The Global Smart and Sustainable Buildings Market 2025-2035

0

cover

cover

  • Published: February 2025
  • Pages: 625
  • Tables: 66
  • Figures: 142

 

The global market for smart and sustainable buildings is experiencing rapid growth, driven by increasing awareness of environmental issues, the need for energy efficiency, and advancements in technology. This market encompasses a wide range of solutions and technologies aimed at improving building performance, reducing energy consumption, and enhancing occupant comfort and well-being. Smart buildings integrate various systems and technologies to optimize operations, including building automation systems, energy management systems, lighting controls, HVAC systems, and security and access control. These systems are increasingly interconnected through Internet of Things (IoT) platforms, allowing for real-time monitoring, data analysis, and automated decision-making. The use of artificial intelligence and machine learning algorithms is further enhancing the capabilities of smart buildings, enabling predictive maintenance, personalized comfort settings, and more efficient resource allocation.

Sustainable buildings, on the other hand, focus on minimizing environmental impact through energy-efficient design, renewable energy integration, water conservation, and the use of eco-friendly materials. Many smart building technologies contribute to sustainability goals by optimizing resource use and reducing waste. The convergence of smart and sustainable building practices is creating a new paradigm in the construction and real estate industries, often referred to as "smart green buildings."

The market for smart and sustainable buildings is being driven by several factors. Government regulations and building codes promoting energy efficiency and sustainability are becoming more stringent in many countries. Rising energy costs and the need to reduce carbon emissions are pushing building owners and operators to adopt more efficient technologies. Additionally, there is growing demand from tenants and occupants for healthier, more comfortable, and more environmentally friendly spaces. There is increased focus on indoor air quality, touchless technologies, and space utilization monitoring to ensure safe and healthy environments. Remote monitoring and management capabilities have become more critical as building operators seek to minimize on-site staffing.

Looking to the future, the smart and sustainable building market is poised for continued growth. The integration of renewable energy systems, such as solar panels and energy storage, is expected to become more prevalent. Advanced materials, including self-healing concrete and smart windows, will contribute to improved building performance and longevity. The concept of "digital twins" – virtual replicas of physical buildings – is likely to gain traction, enabling more sophisticated simulation and optimization of building operations. The future outlook for smart and sustainable buildings also includes greater integration with smart city initiatives. Buildings will increasingly interact with urban infrastructure, participating in demand response programs for energy management and contributing to more efficient transportation systems.

As technology continues to advance, we can expect to see more sophisticated AI-driven building management systems that can learn and adapt to changing conditions and user preferences. The use of robotics for building maintenance and cleaning is likely to increase. Additionally, the integration of biophilic design principles – incorporating nature into the built environment – is expected to become more common, supporting both sustainability goals and occupant well-being. However, challenges remain in the widespread adoption of smart and sustainable building technologies. High initial costs, concerns about data privacy and cybersecurity, and the complexity of integrating various systems are ongoing issues. There is also a need for standardization in the industry to ensure interoperability between different systems and technologies.

The Global Smart and Sustainable Buildings Market 2025-2035 provides an in-depth analysis of the rapidly evolving global smart and sustainable buildings industry. As urbanization accelerates and environmental concerns intensify, the demand for intelligent, energy-efficient, and environmentally friendly buildings is soaring. Key technologies include adaptive facades, smart windows, advanced insulation materials, building automation systems, and energy harvesting solutions. These are expected to see increased adoption as buildings strive to meet sustainability goals and regulatory requirements. Building automation systems form the core of smart buildings, covering HVAC control, lighting management, security, and energy monitoring. AI and machine learning are enhancing these systems, enabling predictive maintenance and efficient resource allocation.

Advanced construction materials such as self-healing concrete and phase change materials are reshaping the industry, improving building performance and durability. Energy efficiency remains crucial, with innovations in thermal and sound insulation, smart HVAC systems, and energy harvesting technologies helping to reduce carbon footprints and meet energy codes. IoT and smart sensors are transforming building management, optimizing performance through occupancy detection, air quality monitoring, and more. Emerging technologies like smart coatings and advanced lighting solutions further enhance building functionality and energy efficiency.

Report contents include:

