8.2.1 III-V Integration Challenges  57
      • 2.8.2.2 Laser Integration Approaches            58
    • 2.8.3    Detection and Photodetectors           58
    • 2.8.4    Modulation Technologies       58
      • 2.8.4.1 Mach-Zehnder Interferometers          59
      • 2.8.4.2 Ring Modulators           59
    • 2.8.5    Light Propagation and Waveguides 60
    • 2.8.6    Optical Component Density                60
  • 2.9        Basic Optical Data Transmission     61
  • 2.10     Silicon Photonic Circuit Architecture             62

 

3             MATERIALS AND COMPONENTS       64

  • 3.1        Silicon 64
    • 3.1.1    Silicon as a Photonic Material             64
      • 3.1.1.1 Optical Properties of Silicon 64
      • 3.1.1.2 Fabrication Processes for Silicon Photonics             64
    • 3.1.2    Silicon and Silicon-on-insulator (SOI)           65
      • 3.1.2.1 SOI Manufacturing Process  66
      • 3.1.2.2 SOI Performance Benchmarks           69
      • 3.1.2.3 Key SOI Players             69
  • 3.2        Germanium    70
    • 3.2.1    Germanium Integration in Silicon Photonics            70
    • 3.2.2    Germanium Photodetectors                70
    • 3.2.3    Germanium-on-Silicon Modulators                71
  • 3.3        Silicon Nitride                71
    • 3.3.1    Silicon Nitride (SiN) in Photonics Integrated Circuits           71
    • 3.3.2    Optical Properties and Fabrication of SiN   73
    • 3.3.3    SiN Modulator Technologies                73
    • 3.3.4    SiN Applications in Photonics Integrated Circuits 74
    • 3.3.5    Advances in SiN Modulator Technologies   74
    • 3.3.6    SiN-based Waveguides and Devices              75
    • 3.3.7    SiN Performance Analysis    75
    • 3.3.8    Applications of SiN in Photonics       76
    • 3.3.9    SiN PIC Players             76
  • 3.4        Thin Film Lithium Niobate (TFLN)     77
    • 3.4.1    Overview           77
    • 3.4.2    Lithium Niobate on Insulator (LNOI)               78
      • 3.4.2.1 Overview of LNOI Technology              78
      • 3.4.2.2 Characteristics and Properties of LNOI        79
      • 3.4.2.3 LNOI Fabrication Processes 79
      • 3.4.2.4 LNOI-based Modulator and Switch Technologies  80
      • 3.4.2.5 Trends Toward Higher Speed and Improved Power Efficiency        80
      • 3.4.2.6 High-Speed LNOI Modulators             81
        • 3.4.2.6.1           Energy-Efficient LNOI Devices            81
        • 3.4.2.6.2           Emerging LNOI Device Technologies              82
  • 3.5        Indium Phosphide      82
    • 3.5.1    Indium Phosphide (InP) Integration 82
      • 3.5.1.1 InP as a Direct Bandgap Semiconductor     83
      • 3.5.1.2 InP-based Active Components          83
      • 3.5.1.3 Hybrid Integration of InP with Silicon Photonics     84
    • 3.5.2    InP PIC Players              84
  • 3.6        Barium Titanite and Rare Earth metals         84
    • 3.6.1    Barium Titanate (BTO) Modulators   85
  • 3.7        Organic Polymer on Silicon  86
    • 3.7.1    Polymer-based Modulators  87
  • 3.8        Wafer Processing        87
    • 3.8.1    Wafer Sizes by Platform          87
    • 3.8.2    Processing Challenges            88
    • 3.8.3    Yield Management     88
  • 3.9        Hybrid and Heterogeneous Integration         88
    • 3.9.1    Monolithic Integration              89
    • 3.9.2    Hybrid Integration       89
    • 3.9.3    Heterogeneous Integration   89
    • 3.9.4    III-V-on-Silicon              90
    • 3.9.5    Bonding and Die-Attachment Techniques  90
    • 3.9.6    Monolithic versus Hybrid Integration             90