  • Smart building technologies overview
  • Smart windows and adaptive facades
  • Building automation systems
  • Advanced construction materials
  • Energy efficiency solutions
  • IoT and smart sensors in buildings
  • Artificial intelligence in building management
  • Smart lighting technologies
  • Market forecasts and growth projections
  • Competitive landscape analysis. Profiles of over 400 companies including ABB Ltd., AGC Inc., AkzoNobel, Alerton, Argil Inc., BASF SE, Belimo Holding AG, Bosch Security Systems, Bisly Inc., Cambridge Electric Cement, ChromoGenics AB, Cisco Systems Inc., ClearVue Technologies Limited, Control4 Corporation, Crestron Electronics Inc., Daikin Industries Ltd., Delta Controls Inc., EDGE Technologies, Ecobee Inc., EControl-Glas GmbH & Co. KG, Emerson Electric Co., Electrified Thermal Solutions, Gentex Corporation, Google, Guardian Industries, Halio Inc., Hanergy Holding Group Ltd., Heliatek, Honeywell International Inc., Johnson Controls International plc, Kinestral Technologies Inc., KONE Corporation, Legrand SA, Leviton Manufacturing, LG Electronics Inc., Lutron Electronics Co. Inc., Microsoft, Miru, Mitsubishi Electric Corporation, Nanoco Group Plc, Next Energy Technologies Inc., Nippon Sheet Glass Co. Ltd., Next Sense, OSRAM, Otis Elevator Company, Oxford PV, Panasonic Corporation, Perovskia Solar, Quantum Materials Corporation, Research Frontiers Inc., Renesas, Saint-Gobain, Samsung Electronics Co. Ltd., Schüco International KG, Siemens AG, Saule Technologies, SCHOTT, Somfy, Sunamp Ltd., Tewke, Ubiquitous Energy, Velux Group, View Inc., Ventive, Vitro Architectural Glass, and Zumtobel Group. These companies represent a diverse range of technologies and solutions across the smart and sustainable buildings value chain, from building materials and automation systems to energy management and IoT platforms.
  • Regional market insights
  • Regulatory and policy impacts
  • Future outlook and emerging trends

 

1             EXECUTIVE SUMMARY            36

  • 1.1        What are Smart Buildings?    36
  • 1.2        Integration into Smart Cities                38
  • 1.3        Evolution of Smart Building Technology       39
  • 1.4        Market Drivers               39
  • 1.5        Market Challenges     41
  • 1.6        Market revenues and forecasts, by technology area 2020-2035 41
  • 1.7        Adaptive facades        44
  • 1.8        Smart/switchable/dynamic glass or smart windows           46
  • 1.9        Advanced thermal and sound insulation     48
  • 1.10     Smart lighting 49
  • 1.11     Smart coatings              50
  • 1.12     Energy harvesting       52
  • 1.13     AI in Smart Buildings 55

 

2             SMART WINDOWS      56

  • 2.1        What is smart glass? 56
  • 2.2        Market drivers for smart glass            58
  • 2.3        Smart windows            60
    • 2.3.1    Controlling light transmission            60
  • 2.4        Types of smart glass 61
  • 2.4.1    Passive smart glass   61
  • 2.4.2    Active smart glass      61
  • 2.5        Comparison of smart glass technologies    62
  • 2.6        Nanomaterials in smart glass             62
  • 2.7        Competitive landscape          63
  • 2.8        Manufacturers              64
  • 2.9        Routes to market         65
    • 2.9.1    Residential and commercial glazing              67
  • 2.10     Market and technical challenges      69
  • 2.11     Future of smart glass               70
    • 2.11.1 Need for innovation   70
    • 2.11.2 Reducing costs             70
    • 2.11.3 Integration with building systems/Internet of things (IoT) 71
    • 2.11.4 Photovoltaic smart glass       71
    • 2.11.5 Faster switching times             71
  • 2.12     Advanced materials for smart glass and windows 71
    • 2.12.1 Electrochromic (EC) smart glass      71
      • 2.12.1.1            Technology description           71
      • 2.12.1.2            Materials           72
        • 2.12.1.2.1        Inorganic metal oxides            73
        • 2.12.1.2.2        Organic EC materials                73
        • 2.12.1.2.3        Nanomaterials              73
      • 2.12.1.3            Benefits             74
      • 2.12.1.4            Shortcomings 74
      • 2.12.1.5            Application in residential and commercial windows           74
    • 2.12.2 Thermochromic smart glass               76
      • 2.12.2.1            Technology description           76
      • 2.12.2.2            Benefits             77
      • 2.12.2.3            Shortcomings 77
      • 2.12.2.4            Application in residential and commercial windows           77
    • 2.12.3 Suspended particle device (SPD) smart glass         78
      • 2.12.3.1            Technology description           78
      • 2.12.3.2            Benefits             79
      • 2.12.3.3            Shortcomings 79
      • 2.12.3.4            Application in residential and commercial windows           80
    • 2.12.4 Polymer dispersed liquid crystal (PDLC) smart glass          81
      • 2.12.4.1            Technology description           81
      • 2.12.4.2            Types   83
        • 2.12.4.2.1        Laminated Switchable PDLC Glass 83
        • 2.12.4.2.2        Self-adhesive Switchable PDLC Film             83
      • 2.12.4.3            Benefits             83
      • 2.12.4.4            Shortcomings 84
      • 2.12.4.5            Application in residential and commercial windows           84
        • 2.12.4.5.1        Interior glass  84
    • 2.12.5 Photochromic smart glass   85
      • 2.12.5.1            Technology analysis  85
      • 2.12.5.2            Application in residential and commercial windows           86
    • 2.12.6 Micro-blinds   86
      • 2.12.6.1            Technology analysis  86
      • 2.12.6.2            Benefits             86
    • 2.12.7 Electrokinetic glass   87
      • 2.12.7.1            Technology analysis  87
    • 2.12.8 Other advanced glass technologies               87
      • 2.12.8.1            Graphene smart glass             87
      • 2.12.8.2            Heat insulation solar glass (HISG)   87
      • 2.12.8.3            Quantum dot solar glass       88
  • 2.13     Companies     89 (51 company profiles)