 

4             ADVANCED PACKAGING TECHNOLOGIES 92

  • 4.1        Evolution of Packaging Technologies             92
    • 4.1.1    Traditional Packaging Approaches  95
    • 4.1.2    Advanced Packaging Roadmap        95
    • 4.1.3    Key Performance Metrics       97
  • 4.2        2.5D Integration Technologies            98
    • 4.2.1    Silicon Interposer Technology             99
    • 4.2.2    Glass Interposer Solutions   100
    • 4.2.3    Organic Substrate Options   100
  • 4.3        3D Integration Approaches   101
    • 4.3.1    Through-Silicon Via (TSV)       101
      • 4.3.1.1 TSV Manufacturing Process 102
      • 4.3.1.2 TSV Challenges and Solutions            103
    • 4.3.2    Hybrid Bonding Technologies              104
      • 4.3.2.1 Cu-Cu Bonding            105
      • 4.3.2.2 Direct Bonding              106
  • 4.4        Co-Packaged Optics (CPO)  106
    • 4.4.1    CPO Architecture Overview 106
    • 4.4.2    Benefits and Challenges        107
    • 4.4.3    Integration Approaches          108
      • 4.4.3.1 2D Integration                109
      • 4.4.3.2 2.5D Integration           109
      • 4.4.3.3 3D Integration                109
    • 4.4.4    Thermal Management             110
    • 4.4.5    Optical Coupling Solutions  110
  • 4.5        Optical Alignment       111
    • 4.5.1    Active vs Passive Alignment 111
    • 4.5.2    Coupling Efficiency    112
  • 4.6        Manufacturing Challenges   112

 

5             MARKETS AND APPLICATIONS           115

  • 5.1        Datacom Applications             115
    • 5.1.1    Data Center Architecture Evolution 116
    • 5.1.2    Transceivers   117
      • 5.1.2.1 Integration       118
    • 5.1.3    Artificial intelligence (AI) and machine learning (ML)          119
    • 5.1.4    Pluggable optics          119
    • 5.1.5    Linear drive and linear pluggable optics (LPO)        121
    • 5.1.6    Interconnects                122
      • 5.1.6.1 PIC-based on-device interconnects               123
      • 5.1.6.2 Advanced Packaging and Co-Packaged Optics       125
        • 5.1.6.2.1           Glass materials            126
        • 5.1.6.2.2           Co-Packaged Optics 128
      • 5.1.6.3 Photonic Engines and Accelerators 134
        • 5.1.6.3.1           Photonic processing for AI     135
        • 5.1.6.3.2           Convergence with software  135
        • 5.1.6.3.3           Photonic field-programmable gate arrays (FPGAs)               136
      • 5.1.6.4 Photonic Integrated Circuits for Quantum Computing       137
        • 5.1.6.4.1           Photonic qubits            137
    • 5.1.7    Optical Transceivers 140
      • 5.1.7.1 Architecture and Operation  141
      • 5.1.7.2 Market Players               141
      • 5.1.7.3 Technology Roadmap              142
    • 5.1.8    Co-Packaged Optics for Switches   142
      • 5.1.8.1 CPO vs Pluggable Solutions 142
      • 5.1.8.2 Power and Performance Benefits     143
      • 5.1.8.3 Implementation Challenges 143
    • 5.1.9    Data Center Networks             144
    • 5.1.10 High-Performance Computing           144
      • 5.1.10.1            On-Device Interconnects       145
      • 5.1.10.2            Chip-to-Chip Communication           145
      • 5.1.10.3            System Architecture Impact 145
    • 5.1.11 Chip-to-Chip and Board-to-Board Interconnects  146
    • 5.1.12 Ethernet Networking 146
  • 5.2        Telecommunications                147
    • 5.2.1    5G/6G Infrastructure 148
    • 5.2.2    Bandwidth Requirements      148
    • 5.2.3    Long-Haul and Metro Networks         149
    • 5.2.4    5G and Fiber-to-the-X (FTTx) Applications  149
    • 5.2.5    Optical Transceivers and Transponders       150
  • 5.3        Sensing Applications                151
    • 5.3.1    Lidar and Automotive Sensing            151
      • 5.3.1.1 Photonic Integrated Circuit-based LiDAR    152
    • 5.3.2    Chemical and Biological Sensing     155
    • 5.3.3    Optical Coherence Tomography       157
  • 5.4        Artificial Intelligence and Machine Learning             157
    • 5.4.1    AI Data Traffic Requirements               158
    • 5.4.2    Silicon Photonics for AI Accelerators              159
    • 5.4.3    Photonic Processors 159
    • 5.4.4    Photonic Processing for AI     159
    • 5.4.5    Programmable Photonics      160
    • 5.4.6    Neural Network Applications              161
    • 5.4.7    Future AI Architecture Requirements             162
  • 5.5        Quantum Computing and Communication               163
    • 5.5.1    Quantum Photonic Requirements   163
    • 5.5.2    Integration Challenges            163
    • 5.5.3    Photonic Platform Quantum Computing     164
    • 5.5.4    PICs for Quantum systems  164
    • 5.5.5    Operational cycle of photonic quantum computers            166
    • 5.5.6    Market Players and Development     168
    • 5.5.7    AI Neuromorphic Computing              169
  • 5.6        Biophotonics and Medical Diagnostics        169