 

3             BUILDING AUTOMATIONS SYSTEMS (BAS) 124

  • 3.1        HVAC Control 124
    • 3.1.1    Smart Thermostats    124
    • 3.1.2    Variable Air Volume (VAV) Systems 125
    • 3.1.3    Heat Recovery Systems          126
    • 3.1.4    Demand-Controlled Ventilation        127
  • 3.2        Lighting Control            128
    • 3.2.1    Occupancy-Based Lighting  128
    • 3.2.2    Daylight Harvesting Systems               129
    • 3.2.3    LED Lighting Control 130
    • 3.2.4    Color-Tunable Lighting            130
    • 3.2.5    Wireless Lighting Control Networks                131
  • 3.3        Security and Access Control               133
    • 3.3.1    Biometric Access Systems   133
    • 3.3.2    Video Surveillance     134
    • 3.3.3    Intrusion Detection Systems               135
    • 3.3.4    Smart Locks and Keyless Entry          136
    • 3.3.5    Visitor Management Systems             138
  • 3.4        Energy Management Systems            139
    • 3.4.1    Real-Time Energy Monitoring              139
    • 3.4.2    Energy Analytics and Reporting         140
    • 3.4.3    Demand Response Systems                141
    • 3.4.4    Microgrid Integration 142
    • 3.4.5    Building Energy Modeling and Simulation   142
  • 3.5        Companies     143 (109 company profiles)

 

4             ADVANCED CONSTRUCTION MATERIALS  212

  • 4.1        Market drivers                212
  • 4.2        Concrete additives     213
    • 4.2.1    Graphene         214
    • 4.2.2    Multi-walled carbon nanotubes (MWCNTs)               215
    • 4.2.3    Single-walled carbon nanotubes (SWCNTs)             217
    • 4.2.4    Cellulose nanofibers 217
    • 4.2.5    Nanosilica       219
    • 4.2.6    Nano-titania (TiO2)    220
    • 4.2.7    Zycosoil             221
    • 4.2.8    Phase change materials         221
    • 4.2.9    Self-healing materials              223
      • 4.2.9.1 Extrinsic self-healing 224
      • 4.2.9.2 Capsule-based             225
      • 4.2.9.3 Vascular self-healing 225
      • 4.2.9.4 Intrinsic self-healing 226
      • 4.2.9.5 Healing volume            227
      • 4.2.9.6 Self-healing concrete                228
        • 4.2.9.6.1           Bioconcrete    229
        • 4.2.9.6.2           Fibre concrete               230
  • 4.3        Self-sensing concrete               230
    • 4.3.1    Filler materials              231
    • 4.3.2    Applications   232
  • 4.4        Memory steel 234
  • 4.5        Biomaterials   235
    • 4.5.1    Mycelium          235
    • 4.5.2    Microalgae biocement             237
  • 4.6        Carbon-negative concrete     238
  • 4.7        3D Printed Building Components     239
  • 4.8        Companies     240 (40 company profiles)

 

5             VIBRATION DAMPING               269

  • 5.1        Overview           269
    • 5.1.1    Tuned Mass Dampers              269
    • 5.1.2    Viscous Dampers       271
    • 5.1.3    Base Isolation Systems           272
  • 5.2        Advanced materials for vibration damping 273
    • 5.2.1    Metamaterials               274
    • 5.2.2    Shape memory materials      276
      • 5.2.2.1 Shape memory effect               276
      • 5.2.2.2 Superelasticity              277
      • 5.2.2.3 Nickel-Titanium (Ni-Ti) alloys               277
        • 5.2.2.3.1           Properties         278
      • 5.2.2.4 Copper-based SMAs 280
      • 5.2.2.5 Iron-based SMAs         281
      • 5.2.2.6 Hardened high temperature shape memory alloys (HTSMAs)       281
      • 5.2.2.7 Titanium-Tantalum (Ti-Ta)-based alloys       282
      • 5.2.2.8 Shape-memory polymers      282
    • 5.2.3    Carbon nanotubes     283
    • 5.2.4    Magnetorheological fluid (MRF)        283
    • 5.2.5    Magnetostrictive materials   284
    • 5.2.6    Piezoelectric ceramics            284
  • 5.3        Companies     284 (8 company profiles)

 

6             SMART COATINGS      290

  • 6.1        Market drivers                290
  • 6.2        Technologies  292
    • 6.2.1    Thermal Regulation Coatings              292
    • 6.2.2    Photocatalytic self-cleaning coatings            293
      • 6.2.2.1 Glass coatings              294
      • 6.2.2.2 Exterior coatings          296
      • 6.2.2.3 Interior coatings           298
        • 6.2.2.3.1           Medical facilities         298
        • 6.2.2.3.2           Antimicrobial coating indoor light activation            298
    • 6.2.3    Hydrophobic coatings              298
    • 6.2.4    Superhydrophobic surfaces 300
      • 6.2.4.1 Properties         300
    • 6.2.5    Anti-fouling and easy-to-clean coatings      301
    • 6.2.6    Advanced antimicrobial coatings     302
      • 6.2.6.1 Metallic-based coatings         302
      • 6.2.6.2 Polymer-based coatings         304
      • 6.2.6.3 Mode of action              305
    • 6.2.7    Thermally insulating paint     306
    • 6.2.8    High reflectance coatings      306
    • 6.2.9    Self-healing coatings                306
  • 6.3        Companies     307 (66 company profiles)