 

6             GLOBAL MARKET SIZE              171

  • 6.1        Global Silicon Photonics and Photonic Integrated Circuits Market Overview      171
    • 6.1.1    Market Size and Growth Trends         171
    • 6.1.2    Market Segmentation by Application             172
    • 6.1.3    Modules & PICs (Dies) Market Forecast 2023-2035            174
    • 6.1.4    SOI Wafers Market Forecast 2023-2035      174
    • 6.1.5    LPO & New Modulator Materials Market Forecast 2023-2035      175
  • 6.2        Datacom Applications             175
    • 6.2.1    Market Forecast 2023-2035 175
      • 6.2.1.1 Modules Market Forecast 2023-2035           176
      • 6.2.1.2 PICs (Dies) Market Forecast 2023-2035      177
      • 6.2.1.3 PIC Transceivers for AI             177
      • 6.2.1.4 PIC Transceiver Pricing            177
      • 6.2.1.5 PIC Datacom Transceiver Market Forecast 178
    • 6.2.2    Key Drivers and Restraints    179
  • 6.3        Telecom Applications               180
    • 6.3.1    Market Forecast 2023-2035 180
      • 6.3.1.1 PIC-based Transceivers for 5G           181
    • 6.3.2    Key Drivers and Restraints    181
  • 6.4        Sensing Applications                182
    • 6.4.1    Market Forecast 2023-2035 182
    • 6.4.2    PIC-based Sensor Market Forecast 183
    • 6.4.3    PIC-based LiDAR Market Forecast, 2023-2035       183
    • 6.4.4    Key Drivers and Restraints    184
  • 6.5        Photonic Integrated Circuit Market, by Material      185

 

7             SUPPLY CHAIN ANALYSIS      186

  • 7.1        Foundries and Wafer Suppliers          186
    • 7.1.1    CMOS Foundries         186
    • 7.1.2    Specialty Photonics Foundries           187
  • 7.2        Integrated Device Manufacturers (IDMs)     188
    • 7.2.1    Fabless Companies  188
    • 7.2.2    Fully Integrated Photonics Companies         189
  • 7.3        Foundries and Wafer Suppliers          189
  • 7.4        Packaging and Testing              190
    • 7.4.1    Chip-Scale Packaging             190
    • 7.4.2    Module-Level Packaging        190
    • 7.4.3    Testing and Characterization               191
  • 7.5        System Integrators and End-Users  191

 