 

7             SMART AIR FILTRATION AND HVAC 353

  • 7.1        Market drivers                353
  • 7.2        HEPA and ULPA Filtration       354
  • 7.3        UV-C Air Purification 355
  • 7.4        Smart Ventilation Systems    356
  • 7.5        Demand-controlled Ventilation         358
  • 7.6        Advanced materials for smart filtration and HVAC                359
    • 7.6.1    Nanomaterials              359
    • 7.6.2    Carbon nanotubes     359
    • 7.6.3    Graphene         361
    • 7.6.4    Nanofibers      363
      • 7.6.4.1 Polymer nanofibers   363
      • 7.6.4.2 Cellulose nanofibers 364
    • 7.6.5    Nanosilver       364
    • 7.6.6    Metal-Organic Frameworks (MOF)   364
    • 7.6.7    Phase change materials         366
    • 7.6.8    Nano-TiO2 photocatalyst coatings  367
  • 7.7        Companies     370 (28 company profiles)

 

8             THERMAL AND SOUND INSULATION             390

  • 8.1        Advanced materials for heating and energy efficiency        392
  • 8.2        Market drivers                392
  • 8.3        Technologies and Materials  393
    • 8.3.1    Vacuum Insulation Panels (VIP)         394
    • 8.3.2    Aerogel Insulation       397
      • 8.3.2.1 Commercially available aerogels     400
      • 8.3.2.2 Silica aerogels               400
        • 8.3.2.2.1           Properties         401
          • 8.3.2.2.1.1      Thermal conductivity                401
          • 8.3.2.2.1.2      Mechanical     401
        • 8.3.2.2.2           Monoliths         402
        • 8.3.2.2.3           Powder               402
        • 8.3.2.2.4           Granules           402
        • 8.3.2.2.5           Blankets            403
        • 8.3.2.2.6           Aerogel boards             404
        • 8.3.2.2.7           Aerogel renders            404
      • 8.3.2.3 Aerogel-like polymer foams 404
      • 8.3.2.4 Biobased aerogels (bio-aerogels)     405
        • 8.3.2.4.1           Cellulose aerogels     405
          • 8.3.2.4.1.1      Cellulose nanofiber (CNF) aerogels                405
          • 8.3.2.4.1.2      Cellulose nanocrystal aerogels         406
        • 8.3.2.4.2           Lignin aerogels              406
        • 8.3.2.4.3           Alginate aerogels         406
        • 8.3.2.4.4           Starch aerogels            407
      • 8.3.2.5 Thermal and sound insulation            408
      • 8.3.2.6 3D printed aerogels   409
    • 8.3.3    Metal-Organic Frameworks (MOF)   410
      • 8.3.3.1 Heat exchangers for heat pumps      410
    • 8.3.4    Phase change materials         411
      • 8.3.4.1 Organic/biobased phase change materials               413
        • 8.3.4.1.1           Paraffin wax    413
        • 8.3.4.1.2           Non-Paraffins/Bio-based      414
      • 8.3.4.2 Inorganic phase change materials   414
        • 8.3.4.2.1           Salt hydrates  414
        • 8.3.4.2.2           Metal and metal alloy PCMs (High-temperature)   415
      • 8.3.4.3 Eutectic mixtures        416
      • 8.3.4.4 Encapsulation of PCMs           416
        • 8.3.4.4.1           Macroencapsulation 416
        • 8.3.4.4.2           Micro/nanoencapsulation    417
      • 8.3.4.5 Nanomaterial phase change materials         417
      • 8.3.4.6 PCMS in buildings and construction               417
        • 8.3.4.6.1           Water heaters                420
        • 8.3.4.6.2           Thermal batteries for water heaters and EVs            421
    • 8.3.5    Acoustic Metamaterials         423
      • 8.3.5.1 Metasurfaces 424
      • 8.3.5.2 Types of metamaterials          425
      • 8.3.5.3 Sound insulation         426
    • 8.3.6    Graphene Insulation 427
    • 8.3.7    Nanofiber‐based insulation material             428
      • 8.3.7.1 Polymer nanofibers   428
      • 8.3.7.2 Alumina nanofibers   428
    • 8.3.8    Green Insulation Materials    429
  • 8.4        Companies     429 (38 company profiles)

 