8             TECHNOLOGY TRENDS          193

  • 8.1        Laser Integration Techniques              193
    • 8.1.1    Direct Epitaxial Growth           193
    • 8.1.2    Flip-Chip Bonding      194
    • 8.1.3    Hybrid Integration       194
    • 8.1.4    Advances and Challenges     194
  • 8.2        Modulator Technologies         195
    • 8.2.1    Silicon Modulators     196
    • 8.2.2    Germanium Modulators         196
    • 8.2.3    Lithium Niobate Modulators                196
    • 8.2.4    Polymer Modulators  196
  • 8.3        Photodetector Technologies                197
    • 8.3.1    Silicon Photodetectors            197
    • 8.3.2    Germanium Photodetectors                197
    • 8.3.3    III-V Photodetectors   198
  • 8.4        Waveguide and Coupling Innovations           198
    • 8.4.1    Silicon Waveguides    198
    • 8.4.2    Silicon Nitride Waveguides   198
    • 8.4.3    Coupling Techniques                199
  • 8.5        Packaging and Integration Advancements  199
    • 8.5.1    Chip-Scale Packaging             199
    • 8.5.2    Wafer-Scale Integration          200
    • 8.5.3    3D Integration and Interposer Technologies              200

 

9             CHALLENGES AND FUTURE TRENDS            202

  • 9.1        CMOS-Foundry-Compatible Devices and Integration         202
    • 9.1.1    Scaling and Miniaturization  203
    • 9.1.2    Process Complexity and Yield Improvement             203
  • 9.2        Power Consumption and Thermal Management    204
    • 9.2.1    Energy-Efficient Photonic Devices   205
    • 9.2.2    Thermal Optimization Techniques   206
  • 9.3        Packaging and Testing              206
    • 9.3.1    Advanced Packaging Solutions         206
    • 9.3.2    Automated Testing and Characterization    207
  • 9.4        Scalability and Cost-Effectiveness  208
    • 9.4.1    Wafer-Scale Integration          208
    • 9.4.2    Outsourced Semiconductor Assembly and Test (OSAT)   209
  • 9.5        Emerging Materials and Hybrid Integration 210
    • 9.5.1    Novel Semiconductor Materials        210
    • 9.5.2    Heterogeneous Integration Approaches      211

 

10          COMPANY PROFILES                213 (183 company profiles)

 

11          APPENDICES  336

  • 11.1     Glossary of Terms       336
  • 11.2     List of Abbreviations  337
  • 11.3     Research Methodology           339

 

12          REFERENCES 340

 