9             BUILDING ENERGY HARVESTING AND GENERATION        457

  • 9.1        Market drivers                457
  • 9.2        Technologies  457
    • 9.2.1    Piezoelectric Energy Harvesting        458
    • 9.2.2    Thermoelectric Energy Harvesting  459
    • 9.2.3    Kinetic Energy Harvesting      460
    • 9.2.4    Solar Energy Systems               460
      • 9.2.4.1 Photovoltaic glazing  463
      • 9.2.4.2 Dye-sensitized solar cells (DSSCs) 463
      • 9.2.4.3 Organic solar cells (OSCs)    463
      • 9.2.4.4 Perovskite solar cells (PSCs)               464
      • 9.2.4.5 Quantum dot solar cells (QDSCs)   464
      • 9.2.4.6 Copper zinc tin sulphide solar cells (CZTS)                465
  • 9.2.5    Microalgae bioreactive façades        465
  • 9.3        Companies     467 (60 company profiles)

 

10          SMART SENSORS AND IoT     504

  • 10.1     Market drivers                504
  • 10.2     Types of smart building sensors        505
  • 10.3     Applications   506
  • 10.4     Occupancy Sensors  512
    • 10.4.1 Passive Infrared (PIR) Sensors            512
    • 10.4.2 Ultrasonic Sensors     513
    • 10.4.3 Microwave Sensors    514
    • 10.4.4 Image Processing Occupancy Sensors        514
    • 10.4.5 Dual Technology Sensors      515
  • 10.5     Environmental Sensors           516
    • 10.5.1 Temperature Sensors               517
    • 10.5.2 Humidity Sensors       518
    • 10.5.3 CO2 Sensors  519
    • 10.5.4 VOC (Volatile Organic Compound) Sensors              520
    • 10.5.5 Particulate Matter (PM) Sensors        521
    • 10.5.6 Light Level Sensors    522
  • 10.6     Structural Health Monitoring Sensors           523
    • 10.6.1 Vibration Sensors        524
    • 10.6.2 Strain Gauges                525
    • 10.6.3 Crack Meters  526
    • 10.6.4 Tilt Sensors     526
    • 10.6.5 Corrosion Sensors     527
  • 10.7     IoT Platforms for Smart Buildings      528
    • 10.7.1 Cloud-based IoT Platforms   528
    • 10.7.2 Edge Computing Solutions   529
    • 10.7.3 IoT Data Analytics Platforms                530
    • 10.7.4 IoT Security Solutions               531
    • 10.7.5 IoT Device Management Platforms  532
  • 10.8     Energy Monitoring Sensors   533
    • 10.8.1 Power Meters 534
    • 10.8.2 Current Transformers               535
    • 10.8.3 Voltage Sensors           535
    • 10.8.4 Smart Energy Meters 536
  • 10.9     Water Management Sensors               537
    • 10.9.1 Water Flow Sensors   537
    • 10.9.2 Leak Detection Sensors          538
    • 10.9.3 Water Quality Sensors             539
    • 10.9.4 Pressure Sensors        540
  • 10.10  Companies     541 (25 company profiles)

 

11          ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN SMART BUILDINGS   550

  • 11.1     Predictive Maintenance          550
    • 11.1.1 Equipment Failure Prediction              550
    • 11.1.2 Maintenance Scheduling Optimization        551
    • 11.1.3 Anomaly Detection in Building Systems      552
    • 11.1.4 Predictive Diagnostics for HVAC Systems  553
  • 11.2     Energy Optimization Algorithms        554
    • 11.2.1 Load Forecasting        554
    • 11.2.2 Energy Consumption Pattern Analysis          556
    • 11.2.3 Dynamic Energy Pricing Optimization           557
    • 11.2.4 Renewable Energy Integration Optimization             558
  • 11.3     Occupant Comfort Management     559
    • 11.3.1 Personalized Comfort Profiles            560
    • 11.3.2 Adaptive Thermal Comfort Models  561
    • 11.3.3 Indoor Air Quality Optimization         562
    • 11.3.4 Lighting Preference Learning               563
  • 11.4     Building Performance Analytics        565
    • 11.4.1 Real-time Performance Monitoring 565
    • 11.4.2 Benchmarking and Comparative Analysis  566
    • 11.4.3 Fault Detection and Diagnostics      567
    • 11.4.4 Energy Performance Simulation and Modeling        568
  • 11.5     Smart Space Management   569
    • 11.5.1 Occupancy Pattern Analysis               569
    • 11.5.2 Space Utilization Optimization          570
    • 11.5.3 Hot-desking and Workspace Allocation       571
    • 11.5.4 Meeting Room Scheduling Optimization     572
  • 11.6     Security and Access Control AI          574
    • 11.6.1 Facial Recognition Systems 574
    • 11.6.2 Behavioral Anomaly Detection           575
    • 11.6.3 Intelligent Video Surveillance              576
    • 11.6.4 AI-powered Threat Assessment        577
  • 11.7     Companies     579 (20 company profiles)

 

12          SMART LIGHTING        581

  • 12.1     Market drivers                581
  • 12.2     Advanced materials for smart lighting          582
    • 12.2.1 LEDs    582
    • 12.2.2 Organic LEDs (OLEDs)             583
    • 12.2.3 Quantum dots               583
    • 12.2.4 Graphene         586
    • 12.2.5 Sensor-based lighting              587
  • 12.3     Companies     589 (21 company profiles)

 

13          APPENDICES  606

  • 13.1     Aims and objectives of this study     606
  • 13.2     Research methodology           607

14          REFERENCES 607

 

Tables

  • Table 1. Market drivers for advanced technologies and materials in smart and sustainable buildings.                39
  • Table 2. Market Challenges in smart and sustainable buildings. 41
  • Table 3. Summary of adaptive facade technologies and processes.         45
  • Table 4. Markets for smart glass and windows.       49
  • Table 5: Properties of nanocoatings.              52
  • Table 6. Comparison of smart glass and windows types. 58
  • Table 7. Market drivers for smart glass.        59
  • Table 8. Technologies controlling daylight transmission. 61
  • Table 9. Types of passive smart glass.          62
  • Table 10. Types of active smart glass.           62
  • Table 11. Advantages and disadvantages of respective smart glass technologies.         63
  • Table 12. Market structure for smart glass and windows. 64
  • Table 13. Manufacturers of smart film and glass, by type.               65
  • Table 14. Routes to market for smart glass companies.    66
  • Table 15. Technologies for smart windows in buildings.    68
  • Table 16. Market and technical challenges for smart glass and windows, by main technology type.  70
  • Table 17. Types of electrochromic materials and applications.   73
  • Table 18. Market drivers for advanced construction materials.    214
  • Table 19. Graphene for concrete and cement.         215
  • Table 20. Typical properties of nanosilica. 220
  • Table 21. Types of self-healing coatings and materials.     224
  • Table 22. Comparative properties of self-healing materials.          229
  • Table 23. Types of self-healing concrete.     230
  • Table 24. Types of fillers in self-sensing concrete. 232
  • Table 25. Applications of self-sensing concrete.    233
  • Table 26. Overview of mycelium fibers-description, properties, drawbacks and applications.               236
  • Table 27. Physical properties of NiTi.             279
  • Table 28. Applications of shape memory materials in construction and stage of development.            280
  • Table 29. Properties of copper-based shape memory alloys          281
  • Table 30. Comparison between the SMAs and SMPs.         283
  • Table 31. Market drivers for smart coatings in buildings.  291
  • Table 32. Advanced coating applied in the building and construction industry. 292
  • Table 33. Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces.          301
  • Table 34. Anti-fouling and easy-to-clean coatings-Nanomaterials used, principles, properties and applications.  302
  • Table 35. Polymer-based coatings for antimicrobial coatings and surfaces.       305
  • Table 36. Market drivers for smart air filtration and HVAC.               354
  • Table 37. Smart Ventilation Systems.            358
  • Table 38. Comparison of CNT membranes with other membrane technologies               361
  • Table 39. Market and applications for graphene in filtration.          362
  • Table 40. Market assessment for PCMs in building and construction-market age, applications, key benefits and motivation for use, market drivers and trends, market challenges.              367
  • Table 41. Types of thermal insulation materials.    392
  • Table 42. Market drivers for advanced materials in thermal and sound insulation.         393
  • Table 43. Technologies controlling heat loss from windows, walls and roofs in smart and sustainable buildings.         394
  • Table 44. Comparison of VIP with other insulation.              396
  • Table 45. Market overview of aerogels in building and construction-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL.             398
  • Table 46.  General properties and value of aerogels.           400
  • Table 47. Commercially available aerogel-enhanced blankets.   405
  • Table 48.  PCM Types and properties.            413
  • Table 49. Advantages and disadvantages of organic PCM Fatty Acids.    415
  • Table 50. Advantages and disadvantages of salt hydrates               416
  • Table 51. Advantages and disadvantages of low melting point metals.   416
  • Table 52. Market assessment for PCMs in building and construction-market age, applications, key benefits and motivation for use, market drivers and trends, market challenges.              420
  • Table 53. Market assessment for PCMs in thermal storage systems-market age, applications, key benefits and motivation for use, market drivers and trends, market challenges.              423
  • Table 54. CrodaTherm Range.             436
  • Table 55.Market drivers for advanced materials and technologies in energy harvesting for buildings.                458
  • Table 56. Technologies generating electricity in smart buildings. 458
  • Table 57. Market drivers for smart sensors for buildings.  505
  • Table 58. Types of smart building sensors. 506
  • Table 59. Commonly used sensors in smart buildings.      507
  • Table 60. Types of flexible humidity sensors.            509
  • Table 61. MOF sensor applications.               512
  • Table 62. Structural Health Monitoring Sensors.    524
  • Table 63.  IoT Device Management Platforms.          533
  • Table 64: Market drivers for smart lighting in smart and sustainable buildings. 582
  • Table 65. QD-LEDs and External quantum efficiencies (EQE).      586
  • Table 66. Market and applications for graphene in lighting.            587

 