List of Tables

  • Table 1. Silicon Photonics vs. Electronics: Key Metrics Comparison.      22
  • Table 2. Photonic Technologies Comparative Analysis.     28
  • Table 3. Comparison between electronic and photonic computing.        32
  • Table 4. Electronics companies silicon photonics commercial activities.            33
  • Table 5. Manufacturing Metrics & Challenges.        33
  • Table 6. Manufacturing Targets vs Current State.   34
  • Table 7. Comparative cost analysis.               38
  • Table 8. Challenges for CMOS-Foundry-Compatible Photonic Devices. 39
  • Table 9. Silicon Photonics Integration Schemes.    40
  • Table 10. Benefits of PICs.    41
  • Table 11. Current & Future Photonic Integrated Circuits Applications.   42
  • Table 12. Photodetector Performance.         44
  • Table 13. III-V Device Performance. 44
  • Table 14. Optical Modulator Performance Comparison.  45
  • Table 15. Silicon Photonic Waveguide Characteristics.     47
  • Table 16. Optical Component Integration Metrics.               48
  • Table 17. Advantages of Silicon Photonics.               48
  • Table 18. Applications of Silicon Photonics.             49
  • Table 19. Comparison with Other Photonic Integration Technologies.     50
  • Table 20. Silicon Photonics vs Traditional Electronics: Performance Metrics.    51
  • Table 21. Switch IC Bandwidth and CPO Technology Evolution.  53
  • Table 22. Challenges in data center architectures.               54
  • Table 23. Key Trends of Optical Transceivers in High-End Data Centers.                54
  • Table 24. Core Components Specifications and Requirements   55
  • Table 25. Types of Emission and Photon Sources/Lasers.                56
  • Table 26. III-V Integration Challenges.           56
  • Table 27. Laser Integration Approaches Comparison.       57
  • Table 28. Modulator Types and Configurations.      58
  • Table 29. Waveguide Specifications and Requirements.  59
  • Table 30. Data Transmission Parameters and Specifications.       60
  • Table 31. Circuit Architecture Building Blocks.       61
  • Table 32. Integration Approaches.   61
  • Table 33. Silicon Photonics Component Specifications.   63
  • Table 34. Optical Properties of Silicon.         63
  • Table 35. Fabrication Processes for Silicon Photonics.     64
  • Table 36. Silicon Foundry Technology Comparison.            66
  • Table 37. Silicon-on-insulator (SOI) Platform Benchmarking.       67
  • Table 38. SOI Performance Benchmarks.   68
  • Table 39. Key SOI Players.      68
  • Table 40. Germanium Integration Methods and Applications.      69
  • Table 41. SiN Key Foundries.               71
  • Table 42. SiN Modulator Technologies.         72
  • Table 43. Silicon (SOI and SiN) Device Heterogeneous Integration.           73
  • Table 44. SiN Benchmarking.              75
  • Table 45. Applications of SiN in Photonics.               75
  • Table 46. SiN PIC Players.      75
  • Table 47. Benchmarking of TFLN.     77
  • Table 48. Characteristics and Properties of LNOI. 78
  • Table 49. LNOI Fabrication Processes.         78
  • Table 50. LNOI-based Modulator and Switch Technologies.           79
  • Table 51. Emerging LNOI Device Technologies.       81
  • Table 52. InP Benchmarking.               82
  • Table 53. Integration Technologies. 83
  • Table 54. InP PIC Players.       83
  • Table 55. BTO Benchmarking.             84
  • Table 56. Comparative analysis of materials.           84
  • Table 57. Benchmarking of Polymer on Insulator.  85
  • Table 58. Wafer Size Comparison by Platform.        86
  • Table 59. Wafer Processing Challenges.      87
  • Table 60. Yield Analysis by Process Step.    87
  • Table 61. Integration Scheme Comparison.              87
  • Table 62. Bonding and Die-Attachment Techniques.           89
  • Table 63. Monolithic versus Hybrid Integration.      90
  • Table 64. Packaging Technology Comparison Matrix.          91
  • Table 65. Evolution of semiconductor packaging. 91
  • Table 66. Summary of key advanced semiconductor packaging approaches.   95
  • Table 67. Key Performance Metrics for Advanced Packaging Technologies.         96
  • Table 68. Glass Interposer Solutions.            99
  • Table 69. Organic Substrate Options.            100
  • Table 70. TSV Specifications by Application.            101
  • Table 71. TSV Challenges and Solutions.    102
  • Table 72. Comparative benchmark overview table of key semiconductor interconnection technologies                103
  • Table 73. CPO Benefits and Challenges.     106
  • Table 74. Performance Metrics Comparison.           107
  • Table 75. CPO Integration Approaches Comparison.         107
  • Table 76. Manufacturing Process Comparison.      108
  • Table 77. Thermal Management Approaches.         109
  • Table 78. Optical Coupling Solutions.           109