List of Figures

  • Figure 1. Evolution of Smart Building Technology. 39
  • Figure 2. Global market revenues for smart buildings, by technology areas, 2018-2033 (Millions USD).                42
  • Figure 3. Productivity and comfort gains achieved through window and ventilation technologies.      48
  • Figure 4. SLENTEX® thermal insulation.       49
  • Figure 5. Energy harvesting technologies.   53
  • Figure 6. Energy harvesting solutions in smart buildings. 54
  • Figure 7. Nanocrystal smart glass that can switch between fully transparent, heat-blocking, and light-and-heat-blocking modes.   63
  • Figure 8. Typical setup of an electrochromic device (ECD).            72
  • Figure 9. Electrochromic smart glass schematic.  72
  • Figure 10. Electrochromic smart glass.        75
  • Figure 11. Examples of electrochromic smart windows each in fully coloured (left) and bleached state (right). 76
  • Figure 14. Thermochromic smart windows schematic.     77
  • Figure 15. Vertical insulated glass unit for a Suntuitive® thermochromic window.          78
  • Figure 16. SPD smart windows schematic. 79
  • Figure 17. SPD film lamination.         80
  • Figure 18. SPD smart film schematic. Control the transmittance of light and glare by adjusting AC voltage to the SPD Film.          81
  • Figure 21. PDLC schematic. 82
  • Figure 22. Schematic of PDLC film and self-adhesive PDLC film.               83
  • Figure 23. Smart glass made with polymer dispersed liquid crystal (PDLC) technology.             85
  • Figure 29. Micro-blinds schematic. 86
  • Figure 30. Cross-section of Electro Kinetic Film.    87
  • Figure 31. Schematic of HISG.            88
  • Figure 32. UbiQD PV windows.          89
  • Figure 12. Argil smart glass for buildings.    90
  • Figure 13. CoverLight by Chromogenics.     91
  • Figure 19. SPD film glass installation at Indiana University.            104
  • Figure 20. Schematic of Cromalite SPD film.            105
  • Figure 24. e-Tint® cell in the (a) OFF and in the (b) ON states.        110
  • Figure 25. Bestroom Smart VU film.                112
  • Figure 26. Schematic of Magic Glass.           114
  • Figure 27. Application of Magic Glass in office.       114
  • Figure 28. Installation schematic of Magic Glass. 114
  • Figure 33. Comparison of nanofillers with supplementary cementitious materials and aggregates in concrete.          214
  • Figure 34. MWCNTS in concrete and cement.          215
  • Figure 35. SWCNTS in concrete and cement.           217
  • Figure 36. Market overview for cellulose nanofibers in concrete and cement additives.             217
  • Figure 37. SEM micrographs of plain (A) and nano-silica modified cement paste (B).   220
  • Figure 38. Schematic of photocatalytic air purifying pavement.   220
  • Figure 39. Applicaiton of Zycosil in concrete.           221
  • Figure 40. Phase change materials for thermal energy storage in concrete.         222
  • Figure 41. Schematic of self-healing polymers. Capsule based (a), vascular (b), and intrinsic (c) schemes for self-healing materials.  Red and blue colours indicate chemical species which react (purple) to heal damage.       223
  • Figure 42. Stages of self-healing mechanism.         224
  • Figure 43. Schematic of the self-healing concept using microcapsules with a healing agent inside.  225
  • Figure 44. Self-healing mechanism in vascular self-healing systems.     226
  • Figure 45. Comparison of self-healing systems.    227
  • Figure 46. Self-healing bacteria crack filler for concrete.  229
  • Figure 47. Self-healing concrete test study with cracked concrete (left) and self-healed concrete after 28 days (right).              229
  • Figure 48. Self-healing concrete.      230
  • Figure 49. Self-sensing concrete schematic.            231
  • Figure 50. Memory-steel reinforcement bars.          235
  • Figure 51. Typical structure of mycelium-based foam.      236
  • Figure 52. Commercial mycelium composite construction materials.    237
  • Figure 53. Microalgae based biocement masonry bloc.    238
  • Figure 54. Graphene asphalt additives.        250
  • Figure 55. OG (Original Graphene) Concrete Admix Plus. 258
  • Figure 56. Talcoat graphene mixed with paint.         265
  • Figure 57. Metamaterials example structures.        274
  • Figure 58. Metamaterial schematic versus conventional materials.         275
  • Figure 59. Robotic metamaterial device for seismic-induced vibration mitigation.        276
  • Figure 60. Histeresys cycle for Superelastic and shape memory material.           276
  • Figure 61. Shape memory effect.      277
  • Figure 62. Superelasticity Elastic Property.                277
  • Figure 63. Stress x Strain diagram.  279
  • Figure 64. Shape memory pipe joint.             281
  • Figure 65. The molecular mechanism of the shape memory effect under different stimuli.     283
  • Figure 66. Cabkoma strand rod.        287
  • Figure 67. Viscoelastic coupling damper.   288
  • Figure 68. Schematic of dry-cooling technology.   292
  • Figure 69. Mechanism of photocatalysis on a surface treated with TiO2 nanoparticles.             294