  • Table 79. Alignment Tolerance Analysis.     110
  • Table 80. Active vs Passive Alignment Comparison.            110
  • Table 81. Coupling Efficiency Analysis.        111
  • Table 82. Advanced packaging manufacturing challenges.            111
  • Table 83. Energy Consumption Analysis.    114
  • Table 84. Key Metrics for Advanced Semiconductor Packaging Performance.   126
  • Table 85. Pluggable Optics vs. Co-Packaged Optics (CPO).           129
  • Table 86. Future Challenges in Co-Packaged Optics (CPO).          129
  • Table 87. Key Technology Building Blocks for Co-Packaged Optics.          130
  • Table 88. Key Packaging Components for Co-Packaged Optics. 131
  • Table 89. Key Players in Photonic Quantum Computing.  136
  • Table 90. Comparison of PICs vs Traditional Optical Systems.     137
  • Table 91. Future PIC Requirements of the Quantum Industry.      138
  • Table 92. Optical Transceivers Market Players.        140
  • Table 93. Power and Performance Benefits.              142
  • Table 94. Implementation Challenges.         142
  • Table 95. Silicon Photonics in HPC: Technical Parameters              143
  • Table 96. Applications of Silicon Photonics in Telecommunications.       146
  • Table 97. Bandwidth Requirements by Segment.   148
  • Table 98. 5G and FTTx Applications Technical Parameters.            149
  • Table 99. Opportunities for PIC Sensors in LiDAR Applications.  151
  • Table 100. Challenges of PIC-based FMCW LiDARs.           152
  • Table 101. Companies Developing PIC-based LiDAR.        152
  • Table 102. Companies Developing PIC Biosensors.            154
  • Table 103. Companies Developing PIC-based Gas Sensors.         155
  • Table 104. Companies Developing Spectroscopy PICs.    156
  • Table 105. AI Data Traffic Requirements.     157
  • Table 106. Neural Network Applications.    160
  • Table 107. Future AI Architecture Requirements.  161
  • Table 108. Quantum Photonic Requirements.         162
  • Table 109. Integration Challenges in Quantum Computing and Communication.           162
  • Table 110. Future PIC Requirements of the Quantum Industry.   165
  • Table 111. Roadmap for Photonic Quantum Hardware.    166
  • Table 112. Market players and development.           167
  • Table 113. Biophotonics Applications.         168
  • Table 114. Global Market for Silicon Photonics and Photonic Integrated Circuits 2023-2035 (Billions USD).  170
  • Table 115. Market Segmentation by Application 2023-2035 (Billions USD).        171
  • Table 116. Silicon Photonics and Photonic Integrated Circuits Server Boards, CPUs and GPUs/Accelerators Forecast.              173
  • Table 117. Modules & PICs (Dies) Market Forecast 2023-2035.   173
  • Table 118. SOI Wafers Market Forecast 2023-2035.            173
  • Table 119. LPO & New Modulator Materials Market Forecast 2023-2035.            174
  • Table 120. Market Forecast for Silicon Photonics in Datacom Applications 2023-2035 (Billions USD).                174
  • Table 121. Modules Market Forecast 2023-2035. 175
  • Table 122. PICs (Dies) Market Forecast 2023-2035.            176
  • Table 123. PIC Transceivers for AI Units Forecast, 2023-2035.     176
  • Table 124. PIC Transceiver Pricing.  177
  • Table 125. PIC Datacom Transceiver Market Forecast, 2025-2035.          177
  • Table 126. PIC Datacom Transceiver Revenue Forecast    178
  • Table 127. Quantum PIC Market Forecast, 2023-2035..   178
  • Table 128. Key market drivers and restraints for silicon photonics in Datacom Applications.  178
  • Table 129.  Market Forecast for Silicon Photonics in Telecom Applications 2023-2035 (Billions USD)                179
  • Table 130. Key market drivers and restraints for silicon photonics in Telecom Applications.    180
  • Table 131. Market Forecast for Silicon Photonics in Sensing Applications 2023-2035 (Billions USD). 181
  • Table 132. Key market drivers and restraints for silicon photonics in Sensing Applications.     183
  • Table 133. Photonic Integrated Circuit Market, by Material, 2023-2035. 184
  • Table 134. CMOS Foundries.               185
  • Table 135. Specialty Photonics Foundries. 186
  • Table 136. Fabless Companies.        187
  • Table 137. Fully Integrated Photonics Companies.              188
  • Table 138. Foundries and Wafer Suppliers.                189
  • Table 139. System Integrators and End-Users.        191
  • Table 140. Laser Integration Methods Comparison.            192
  • Table 141. Advanced Techniques and Challenges.               193
  • Table 142. Modulator Technology Benchmarking. 194
  • Table 143. Photodetector Performance Metrics .   196
  • Table 144. Novel semiconductor materials for silicon photonics.              209
  • Table 145. Glossary of terms.              335
  • Table 146. List of abbreviations.        336