  • Figure 70. Schematic showing the self-cleaning phenomena on superhydrophilic surface.     295
  • Figure 71. Titanium dioxide-coated glass (left) and ordinary glass (right).             296
  • Figure 72. Schematic of photocatalytic air purifying pavement.   297
  • Figure 73.  Self-Cleaning mechanism utilizing photooxidation.   297
  • Figure 74. (a) Water drops on a lotus leaf.   299
  • Figure 75. Self-cleaning superhydrophobic coating schematic.  300
  • Figure 76. Contact angle on superhydrophobic coated surface. 301
  • Figure 77. Antibacterial mechanisms of metal and metallic oxide nanoparticles.          303
  • Figure 78. GermStopSQ mechanism of action.       318
  • Figure 79. NOx reduction with TioCem®.      322
  • Figure 80. Quartzene®.             344
  • Figure 81. V-CAT® photocatalyst mechanism.         348
  • Figure 82. Applications of Titanystar.             351
  • Figure 83. Capture mechanism for MOFs toward air pollutants. 365
  • Figure 84. Schematic of photocatalytic indoor air purification filter.         368
  • Figure 85. Photocatalytic oxidation (PCO) air filter.               368
  • Figure 86. Schematic indoor air filtration.   369
  • Figure 87: CNF gel.     375
  • Figure 88: Block nanocellulose material.    376
  • Figure 89. Mosaic Materials MOFs. 381
  • Figure 90. MOF-based cartridge (purple) added to an existing air conditioner.  390
  • Figure 91. Global energy consumption growth of buildings.           391
  • Figure 92.  Energy consumption of residential building sector.     391
  • Figure 93. Vacuum Insulation Panel (VIP).  395
  • Figure 94. Main characteristics of aerogel type materials.               399
  • Figure 95. Classification of aerogels.             399
  • Figure 96. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner.                401
  • Figure 97. Monolithic aerogel.            402
  • Figure 98. Aerogel granules. 402
  • Figure 99. Internal aerogel granule applications.   403
  • Figure 100. Fabrication routes for starch-based aerogels.               407
  • Figure 101. Aerogel construction applications.       408
  • Figure 102. Commonly employed printing technologies for aerogels.     409
  • Figure 103. Schematic for direct ink writing of silica aerogels.      410
  • Figure 104. 3D printed aerogel.          410
  • Figure 105. MOF-coated heat exchanger.   411
  • Figure 106. Classification of PCMs. 412
  • Figure 107. Phase-change materials in their original states.          412
  • Figure 108. Schematic of PCM use in buildings.     418
  • Figure 109. Comparison of the maximum energy storage capacity of 10 mm thickness of different building materials operating between 18 °C and 26 °C for 24 h.  419
  • Figure 110. Schematic of PCM in storage tank linked to solar collector. 421
  • Figure 111. UniQ line of thermal batteries. 422
  • Figure 112. Metamaterials example structures.      423
  • Figure 113. Metamaterial schematic versus conventional materials.      424
  • Figure 114. Prototype metamaterial device used in acoustic sound insulation.               426
  • Figure 115. Metamaterials installed in HVAC sound insulation the Hotel Madera Hong Kong. 427
  • Figure 116. Graphene aerogel.           428
  • Figure 117. TE module schematic.   459
  • Figure 118. Utilization of TE materials in exterior walls for energy generation, heating and cooling.    460
  • Figure 119. The Sun Rock building, Taiwan.               461
  • Figure 120. Photovoltaic solar cells.               462
  • Figure 121. Classification of BIPV products.             463
  • Figure 122. BIQ House in Hamburg.               466
  • Figure 123. Photo.Synth.Etica curtain.          467
  • Figure 124. Hikari building incorporating SunEwat Square solar glazing.               468
  • Figure 125. Elegante solar glass panel.        470
  • Figure 126. Certainteed Apollo-2 solar shingles roof.         474
  • Figure 127. Triple insulated glass unit for the Stadtwerke Konstanz energy cube in Germany. 476
  • Figure 128. Moscow building incorporating Hevel's BIPV product.             481
  • Figure 129. Mitrex solar façade layers.          485
  • Figure 130. Solar Brick by Mitrex       486
  • Figure 131. QDSSC Module. 487
  • Figure 132. DragonScales technology.          488
  • Figure 133. Photovoltaic integration in façade at the Gioia 22 skyscraper, in Milan.       492
  • Figure 134. S6 flexible solar module.             498
  • Figure 135. Ubiquitous Energy windows installed at the Boulder Commons in Colorado.          501
  • Figure 136. Use of sensors in smart buildings.        505
  • Figure 137. Sensor surface.  544
  • Figure 138. Printed moisture sensors.           545
  • Figure 139. Fourth generation QD-LEDs.     585
  • Figure 140. Applications of graphene in lighting.    587
  • Figure 141. Graphene LED bulbs.     595
  • Figure 142. iOLED film light source. 599

 

 

The Global Smart and Sustainable Buildings Market 2025-2035
The Global Smart and Sustainable Buildings Market 2025-2035
PDF download/by email.

The Global Smart and Sustainable Buildings Market 2025-2035
The Global Smart and Sustainable Buildings Market 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com