 

List of Figures

  • Figure 1. Silicon Photonic Transceiver Evolution Timeline.              22
  • Figure 2. Silicon Photonics Player Market Map.       25
  • Figure 3. Basic Silicon Photonic Circuit Architecture.         37
  • Figure 4. High Performance AI data center. 53
  • Figure 5. Optical IO Coupling Mechanisms Diagram.         55
  • Figure 6. Optical Component Density Evolution.   60
  • Figure 7. Basic Optical Data Transmission Diagram.          61
  • Figure 8. SOI Wafer Structure.             64
  • Figure 9. Manufacturing Process Flow.         66
  • Figure 10. Germanium Photodetector.          70
  • Figure 11. Silicon Nitride Layer Stack.           71
  • Figure 12. AEPONYX SiN PICs.           72
  • Figure 13. SiN Waveguide Cross-sections. 74
  • Figure 14. LNOI Device Structures . 78
  • Figure 15. Timeline of different packaging technologies.  93
  • Figure 16. Advanced Packaging Roadmap. 95
  • Figure 17. 2D chip packaging.            97
  • Figure 18. Typical structure of 2.5D IC package utilizing interposer.          99
  • Figure 19. TSV Structure and Implementation.        102
  • Figure 20. Hybrid Bonding Process Flow.     104
  • Figure 21. Co-Packaged Optics Architecture.           106
  • Figure 22. Optical module with pluggable fibre interconnect.       119
  • Figure 23. Roadmap for PIC-Based Transceivers.  121
  • Figure 24. Evolution Roadmap for Semiconductor Packaging.     125
  • Figure 25. Roadmap for photonic quantum hardware.       139
  • Figure 26. Optical Transceivers Technology Roadmap.      141
  • Figure 27. 5G/6G Implementation Roadmap.          147
  • Figure 28. LiDAR System Design.      151
  • Figure 29. Global Market for Silicon Photonics and Photonic Integrated Circuits 2023-2035 (Billions USD).  171
  • Figure 30. Market Segmentation by Application 2023-2035 (Billions USD).         172
  • Figure 31. Market Forecast for Silicon Photonics in Datacom Applications 2023-2035 (Billions USD).                175
  • Figure 32. Market Forecast for Silicon Photonics in Telecom Applications 2023-2035 (Billions USD).                179
  • Figure 33. PIC-based Transceivers for 5G Forecast (Units and Market), 2023-2035.      180
  • Figure 34. Market Forecast for Silicon Photonics in Sensing Applications 2023-2035 (Billions USD). 181
  • Figure 35. PIC-based Sensor Market Forecast, 2023-2035.           182
  • Figure 36. Silicon Photonics Supply Chain and Ecosystem.           185
  • Figure 37. Concept for advanced packaging for integrated photonics.    199
  • Figure 38. Aeries II LiDAR system.    213
  • Figure 39. NVIDIA's silicon photonics switches..   282
  • Figure 40. PsiQuantum’s modularized quantum computing system networks. 290
  • Figure 41. Q.ANT Native Processing Unit (NPU).     291
  • Figure 42. QuiX low-loss photonic quantum processors. 296

 

 

 

The Global Silicon Photonics and Photonic Integrated Circuits Market 2025-2035
The Global Silicon Photonics and Photonic Integrated Circuits Market 2025-2035
PDF download/by email.

The Global Silicon Photonics and Photonic Integrated Circuits Market 2025-2035
The Global Silicon Photonics and Photonic Integrated Circuits Market 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com